]>
Commit | Line | Data |
---|---|---|
1da177e4 | 1 | /* |
7b718769 NS |
2 | * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. |
3 | * All Rights Reserved. | |
1da177e4 | 4 | * |
7b718769 NS |
5 | * This program is free software; you can redistribute it and/or |
6 | * modify it under the terms of the GNU General Public License as | |
1da177e4 LT |
7 | * published by the Free Software Foundation. |
8 | * | |
7b718769 NS |
9 | * This program is distributed in the hope that it would be useful, |
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | |
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
12 | * GNU General Public License for more details. | |
1da177e4 | 13 | * |
7b718769 NS |
14 | * You should have received a copy of the GNU General Public License |
15 | * along with this program; if not, write the Free Software Foundation, | |
16 | * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA | |
1da177e4 | 17 | */ |
1da177e4 | 18 | #include "xfs.h" |
a844f451 | 19 | #include "xfs_fs.h" |
1da177e4 | 20 | #include "xfs_types.h" |
a844f451 | 21 | #include "xfs_bit.h" |
1da177e4 | 22 | #include "xfs_log.h" |
a844f451 | 23 | #include "xfs_inum.h" |
1da177e4 | 24 | #include "xfs_trans.h" |
1da177e4 LT |
25 | #include "xfs_sb.h" |
26 | #include "xfs_ag.h" | |
a844f451 | 27 | #include "xfs_dir2.h" |
1da177e4 LT |
28 | #include "xfs_dmapi.h" |
29 | #include "xfs_mount.h" | |
a844f451 NS |
30 | #include "xfs_bmap_btree.h" |
31 | #include "xfs_alloc_btree.h" | |
32 | #include "xfs_ialloc_btree.h" | |
a844f451 NS |
33 | #include "xfs_dir2_sf.h" |
34 | #include "xfs_attr_sf.h" | |
35 | #include "xfs_dinode.h" | |
36 | #include "xfs_inode.h" | |
37 | #include "xfs_buf_item.h" | |
1da177e4 LT |
38 | #include "xfs_trans_priv.h" |
39 | #include "xfs_error.h" | |
40 | #include "xfs_rw.h" | |
0b1b213f | 41 | #include "xfs_trace.h" |
1da177e4 LT |
42 | |
43 | ||
44 | STATIC xfs_buf_t *xfs_trans_buf_item_match(xfs_trans_t *, xfs_buftarg_t *, | |
45 | xfs_daddr_t, int); | |
46 | STATIC xfs_buf_t *xfs_trans_buf_item_match_all(xfs_trans_t *, xfs_buftarg_t *, | |
47 | xfs_daddr_t, int); | |
48 | ||
49 | ||
50 | /* | |
51 | * Get and lock the buffer for the caller if it is not already | |
52 | * locked within the given transaction. If it is already locked | |
53 | * within the transaction, just increment its lock recursion count | |
54 | * and return a pointer to it. | |
55 | * | |
56 | * Use the fast path function xfs_trans_buf_item_match() or the buffer | |
57 | * cache routine incore_match() to find the buffer | |
58 | * if it is already owned by this transaction. | |
59 | * | |
60 | * If we don't already own the buffer, use get_buf() to get it. | |
61 | * If it doesn't yet have an associated xfs_buf_log_item structure, | |
62 | * then allocate one and add the item to this transaction. | |
63 | * | |
64 | * If the transaction pointer is NULL, make this just a normal | |
65 | * get_buf() call. | |
66 | */ | |
67 | xfs_buf_t * | |
68 | xfs_trans_get_buf(xfs_trans_t *tp, | |
69 | xfs_buftarg_t *target_dev, | |
70 | xfs_daddr_t blkno, | |
71 | int len, | |
72 | uint flags) | |
73 | { | |
74 | xfs_buf_t *bp; | |
75 | xfs_buf_log_item_t *bip; | |
76 | ||
77 | if (flags == 0) | |
0cadda1c | 78 | flags = XBF_LOCK | XBF_MAPPED; |
1da177e4 LT |
79 | |
80 | /* | |
81 | * Default to a normal get_buf() call if the tp is NULL. | |
82 | */ | |
6ad112bf | 83 | if (tp == NULL) |
0cadda1c CH |
84 | return xfs_buf_get(target_dev, blkno, len, |
85 | flags | XBF_DONT_BLOCK); | |
1da177e4 LT |
86 | |
87 | /* | |
88 | * If we find the buffer in the cache with this transaction | |
89 | * pointer in its b_fsprivate2 field, then we know we already | |
