]>
Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
7b718769 NS |
2 | * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. |
3 | * All Rights Reserved. | |
1da177e4 | 4 | * |
7b718769 NS |
5 | * This program is free software; you can redistribute it and/or |
6 | * modify it under the terms of the GNU General Public License as | |
1da177e4 LT |
7 | * published by the Free Software Foundation. |
8 | * | |
7b718769 NS |
9 | * This program is distributed in the hope that it would be useful, |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
12 | * GNU General Public License for more details. | |
1da177e4 | 13 | * |
7b718769 NS |
14 | * You should have received a copy of the GNU General Public License |
15 | * along with this program; if not, write the Free Software Foundation, | |
16 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | |
1da177e4 | 17 | */ |
1da177e4 | 18 | #include "xfs.h" |
a844f451 | 19 | #include "xfs_fs.h" |
1da177e4 | 20 | #include "xfs_types.h" |
a844f451 | 21 | #include "xfs_bit.h" |
1da177e4 | 22 | #include "xfs_log.h" |
a844f451 | 23 | #include "xfs_inum.h" |
1da177e4 | 24 | #include "xfs_trans.h" |
1da177e4 LT |
25 | #include "xfs_sb.h" |
26 | #include "xfs_ag.h" | |
1da177e4 | 27 | #include "xfs_mount.h" |
a844f451 NS |
28 | #include "xfs_bmap_btree.h" |
29 | #include "xfs_alloc_btree.h" | |
30 | #include "xfs_ialloc_btree.h" | |
a844f451 NS |
31 | #include "xfs_dinode.h" |
32 | #include "xfs_inode.h" | |
33 | #include "xfs_buf_item.h" | |
1da177e4 LT |
34 | #include "xfs_trans_priv.h" |
35 | #include "xfs_error.h" | |
36 | #include "xfs_rw.h" | |
0b1b213f | 37 | #include "xfs_trace.h" |
1da177e4 | 38 | |
4a5224d7 CH |
39 | /* |
40 | * Check to see if a buffer matching the given parameters is already | |
41 | * a part of the given transaction. | |
42 | */ | |
43 | STATIC struct xfs_buf * | |
44 | xfs_trans_buf_item_match( | |
45 | struct xfs_trans *tp, | |
46 | struct xfs_buftarg *target, | |
47 | xfs_daddr_t blkno, | |
48 | int len) | |
49 | { | |
50 | xfs_log_item_chunk_t *licp; | |
51 | xfs_log_item_desc_t *lidp; | |
52 | xfs_buf_log_item_t *blip; | |
53 | int i; | |
1da177e4 | 54 | |
4a5224d7 CH |
55 | len = BBTOB(len); |
56 | for (licp = &tp->t_items; licp != NULL; licp = licp->lic_next) { | |
57 | if (xfs_lic_are_all_free(licp)) { | |
58 | ASSERT(licp == &tp->t_items); | |
59 | ASSERT(licp->lic_next == NULL); | |
60 | return NULL; | |
61 | } | |
62 | ||
63 | for (i = 0; i < licp->lic_unused; i++) { | |
64 | /* | |
65 | * Skip unoccupied slots. | |
66 | */ | |
67 | if (xfs_lic_isfree(licp, i)) | |
68 | continue; | |
69 | ||
70 | lidp = xfs_lic_slot(licp, i); | |
71 | blip = (xfs_buf_log_item_t *)lidp->lid_item; | |
72 | if (blip->bli_item.li_type != XFS_LI_BUF) | |
73 | continue; | |
74 | ||
75 | if (XFS_BUF_TARGET(blip->bli_buf) == target && | |
76 | XFS_BUF_ADDR(blip->bli_buf) == blkno && | |
77 | XFS_BUF_COUNT(blip->bli_buf) == len) | |
78 | return blip->bli_buf; | |
79 | } | |
80 | } | |
81 | ||
82 | return NULL; | |
83 | } | |
1da177e4 | 84 | |
d7e84f41 CH |
85 | /* |
86 | * Add the locked buffer to the transaction. | |
87 | * | |
88 | * The buffer must be locked, and it cannot be associated with any | |
89 | * transaction. | |
90 | * | |
91 | * If the buffer does not yet have a buf log item associated with it, | |
92 | * then allocate one for it. Then add the buf item to the transaction. | |
93 | */ | |
94 | STATIC void | |
95 | _xfs_trans_bjoin( | |
96 | struct xfs_trans *tp, | |
97 | struct xfs_buf *bp, | |
98 | int reset_recur) | |
99 | { | |
100 | struct xfs_buf_log_item *bip; | |
101 | ||
102 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
103 | ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL); | |
104 | ||
105 | /* | |
106 | * The xfs_buf_log_item pointer is stored in b_fsprivate. If | |
107 | * it doesn't have one yet, then allocate one and initialize it. | |
108 | * The checks to see if one is there are in xfs_buf_item_init(). | |
109 | */ | |
110 | xfs_buf_item_init(bp, tp->t_mountp); | |
111 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
112 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
c1155410 | 113 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL)); |
d7e84f41 CH |
114 | ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); |
115 | if (reset_recur) | |
116 | bip->bli_recur = 0; | |
117 | ||
118 | /* | |
119 | * Take a reference for this transaction on the buf item. | |
120 | */ | |
