]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/xfs/xfs_sync.c
xfs: xfs_sync_data is redundant.
[mirror_ubuntu-artful-kernel.git] / fs / xfs / xfs_sync.c
CommitLineData
fe4fa4b8
DC
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
fe4fa4b8 21#include "xfs_log.h"
f661f1e0 22#include "xfs_log_priv.h"
fe4fa4b8
DC
23#include "xfs_inum.h"
24#include "xfs_trans.h"
fd074841 25#include "xfs_trans_priv.h"
fe4fa4b8
DC
26#include "xfs_sb.h"
27#include "xfs_ag.h"
fe4fa4b8
DC
28#include "xfs_mount.h"
29#include "xfs_bmap_btree.h"
fe4fa4b8
DC
30#include "xfs_inode.h"
31#include "xfs_dinode.h"
32#include "xfs_error.h"
fe4fa4b8
DC
33#include "xfs_filestream.h"
34#include "xfs_vnodeops.h"
fe4fa4b8 35#include "xfs_inode_item.h"
7d095257 36#include "xfs_quota.h"
0b1b213f 37#include "xfs_trace.h"
1a387d3b 38#include "xfs_fsops.h"
fe4fa4b8 39
a167b17e
DC
40#include <linux/kthread.h>
41#include <linux/freezer.h>
42
c6d09b66
DC
43struct workqueue_struct *xfs_syncd_wq; /* sync workqueue */
44
78ae5256
DC
45/*
46 * The inode lookup is done in batches to keep the amount of lock traffic and
47 * radix tree lookups to a minimum. The batch size is a trade off between
48 * lookup reduction and stack usage. This is in the reclaim path, so we can't
49 * be too greedy.
50 */
51#define XFS_LOOKUP_BATCH 32
52
e13de955
DC
53STATIC int
54xfs_inode_ag_walk_grab(
55 struct xfs_inode *ip)
56{
57 struct inode *inode = VFS_I(ip);
58
1a3e8f3d
DC
59 ASSERT(rcu_read_lock_held());
60
61 /*
62 * check for stale RCU freed inode
63 *
64 * If the inode has been reallocated, it doesn't matter if it's not in
65 * the AG we are walking - we are walking for writeback, so if it
66 * passes all the "valid inode" checks and is dirty, then we'll write
67 * it back anyway. If it has been reallocated and still being
68 * initialised, the XFS_INEW check below will catch it.
69 */
70 spin_lock(&ip->i_flags_lock);
71 if (!ip->i_ino)
72 goto out_unlock_noent;
73
74 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
75 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
76 goto out_unlock_noent;
77 spin_unlock(&ip->i_flags_lock);
78
e13de955
DC
79 /* nothing to sync during shutdown */
80 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
81 return EFSCORRUPTED;
82
e13de955
DC
83 /* If we can't grab the inode, it must on it's way to reclaim. */
84 if (!igrab(inode))
85 return ENOENT;
86
87 if (is_bad_inode(inode)) {
88 IRELE(ip);
89 return ENOENT;
90 }
91
92 /* inode is valid */
93 return 0;
1a3e8f3d
DC
94
95out_unlock_noent:
96 spin_unlock(&ip->i_flags_lock);
97 return ENOENT;
e13de955
DC
98}
99
75f3cb13
DC
100STATIC int
101xfs_inode_ag_walk(
102 struct xfs_mount *mp,
5017e97d 103 struct xfs_perag *pag,
75f3cb13
DC
104 int (*execute)(struct xfs_inode *ip,
105 struct xfs_perag *pag, int flags),
65d0f205 106 int flags)
75f3cb13 107{
75f3cb13
DC
108 uint32_t first_index;
109 int last_error = 0;
110 int skipped;
65d0f205 111 int done;
78ae5256 112 int nr_found;
75f3cb13
DC
113
114restart:
65d0f205 115 done = 0;
75f3cb13
DC
116 skipped = 0;
117 first_index = 0;
78ae5256 118 nr_found = 0;
75f3cb13 119 do {
78ae5256 120 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
75f3cb13 121 int error = 0;
78ae5256 122 int i;
75f3cb13 123
1a3e8f3d 124 rcu_read_lock();
65d0f205 125 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
78ae5256
DC
126 (void **)batch, first_index,
127 XFS_LOOKUP_BATCH);
65d0f205 128 if (!nr_found) {
1a3e8f3d 129 rcu_read_unlock();
75f3cb13 130 break;
c8e20be0 131 }
75f3cb13 132
65d0f205 133 /*
78ae5256
DC
134 * Grab the inodes before we drop the lock. if we found
135 * nothing, nr == 0 and the loop will be skipped.
