]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_sync.c
xfs: don't flush inodes from background inode reclaim
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_sync.c
CommitLineData
fe4fa4b8
DC
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
21#include "xfs_bit.h"
22#include "xfs_log.h"
23#include "xfs_inum.h"
24#include "xfs_trans.h"
fd074841 25#include "xfs_trans_priv.h"
fe4fa4b8
DC
26#include "xfs_sb.h"
27#include "xfs_ag.h"
fe4fa4b8
DC
28#include "xfs_mount.h"
29#include "xfs_bmap_btree.h"
fe4fa4b8
DC
30#include "xfs_inode.h"
31#include "xfs_dinode.h"
32#include "xfs_error.h"
fe4fa4b8
DC
33#include "xfs_filestream.h"
34#include "xfs_vnodeops.h"
fe4fa4b8 35#include "xfs_inode_item.h"
7d095257 36#include "xfs_quota.h"
0b1b213f 37#include "xfs_trace.h"
1a387d3b 38#include "xfs_fsops.h"
fe4fa4b8 39
a167b17e
DC
40#include <linux/kthread.h>
41#include <linux/freezer.h>
42
c6d09b66
DC
43struct workqueue_struct *xfs_syncd_wq; /* sync workqueue */
44
78ae5256
DC
45/*
46 * The inode lookup is done in batches to keep the amount of lock traffic and
47 * radix tree lookups to a minimum. The batch size is a trade off between
48 * lookup reduction and stack usage. This is in the reclaim path, so we can't
49 * be too greedy.
50 */
51#define XFS_LOOKUP_BATCH 32
52
e13de955
DC
53STATIC int
54xfs_inode_ag_walk_grab(
55 struct xfs_inode *ip)
56{
57 struct inode *inode = VFS_I(ip);
58
1a3e8f3d
DC
59 ASSERT(rcu_read_lock_held());
60
61 /*
62 * check for stale RCU freed inode
63 *
64 * If the inode has been reallocated, it doesn't matter if it's not in
65 * the AG we are walking - we are walking for writeback, so if it
66 * passes all the "valid inode" checks and is dirty, then we'll write
67 * it back anyway. If it has been reallocated and still being
68 * initialised, the XFS_INEW check below will catch it.
69 */
70 spin_lock(&ip->i_flags_lock);
71 if (!ip->i_ino)
72 goto out_unlock_noent;
73
74 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
75 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
76 goto out_unlock_noent;
77 spin_unlock(&ip->i_flags_lock);
78
e13de955
DC
79 /* nothing to sync during shutdown */
80 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
81 return EFSCORRUPTED;
82
e13de955
DC
83 /* If we can't grab the inode, it must on it's way to reclaim. */
84 if (!igrab(inode))
85 return ENOENT;
86
87 if (is_bad_inode(inode)) {
88 IRELE(ip);
89 return ENOENT;
90 }
91
92 /* inode is valid */
93 return 0;
1a3e8f3d
DC
94
95out_unlock_noent:
96 spin_unlock(&ip->i_flags_lock);
97 return ENOENT;
e13de955
DC
98}
99
75f3cb13
DC
100STATIC int
101xfs_inode_ag_walk(
102 struct xfs_mount *mp,
5017e97d 103 struct xfs_perag *pag,
75f3cb13
DC
104 int (*execute)(struct xfs_inode *ip,
105 struct xfs_perag *pag, int flags),
65d0f205 106 int flags)
75f3cb13 107{
75f3cb13
DC
108 uint32_t first_index;
109 int last_error = 0;
110 int skipped;
65d0f205 111 int done;
78ae5256 112 int nr_found;
75f3cb13
DC
113
114restart:
65d0f205 115 done = 0;
75f3cb13
DC
116 skipped = 0;
117 first_index = 0;
78ae5256 118 nr_found = 0;
75f3cb13 119 do {
78ae5256 120 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
75f3cb13 121 int error = 0;
78ae5256 122 int i;
75f3cb13 123
1a3e8f3d 124 rcu_read_lock();
65d0f205 125 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
78ae5256
DC
126 (void **)batch, first_index,
127 XFS_LOOKUP_BATCH);
65d0f205 128 if (!nr_found) {
1a3e8f3d 129 rcu_read_unlock();
75f3cb13 130 break;
c8e20be0 131 }
75f3cb13 132
65d0f205 133 /*
78ae5256
DC
134 * Grab the inodes before we drop the lock. if we found
135 * nothing, nr == 0 and the loop will be skipped.
65d0f205 136 */
78ae5256
DC
137 for (i = 0; i < nr_found; i++) {
138 struct xfs_inode *ip = batch[i];
139
140 if (done || xfs_inode_ag_walk_grab(ip))
141 batch[i] = NULL;
142
143 /*
1a3e8f3d
DC
144 * Update the index for the next lookup. Catch
145 * overflows into the next AG range which can occur if
146 * we have inodes in the last block of the AG and we
147 * are currently pointing to the last inode.