121 | atomic_inc(&bip->bli_refcount); | |
122 | ||
123 | /* | |
124 | * Get a log_item_desc to point at the new item. | |
125 | */ | |
126 | (void) xfs_trans_add_item(tp, (xfs_log_item_t *)bip); | |
127 | ||
128 | /* | |
129 | * Initialize b_fsprivate2 so we can find it with incore_match() | |
130 | * in xfs_trans_get_buf() and friends above. | |
131 | */ | |
132 | XFS_BUF_SET_FSPRIVATE2(bp, tp); | |
133 | ||
134 | } | |
135 | ||
136 | void | |
137 | xfs_trans_bjoin( | |
138 | struct xfs_trans *tp, | |
139 | struct xfs_buf *bp) | |
140 | { | |
141 | _xfs_trans_bjoin(tp, bp, 0); | |
142 | trace_xfs_trans_bjoin(bp->b_fspriv); | |
143 | } | |
1da177e4 LT |
144 | |
145 | /* | |
146 | * Get and lock the buffer for the caller if it is not already | |
147 | * locked within the given transaction. If it is already locked | |
148 | * within the transaction, just increment its lock recursion count | |
149 | * and return a pointer to it. | |
150 | * | |
1da177e4 LT |
151 | * If the transaction pointer is NULL, make this just a normal |
152 | * get_buf() call. | |
153 | */ | |
154 | xfs_buf_t * | |
155 | xfs_trans_get_buf(xfs_trans_t *tp, | |
156 | xfs_buftarg_t *target_dev, | |
157 | xfs_daddr_t blkno, | |
158 | int len, | |
159 | uint flags) | |
160 | { | |
161 | xfs_buf_t *bp; | |
162 | xfs_buf_log_item_t *bip; | |
163 | ||
164 | if (flags == 0) | |
0cadda1c | 165 | flags = XBF_LOCK | XBF_MAPPED; |
1da177e4 LT |
166 | |
167 | /* | |
168 | * Default to a normal get_buf() call if the tp is NULL. | |
169 | */ | |
6ad112bf | 170 | if (tp == NULL) |
0cadda1c CH |
171 | return xfs_buf_get(target_dev, blkno, len, |
172 | flags | XBF_DONT_BLOCK); | |
1da177e4 LT |
173 | |
174 | /* | |
175 | * If we find the buffer in the cache with this transaction | |
176 | * pointer in its b_fsprivate2 field, then we know we already | |
177 | * have it locked. In this case we just increment the lock | |
178 | * recursion count and return the buffer to the caller. | |
179 | */ | |
4a5224d7 | 180 | bp = xfs_trans_buf_item_match(tp, target_dev, blkno, len); |
1da177e4 LT |
181 | if (bp != NULL) { |
182 | ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); | |
0b1b213f | 183 | if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) |
1da177e4 | 184 | XFS_BUF_SUPER_STALE(bp); |
0b1b213f | 185 | |
1da177e4 LT |
186 | /* |
187 | * If the buffer is stale then it was binval'ed | |
188 | * since last read. This doesn't matter since the | |
189 | * caller isn't allowed to use the data anyway. | |
190 | */ | |
0b1b213f | 191 | else if (XFS_BUF_ISSTALE(bp)) |
1da177e4 | 192 | ASSERT(!XFS_BUF_ISDELAYWRITE(bp)); |
0b1b213f | 193 | |
1da177e4 LT |
194 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); |
195 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
196 | ASSERT(bip != NULL); | |
197 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
198 | bip->bli_recur++; | |
0b1b213f | 199 | trace_xfs_trans_get_buf_recur(bip); |
1da177e4 LT |
200 | return (bp); |
201 | } | |
202 | ||
203 | /* | |
0cadda1c CH |
204 | * We always specify the XBF_DONT_BLOCK flag within a transaction |
205 | * so that get_buf does not try to push out a delayed write buffer | |
1da177e4 LT |
206 | * which might cause another transaction to take place (if the |
207 | * buffer was delayed alloc). Such recursive transactions can | |
208 | * easily deadlock with our current transaction as well as cause | |
209 | * us to run out of stack space. | |
210 | */ | |
0cadda1c | 211 | bp = xfs_buf_get(target_dev, blkno, len, flags | XBF_DONT_BLOCK); |
1da177e4 LT |
212 | if (bp == NULL) { |
213 | return NULL; | |
214 | } | |
215 | ||
216 | ASSERT(!XFS_BUF_GETERROR(bp)); | |
217 | ||
d7e84f41 CH |
218 | _xfs_trans_bjoin(tp, bp, 1); |
219 | trace_xfs_trans_get_buf(bp->b_fspriv); | |
1da177e4 LT |
220 | return (bp); |
221 | } | |
222 | ||
223 | /* | |
224 | * Get and lock the superblock buffer of this file system for the | |
225 | * given transaction. | |
226 | * | |
227 | * We don't need to use incore_match() here, because the superblock | |
228 | * buffer is a private buffer which we keep a pointer to in the | |
229 | * mount structure. | |
230 | */ | |
231 | xfs_buf_t * | |
232 | xfs_trans_getsb(xfs_trans_t *tp, | |
233 | struct xfs_mount *mp, | |
234 | int flags) | |
235 | { | |
236 | xfs_buf_t *bp; | |
237 | xfs_buf_log_item_t *bip; | |
238 | ||
239 | /* | |
240 | * Default to just trying to lock the superblock buffer | |
241 | * if tp is NULL. | |
242 | */ | |