65d0f205 136 */
78ae5256
DC
137 for (i = 0; i < nr_found; i++) {
138 struct xfs_inode *ip = batch[i];
139
140 if (done || xfs_inode_ag_walk_grab(ip))
141 batch[i] = NULL;
142
143 /*
1a3e8f3d
DC
144 * Update the index for the next lookup. Catch
145 * overflows into the next AG range which can occur if
146 * we have inodes in the last block of the AG and we
147 * are currently pointing to the last inode.
148 *
149 * Because we may see inodes that are from the wrong AG
150 * due to RCU freeing and reallocation, only update the
151 * index if it lies in this AG. It was a race that lead
152 * us to see this inode, so another lookup from the
153 * same index will not find it again.
78ae5256 154 */
1a3e8f3d
DC
155 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
156 continue;
78ae5256
DC
157 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
158 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
159 done = 1;
e13de955 160 }
78ae5256
DC
161
162 /* unlock now we've grabbed the inodes. */
1a3e8f3d 163 rcu_read_unlock();
e13de955 164
78ae5256
DC
165 for (i = 0; i < nr_found; i++) {
166 if (!batch[i])
167 continue;
168 error = execute(batch[i], pag, flags);
169 IRELE(batch[i]);
170 if (error == EAGAIN) {
171 skipped++;
172 continue;
173 }
174 if (error && last_error != EFSCORRUPTED)
175 last_error = error;
75f3cb13 176 }
c8e20be0
DC
177
178 /* bail out if the filesystem is corrupted. */
75f3cb13
DC
179 if (error == EFSCORRUPTED)
180 break;
181
8daaa831
DC
182 cond_resched();
183
78ae5256 184 } while (nr_found && !done);
75f3cb13
DC
185
186 if (skipped) {
187 delay(1);
188 goto restart;
189 }
75f3cb13
DC
190 return last_error;
191}
192
fe588ed3 193int
75f3cb13
DC
194xfs_inode_ag_iterator(
195 struct xfs_mount *mp,
196 int (*execute)(struct xfs_inode *ip,
197 struct xfs_perag *pag, int flags),
65d0f205 198 int flags)
75f3cb13 199{
16fd5367 200 struct xfs_perag *pag;
75f3cb13
DC
201 int error = 0;
202 int last_error = 0;
203 xfs_agnumber_t ag;
204
16fd5367 205 ag = 0;
65d0f205
DC
206 while ((pag = xfs_perag_get(mp, ag))) {
207 ag = pag->pag_agno + 1;
208 error = xfs_inode_ag_walk(mp, pag, execute, flags);
5017e97d 209 xfs_perag_put(pag);
75f3cb13
DC
210 if (error) {
211 last_error = error;
212 if (error == EFSCORRUPTED)
213 break;
214 }
215 }
216 return XFS_ERROR(last_error);
217}
218
5d77c0dc 219STATIC int
2af75df7 220xfs_sync_fsdata(
df308bcf 221 struct xfs_mount *mp)
2af75df7
CH
222{
223 struct xfs_buf *bp;
c2b006c1 224 int error;
2af75df7
CH
225
226 /*
df308bcf
CH
227 * If the buffer is pinned then push on the log so we won't get stuck
228 * waiting in the write for someone, maybe ourselves, to flush the log.
229 *
230 * Even though we just pushed the log above, we did not have the
231 * superblock buffer locked at that point so it can become pinned in
232 * between there and here.