90 | * have it locked. In this case we just increment the lock | |
91 | * recursion count and return the buffer to the caller. | |
92 | */ | |
93 | if (tp->t_items.lic_next == NULL) { | |
94 | bp = xfs_trans_buf_item_match(tp, target_dev, blkno, len); | |
95 | } else { | |
96 | bp = xfs_trans_buf_item_match_all(tp, target_dev, blkno, len); | |
97 | } | |
98 | if (bp != NULL) { | |
99 | ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); | |
0b1b213f | 100 | if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) |
1da177e4 | 101 | XFS_BUF_SUPER_STALE(bp); |
0b1b213f | 102 | |
1da177e4 LT |
103 | /* |
104 | * If the buffer is stale then it was binval'ed | |
105 | * since last read. This doesn't matter since the | |
106 | * caller isn't allowed to use the data anyway. | |
107 | */ | |
0b1b213f | 108 | else if (XFS_BUF_ISSTALE(bp)) |
1da177e4 | 109 | ASSERT(!XFS_BUF_ISDELAYWRITE(bp)); |
0b1b213f | 110 | |
1da177e4 LT |
111 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); |
112 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
113 | ASSERT(bip != NULL); | |
114 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
115 | bip->bli_recur++; | |
0b1b213f | 116 | trace_xfs_trans_get_buf_recur(bip); |
1da177e4 LT |
117 | return (bp); |
118 | } | |
119 | ||
120 | /* | |
0cadda1c CH |
121 | * We always specify the XBF_DONT_BLOCK flag within a transaction |
122 | * so that get_buf does not try to push out a delayed write buffer | |
1da177e4 LT |
123 | * which might cause another transaction to take place (if the |
124 | * buffer was delayed alloc). Such recursive transactions can | |
125 | * easily deadlock with our current transaction as well as cause | |
126 | * us to run out of stack space. | |
127 | */ | |
0cadda1c | 128 | bp = xfs_buf_get(target_dev, blkno, len, flags | XBF_DONT_BLOCK); |
1da177e4 LT |
129 | if (bp == NULL) { |
130 | return NULL; | |
131 | } | |
132 | ||
133 | ASSERT(!XFS_BUF_GETERROR(bp)); | |
134 | ||
135 | /* | |
136 | * The xfs_buf_log_item pointer is stored in b_fsprivate. If | |
137 | * it doesn't have one yet, then allocate one and initialize it. | |
138 | * The checks to see if one is there are in xfs_buf_item_init(). | |
139 | */ | |
140 | xfs_buf_item_init(bp, tp->t_mountp); | |
141 | ||
142 | /* | |
143 | * Set the recursion count for the buffer within this transaction | |
144 | * to 0. | |
145 | */ | |
146 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); | |
147 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
148 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); | |
149 | ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); | |
150 | bip->bli_recur = 0; | |
151 | ||
152 | /* | |
153 | * Take a reference for this transaction on the buf item. | |
154 | */ | |
155 | atomic_inc(&bip->bli_refcount); | |
156 | ||
157 | /* | |
158 | * Get a log_item_desc to point at the new item. | |
159 | */ | |
160 | (void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip); | |
161 | ||
162 | /* | |
163 | * Initialize b_fsprivate2 so we can find it with incore_match() | |
164 | * above. | |
165 | */ | |
166 | XFS_BUF_SET_FSPRIVATE2(bp, tp); | |
167 | ||
0b1b213f | 168 | trace_xfs_trans_get_buf(bip); |
1da177e4 LT |
169 | return (bp); |
170 | } | |
171 | ||
172 | /* | |
173 | * Get and lock the superblock buffer of this file system for the | |
174 | * given transaction. | |
175 | * | |
176 | * We don't need to use incore_match() here, because the superblock | |
177 | * buffer is a private buffer which we keep a pointer to in the | |
178 | * mount structure. | |
179 | */ | |
180 | xfs_buf_t * | |
181 | xfs_trans_getsb(xfs_trans_t *tp, | |
182 | struct xfs_mount *mp, | |