243 | if (tp == NULL) { | |
244 | return (xfs_getsb(mp, flags)); | |
245 | } | |
246 | ||
247 | /* | |
248 | * If the superblock buffer already has this transaction | |
249 | * pointer in its b_fsprivate2 field, then we know we already | |
250 | * have it locked. In this case we just increment the lock | |
251 | * recursion count and return the buffer to the caller. | |
252 | */ | |
253 | bp = mp->m_sb_bp; | |
254 | if (XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp) { | |
255 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); | |
256 | ASSERT(bip != NULL); | |
257 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
258 | bip->bli_recur++; | |
0b1b213f | 259 | trace_xfs_trans_getsb_recur(bip); |
1da177e4 LT |
260 | return (bp); |
261 | } | |
262 | ||
263 | bp = xfs_getsb(mp, flags); | |
d7e84f41 | 264 | if (bp == NULL) |
1da177e4 | 265 | return NULL; |
1da177e4 | 266 | |
d7e84f41 CH |
267 | _xfs_trans_bjoin(tp, bp, 1); |
268 | trace_xfs_trans_getsb(bp->b_fspriv); | |
1da177e4 LT |
269 | return (bp); |
270 | } | |
271 | ||
272 | #ifdef DEBUG | |
273 | xfs_buftarg_t *xfs_error_target; | |
274 | int xfs_do_error; | |
275 | int xfs_req_num; | |
276 | int xfs_error_mod = 33; | |
277 | #endif | |
278 | ||
279 | /* | |
280 | * Get and lock the buffer for the caller if it is not already | |
281 | * locked within the given transaction. If it has not yet been | |
282 | * read in, read it from disk. If it is already locked | |
283 | * within the transaction and already read in, just increment its | |
284 | * lock recursion count and return a pointer to it. | |
285 | * | |
1da177e4 LT |
286 | * If the transaction pointer is NULL, make this just a normal |
287 | * read_buf() call. | |
288 | */ | |
289 | int | |
290 | xfs_trans_read_buf( | |
291 | xfs_mount_t *mp, | |
292 | xfs_trans_t *tp, | |
293 | xfs_buftarg_t *target, | |
294 | xfs_daddr_t blkno, | |
295 | int len, | |
296 | uint flags, | |
297 | xfs_buf_t **bpp) | |
298 | { | |
299 | xfs_buf_t *bp; | |
300 | xfs_buf_log_item_t *bip; | |
301 | int error; | |
302 | ||
303 | if (flags == 0) | |
0cadda1c | 304 | flags = XBF_LOCK | XBF_MAPPED; |
1da177e4 LT |
305 | |
306 | /* | |
307 | * Default to a normal get_buf() call if the tp is NULL. | |
308 | */ | |
309 | if (tp == NULL) { | |
0cadda1c | 310 | bp = xfs_buf_read(target, blkno, len, flags | XBF_DONT_BLOCK); |
1da177e4 | 311 | if (!bp) |
0cadda1c | 312 | return (flags & XBF_TRYLOCK) ? |
a3f74ffb | 313 | EAGAIN : XFS_ERROR(ENOMEM); |
1da177e4 | 314 | |
a0f7bfd3 | 315 | if (XFS_BUF_GETERROR(bp) != 0) { |
1da177e4 LT |
316 | xfs_ioerror_alert("xfs_trans_read_buf", mp, |
317 | bp, blkno); | |
318 | error = XFS_BUF_GETERROR(bp); | |
319 | xfs_buf_relse(bp); | |
320 | return error; | |
321 | } | |
322 | #ifdef DEBUG | |
a0f7bfd3 | 323 | if (xfs_do_error) { |
1da177e4 LT |
324 | if (xfs_error_target == target) { |
325 | if (((xfs_req_num++) % xfs_error_mod) == 0) { | |
326 | xfs_buf_relse(bp); | |
b6574520 | 327 | cmn_err(CE_DEBUG, "Returning error!\n"); |
1da177e4 LT |
328 | return XFS_ERROR(EIO); |
329 | } | |
330 | } | |
331 | } | |
332 | #endif | |
333 | if (XFS_FORCED_SHUTDOWN(mp)) | |
334 | goto shutdown_abort; | |
335 | *bpp = bp; | |
336 | return 0; | |
337 | } | |
338 | ||
339 | /* | |
340 | * If we find the buffer in the cache with this transaction | |
341 | * pointer in its b_fsprivate2 field, then we know we already | |
342 | * have it locked. If it is already read in we just increment | |
343 | * the lock recursion count and return the buffer to the caller. | |
344 | * If the buffer is not yet read in, then we read it in, increment | |
345 | * the lock recursion count, and return it to the caller. | |
346 | */ | |
4a5224d7 | 347 | bp = xfs_trans_buf_item_match(tp, target, blkno, len); |
1da177e4 LT |
348 | if (bp != NULL) { |
349 | ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); | |
350 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
351 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
352 | ASSERT((XFS_BUF_ISERROR(bp)) == 0); | |
353 | if (!(XFS_BUF_ISDONE(bp))) { | |
0b1b213f | 354 | trace_xfs_trans_read_buf_io(bp, _RET_IP_); |
1da177e4 LT |
355 | ASSERT(!XFS_BUF_ISASYNC(bp)); |
356 | XFS_BUF_READ(bp); | |
357 | xfsbdstrat(tp->t_mountp, bp); | |
d64e31a2 DC |
358 | error = xfs_iowait(bp); |
359 | if (error) { | |
1da177e4 LT |
360 | xfs_ioerror_alert("xfs_trans_read_buf", mp, |
361 | bp, blkno); | |
1da177e4 LT |
362 | xfs_buf_relse(bp); |
363 | /* | |