2af75df7 233 */
df308bcf 234 bp = xfs_getsb(mp, 0);
811e64c7 235 if (xfs_buf_ispinned(bp))
df308bcf 236 xfs_log_force(mp, 0);
c2b006c1
CH
237 error = xfs_bwrite(bp);
238 xfs_buf_relse(bp);
239 return error;
e9f1c6ee
DC
240}
241
242/*
a4e4c4f4
DC
243 * When remounting a filesystem read-only or freezing the filesystem, we have
244 * two phases to execute. This first phase is syncing the data before we
245 * quiesce the filesystem, and the second is flushing all the inodes out after
246 * we've waited for all the transactions created by the first phase to
247 * complete. The second phase ensures that the inodes are written to their
248 * location on disk rather than just existing in transactions in the log. This
249 * means after a quiesce there is no log replay required to write the inodes to
250 * disk (this is the main difference between a sync and a quiesce).
251 */
252/*
253 * First stage of freeze - no writers will make progress now we are here,
e9f1c6ee
DC
254 * so we flush delwri and delalloc buffers here, then wait for all I/O to
255 * complete. Data is frozen at that point. Metadata is not frozen,
211e4d43 256 * transactions can still occur here so don't bother emptying the AIL
a4e4c4f4 257 * because it'll just get dirty again.
e9f1c6ee
DC
258 */
259int
260xfs_quiesce_data(
261 struct xfs_mount *mp)
262{
df308bcf 263 int error, error2 = 0;
e9f1c6ee 264
34625c66 265 /* force out the log */
33b8f7c2
CH
266 xfs_log_force(mp, XFS_LOG_SYNC);
267
a4e4c4f4 268 /* write superblock and hoover up shutdown errors */
df308bcf
CH
269 error = xfs_sync_fsdata(mp);
270
df308bcf
CH
271 /* mark the log as covered if needed */
272 if (xfs_log_need_covered(mp))
c58efdb4 273 error2 = xfs_fs_log_dummy(mp);
e9f1c6ee 274
df308bcf 275 return error ? error : error2;
2af75df7
CH
276}
277
76bf105c
DC
278/*
279 * Second stage of a quiesce. The data is already synced, now we have to take
280 * care of the metadata. New transactions are already blocked, so we need to
25985edc 281 * wait for any remaining transactions to drain out before proceeding.
7f7bebef
DC
282 *
283 * Note: this stops background sync work - the callers must ensure it is started
284 * again when appropriate.
76bf105c
DC
285 */
286void
287xfs_quiesce_attr(
288 struct xfs_mount *mp)
289{
290 int error = 0;
291
292 /* wait for all modifications to complete */
293 while (atomic_read(&mp->m_active_trans) > 0)
294 delay(100);
295
211e4d43
CH
296 /* reclaim inodes to do any IO before the freeze completes */
297 xfs_reclaim_inodes(mp, 0);
298 xfs_reclaim_inodes(mp, SYNC_WAIT);
299
300 /* flush all pending changes from the AIL */
301 xfs_ail_push_all_sync(mp->m_ail);
76bf105c 302
f661f1e0
DC
303 /* stop background log work */
304 cancel_delayed_work_sync(&mp->m_log->l_work);
7f7bebef 305
5e106572
FB
306 /*
307 * Just warn here till VFS can correctly support
308 * read-only remount without racing.
309 */
310 WARN_ON(atomic_read(&mp->m_active_trans) != 0);
76bf105c
DC
311
312 /* Push the superblock and write an unmount record */
adab0f67 313 error = xfs_log_sbcount(mp);
76bf105c 314 if (error)
4f10700a 315 xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. "
76bf105c
DC
316 "Frozen image may not be consistent.");
317 xfs_log_unmount_write(mp);
211e4d43
CH
318
319 /*
320 * At this point we might have modified the superblock again and thus
321 * added an item to the AIL, thus flush it again.