183 | int flags) | |
184 | { | |
185 | xfs_buf_t *bp; | |
186 | xfs_buf_log_item_t *bip; | |
187 | ||
188 | /* | |
189 | * Default to just trying to lock the superblock buffer | |
190 | * if tp is NULL. | |
191 | */ | |
192 | if (tp == NULL) { | |
193 | return (xfs_getsb(mp, flags)); | |
194 | } | |
195 | ||
196 | /* | |
197 | * If the superblock buffer already has this transaction | |
198 | * pointer in its b_fsprivate2 field, then we know we already | |
199 | * have it locked. In this case we just increment the lock | |
200 | * recursion count and return the buffer to the caller. | |
201 | */ | |
202 | bp = mp->m_sb_bp; | |
203 | if (XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp) { | |
204 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); | |
205 | ASSERT(bip != NULL); | |
206 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
207 | bip->bli_recur++; | |
0b1b213f | 208 | trace_xfs_trans_getsb_recur(bip); |
1da177e4 LT |
209 | return (bp); |
210 | } | |
211 | ||
212 | bp = xfs_getsb(mp, flags); | |
213 | if (bp == NULL) { | |
214 | return NULL; | |
215 | } | |
216 | ||
217 | /* | |
218 | * The xfs_buf_log_item pointer is stored in b_fsprivate. If | |
219 | * it doesn't have one yet, then allocate one and initialize it. | |
220 | * The checks to see if one is there are in xfs_buf_item_init(). | |
221 | */ | |
222 | xfs_buf_item_init(bp, mp); | |
223 | ||
224 | /* | |
225 | * Set the recursion count for the buffer within this transaction | |
226 | * to 0. | |
227 | */ | |
228 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); | |
229 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
230 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); | |
231 | ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); | |
232 | bip->bli_recur = 0; | |
233 | ||
234 | /* | |
235 | * Take a reference for this transaction on the buf item. | |
236 | */ | |
237 | atomic_inc(&bip->bli_refcount); | |
238 | ||
239 | /* | |
240 | * Get a log_item_desc to point at the new item. | |
241 | */ | |
242 | (void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip); | |
243 | ||
244 | /* | |
245 | * Initialize b_fsprivate2 so we can find it with incore_match() | |
246 | * above. | |
247 | */ | |
248 | XFS_BUF_SET_FSPRIVATE2(bp, tp); | |
249 | ||
0b1b213f | 250 | trace_xfs_trans_getsb(bip); |
1da177e4 LT |
251 | return (bp); |
252 | } | |
253 | ||
254 | #ifdef DEBUG | |
255 | xfs_buftarg_t *xfs_error_target; | |
256 | int xfs_do_error; | |
257 | int xfs_req_num; | |
258 | int xfs_error_mod = 33; | |
259 | #endif | |
260 | ||
261 | /* | |
262 | * Get and lock the buffer for the caller if it is not already | |
263 | * locked within the given transaction. If it has not yet been | |
264 | * read in, read it from disk. If it is already locked | |
265 | * within the transaction and already read in, just increment its | |
266 | * lock recursion count and return a pointer to it. | |
267 | * | |
268 | * Use the fast path function xfs_trans_buf_item_match() or the buffer | |
269 | * cache routine incore_match() to find the buffer | |
270 | * if it is already owned by this transaction. | |
271 | * | |
272 | * If we don't already own the buffer, use read_buf() to get it. | |
273 | * If it doesn't yet have an associated xfs_buf_log_item structure, | |
274 | * then allocate one and add the item to this transaction. | |
275 | * | |
276 | * If the transaction pointer is NULL, make this just a normal | |
277 | * read_buf() call. | |
278 | */ | |
279 | int | |
280 | xfs_trans_read_buf( | |
281 | xfs_mount_t *mp, | |
282 | xfs_trans_t *tp, | |
283 | xfs_buftarg_t *target, | |
284 | xfs_daddr_t blkno, | |