d64e31a2 DC |
364 | * We can gracefully recover from most read |
365 | * errors. Ones we can't are those that happen | |
366 | * after the transaction's already dirty. | |
1da177e4 LT |
367 | */ |
368 | if (tp->t_flags & XFS_TRANS_DIRTY) | |
369 | xfs_force_shutdown(tp->t_mountp, | |
7d04a335 | 370 | SHUTDOWN_META_IO_ERROR); |
1da177e4 LT |
371 | return error; |
372 | } | |
373 | } | |
374 | /* | |
375 | * We never locked this buf ourselves, so we shouldn't | |
376 | * brelse it either. Just get out. | |
377 | */ | |
378 | if (XFS_FORCED_SHUTDOWN(mp)) { | |
0b1b213f | 379 | trace_xfs_trans_read_buf_shut(bp, _RET_IP_); |
1da177e4 LT |
380 | *bpp = NULL; |
381 | return XFS_ERROR(EIO); | |
382 | } | |
383 | ||
384 | ||
385 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); | |
386 | bip->bli_recur++; | |
387 | ||
388 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
0b1b213f | 389 | trace_xfs_trans_read_buf_recur(bip); |
1da177e4 LT |
390 | *bpp = bp; |
391 | return 0; | |
392 | } | |
393 | ||
394 | /* | |
0cadda1c CH |
395 | * We always specify the XBF_DONT_BLOCK flag within a transaction |
396 | * so that get_buf does not try to push out a delayed write buffer | |
1da177e4 LT |
397 | * which might cause another transaction to take place (if the |
398 | * buffer was delayed alloc). Such recursive transactions can | |
399 | * easily deadlock with our current transaction as well as cause | |
400 | * us to run out of stack space. | |
401 | */ | |
0cadda1c | 402 | bp = xfs_buf_read(target, blkno, len, flags | XBF_DONT_BLOCK); |
1da177e4 LT |
403 | if (bp == NULL) { |
404 | *bpp = NULL; | |
405 | return 0; | |
406 | } | |
407 | if (XFS_BUF_GETERROR(bp) != 0) { | |
408 | XFS_BUF_SUPER_STALE(bp); | |
1da177e4 LT |
409 | error = XFS_BUF_GETERROR(bp); |
410 | ||
411 | xfs_ioerror_alert("xfs_trans_read_buf", mp, | |
412 | bp, blkno); | |
413 | if (tp->t_flags & XFS_TRANS_DIRTY) | |
7d04a335 | 414 | xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR); |
1da177e4 LT |
415 | xfs_buf_relse(bp); |
416 | return error; | |
417 | } | |
418 | #ifdef DEBUG | |
419 | if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) { | |
420 | if (xfs_error_target == target) { | |
421 | if (((xfs_req_num++) % xfs_error_mod) == 0) { | |
422 | xfs_force_shutdown(tp->t_mountp, | |
7d04a335 | 423 | SHUTDOWN_META_IO_ERROR); |
1da177e4 | 424 | xfs_buf_relse(bp); |
b6574520 | 425 | cmn_err(CE_DEBUG, "Returning trans error!\n"); |
1da177e4 LT |
426 | return XFS_ERROR(EIO); |
427 | } | |
428 | } | |
429 | } | |
430 | #endif | |
431 | if (XFS_FORCED_SHUTDOWN(mp)) | |
432 | goto shutdown_abort; | |
433 | ||
d7e84f41 CH |
434 | _xfs_trans_bjoin(tp, bp, 1); |
435 | trace_xfs_trans_read_buf(bp->b_fspriv); | |
1da177e4 | 436 | |
1da177e4 LT |
437 | *bpp = bp; |
438 | return 0; | |
439 | ||
440 | shutdown_abort: | |
441 | /* | |
442 | * the theory here is that buffer is good but we're | |
443 | * bailing out because the filesystem is being forcibly | |
444 | * shut down. So we should leave the b_flags alone since | |
445 | * the buffer's not staled and just get out. | |
446 | */ | |
447 | #if defined(DEBUG) | |
448 | if (XFS_BUF_ISSTALE(bp) && XFS_BUF_ISDELAYWRITE(bp)) | |
449 | cmn_err(CE_NOTE, "about to pop assert, bp == 0x%p", bp); | |
450 | #endif | |
0cadda1c CH |
451 | ASSERT((XFS_BUF_BFLAGS(bp) & (XBF_STALE|XBF_DELWRI)) != |
452 | (XBF_STALE|XBF_DELWRI)); | |
1da177e4 | 453 | |
0b1b213f | 454 | trace_xfs_trans_read_buf_shut(bp, _RET_IP_); |
1da177e4 LT |
455 | xfs_buf_relse(bp); |
456 | *bpp = NULL; | |
457 | return XFS_ERROR(EIO); | |
458 | } | |
459 | ||
460 | ||
461 | /* | |
462 | * Release the buffer bp which was previously acquired with one of the | |
463 | * xfs_trans_... buffer allocation routines if the buffer has not | |
464 | * been modified within this transaction. If the buffer is modified | |
465 | * within this transaction, do decrement the recursion count but do | |
466 | * not release the buffer even if the count goes to 0. If the buffer is not | |
467 | * modified within the transaction, decrement the recursion count and | |
468 | * release the buffer if the recursion count goes to 0. | |
469 | * | |
470 | * If the buffer is to be released and it was not modified before | |
471 | * this transaction began, then free the buf_log_item associated with it. | |
472 | * | |
473 | * If the transaction pointer is NULL, make this just a normal | |
474 | * brelse() call. | |
475 | */ | |
476 | void | |