322 */
323 xfs_ail_push_all_sync(mp->m_ail);
9a57fa8e
MT
324
325 /*
326 * The superblock buffer is uncached and xfsaild_push() will lock and
327 * set the XBF_ASYNC flag on the buffer. We cannot do xfs_buf_iowait()
328 * here but a lock on the superblock buffer will block until iodone()
329 * has completed.
330 */
331 xfs_buf_lock(mp->m_sb_bp);
332 xfs_buf_unlock(mp->m_sb_bp);
76bf105c
DC
333}
334
a7b339f1
DC
335/*
336 * Queue a new inode reclaim pass if there are reclaimable inodes and there
337 * isn't a reclaim pass already in progress. By default it runs every 5s based
338 * on the xfs syncd work default of 30s. Perhaps this should have it's own
339 * tunable, but that can be done if this method proves to be ineffective or too
340 * aggressive.
341 */
342static void
343xfs_syncd_queue_reclaim(
344 struct xfs_mount *mp)
a167b17e 345{
a167b17e 346
a7b339f1
DC
347 rcu_read_lock();
348 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
349 queue_delayed_work(xfs_syncd_wq, &mp->m_reclaim_work,
350 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
a167b17e 351 }
a7b339f1
DC
352 rcu_read_unlock();
353}
a167b17e 354
a7b339f1
DC
355/*
356 * This is a fast pass over the inode cache to try to get reclaim moving on as
357 * many inodes as possible in a short period of time. It kicks itself every few
358 * seconds, as well as being kicked by the inode cache shrinker when memory
359 * goes low. It scans as quickly as possible avoiding locked inodes or those
360 * already being flushed, and once done schedules a future pass.
361 */
33c7a2bc 362void
a7b339f1
DC
363xfs_reclaim_worker(
364 struct work_struct *work)
365{
366 struct xfs_mount *mp = container_of(to_delayed_work(work),
367 struct xfs_mount, m_reclaim_work);
368
369 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
370 xfs_syncd_queue_reclaim(mp);
371}
372
bc990f5c
CH
373void
374__xfs_inode_set_reclaim_tag(
375 struct xfs_perag *pag,
376 struct xfs_inode *ip)
377{
378 radix_tree_tag_set(&pag->pag_ici_root,
379 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
380 XFS_ICI_RECLAIM_TAG);
16fd5367
DC
381
382 if (!pag->pag_ici_reclaimable) {
383 /* propagate the reclaim tag up into the perag radix tree */
384 spin_lock(&ip->i_mount->m_perag_lock);
385 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
386 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
387 XFS_ICI_RECLAIM_TAG);
388 spin_unlock(&ip->i_mount->m_perag_lock);
a7b339f1
DC
389
390 /* schedule periodic background inode reclaim */
391 xfs_syncd_queue_reclaim(ip->i_mount);
392
16fd5367
DC
393 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
394 -1, _RET_IP_);
395 }
9bf729c0 396 pag->pag_ici_reclaimable++;
bc990f5c
CH
397}
398
11654513
DC
399/*
400 * We set the inode flag atomically with the radix tree tag.
401 * Once we get tag lookups on the radix tree, this inode flag
402 * can go away.