285 | int len, | |
286 | uint flags, | |
287 | xfs_buf_t **bpp) | |
288 | { | |
289 | xfs_buf_t *bp; | |
290 | xfs_buf_log_item_t *bip; | |
291 | int error; | |
292 | ||
293 | if (flags == 0) | |
0cadda1c | 294 | flags = XBF_LOCK | XBF_MAPPED; |
1da177e4 LT |
295 | |
296 | /* | |
297 | * Default to a normal get_buf() call if the tp is NULL. | |
298 | */ | |
299 | if (tp == NULL) { | |
0cadda1c | 300 | bp = xfs_buf_read(target, blkno, len, flags | XBF_DONT_BLOCK); |
1da177e4 | 301 | if (!bp) |
0cadda1c | 302 | return (flags & XBF_TRYLOCK) ? |
a3f74ffb | 303 | EAGAIN : XFS_ERROR(ENOMEM); |
1da177e4 | 304 | |
a0f7bfd3 | 305 | if (XFS_BUF_GETERROR(bp) != 0) { |
1da177e4 LT |
306 | xfs_ioerror_alert("xfs_trans_read_buf", mp, |
307 | bp, blkno); | |
308 | error = XFS_BUF_GETERROR(bp); | |
309 | xfs_buf_relse(bp); | |
310 | return error; | |
311 | } | |
312 | #ifdef DEBUG | |
a0f7bfd3 | 313 | if (xfs_do_error) { |
1da177e4 LT |
314 | if (xfs_error_target == target) { |
315 | if (((xfs_req_num++) % xfs_error_mod) == 0) { | |
316 | xfs_buf_relse(bp); | |
b6574520 | 317 | cmn_err(CE_DEBUG, "Returning error!\n"); |
1da177e4 LT |
318 | return XFS_ERROR(EIO); |
319 | } | |
320 | } | |
321 | } | |
322 | #endif | |
323 | if (XFS_FORCED_SHUTDOWN(mp)) | |
324 | goto shutdown_abort; | |
325 | *bpp = bp; | |
326 | return 0; | |
327 | } | |
328 | ||
329 | /* | |
330 | * If we find the buffer in the cache with this transaction | |
331 | * pointer in its b_fsprivate2 field, then we know we already | |
332 | * have it locked. If it is already read in we just increment | |
333 | * the lock recursion count and return the buffer to the caller. | |
334 | * If the buffer is not yet read in, then we read it in, increment | |
335 | * the lock recursion count, and return it to the caller. | |
336 | */ | |
337 | if (tp->t_items.lic_next == NULL) { | |
338 | bp = xfs_trans_buf_item_match(tp, target, blkno, len); | |
339 | } else { | |
340 | bp = xfs_trans_buf_item_match_all(tp, target, blkno, len); | |
341 | } | |
342 | if (bp != NULL) { | |
343 | ASSERT(XFS_BUF_VALUSEMA(bp) <= 0); | |
344 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
345 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
346 | ASSERT((XFS_BUF_ISERROR(bp)) == 0); | |
347 | if (!(XFS_BUF_ISDONE(bp))) { | |
0b1b213f | 348 | trace_xfs_trans_read_buf_io(bp, _RET_IP_); |
1da177e4 LT |
349 | ASSERT(!XFS_BUF_ISASYNC(bp)); |
350 | XFS_BUF_READ(bp); | |
351 | xfsbdstrat(tp->t_mountp, bp); | |
d64e31a2 DC |
352 | error = xfs_iowait(bp); |
353 | if (error) { | |
1da177e4 LT |
354 | xfs_ioerror_alert("xfs_trans_read_buf", mp, |
355 | bp, blkno); | |
1da177e4 LT |
356 | xfs_buf_relse(bp); |
357 | /* | |
d64e31a2 DC |
358 | * We can gracefully recover from most read |
359 | * errors. Ones we can't are those that happen | |
360 | * after the transaction's already dirty. | |
1da177e4 LT |
361 | */ |
362 | if (tp->t_flags & XFS_TRANS_DIRTY) | |
363 | xfs_force_shutdown(tp->t_mountp, | |
7d04a335 | 364 | SHUTDOWN_META_IO_ERROR); |
1da177e4 LT |
365 | return error; |
366 | } | |
367 | } | |
368 | /* | |
369 | * We never locked this buf ourselves, so we shouldn't | |
370 | * brelse it either. Just get out. | |
371 | */ | |
372 | if (XFS_FORCED_SHUTDOWN(mp)) { | |
0b1b213f | 373 | trace_xfs_trans_read_buf_shut(bp, _RET_IP_); |
1da177e4 LT |
374 | *bpp = NULL; |
375 | return XFS_ERROR(EIO); | |
376 | } | |
377 | ||
378 | ||
379 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); | |
380 | bip->bli_recur++; | |
381 | ||
382 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
0b1b213f | 383 | trace_xfs_trans_read_buf_recur(bip); |
1da177e4 LT |
384 | *bpp = bp; |
385 | return 0; | |