148 *
149 * Because we may see inodes that are from the wrong AG
150 * due to RCU freeing and reallocation, only update the
151 * index if it lies in this AG. It was a race that lead
152 * us to see this inode, so another lookup from the
153 * same index will not find it again.
78ae5256 154 */
1a3e8f3d
DC
155 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
156 continue;
78ae5256
DC
157 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
158 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
159 done = 1;
e13de955 160 }
78ae5256
DC
161
162 /* unlock now we've grabbed the inodes. */
1a3e8f3d 163 rcu_read_unlock();
e13de955 164
78ae5256
DC
165 for (i = 0; i < nr_found; i++) {
166 if (!batch[i])
167 continue;
168 error = execute(batch[i], pag, flags);
169 IRELE(batch[i]);
170 if (error == EAGAIN) {
171 skipped++;
172 continue;
173 }
174 if (error && last_error != EFSCORRUPTED)
175 last_error = error;
75f3cb13 176 }
c8e20be0
DC
177
178 /* bail out if the filesystem is corrupted. */
75f3cb13
DC
179 if (error == EFSCORRUPTED)
180 break;
181
8daaa831
DC
182 cond_resched();
183
78ae5256 184 } while (nr_found && !done);
75f3cb13
DC
185
186 if (skipped) {
187 delay(1);
188 goto restart;
189 }
75f3cb13
DC
190 return last_error;
191}
192
fe588ed3 193int
75f3cb13
DC
194xfs_inode_ag_iterator(
195 struct xfs_mount *mp,
196 int (*execute)(struct xfs_inode *ip,
197 struct xfs_perag *pag, int flags),
65d0f205 198 int flags)
75f3cb13 199{
16fd5367 200 struct xfs_perag *pag;
75f3cb13
DC
201 int error = 0;
202 int last_error = 0;
203 xfs_agnumber_t ag;
204
16fd5367 205 ag = 0;
65d0f205
DC
206 while ((pag = xfs_perag_get(mp, ag))) {
207 ag = pag->pag_agno + 1;
208 error = xfs_inode_ag_walk(mp, pag, execute, flags);
5017e97d 209 xfs_perag_put(pag);
75f3cb13
DC
210 if (error) {
211 last_error = error;
212 if (error == EFSCORRUPTED)
213 break;
214 }
215 }
216 return XFS_ERROR(last_error);
217}
218
5a34d5cd
DC
219STATIC int
220xfs_sync_inode_data(
221 struct xfs_inode *ip,
75f3cb13 222 struct xfs_perag *pag,
5a34d5cd
DC
223 int flags)
224{
225 struct inode *inode = VFS_I(ip);
226 struct address_space *mapping = inode->i_mapping;
227 int error = 0;
228
229 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
4a06fd26 230 return 0;
5a34d5cd
DC
231
232 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED)) {
233 if (flags & SYNC_TRYLOCK)
4a06fd26 234 return 0;
5a34d5cd
DC
235 xfs_ilock(ip, XFS_IOLOCK_SHARED);
236 }
237
238 error = xfs_flush_pages(ip, 0, -1, (flags & SYNC_WAIT) ?
0cadda1c 239 0 : XBF_ASYNC, FI_NONE);
5a34d5cd 240 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
5a34d5cd
DC
241 return error;
242}
243
075fe102
CH
244/*
245 * Write out pagecache data for the whole filesystem.
246 */
64c86149 247STATIC int
075fe102
CH
248xfs_sync_data(
249 struct xfs_mount *mp,
250 int flags)
683a8970 251{
075fe102 252 int error;
fe4fa4b8 253
b0710ccc 254 ASSERT((flags & ~(SYNC_TRYLOCK|SYNC_WAIT)) == 0);
fe4fa4b8 255
65d0f205 256 error = xfs_inode_ag_iterator(mp, xfs_sync_inode_data, flags);
075fe102
CH
257 if (error)
258 return XFS_ERROR(error);
e9f1c6ee 259
a14a348b 260 xfs_log_force(mp, (flags & SYNC_WAIT) ? XFS_LOG_SYNC : 0);
075fe102
CH
261 return 0;
262}
e9f1c6ee 263
5d77c0dc 264STATIC int
2af75df7 265xfs_sync_fsdata(
df308bcf 266 struct xfs_mount *mp)
2af75df7
CH
267{
268 struct xfs_buf *bp;
c2b006c1 269 int error;
2af75df7
CH
270
271 /*
df308bcf
CH
272 * If the buffer is pinned then push on the log so we won't get stuck
273 * waiting in the write for someone, maybe ourselves, to flush the log.