403 */
396beb85
DC
404void
405xfs_inode_set_reclaim_tag(
406 xfs_inode_t *ip)
407{
5017e97d
DC
408 struct xfs_mount *mp = ip->i_mount;
409 struct xfs_perag *pag;
396beb85 410
5017e97d 411 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1a427ab0 412 spin_lock(&pag->pag_ici_lock);
396beb85 413 spin_lock(&ip->i_flags_lock);
bc990f5c 414 __xfs_inode_set_reclaim_tag(pag, ip);
11654513 415 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
396beb85 416 spin_unlock(&ip->i_flags_lock);
1a427ab0 417 spin_unlock(&pag->pag_ici_lock);
5017e97d 418 xfs_perag_put(pag);
396beb85
DC
419}
420
081003ff
JW
421STATIC void
422__xfs_inode_clear_reclaim(
396beb85
DC
423 xfs_perag_t *pag,
424 xfs_inode_t *ip)
425{
9bf729c0 426 pag->pag_ici_reclaimable--;
16fd5367
DC
427 if (!pag->pag_ici_reclaimable) {
428 /* clear the reclaim tag from the perag radix tree */
429 spin_lock(&ip->i_mount->m_perag_lock);
430 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
431 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
432 XFS_ICI_RECLAIM_TAG);
433 spin_unlock(&ip->i_mount->m_perag_lock);
434 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
435 -1, _RET_IP_);
436 }
396beb85
DC
437}
438
081003ff
JW
439void
440__xfs_inode_clear_reclaim_tag(
441 xfs_mount_t *mp,
442 xfs_perag_t *pag,
443 xfs_inode_t *ip)
444{
445 radix_tree_tag_clear(&pag->pag_ici_root,
446 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
447 __xfs_inode_clear_reclaim(pag, ip);
448}
449
e3a20c0b
DC
450/*
451 * Grab the inode for reclaim exclusively.
452 * Return 0 if we grabbed it, non-zero otherwise.
453 */
454STATIC int
455xfs_reclaim_inode_grab(
456 struct xfs_inode *ip,
457 int flags)
458{
1a3e8f3d
DC
459 ASSERT(rcu_read_lock_held());
460
461 /* quick check for stale RCU freed inode */
462 if (!ip->i_ino)
463 return 1;
e3a20c0b
DC
464
465 /*
474fce06
CH
466 * If we are asked for non-blocking operation, do unlocked checks to
467 * see if the inode already is being flushed or in reclaim to avoid
468 * lock traffic.
e3a20c0b
DC
469 */
470 if ((flags & SYNC_TRYLOCK) &&
474fce06 471 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
e3a20c0b 472 return 1;
e3a20c0b
DC
473
474 /*
475 * The radix tree lock here protects a thread in xfs_iget from racing
476 * with us starting reclaim on the inode. Once we have the
477 * XFS_IRECLAIM flag set it will not touch us.
1a3e8f3d
DC
478 *
479 * Due to RCU lookup, we may find inodes that have been freed and only
480 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
481 * aren't candidates for reclaim at all, so we must check the
482 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
e3a20c0b
DC
483 */
484 spin_lock(&ip->i_flags_lock);
1a3e8f3d
DC
485 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
486 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
487 /* not a reclaim candidate. */
e3a20c0b
DC
488 spin_unlock(&ip->i_flags_lock);
489 return 1;
490 }
491 __xfs_iflags_set(ip, XFS_IRECLAIM);
492 spin_unlock(&ip->i_flags_lock);
493 return 0;
494}
495
777df5af 496/*
8a48088f
CH
497 * Inodes in different states need to be treated differently. The following
498 * table lists the inode states and the reclaim actions necessary:
777df5af
DC
499 *
500 * inode state iflush ret required action
501 * --------------- ---------- ---------------
502 * bad - reclaim
503 * shutdown EIO unpin and reclaim
504 * clean, unpinned 0 reclaim
505 * stale, unpinned 0 reclaim
c854363e
DC
506 * clean, pinned(*) 0 requeue
507 * stale, pinned EAGAIN requeue
8a48088f
CH
508 * dirty, async - requeue
509 * dirty, sync 0 reclaim
777df5af
DC
510 *
511 * (*) dgc: I don't think the clean, pinned state is possible but it gets
512 * handled anyway given the order of checks implemented.
513 *
c854363e
DC
514 * Also, because we get the flush lock first, we know that any inode that has
515 * been flushed delwri has had the flush completed by the time we check that
8a48088f 516 * the inode is clean.
c854363e 517 *
8a48088f
CH
518 * Note that because the inode is flushed delayed write by AIL pushing, the
519 * flush lock may already be held here and waiting on it can result in very
520 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
521 * the caller should push the AIL first before trying to reclaim inodes to
522 * minimise the amount of time spent waiting. For background relaim, we only
523 * bother to reclaim clean inodes anyway.