477 | xfs_trans_brelse(xfs_trans_t *tp, | |
478 | xfs_buf_t *bp) | |
479 | { | |
480 | xfs_buf_log_item_t *bip; | |
481 | xfs_log_item_t *lip; | |
482 | xfs_log_item_desc_t *lidp; | |
483 | ||
484 | /* | |
485 | * Default to a normal brelse() call if the tp is NULL. | |
486 | */ | |
487 | if (tp == NULL) { | |
488 | ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL); | |
489 | /* | |
490 | * If there's a buf log item attached to the buffer, | |
491 | * then let the AIL know that the buffer is being | |
492 | * unlocked. | |
493 | */ | |
494 | if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) { | |
495 | lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); | |
496 | if (lip->li_type == XFS_LI_BUF) { | |
497 | bip = XFS_BUF_FSPRIVATE(bp,xfs_buf_log_item_t*); | |
783a2f65 DC |
498 | xfs_trans_unlocked_item(bip->bli_item.li_ailp, |
499 | lip); | |
1da177e4 LT |
500 | } |
501 | } | |
502 | xfs_buf_relse(bp); | |
503 | return; | |
504 | } | |
505 | ||
506 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
507 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
508 | ASSERT(bip->bli_item.li_type == XFS_LI_BUF); | |
509 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
c1155410 | 510 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL)); |
1da177e4 LT |
511 | ASSERT(atomic_read(&bip->bli_refcount) > 0); |
512 | ||
513 | /* | |
514 | * Find the item descriptor pointing to this buffer's | |
515 | * log item. It must be there. | |
516 | */ | |
517 | lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip); | |
518 | ASSERT(lidp != NULL); | |
519 | ||
0b1b213f CH |
520 | trace_xfs_trans_brelse(bip); |
521 | ||
1da177e4 LT |
522 | /* |
523 | * If the release is just for a recursive lock, | |
524 | * then decrement the count and return. | |
525 | */ | |
526 | if (bip->bli_recur > 0) { | |
527 | bip->bli_recur--; | |
1da177e4 LT |
528 | return; |
529 | } | |
530 | ||
531 | /* | |
532 | * If the buffer is dirty within this transaction, we can't | |
533 | * release it until we commit. | |
534 | */ | |
0b1b213f | 535 | if (lidp->lid_flags & XFS_LID_DIRTY) |
1da177e4 | 536 | return; |
1da177e4 LT |
537 | |
538 | /* | |
539 | * If the buffer has been invalidated, then we can't release | |
540 | * it until the transaction commits to disk unless it is re-dirtied | |
541 | * as part of this transaction. This prevents us from pulling | |
542 | * the item from the AIL before we should. | |
543 | */ | |
0b1b213f | 544 | if (bip->bli_flags & XFS_BLI_STALE) |
1da177e4 | 545 | return; |
1da177e4 LT |
546 | |
547 | ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); | |
1da177e4 LT |
548 | |
549 | /* | |
550 | * Free up the log item descriptor tracking the released item. | |
551 | */ | |
552 | xfs_trans_free_item(tp, lidp); | |
553 | ||
554 | /* | |
555 | * Clear the hold flag in the buf log item if it is set. | |
556 | * We wouldn't want the next user of the buffer to | |
557 | * get confused. | |
558 | */ | |
559 | if (bip->bli_flags & XFS_BLI_HOLD) { | |
560 | bip->bli_flags &= ~XFS_BLI_HOLD; | |
561 | } | |
562 | ||
563 | /* | |
564 | * Drop our reference to the buf log item. | |
565 | */ | |
566 | atomic_dec(&bip->bli_refcount); | |
567 | ||
568 | /* | |
569 | * If the buf item is not tracking data in the log, then | |
570 | * we must free it before releasing the buffer back to the | |
571 | * free pool. Before releasing the buffer to the free pool, | |
572 | * clear the transaction pointer in b_fsprivate2 to dissolve | |
573 | * its relation to this transaction. | |
574 | */ | |
575 | if (!xfs_buf_item_dirty(bip)) { | |
576 | /*** | |
577 | ASSERT(bp->b_pincount == 0); | |
578 | ***/ | |
579 | ASSERT(atomic_read(&bip->bli_refcount) == 0); | |
580 | ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL)); | |
581 | ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF)); | |
582 | xfs_buf_item_relse(bp); | |
583 | bip = NULL; | |
584 | } | |
585 | XFS_BUF_SET_FSPRIVATE2(bp, NULL); | |
586 | ||
587 | /* | |
588 | * If we've still got a buf log item on the buffer, then | |
589 | * tell the AIL that the buffer is being unlocked. | |
590 | */ | |
591 | if (bip != NULL) { | |
783a2f65 | 592 | xfs_trans_unlocked_item(bip->bli_item.li_ailp, |
1da177e4 LT |
593 | (xfs_log_item_t*)bip); |
594 | } | |
595 | ||
596 | xfs_buf_relse(bp); | |
597 | return; | |
598 | } | |
599 | ||
1da177e4 LT |
600 | /* |
601 | * Mark the buffer as not needing to be unlocked when the buf item's | |