274 *
275 * Even though we just pushed the log above, we did not have the
276 * superblock buffer locked at that point so it can become pinned in
277 * between there and here.
2af75df7 278 */
df308bcf 279 bp = xfs_getsb(mp, 0);
811e64c7 280 if (xfs_buf_ispinned(bp))
df308bcf 281 xfs_log_force(mp, 0);
c2b006c1
CH
282 error = xfs_bwrite(bp);
283 xfs_buf_relse(bp);
284 return error;
e9f1c6ee
DC
285}
286
287/*
a4e4c4f4
DC
288 * When remounting a filesystem read-only or freezing the filesystem, we have
289 * two phases to execute. This first phase is syncing the data before we
290 * quiesce the filesystem, and the second is flushing all the inodes out after
291 * we've waited for all the transactions created by the first phase to
292 * complete. The second phase ensures that the inodes are written to their
293 * location on disk rather than just existing in transactions in the log. This
294 * means after a quiesce there is no log replay required to write the inodes to
295 * disk (this is the main difference between a sync and a quiesce).
296 */
297/*
298 * First stage of freeze - no writers will make progress now we are here,
e9f1c6ee
DC
299 * so we flush delwri and delalloc buffers here, then wait for all I/O to
300 * complete. Data is frozen at that point. Metadata is not frozen,
211e4d43 301 * transactions can still occur here so don't bother emptying the AIL
a4e4c4f4 302 * because it'll just get dirty again.
e9f1c6ee
DC
303 */
304int
305xfs_quiesce_data(
306 struct xfs_mount *mp)
307{
df308bcf 308 int error, error2 = 0;
e9f1c6ee 309
34625c66 310 /* force out the log */
33b8f7c2
CH
311 xfs_log_force(mp, XFS_LOG_SYNC);
312
a4e4c4f4 313 /* write superblock and hoover up shutdown errors */
df308bcf
CH
314 error = xfs_sync_fsdata(mp);
315
316 /* make sure all delwri buffers are written out */
317 xfs_flush_buftarg(mp->m_ddev_targp, 1);
318
319 /* mark the log as covered if needed */
320 if (xfs_log_need_covered(mp))
c58efdb4 321 error2 = xfs_fs_log_dummy(mp);
e9f1c6ee 322
a4e4c4f4 323 /* flush data-only devices */
e9f1c6ee 324 if (mp->m_rtdev_targp)
a9add83e 325 xfs_flush_buftarg(mp->m_rtdev_targp, 1);
e9f1c6ee 326
df308bcf 327 return error ? error : error2;
2af75df7
CH
328}
329
76bf105c
DC
330/*
331 * Second stage of a quiesce. The data is already synced, now we have to take
332 * care of the metadata. New transactions are already blocked, so we need to
25985edc 333 * wait for any remaining transactions to drain out before proceeding.
76bf105c
DC
334 */
335void
336xfs_quiesce_attr(
337 struct xfs_mount *mp)
338{
339 int error = 0;
340
341 /* wait for all modifications to complete */
342 while (atomic_read(&mp->m_active_trans) > 0)
343 delay(100);
344
211e4d43
CH
345 /* reclaim inodes to do any IO before the freeze completes */
346 xfs_reclaim_inodes(mp, 0);
347 xfs_reclaim_inodes(mp, SYNC_WAIT);
348
349 /* flush all pending changes from the AIL */
350 xfs_ail_push_all_sync(mp->m_ail);
76bf105c 351
5e106572
FB
352 /*
353 * Just warn here till VFS can correctly support
354 * read-only remount without racing.
355 */
356 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
76bf105c
DC
357
358 /* Push the superblock and write an unmount record */
adab0f67 359 error = xfs_log_sbcount(mp);
76bf105c 360 if (error)
4f10700a 361 xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
76bf105c
DC
362 "Frozen image may not be consistent.");
363 xfs_log_unmount_write(mp);
211e4d43
CH
364
365 /*
366 * At this point we might have modified the superblock again and thus
367 * added an item to the AIL, thus flush it again.
368 */
369 xfs_ail_push_all_sync(mp->m_ail);
76bf105c
DC
370}
371
c6d09b66
DC
372static void
373xfs_syncd_queue_sync(
374 struct xfs_mount *mp)
a167b17e 375{
c6d09b66
DC
376 queue_delayed_work(xfs_syncd_wq, &mp->m_sync_work,
377 msecs_to_jiffies(xfs_syncd_centisecs * 10));
a167b17e
DC
378}
379
aacaa880 380/*
df308bcf
CH
381 * Every sync period we need to unpin all items, reclaim inodes and sync
382 * disk quotas. We might need to cover the log to indicate that the
1a387d3b 383 * filesystem is idle and not frozen.
aacaa880 384 */
a167b17e
DC
385STATIC void
386xfs_sync_worker(
c6d09b66 387 struct work_struct *work)
a167b17e 388{
c6d09b66
DC
389 struct xfs_mount *mp = container_of(to_delayed_work(work),
390 struct xfs_mount, m_sync_work);
a167b17e
DC
391 int error;
392
8a00ebe4
DC
393 /*
394 * We shouldn't write/force the log if we are in the mount/unmount
395 * process or on a read only filesystem. The workqueue still needs to be
396 * active in both cases, however, because it is used for inode reclaim
397 * during these times. hence use the MS_ACTIVE flag to avoid doing
398 * anything in these periods.