c854363e 524 *
777df5af
DC
525 * Hence the order of actions after gaining the locks should be:
526 * bad => reclaim
527 * shutdown => unpin and reclaim
8a48088f 528 * pinned, async => requeue
c854363e 529 * pinned, sync => unpin
777df5af
DC
530 * stale => reclaim
531 * clean => reclaim
8a48088f 532 * dirty, async => requeue
c854363e 533 * dirty, sync => flush, wait and reclaim
777df5af 534 */
75f3cb13 535STATIC int
c8e20be0 536xfs_reclaim_inode(
75f3cb13
DC
537 struct xfs_inode *ip,
538 struct xfs_perag *pag,
c8e20be0 539 int sync_mode)
fce08f2f 540{
4c46819a
CH
541 struct xfs_buf *bp = NULL;
542 int error;
777df5af 543
1bfd8d04
DC
544restart:
545 error = 0;
c8e20be0 546 xfs_ilock(ip, XFS_ILOCK_EXCL);
c854363e
DC
547 if (!xfs_iflock_nowait(ip)) {
548 if (!(sync_mode & SYNC_WAIT))
549 goto out;
550 xfs_iflock(ip);
551 }
7a3be02b 552
777df5af
DC
553 if (is_bad_inode(VFS_I(ip)))
554 goto reclaim;
555 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
556 xfs_iunpin_wait(ip);
04913fdd 557 xfs_iflush_abort(ip, false);
777df5af
DC
558 goto reclaim;
559 }
c854363e 560 if (xfs_ipincount(ip)) {
8a48088f
CH
561 if (!(sync_mode & SYNC_WAIT))
562 goto out_ifunlock;
777df5af 563 xfs_iunpin_wait(ip);
c854363e 564 }
777df5af
DC
565 if (xfs_iflags_test(ip, XFS_ISTALE))
566 goto reclaim;
567 if (xfs_inode_clean(ip))
568 goto reclaim;
569
8a48088f
CH
570 /*
571 * Never flush out dirty data during non-blocking reclaim, as it would
572 * just contend with AIL pushing trying to do the same job.
573 */
574 if (!(sync_mode & SYNC_WAIT))
575 goto out_ifunlock;
576
1bfd8d04
DC
577 /*
578 * Now we have an inode that needs flushing.
579 *
4c46819a 580 * Note that xfs_iflush will never block on the inode buffer lock, as
1bfd8d04 581 * xfs_ifree_cluster() can lock the inode buffer before it locks the
4c46819a 582 * ip->i_lock, and we are doing the exact opposite here. As a result,
475ee413
CH
583 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
584 * result in an ABBA deadlock with xfs_ifree_cluster().
1bfd8d04
DC
585 *
586 * As xfs_ifree_cluser() must gather all inodes that are active in the
587 * cache to mark them stale, if we hit this case we don't actually want
588 * to do IO here - we want the inode marked stale so we can simply
4c46819a
CH
589 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
590 * inode, back off and try again. Hopefully the next pass through will
591 * see the stale flag set on the inode.
1bfd8d04 592 */
4c46819a 593 error = xfs_iflush(ip, &bp);
8a48088f
CH
594 if (error == EAGAIN) {
595 xfs_iunlock(ip, XFS_ILOCK_EXCL);
596 /* backoff longer than in xfs_ifree_cluster */
597 delay(2);
598 goto restart;
c854363e 599 }
c854363e 600
4c46819a
CH
601 if (!error) {
602 error = xfs_bwrite(bp);
603 xfs_buf_relse(bp);
604 }
605
606 xfs_iflock(ip);
777df5af
DC
607reclaim:
608 xfs_ifunlock(ip);
c8e20be0 609 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2f11feab
DC
610
611 XFS_STATS_INC(xs_ig_reclaims);
612 /*
613 * Remove the inode from the per-AG radix tree.
614 *
615 * Because radix_tree_delete won't complain even if the item was never
616 * added to the tree assert that it's been there before to catch
617 * problems with the inode life time early on.