602 | * IOP_UNLOCK() routine is called. The buffer must already be locked | |
603 | * and associated with the given transaction. | |
604 | */ | |
605 | /* ARGSUSED */ | |
606 | void | |
607 | xfs_trans_bhold(xfs_trans_t *tp, | |
608 | xfs_buf_t *bp) | |
609 | { | |
610 | xfs_buf_log_item_t *bip; | |
611 | ||
612 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
613 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
614 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
615 | ||
616 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
617 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
c1155410 | 618 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL)); |
1da177e4 LT |
619 | ASSERT(atomic_read(&bip->bli_refcount) > 0); |
620 | bip->bli_flags |= XFS_BLI_HOLD; | |
0b1b213f | 621 | trace_xfs_trans_bhold(bip); |
1da177e4 LT |
622 | } |
623 | ||
efa092f3 TS |
624 | /* |
625 | * Cancel the previous buffer hold request made on this buffer | |
626 | * for this transaction. | |
627 | */ | |
628 | void | |
629 | xfs_trans_bhold_release(xfs_trans_t *tp, | |
630 | xfs_buf_t *bp) | |
631 | { | |
632 | xfs_buf_log_item_t *bip; | |
633 | ||
634 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
635 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
636 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
637 | ||
638 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
639 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
c1155410 | 640 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL)); |
efa092f3 TS |
641 | ASSERT(atomic_read(&bip->bli_refcount) > 0); |
642 | ASSERT(bip->bli_flags & XFS_BLI_HOLD); | |
643 | bip->bli_flags &= ~XFS_BLI_HOLD; | |
0b1b213f CH |
644 | |
645 | trace_xfs_trans_bhold_release(bip); | |
efa092f3 TS |
646 | } |
647 | ||
1da177e4 LT |
648 | /* |
649 | * This is called to mark bytes first through last inclusive of the given | |
650 | * buffer as needing to be logged when the transaction is committed. | |
651 | * The buffer must already be associated with the given transaction. | |
652 | * | |
653 | * First and last are numbers relative to the beginning of this buffer, | |
654 | * so the first byte in the buffer is numbered 0 regardless of the | |
655 | * value of b_blkno. | |
656 | */ | |
657 | void | |
658 | xfs_trans_log_buf(xfs_trans_t *tp, | |
659 | xfs_buf_t *bp, | |
660 | uint first, | |
661 | uint last) | |
662 | { | |
663 | xfs_buf_log_item_t *bip; | |
664 | xfs_log_item_desc_t *lidp; | |
665 | ||
666 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
667 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
668 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
669 | ASSERT((first <= last) && (last < XFS_BUF_COUNT(bp))); | |
670 | ASSERT((XFS_BUF_IODONE_FUNC(bp) == NULL) || | |
671 | (XFS_BUF_IODONE_FUNC(bp) == xfs_buf_iodone_callbacks)); | |
672 | ||
673 | /* | |
674 | * Mark the buffer as needing to be written out eventually, | |
675 | * and set its iodone function to remove the buffer's buf log | |
676 | * item from the AIL and free it when the buffer is flushed | |
677 | * to disk. See xfs_buf_attach_iodone() for more details | |
678 | * on li_cb and xfs_buf_iodone_callbacks(). | |
679 | * If we end up aborting this transaction, we trap this buffer | |
680 | * inside the b_bdstrat callback so that this won't get written to | |
681 | * disk. | |
682 | */ | |
683 | XFS_BUF_DELAYWRITE(bp); | |
684 | XFS_BUF_DONE(bp); | |
685 | ||
686 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
687 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
688 | XFS_BUF_SET_IODONE_FUNC(bp, xfs_buf_iodone_callbacks); | |
689 | bip->bli_item.li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*))xfs_buf_iodone; | |
690 | ||
0b1b213f CH |
691 | trace_xfs_trans_log_buf(bip); |
692 | ||
1da177e4 LT |
693 | /* |
694 | * If we invalidated the buffer within this transaction, then | |
695 | * cancel the invalidation now that we're dirtying the buffer | |
696 | * again. There are no races with the code in xfs_buf_item_unpin(), | |
697 | * because we have a reference to the buffer this entire time. | |
698 | */ | |
699 | if (bip->bli_flags & XFS_BLI_STALE) { | |
1da177e4 LT |
700 | bip->bli_flags &= ~XFS_BLI_STALE; |
701 | ASSERT(XFS_BUF_ISSTALE(bp)); | |
702 | XFS_BUF_UNSTALE(bp); | |
c1155410 | 703 | bip->bli_format.blf_flags &= ~XFS_BLF_CANCEL; |
1da177e4 LT |
704 | } |
705 | ||
706 | lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip); | |