386 | } | |
387 | ||
388 | /* | |
0cadda1c CH |
389 | * We always specify the XBF_DONT_BLOCK flag within a transaction |
390 | * so that get_buf does not try to push out a delayed write buffer | |
1da177e4 LT |
391 | * which might cause another transaction to take place (if the |
392 | * buffer was delayed alloc). Such recursive transactions can | |
393 | * easily deadlock with our current transaction as well as cause | |
394 | * us to run out of stack space. | |
395 | */ | |
0cadda1c | 396 | bp = xfs_buf_read(target, blkno, len, flags | XBF_DONT_BLOCK); |
1da177e4 LT |
397 | if (bp == NULL) { |
398 | *bpp = NULL; | |
399 | return 0; | |
400 | } | |
401 | if (XFS_BUF_GETERROR(bp) != 0) { | |
402 | XFS_BUF_SUPER_STALE(bp); | |
1da177e4 LT |
403 | error = XFS_BUF_GETERROR(bp); |
404 | ||
405 | xfs_ioerror_alert("xfs_trans_read_buf", mp, | |
406 | bp, blkno); | |
407 | if (tp->t_flags & XFS_TRANS_DIRTY) | |
7d04a335 | 408 | xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR); |
1da177e4 LT |
409 | xfs_buf_relse(bp); |
410 | return error; | |
411 | } | |
412 | #ifdef DEBUG | |
413 | if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) { | |
414 | if (xfs_error_target == target) { | |
415 | if (((xfs_req_num++) % xfs_error_mod) == 0) { | |
416 | xfs_force_shutdown(tp->t_mountp, | |
7d04a335 | 417 | SHUTDOWN_META_IO_ERROR); |
1da177e4 | 418 | xfs_buf_relse(bp); |
b6574520 | 419 | cmn_err(CE_DEBUG, "Returning trans error!\n"); |
1da177e4 LT |
420 | return XFS_ERROR(EIO); |
421 | } | |
422 | } | |
423 | } | |
424 | #endif | |
425 | if (XFS_FORCED_SHUTDOWN(mp)) | |
426 | goto shutdown_abort; | |
427 | ||
428 | /* | |
429 | * The xfs_buf_log_item pointer is stored in b_fsprivate. If | |
430 | * it doesn't have one yet, then allocate one and initialize it. | |
431 | * The checks to see if one is there are in xfs_buf_item_init(). | |
432 | */ | |
433 | xfs_buf_item_init(bp, tp->t_mountp); | |
434 | ||
435 | /* | |
436 | * Set the recursion count for the buffer within this transaction | |
437 | * to 0. | |
438 | */ | |
439 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t*); | |
440 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
441 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); | |
442 | ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); | |
443 | bip->bli_recur = 0; | |
444 | ||
445 | /* | |
446 | * Take a reference for this transaction on the buf item. | |
447 | */ | |
448 | atomic_inc(&bip->bli_refcount); | |
449 | ||
450 | /* | |
451 | * Get a log_item_desc to point at the new item. | |
452 | */ | |
453 | (void) xfs_trans_add_item(tp, (xfs_log_item_t*)bip); | |
454 | ||
455 | /* | |
456 | * Initialize b_fsprivate2 so we can find it with incore_match() | |
457 | * above. | |
458 | */ | |
459 | XFS_BUF_SET_FSPRIVATE2(bp, tp); | |
460 | ||
0b1b213f | 461 | trace_xfs_trans_read_buf(bip); |
1da177e4 LT |
462 | *bpp = bp; |
463 | return 0; | |
464 | ||
465 | shutdown_abort: | |
466 | /* | |
467 | * the theory here is that buffer is good but we're | |
468 | * bailing out because the filesystem is being forcibly | |
469 | * shut down. So we should leave the b_flags alone since | |
470 | * the buffer's not staled and just get out. | |
471 | */ | |
472 | #if defined(DEBUG) | |
473 | if (XFS_BUF_ISSTALE(bp) && XFS_BUF_ISDELAYWRITE(bp)) | |
474 | cmn_err(CE_NOTE, "about to pop assert, bp == 0x%p", bp); | |
475 | #endif | |
0cadda1c CH |
476 | ASSERT((XFS_BUF_BFLAGS(bp) & (XBF_STALE|XBF_DELWRI)) != |
477 | (XBF_STALE|XBF_DELWRI)); | |
1da177e4 | 478 | |
0b1b213f | 479 | trace_xfs_trans_read_buf_shut(bp, _RET_IP_); |
1da177e4 LT |
480 | xfs_buf_relse(bp); |
481 | *bpp = NULL; | |
482 | return XFS_ERROR(EIO); | |