618 */
1a427ab0 619 spin_lock(&pag->pag_ici_lock);
2f11feab
DC
620 if (!radix_tree_delete(&pag->pag_ici_root,
621 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
622 ASSERT(0);
081003ff 623 __xfs_inode_clear_reclaim(pag, ip);
1a427ab0 624 spin_unlock(&pag->pag_ici_lock);
2f11feab
DC
625
626 /*
627 * Here we do an (almost) spurious inode lock in order to coordinate
628 * with inode cache radix tree lookups. This is because the lookup
629 * can reference the inodes in the cache without taking references.
630 *
631 * We make that OK here by ensuring that we wait until the inode is
ad637a10 632 * unlocked after the lookup before we go ahead and free it.
2f11feab 633 */
ad637a10 634 xfs_ilock(ip, XFS_ILOCK_EXCL);
2f11feab 635 xfs_qm_dqdetach(ip);
ad637a10 636 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2f11feab
DC
637
638 xfs_inode_free(ip);
ad637a10 639 return error;
8a48088f
CH
640
641out_ifunlock:
642 xfs_ifunlock(ip);
643out:
644 xfs_iflags_clear(ip, XFS_IRECLAIM);
645 xfs_iunlock(ip, XFS_ILOCK_EXCL);
646 /*
647 * We could return EAGAIN here to make reclaim rescan the inode tree in
648 * a short while. However, this just burns CPU time scanning the tree
649 * waiting for IO to complete and xfssyncd never goes back to the idle
650 * state. Instead, return 0 to let the next scheduled background reclaim
651 * attempt to reclaim the inode again.
652 */
653 return 0;
7a3be02b
DC
654}
655
65d0f205
DC
656/*
657 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
658 * corrupted, we still want to try to reclaim all the inodes. If we don't,
659 * then a shut down during filesystem unmount reclaim walk leak all the
660 * unreclaimed inodes.
661 */
662int
663xfs_reclaim_inodes_ag(
664 struct xfs_mount *mp,
665 int flags,
666 int *nr_to_scan)
667{
668 struct xfs_perag *pag;
669 int error = 0;
670 int last_error = 0;
671 xfs_agnumber_t ag;
69b491c2
DC
672 int trylock = flags & SYNC_TRYLOCK;
673 int skipped;
65d0f205 674
69b491c2 675restart:
65d0f205 676 ag = 0;
69b491c2 677 skipped = 0;
65d0f205
DC
678 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
679 unsigned long first_index = 0;
680 int done = 0;
e3a20c0b 681 int nr_found = 0;
65d0f205
DC
682
683 ag = pag->pag_agno + 1;
684
69b491c2
DC
685 if (trylock) {
686 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
687 skipped++;
f83282a8 688 xfs_perag_put(pag);
69b491c2
DC
689 continue;
690 }
691 first_index = pag->pag_ici_reclaim_cursor;
692 } else
693 mutex_lock(&pag->pag_ici_reclaim_lock);
694
65d0f205 695 do {
e3a20c0b
DC
696 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
697 int i;
65d0f205 698
1a3e8f3d 699 rcu_read_lock();
e3a20c0b
DC
700 nr_found = radix_tree_gang_lookup_tag(
701 &pag->pag_ici_root,
702 (void **)batch, first_index,
703 XFS_LOOKUP_BATCH,
65d0f205
DC
704 XFS_ICI_RECLAIM_TAG);
705 if (!nr_found) {
b2232219 706 done = 1;
1a3e8f3d 707 rcu_read_unlock();
65d0f205
DC
708 break;
709 }
710
711 /*
e3a20c0b
DC
712 * Grab the inodes before we drop the lock. if we found
713 * nothing, nr == 0 and the loop will be skipped.
65d0f205 714 */
e3a20c0b
DC
715 for (i = 0; i < nr_found; i++) {
716 struct xfs_inode *ip = batch[i];
717
718 if (done || xfs_reclaim_inode_grab(ip, flags))
719 batch[i] = NULL;
720
721 /*
722 * Update the index for the next lookup. Catch
723 * overflows into the next AG range which can
724 * occur if we have inodes in the last block of
725 * the AG and we are currently pointing to the
726 * last inode.