399 */
400 if (!(mp->m_super->s_flags & MS_ACTIVE) &&
401 !(mp->m_flags & XFS_MOUNT_RDONLY)) {
aacaa880 402 /* dgc: errors ignored here */
1a387d3b
DC
403 if (mp->m_super->s_frozen == SB_UNFROZEN &&
404 xfs_log_need_covered(mp))
c58efdb4
DC
405 error = xfs_fs_log_dummy(mp);
406 else
407 xfs_log_force(mp, 0);
fd074841
DC
408
409 /* start pushing all the metadata that is currently dirty */
410 xfs_ail_push_all(mp->m_ail);
aacaa880 411 }
c6d09b66
DC
412
413 /* queue us up again */
414 xfs_syncd_queue_sync(mp);
a167b17e
DC
415}
416
a7b339f1
DC
417/*
418 * Queue a new inode reclaim pass if there are reclaimable inodes and there
419 * isn't a reclaim pass already in progress. By default it runs every 5s based
420 * on the xfs syncd work default of 30s. Perhaps this should have it's own
421 * tunable, but that can be done if this method proves to be ineffective or too
422 * aggressive.
423 */
424static void
425xfs_syncd_queue_reclaim(
426 struct xfs_mount *mp)
a167b17e 427{
a167b17e 428
a7b339f1
DC
429 rcu_read_lock();
430 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
431 queue_delayed_work(xfs_syncd_wq, &mp->m_reclaim_work,
432 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
a167b17e 433 }
a7b339f1
DC
434 rcu_read_unlock();
435}
a167b17e 436
a7b339f1
DC
437/*
438 * This is a fast pass over the inode cache to try to get reclaim moving on as
439 * many inodes as possible in a short period of time. It kicks itself every few
440 * seconds, as well as being kicked by the inode cache shrinker when memory
441 * goes low. It scans as quickly as possible avoiding locked inodes or those
442 * already being flushed, and once done schedules a future pass.
443 */
444STATIC void
445xfs_reclaim_worker(
446 struct work_struct *work)
447{
448 struct xfs_mount *mp = container_of(to_delayed_work(work),
449 struct xfs_mount, m_reclaim_work);
450
451 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
452 xfs_syncd_queue_reclaim(mp);
453}
454
89e4cb55
DC
455/*
456 * Flush delayed allocate data, attempting to free up reserved space
457 * from existing allocations. At this point a new allocation attempt
458 * has failed with ENOSPC and we are in the process of scratching our
459 * heads, looking about for more room.
460 *
461 * Queue a new data flush if there isn't one already in progress and
462 * wait for completion of the flush. This means that we only ever have one
463 * inode flush in progress no matter how many ENOSPC events are occurring and
464 * so will prevent the system from bogging down due to every concurrent
465 * ENOSPC event scanning all the active inodes in the system for writeback.