483 | } | |
484 | ||
485 | ||
486 | /* | |
487 | * Release the buffer bp which was previously acquired with one of the | |
488 | * xfs_trans_... buffer allocation routines if the buffer has not | |
489 | * been modified within this transaction. If the buffer is modified | |
490 | * within this transaction, do decrement the recursion count but do | |
491 | * not release the buffer even if the count goes to 0. If the buffer is not | |
492 | * modified within the transaction, decrement the recursion count and | |
493 | * release the buffer if the recursion count goes to 0. | |
494 | * | |
495 | * If the buffer is to be released and it was not modified before | |
496 | * this transaction began, then free the buf_log_item associated with it. | |
497 | * | |
498 | * If the transaction pointer is NULL, make this just a normal | |
499 | * brelse() call. | |
500 | */ | |
501 | void | |
502 | xfs_trans_brelse(xfs_trans_t *tp, | |
503 | xfs_buf_t *bp) | |
504 | { | |
505 | xfs_buf_log_item_t *bip; | |
506 | xfs_log_item_t *lip; | |
507 | xfs_log_item_desc_t *lidp; | |
508 | ||
509 | /* | |
510 | * Default to a normal brelse() call if the tp is NULL. | |
511 | */ | |
512 | if (tp == NULL) { | |
513 | ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL); | |
514 | /* | |
515 | * If there's a buf log item attached to the buffer, | |
516 | * then let the AIL know that the buffer is being | |
517 | * unlocked. | |
518 | */ | |
519 | if (XFS_BUF_FSPRIVATE(bp, void *) != NULL) { | |
520 | lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *); | |
521 | if (lip->li_type == XFS_LI_BUF) { | |
522 | bip = XFS_BUF_FSPRIVATE(bp,xfs_buf_log_item_t*); | |
783a2f65 DC |
523 | xfs_trans_unlocked_item(bip->bli_item.li_ailp, |
524 | lip); | |
1da177e4 LT |
525 | } |
526 | } | |
527 | xfs_buf_relse(bp); | |
528 | return; | |
529 | } | |
530 | ||
531 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
532 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
533 | ASSERT(bip->bli_item.li_type == XFS_LI_BUF); | |
534 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
535 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); | |
536 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
537 | ||
538 | /* | |
539 | * Find the item descriptor pointing to this buffer's | |
540 | * log item. It must be there. | |
541 | */ | |
542 | lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip); | |
543 | ASSERT(lidp != NULL); | |
544 | ||
0b1b213f CH |
545 | trace_xfs_trans_brelse(bip); |
546 | ||
1da177e4 LT |
547 | /* |
548 | * If the release is just for a recursive lock, | |
549 | * then decrement the count and return. | |
550 | */ | |
551 | if (bip->bli_recur > 0) { | |
552 | bip->bli_recur--; | |
1da177e4 LT |
553 | return; |
554 | } | |
555 | ||
556 | /* | |
557 | * If the buffer is dirty within this transaction, we can't | |
558 | * release it until we commit. | |
559 | */ | |
0b1b213f | 560 | if (lidp->lid_flags & XFS_LID_DIRTY) |
1da177e4 | 561 | return; |
1da177e4 LT |
562 | |
563 | /* | |
564 | * If the buffer has been invalidated, then we can't release | |
565 | * it until the transaction commits to disk unless it is re-dirtied | |
566 | * as part of this transaction. This prevents us from pulling | |
567 | * the item from the AIL before we should. | |
568 | */ | |
0b1b213f | 569 | if (bip->bli_flags & XFS_BLI_STALE) |
1da177e4 | 570 | return; |
1da177e4 LT |
571 | |
572 | ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); | |
1da177e4 LT |
573 | |
574 | /* | |
575 | * Free up the log item descriptor tracking the released item. | |
576 | */ | |
577 | xfs_trans_free_item(tp, lidp); | |
578 | ||
579 | /* | |