707 | ASSERT(lidp != NULL); | |
708 | ||
709 | tp->t_flags |= XFS_TRANS_DIRTY; | |
710 | lidp->lid_flags |= XFS_LID_DIRTY; | |
1da177e4 LT |
711 | bip->bli_flags |= XFS_BLI_LOGGED; |
712 | xfs_buf_item_log(bip, first, last); | |
1da177e4 LT |
713 | } |
714 | ||
715 | ||
716 | /* | |
717 | * This called to invalidate a buffer that is being used within | |
718 | * a transaction. Typically this is because the blocks in the | |
719 | * buffer are being freed, so we need to prevent it from being | |
720 | * written out when we're done. Allowing it to be written again | |
721 | * might overwrite data in the free blocks if they are reallocated | |
722 | * to a file. | |
723 | * | |
724 | * We prevent the buffer from being written out by clearing the | |
725 | * B_DELWRI flag. We can't always | |
726 | * get rid of the buf log item at this point, though, because | |
727 | * the buffer may still be pinned by another transaction. If that | |
728 | * is the case, then we'll wait until the buffer is committed to | |
729 | * disk for the last time (we can tell by the ref count) and | |
730 | * free it in xfs_buf_item_unpin(). Until it is cleaned up we | |
731 | * will keep the buffer locked so that the buffer and buf log item | |
732 | * are not reused. | |
733 | */ | |
734 | void | |
735 | xfs_trans_binval( | |
736 | xfs_trans_t *tp, | |
737 | xfs_buf_t *bp) | |
738 | { | |
739 | xfs_log_item_desc_t *lidp; | |
740 | xfs_buf_log_item_t *bip; | |
741 | ||
742 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
743 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
744 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
745 | ||
746 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
747 | lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip); | |
748 | ASSERT(lidp != NULL); | |
749 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
750 | ||
0b1b213f CH |
751 | trace_xfs_trans_binval(bip); |
752 | ||
1da177e4 LT |
753 | if (bip->bli_flags & XFS_BLI_STALE) { |
754 | /* | |
755 | * If the buffer is already invalidated, then | |
756 | * just return. | |
757 | */ | |
758 | ASSERT(!(XFS_BUF_ISDELAYWRITE(bp))); | |
759 | ASSERT(XFS_BUF_ISSTALE(bp)); | |
760 | ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); | |
c1155410 DC |
761 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_INODE_BUF)); |
762 | ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL); | |
1da177e4 LT |
763 | ASSERT(lidp->lid_flags & XFS_LID_DIRTY); |
764 | ASSERT(tp->t_flags & XFS_TRANS_DIRTY); | |
1da177e4 LT |
765 | return; |
766 | } | |
767 | ||
768 | /* | |
769 | * Clear the dirty bit in the buffer and set the STALE flag | |
770 | * in the buf log item. The STALE flag will be used in | |
771 | * xfs_buf_item_unpin() to determine if it should clean up | |
772 | * when the last reference to the buf item is given up. | |
c1155410 | 773 | * We set the XFS_BLF_CANCEL flag in the buf log format structure |
1da177e4 LT |
774 | * and log the buf item. This will be used at recovery time |
775 | * to determine that copies of the buffer in the log before | |
776 | * this should not be replayed. | |
777 | * We mark the item descriptor and the transaction dirty so | |
778 | * that we'll hold the buffer until after the commit. | |
779 | * | |
780 | * Since we're invalidating the buffer, we also clear the state | |
781 | * about which parts of the buffer have been logged. We also | |
782 | * clear the flag indicating that this is an inode buffer since | |
783 | * the data in the buffer will no longer be valid. | |
784 | * | |
785 | * We set the stale bit in the buffer as well since we're getting | |
786 | * rid of it. | |
787 | */ | |
788 | XFS_BUF_UNDELAYWRITE(bp); | |
789 | XFS_BUF_STALE(bp); | |
790 | bip->bli_flags |= XFS_BLI_STALE; | |
ccf7c23f | 791 | bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY); |
c1155410 DC |
792 | bip->bli_format.blf_flags &= ~XFS_BLF_INODE_BUF; |
793 | bip->bli_format.blf_flags |= XFS_BLF_CANCEL; | |
1da177e4 LT |
794 | memset((char *)(bip->bli_format.blf_data_map), 0, |
795 | (bip->bli_format.blf_map_size * sizeof(uint))); | |
8e123850 | 796 | lidp->lid_flags |= XFS_LID_DIRTY; |
1da177e4 | 797 | tp->t_flags |= XFS_TRANS_DIRTY; |
1da177e4 LT |
798 | } |
799 | ||
800 | /* | |
ccf7c23f DC |
801 | * This call is used to indicate that the buffer contains on-disk inodes which |
802 | * must be handled specially during recovery. They require special handling | |