466 */
467void
468xfs_flush_inodes(
469 struct xfs_inode *ip)
470{
471 struct xfs_mount *mp = ip->i_mount;
472
473 queue_work(xfs_syncd_wq, &mp->m_flush_work);
474 flush_work_sync(&mp->m_flush_work);
475}
476
477STATIC void
478xfs_flush_worker(
479 struct work_struct *work)
480{
481 struct xfs_mount *mp = container_of(work,
482 struct xfs_mount, m_flush_work);
483
484 xfs_sync_data(mp, SYNC_TRYLOCK);
485 xfs_sync_data(mp, SYNC_TRYLOCK | SYNC_WAIT);
a167b17e
DC
486}
487
488int
489xfs_syncd_init(
490 struct xfs_mount *mp)
491{
89e4cb55 492 INIT_WORK(&mp->m_flush_work, xfs_flush_worker);
c6d09b66 493 INIT_DELAYED_WORK(&mp->m_sync_work, xfs_sync_worker);
a7b339f1
DC
494 INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker);
495
c6d09b66
DC
496 xfs_syncd_queue_sync(mp);
497
a167b17e
DC
498 return 0;
499}
500
501void
502xfs_syncd_stop(
503 struct xfs_mount *mp)
504{
c6d09b66 505 cancel_delayed_work_sync(&mp->m_sync_work);
a7b339f1 506 cancel_delayed_work_sync(&mp->m_reclaim_work);
89e4cb55 507 cancel_work_sync(&mp->m_flush_work);
a167b17e
DC
508}
509
bc990f5c
CH
510void
511__xfs_inode_set_reclaim_tag(
512 struct xfs_perag *pag,
513 struct xfs_inode *ip)
514{
515 radix_tree_tag_set(&pag->pag_ici_root,
516 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
517 XFS_ICI_RECLAIM_TAG);
16fd5367
DC
518
519 if (!pag->pag_ici_reclaimable) {
520 /* propagate the reclaim tag up into the perag radix tree */
521 spin_lock(&ip->i_mount->m_perag_lock);
522 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
523 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
524 XFS_ICI_RECLAIM_TAG);
525 spin_unlock(&ip->i_mount->m_perag_lock);
a7b339f1
DC
526
527 /* schedule periodic background inode reclaim */
528 xfs_syncd_queue_reclaim(ip->i_mount);
529
16fd5367
DC
530 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
531 -1, _RET_IP_);
532 }
9bf729c0 533 pag->pag_ici_reclaimable++;
bc990f5c
CH
534}
535
11654513
DC
536/*
537 * We set the inode flag atomically with the radix tree tag.
538 * Once we get tag lookups on the radix tree, this inode flag
539 * can go away.
540 */
396beb85
DC
541void
542xfs_inode_set_reclaim_tag(
543 xfs_inode_t *ip)
544{
5017e97d
DC
545 struct xfs_mount *mp = ip->i_mount;
546 struct xfs_perag *pag;
396beb85 547
5017e97d 548 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1a427ab0 549 spin_lock(&pag->pag_ici_lock);
396beb85 550 spin_lock(&ip->i_flags_lock);
bc990f5c 551 __xfs_inode_set_reclaim_tag(pag, ip);
11654513 552 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
396beb85 553 spin_unlock(&ip->i_flags_lock);
1a427ab0 554 spin_unlock(&pag->pag_ici_lock);
5017e97d 555 xfs_perag_put(pag);
396beb85
DC
556}
557
081003ff
JW
558STATIC void
559__xfs_inode_clear_reclaim(
396beb85
DC
560 xfs_perag_t *pag,
561 xfs_inode_t *ip)
562{
9bf729c0 563 pag->pag_ici_reclaimable--;
16fd5367
DC
564 if (!pag->pag_ici_reclaimable) {
565 /* clear the reclaim tag from the perag radix tree */
566 spin_lock(&ip->i_mount->m_perag_lock);
567 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
568 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
569 XFS_ICI_RECLAIM_TAG);
570 spin_unlock(&ip->i_mount->m_perag_lock);
571 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
572 -1, _RET_IP_);
573 }
396beb85
DC
574}
575
081003ff
JW
576void
577__xfs_inode_clear_reclaim_tag(
578 xfs_mount_t *mp,
579 xfs_perag_t *pag,
580 xfs_inode_t *ip)
581{
582 radix_tree_tag_clear(&pag->pag_ici_root,
583 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
584 __xfs_inode_clear_reclaim(pag, ip);
585}
586
e3a20c0b
DC
587/*
588 * Grab the inode for reclaim exclusively.
589 * Return 0 if we grabbed it, non-zero otherwise.
590 */
591STATIC int
592xfs_reclaim_inode_grab(
593 struct xfs_inode *ip,
594 int flags)
595{
1a3e8f3d
DC
596 ASSERT(rcu_read_lock_held());
597
598 /* quick check for stale RCU freed inode */
599 if (!ip->i_ino)
600 return 1;
e3a20c0b
DC
601
602 /*
474fce06
CH
603 * If we are asked for non-blocking operation, do unlocked checks to
604 * see if the inode already is being flushed or in reclaim to avoid
605 * lock traffic.
e3a20c0b
DC
606 */
607 if ((flags & SYNC_TRYLOCK) &&
474fce06 608 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
e3a20c0b 609 return 1;
e3a20c0b
DC
610
611 /*
612 * The radix tree lock here protects a thread in xfs_iget from racing
613 * with us starting reclaim on the inode. Once we have the
614 * XFS_IRECLAIM flag set it will not touch us.