580 | * Clear the hold flag in the buf log item if it is set. | |
581 | * We wouldn't want the next user of the buffer to | |
582 | * get confused. | |
583 | */ | |
584 | if (bip->bli_flags & XFS_BLI_HOLD) { | |
585 | bip->bli_flags &= ~XFS_BLI_HOLD; | |
586 | } | |
587 | ||
588 | /* | |
589 | * Drop our reference to the buf log item. | |
590 | */ | |
591 | atomic_dec(&bip->bli_refcount); | |
592 | ||
593 | /* | |
594 | * If the buf item is not tracking data in the log, then | |
595 | * we must free it before releasing the buffer back to the | |
596 | * free pool. Before releasing the buffer to the free pool, | |
597 | * clear the transaction pointer in b_fsprivate2 to dissolve | |
598 | * its relation to this transaction. | |
599 | */ | |
600 | if (!xfs_buf_item_dirty(bip)) { | |
601 | /*** | |
602 | ASSERT(bp->b_pincount == 0); | |
603 | ***/ | |
604 | ASSERT(atomic_read(&bip->bli_refcount) == 0); | |
605 | ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL)); | |
606 | ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF)); | |
607 | xfs_buf_item_relse(bp); | |
608 | bip = NULL; | |
609 | } | |
610 | XFS_BUF_SET_FSPRIVATE2(bp, NULL); | |
611 | ||
612 | /* | |
613 | * If we've still got a buf log item on the buffer, then | |
614 | * tell the AIL that the buffer is being unlocked. | |
615 | */ | |
616 | if (bip != NULL) { | |
783a2f65 | 617 | xfs_trans_unlocked_item(bip->bli_item.li_ailp, |
1da177e4 LT |
618 | (xfs_log_item_t*)bip); |
619 | } | |
620 | ||
621 | xfs_buf_relse(bp); | |
622 | return; | |
623 | } | |
624 | ||
625 | /* | |
626 | * Add the locked buffer to the transaction. | |
627 | * The buffer must be locked, and it cannot be associated with any | |
628 | * transaction. | |
629 | * | |
630 | * If the buffer does not yet have a buf log item associated with it, | |
631 | * then allocate one for it. Then add the buf item to the transaction. | |
632 | */ | |
633 | void | |
634 | xfs_trans_bjoin(xfs_trans_t *tp, | |
635 | xfs_buf_t *bp) | |
636 | { | |
637 | xfs_buf_log_item_t *bip; | |
638 | ||
639 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
640 | ASSERT(XFS_BUF_FSPRIVATE2(bp, void *) == NULL); | |
641 | ||
642 | /* | |
643 | * The xfs_buf_log_item pointer is stored in b_fsprivate. If | |
644 | * it doesn't have one yet, then allocate one and initialize it. | |
645 | * The checks to see if one is there are in xfs_buf_item_init(). | |
646 | */ | |
647 | xfs_buf_item_init(bp, tp->t_mountp); | |
648 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
649 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
650 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); | |
651 | ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED)); | |
652 | ||
653 | /* | |
654 | * Take a reference for this transaction on the buf item. | |
655 | */ | |
656 | atomic_inc(&bip->bli_refcount); | |
657 | ||
658 | /* | |
659 | * Get a log_item_desc to point at the new item. | |
660 | */ | |
661 | (void) xfs_trans_add_item(tp, (xfs_log_item_t *)bip); | |
662 | ||
663 | /* | |
664 | * Initialize b_fsprivate2 so we can find it with incore_match() | |
665 | * in xfs_trans_get_buf() and friends above. | |
666 | */ | |
667 | XFS_BUF_SET_FSPRIVATE2(bp, tp); | |
668 | ||
0b1b213f | 669 | trace_xfs_trans_bjoin(bip); |
1da177e4 LT |
670 | } |
671 | ||
672 | /* | |
673 | * Mark the buffer as not needing to be unlocked when the buf item's | |
674 | * IOP_UNLOCK() routine is called. The buffer must already be locked | |
675 | * and associated with the given transaction. | |
676 | */ | |
677 | /* ARGSUSED */ | |
678 | void | |
679 | xfs_trans_bhold(xfs_trans_t *tp, | |
680 | xfs_buf_t *bp) | |
681 | { | |