1a3e8f3d
DC
727 *
728 * Because we may see inodes that are from the
729 * wrong AG due to RCU freeing and
730 * reallocation, only update the index if it
731 * lies in this AG. It was a race that lead us
732 * to see this inode, so another lookup from
733 * the same index will not find it again.
e3a20c0b 734 */
1a3e8f3d
DC
735 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
736 pag->pag_agno)
737 continue;
e3a20c0b
DC
738 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
739 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
740 done = 1;
741 }
65d0f205 742
e3a20c0b 743 /* unlock now we've grabbed the inodes. */
1a3e8f3d 744 rcu_read_unlock();
e3a20c0b
DC
745
746 for (i = 0; i < nr_found; i++) {
747 if (!batch[i])
748 continue;
749 error = xfs_reclaim_inode(batch[i], pag, flags);
750 if (error && last_error != EFSCORRUPTED)
751 last_error = error;
752 }
753
754 *nr_to_scan -= XFS_LOOKUP_BATCH;
65d0f205 755
8daaa831
DC
756 cond_resched();
757
e3a20c0b 758 } while (nr_found && !done && *nr_to_scan > 0);
65d0f205 759
69b491c2
DC
760 if (trylock && !done)
761 pag->pag_ici_reclaim_cursor = first_index;
762 else
763 pag->pag_ici_reclaim_cursor = 0;
764 mutex_unlock(&pag->pag_ici_reclaim_lock);
65d0f205
DC
765 xfs_perag_put(pag);
766 }
69b491c2
DC
767
768 /*
769 * if we skipped any AG, and we still have scan count remaining, do
770 * another pass this time using blocking reclaim semantics (i.e
771 * waiting on the reclaim locks and ignoring the reclaim cursors). This
772 * ensure that when we get more reclaimers than AGs we block rather
773 * than spin trying to execute reclaim.
774 */
8daaa831 775 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
69b491c2
DC
776 trylock = 0;
777 goto restart;
778 }
65d0f205
DC
779 return XFS_ERROR(last_error);
780}
781
7a3be02b
DC
782int
783xfs_reclaim_inodes(
784 xfs_mount_t *mp,
7a3be02b
DC
785 int mode)
786{
65d0f205
DC
787 int nr_to_scan = INT_MAX;
788
789 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
9bf729c0
DC
790}
791
792/*
8daaa831 793 * Scan a certain number of inodes for reclaim.
a7b339f1
DC
794 *
795 * When called we make sure that there is a background (fast) inode reclaim in
8daaa831 796 * progress, while we will throttle the speed of reclaim via doing synchronous
a7b339f1
DC
797 * reclaim of inodes. That means if we come across dirty inodes, we wait for
798 * them to be cleaned, which we hope will not be very long due to the
799 * background walker having already kicked the IO off on those dirty inodes.
9bf729c0 800 */
8daaa831
DC
801void
802xfs_reclaim_inodes_nr(
803 struct xfs_mount *mp,
804 int nr_to_scan)
9bf729c0 805{
8daaa831
DC
806 /* kick background reclaimer and push the AIL */
807 xfs_syncd_queue_reclaim(mp);
808 xfs_ail_push_all(mp->m_ail);
a7b339f1 809
8daaa831
DC
810 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
811}
9bf729c0 812
8daaa831
DC
813/*
814 * Return the number of reclaimable inodes in the filesystem for
815 * the shrinker to determine how much to reclaim.
816 */
817int
818xfs_reclaim_inodes_count(
819 struct xfs_mount *mp)
820{
821 struct xfs_perag *pag;
822 xfs_agnumber_t ag = 0;
823 int reclaimable = 0;
9bf729c0 824
65d0f205
DC
825 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
826 ag = pag->pag_agno + 1;
70e60ce7
DC
827 reclaimable += pag->pag_ici_reclaimable;
828 xfs_perag_put(pag);
9bf729c0 829 }
9bf729c0
DC
830 return reclaimable;
831}
832