1a3e8f3d
DC
615 *
616 * Due to RCU lookup, we may find inodes that have been freed and only
617 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
618 * aren't candidates for reclaim at all, so we must check the
619 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
e3a20c0b
DC
620 */
621 spin_lock(&ip->i_flags_lock);
1a3e8f3d
DC
622 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
623 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
624 /* not a reclaim candidate. */
e3a20c0b
DC
625 spin_unlock(&ip->i_flags_lock);
626 return 1;
627 }
628 __xfs_iflags_set(ip, XFS_IRECLAIM);
629 spin_unlock(&ip->i_flags_lock);
630 return 0;
631}
632
777df5af 633/*
8a48088f
CH
634 * Inodes in different states need to be treated differently. The following
635 * table lists the inode states and the reclaim actions necessary:
777df5af
DC
636 *
637 * inode state iflush ret required action
638 * --------------- ---------- ---------------
639 * bad - reclaim
640 * shutdown EIO unpin and reclaim
641 * clean, unpinned 0 reclaim
642 * stale, unpinned 0 reclaim
c854363e
DC
643 * clean, pinned(*) 0 requeue
644 * stale, pinned EAGAIN requeue
8a48088f
CH
645 * dirty, async - requeue
646 * dirty, sync 0 reclaim
777df5af
DC
647 *
648 * (*) dgc: I don't think the clean, pinned state is possible but it gets
649 * handled anyway given the order of checks implemented.
650 *
c854363e
DC
651 * As can be seen from the table, the return value of xfs_iflush() is not
652 * sufficient to correctly decide the reclaim action here. The checks in
653 * xfs_iflush() might look like duplicates, but they are not.
654 *
655 * Also, because we get the flush lock first, we know that any inode that has
656 * been flushed delwri has had the flush completed by the time we check that
8a48088f 657 * the inode is clean.
c854363e 658 *
8a48088f
CH
659 * Note that because the inode is flushed delayed write by AIL pushing, the
660 * flush lock may already be held here and waiting on it can result in very
661 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
662 * the caller should push the AIL first before trying to reclaim inodes to
663 * minimise the amount of time spent waiting. For background relaim, we only
664 * bother to reclaim clean inodes anyway.
c854363e 665 *
777df5af
DC
666 * Hence the order of actions after gaining the locks should be:
667 * bad => reclaim
668 * shutdown => unpin and reclaim
8a48088f 669 * pinned, async => requeue
c854363e 670 * pinned, sync => unpin
777df5af
DC
671 * stale => reclaim
672 * clean => reclaim
8a48088f 673 * dirty, async => requeue
c854363e 674 * dirty, sync => flush, wait and reclaim
777df5af 675 */
75f3cb13 676STATIC int
c8e20be0 677xfs_reclaim_inode(
75f3cb13
DC
678 struct xfs_inode *ip,
679 struct xfs_perag *pag,
c8e20be0 680 int sync_mode)
fce08f2f 681{
1bfd8d04 682 int error;
777df5af 683
1bfd8d04
DC
684restart:
685 error = 0;
c8e20be0 686 xfs_ilock(ip, XFS_ILOCK_EXCL);
c854363e
DC
687 if (!xfs_iflock_nowait(ip)) {
688 if (!(sync_mode & SYNC_WAIT))
689 goto out;
4dd2cb4a
CH
690
691 /*
692 * If we only have a single dirty inode in a cluster there is
693 * a fair chance that the AIL push may have pushed it into
694 * the buffer, but xfsbufd won't touch it until 30 seconds
695 * from now, and thus we will lock up here.
696 *
697 * Promote the inode buffer to the front of the delwri list
698 * and wake up xfsbufd now.
699 */
700 xfs_promote_inode(ip);
c854363e
DC
701 xfs_iflock(ip);
702 }
7a3be02b 703
777df5af
DC
704 if (is_bad_inode(VFS_I(ip)))
705 goto reclaim;
706 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
707 xfs_iunpin_wait(ip);
32ce90a4 708 xfs_iflush_abort(ip);
777df5af
DC
709 goto reclaim;
710 }
c854363e 711 if (xfs_ipincount(ip)) {
8a48088f
CH
712 if (!(sync_mode & SYNC_WAIT))
713 goto out_ifunlock;
777df5af 714 xfs_iunpin_wait(ip);
c854363e 715 }
777df5af
DC
716 if (xfs_iflags_test(ip, XFS_ISTALE))
717 goto reclaim;
718 if (xfs_inode_clean(ip))
719 goto reclaim;
720
8a48088f
CH
721 /*
722 * Never flush out dirty data during non-blocking reclaim, as it would
723 * just contend with AIL pushing trying to do the same job.
724 */
725 if (!(sync_mode & SYNC_WAIT))
726 goto out_ifunlock;
727
1bfd8d04
DC
728 /*
729 * Now we have an inode that needs flushing.
730 *
731 * We do a nonblocking flush here even if we are doing a SYNC_WAIT
732 * reclaim as we can deadlock with inode cluster removal.
733 * xfs_ifree_cluster() can lock the inode buffer before it locks the
734 * ip->i_lock, and we are doing the exact opposite here. As a result,
735 * doing a blocking xfs_itobp() to get the cluster buffer will result
736 * in an ABBA deadlock with xfs_ifree_cluster().