803 | * because only the di_next_unlinked from the inodes in the buffer should be | |
804 | * recovered. The rest of the data in the buffer is logged via the inodes | |
805 | * themselves. | |
1da177e4 | 806 | * |
ccf7c23f DC |
807 | * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be |
808 | * transferred to the buffer's log format structure so that we'll know what to | |
809 | * do at recovery time. | |
1da177e4 | 810 | */ |
1da177e4 LT |
811 | void |
812 | xfs_trans_inode_buf( | |
813 | xfs_trans_t *tp, | |
814 | xfs_buf_t *bp) | |
815 | { | |
816 | xfs_buf_log_item_t *bip; | |
817 | ||
818 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
819 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
820 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
821 | ||
822 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
823 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
824 | ||
ccf7c23f | 825 | bip->bli_flags |= XFS_BLI_INODE_BUF; |
1da177e4 LT |
826 | } |
827 | ||
828 | /* | |
829 | * This call is used to indicate that the buffer is going to | |
830 | * be staled and was an inode buffer. This means it gets | |
831 | * special processing during unpin - where any inodes | |
832 | * associated with the buffer should be removed from ail. | |
833 | * There is also special processing during recovery, | |
834 | * any replay of the inodes in the buffer needs to be | |
835 | * prevented as the buffer may have been reused. | |
836 | */ | |
837 | void | |
838 | xfs_trans_stale_inode_buf( | |
839 | xfs_trans_t *tp, | |
840 | xfs_buf_t *bp) | |
841 | { | |
842 | xfs_buf_log_item_t *bip; | |
843 | ||
844 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
845 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
846 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
847 | ||
848 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
849 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
850 | ||
851 | bip->bli_flags |= XFS_BLI_STALE_INODE; | |
852 | bip->bli_item.li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) | |
853 | xfs_buf_iodone; | |
854 | } | |
855 | ||
856 | ||
857 | ||
858 | /* | |
859 | * Mark the buffer as being one which contains newly allocated | |
860 | * inodes. We need to make sure that even if this buffer is | |
861 | * relogged as an 'inode buf' we still recover all of the inode | |
862 | * images in the face of a crash. This works in coordination with | |
863 | * xfs_buf_item_committed() to ensure that the buffer remains in the | |
864 | * AIL at its original location even after it has been relogged. | |
865 | */ | |
866 | /* ARGSUSED */ | |
867 | void | |
868 | xfs_trans_inode_alloc_buf( | |
869 | xfs_trans_t *tp, | |
870 | xfs_buf_t *bp) | |
871 | { | |
872 | xfs_buf_log_item_t *bip; | |
873 | ||
874 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
875 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
876 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
877 | ||
878 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
879 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
880 | ||
881 | bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; | |
882 | } | |
883 | ||
884 | ||
885 | /* | |
886 | * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of | |
887 | * dquots. However, unlike in inode buffer recovery, dquot buffers get | |
888 | * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). | |
889 | * The only thing that makes dquot buffers different from regular | |
890 | * buffers is that we must not replay dquot bufs when recovering | |
891 | * if a _corresponding_ quotaoff has happened. We also have to distinguish | |
892 | * between usr dquot bufs and grp dquot bufs, because usr and grp quotas | |
893 | * can be turned off independently. | |
894 | */ | |
895 | /* ARGSUSED */ | |
896 | void | |
897 | xfs_trans_dquot_buf( | |
898 | xfs_trans_t *tp, | |
899 | xfs_buf_t *bp, | |
900 | uint type) | |
901 | { | |
902 | xfs_buf_log_item_t *bip; | |
903 | ||
904 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
905 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
906 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
c1155410 DC |
907 | ASSERT(type == XFS_BLF_UDQUOT_BUF || |
908 | type == XFS_BLF_PDQUOT_BUF || | |
909 | type == XFS_BLF_GDQUOT_BUF); | |
1da177e4 LT |
910 | |
911 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
912 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
913 | ||
914 | bip->bli_format.blf_flags |= type; | |
915 | } |