737 *
738 * As xfs_ifree_cluser() must gather all inodes that are active in the
739 * cache to mark them stale, if we hit this case we don't actually want
740 * to do IO here - we want the inode marked stale so we can simply
741 * reclaim it. Hence if we get an EAGAIN error on a SYNC_WAIT flush,
742 * just unlock the inode, back off and try again. Hopefully the next
743 * pass through will see the stale flag set on the inode.
744 */
745 error = xfs_iflush(ip, SYNC_TRYLOCK | sync_mode);
8a48088f
CH
746 if (error == EAGAIN) {
747 xfs_iunlock(ip, XFS_ILOCK_EXCL);
748 /* backoff longer than in xfs_ifree_cluster */
749 delay(2);
750 goto restart;
c854363e 751 }
8a48088f 752 xfs_iflock(ip);
c854363e 753
777df5af
DC
754reclaim:
755 xfs_ifunlock(ip);
c8e20be0 756 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2f11feab
DC
757
758 XFS_STATS_INC(xs_ig_reclaims);
759 /*
760 * Remove the inode from the per-AG radix tree.
761 *
762 * Because radix_tree_delete won't complain even if the item was never
763 * added to the tree assert that it's been there before to catch
764 * problems with the inode life time early on.
765 */
1a427ab0 766 spin_lock(&pag->pag_ici_lock);
2f11feab
DC
767 if (!radix_tree_delete(&pag->pag_ici_root,
768 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
769 ASSERT(0);
081003ff 770 __xfs_inode_clear_reclaim(pag, ip);
1a427ab0 771 spin_unlock(&pag->pag_ici_lock);
2f11feab
DC
772
773 /*
774 * Here we do an (almost) spurious inode lock in order to coordinate
775 * with inode cache radix tree lookups. This is because the lookup
776 * can reference the inodes in the cache without taking references.
777 *
778 * We make that OK here by ensuring that we wait until the inode is
ad637a10 779 * unlocked after the lookup before we go ahead and free it.
2f11feab 780 */
ad637a10 781 xfs_ilock(ip, XFS_ILOCK_EXCL);
2f11feab 782 xfs_qm_dqdetach(ip);
ad637a10 783 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2f11feab
DC
784
785 xfs_inode_free(ip);
ad637a10 786 return error;
8a48088f
CH
787
788out_ifunlock:
789 xfs_ifunlock(ip);
790out:
791 xfs_iflags_clear(ip, XFS_IRECLAIM);
792 xfs_iunlock(ip, XFS_ILOCK_EXCL);
793 /*
794 * We could return EAGAIN here to make reclaim rescan the inode tree in
795 * a short while. However, this just burns CPU time scanning the tree
796 * waiting for IO to complete and xfssyncd never goes back to the idle
797 * state. Instead, return 0 to let the next scheduled background reclaim
798 * attempt to reclaim the inode again.
799 */
800 return 0;
7a3be02b
DC
801}
802
65d0f205
DC
803/*
804 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
805 * corrupted, we still want to try to reclaim all the inodes. If we don't,
806 * then a shut down during filesystem unmount reclaim walk leak all the
807 * unreclaimed inodes.
808 */
809int
810xfs_reclaim_inodes_ag(
811 struct xfs_mount *mp,
812 int flags,
813 int *nr_to_scan)
814{
815 struct xfs_perag *pag;
816 int error = 0;
817 int last_error = 0;
818 xfs_agnumber_t ag;
69b491c2
DC
819 int trylock = flags & SYNC_TRYLOCK;
820 int skipped;
65d0f205 821
69b491c2 822restart:
65d0f205 823 ag = 0;
69b491c2 824 skipped = 0;
65d0f205
DC
825 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
826 unsigned long first_index = 0;
827 int done = 0;
e3a20c0b 828 int nr_found = 0;
65d0f205
DC
829
830 ag = pag->pag_agno + 1;
831
69b491c2
DC
832 if (trylock) {
833 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
834 skipped++;
f83282a8 835 xfs_perag_put(pag);
69b491c2
DC
836 continue;
837 }
838 first_index = pag->pag_ici_reclaim_cursor;
839 } else
840 mutex_lock(&pag->pag_ici_reclaim_lock);
841
65d0f205 842 do {
e3a20c0b
DC
843 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
844 int i;
65d0f205 845
1a3e8f3d 846 rcu_read_lock();
e3a20c0b
DC
847 nr_found = radix_tree_gang_lookup_tag(
848 &pag->pag_ici_root,
849 (void **)batch, first_index,
850 XFS_LOOKUP_BATCH,
65d0f205
DC
851 XFS_ICI_RECLAIM_TAG);
852 if (!nr_found) {
b2232219 853 done = 1;
1a3e8f3d 854 rcu_read_unlock();
65d0f205
DC
855 break;
856 }
857
858 /*
e3a20c0b
DC
859 * Grab the inodes before we drop the lock. if we found
860 * nothing, nr == 0 and the loop will be skipped.
65d0f205 861 */
e3a20c0b
DC
862 for (i = 0; i < nr_found; i++) {
863 struct xfs_inode *ip = batch[i];
864
865 if (done || xfs_reclaim_inode_grab(ip, flags))
866 batch[i] = NULL;
867
868 /*
869 * Update the index for the next lookup. Catch
870 * overflows into the next AG range which can
871 * occur if we have inodes in the last block of
872 * the AG and we are currently pointing to the
873 * last inode.
1a3e8f3d
DC
874 *
875 * Because we may see inodes that are from the
876 * wrong AG due to RCU freeing and
877 * reallocation, only update the index if it
878 * lies in this AG. It was a race that lead us
879 * to see this inode, so another lookup from
880 * the same index will not find it again.
e3a20c0b 881 */
1a3e8f3d
DC
882 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
883 pag->pag_agno)
884 continue;
e3a20c0b
DC
885 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
886 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
887 done = 1;
888 }
65d0f205 889
e3a20c0b 890 /* unlock now we've grabbed the inodes. */
1a3e8f3d 891 rcu_read_unlock();
e3a20c0b
DC
892
893 for (i = 0; i < nr_found; i++) {
894 if (!batch[i])
895 continue;
896 error = xfs_reclaim_inode(batch[i], pag, flags);
897 if (error && last_error != EFSCORRUPTED)
898 last_error = error;
899 }
900
901 *nr_to_scan -= XFS_LOOKUP_BATCH;
65d0f205 902
8daaa831
DC
903 cond_resched();
904
e3a20c0b 905 } while (nr_found && !done && *nr_to_scan > 0);
65d0f205 906
69b491c2
DC
907 if (trylock && !done)
908 pag->pag_ici_reclaim_cursor = first_index;
909 else
910 pag->pag_ici_reclaim_cursor = 0;
911 mutex_unlock(&pag->pag_ici_reclaim_lock);
65d0f205
DC
912 xfs_perag_put(pag);
913 }
69b491c2
DC
914
915 /*
916 * if we skipped any AG, and we still have scan count remaining, do
917 * another pass this time using blocking reclaim semantics (i.e
918 * waiting on the reclaim locks and ignoring the reclaim cursors). This
919 * ensure that when we get more reclaimers than AGs we block rather
920 * than spin trying to execute reclaim.
921 */
8daaa831 922 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
69b491c2
DC
923 trylock = 0;
924 goto restart;
925 }
65d0f205
DC
926 return XFS_ERROR(last_error);
927}
928
7a3be02b
DC
929int
930xfs_reclaim_inodes(
931 xfs_mount_t *mp,
7a3be02b
DC
932 int mode)
933{
65d0f205
DC
934 int nr_to_scan = INT_MAX;
935
936 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
9bf729c0
DC
937}
938
939/*
8daaa831 940 * Scan a certain number of inodes for reclaim.
a7b339f1
DC
941 *
942 * When called we make sure that there is a background (fast) inode reclaim in
8daaa831 943 * progress, while we will throttle the speed of reclaim via doing synchronous
a7b339f1
DC
944 * reclaim of inodes. That means if we come across dirty inodes, we wait for
945 * them to be cleaned, which we hope will not be very long due to the
946 * background walker having already kicked the IO off on those dirty inodes.
9bf729c0 947 */
8daaa831
DC
948void
949xfs_reclaim_inodes_nr(
950 struct xfs_mount *mp,
951 int nr_to_scan)
9bf729c0 952{
8daaa831
DC
953 /* kick background reclaimer and push the AIL */
954 xfs_syncd_queue_reclaim(mp);
955 xfs_ail_push_all(mp->m_ail);
a7b339f1 956
8daaa831
DC
957 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
958}
9bf729c0 959
8daaa831
DC
960/*
961 * Return the number of reclaimable inodes in the filesystem for
962 * the shrinker to determine how much to reclaim.
963 */
964int
965xfs_reclaim_inodes_count(
966 struct xfs_mount *mp)
967{
968 struct xfs_perag *pag;
969 xfs_agnumber_t ag = 0;
970 int reclaimable = 0;
9bf729c0 971
65d0f205
DC
972 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
973 ag = pag->pag_agno + 1;
70e60ce7
DC
974 reclaimable += pag->pag_ici_reclaimable;
975 xfs_perag_put(pag);
9bf729c0 976 }
9bf729c0
DC
977 return reclaimable;
978}
979