682 | xfs_buf_log_item_t *bip; | |
683 | ||
684 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
685 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
686 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
687 | ||
688 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
689 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
690 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); | |
691 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
692 | bip->bli_flags |= XFS_BLI_HOLD; | |
0b1b213f | 693 | trace_xfs_trans_bhold(bip); |
1da177e4 LT |
694 | } |
695 | ||
efa092f3 TS |
696 | /* |
697 | * Cancel the previous buffer hold request made on this buffer | |
698 | * for this transaction. | |
699 | */ | |
700 | void | |
701 | xfs_trans_bhold_release(xfs_trans_t *tp, | |
702 | xfs_buf_t *bp) | |
703 | { | |
704 | xfs_buf_log_item_t *bip; | |
705 | ||
706 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
707 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
708 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
709 | ||
710 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
711 | ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); | |
712 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_CANCEL)); | |
713 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
714 | ASSERT(bip->bli_flags & XFS_BLI_HOLD); | |
715 | bip->bli_flags &= ~XFS_BLI_HOLD; | |
0b1b213f CH |
716 | |
717 | trace_xfs_trans_bhold_release(bip); | |
efa092f3 TS |
718 | } |
719 | ||
1da177e4 LT |
720 | /* |
721 | * This is called to mark bytes first through last inclusive of the given | |
722 | * buffer as needing to be logged when the transaction is committed. | |
723 | * The buffer must already be associated with the given transaction. | |
724 | * | |
725 | * First and last are numbers relative to the beginning of this buffer, | |
726 | * so the first byte in the buffer is numbered 0 regardless of the | |
727 | * value of b_blkno. | |
728 | */ | |
729 | void | |
730 | xfs_trans_log_buf(xfs_trans_t *tp, | |
731 | xfs_buf_t *bp, | |
732 | uint first, | |
733 | uint last) | |
734 | { | |
735 | xfs_buf_log_item_t *bip; | |
736 | xfs_log_item_desc_t *lidp; | |
737 | ||
738 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
739 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
740 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
741 | ASSERT((first <= last) && (last < XFS_BUF_COUNT(bp))); | |
742 | ASSERT((XFS_BUF_IODONE_FUNC(bp) == NULL) || | |
743 | (XFS_BUF_IODONE_FUNC(bp) == xfs_buf_iodone_callbacks)); | |
744 | ||
745 | /* | |
746 | * Mark the buffer as needing to be written out eventually, | |
747 | * and set its iodone function to remove the buffer's buf log | |
748 | * item from the AIL and free it when the buffer is flushed | |
749 | * to disk. See xfs_buf_attach_iodone() for more details | |
750 | * on li_cb and xfs_buf_iodone_callbacks(). | |
751 | * If we end up aborting this transaction, we trap this buffer | |
752 | * inside the b_bdstrat callback so that this won't get written to | |
753 | * disk. | |
754 | */ | |
755 | XFS_BUF_DELAYWRITE(bp); | |
756 | XFS_BUF_DONE(bp); | |
757 | ||
758 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
759 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
760 | XFS_BUF_SET_IODONE_FUNC(bp, xfs_buf_iodone_callbacks); | |
761 | bip->bli_item.li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*))xfs_buf_iodone; | |
762 | ||
0b1b213f CH |
763 | trace_xfs_trans_log_buf(bip); |
764 | ||
1da177e4 LT |
765 | /* |
766 | * If we invalidated the buffer within this transaction, then | |
767 | * cancel the invalidation now that we're dirtying the buffer | |
768 | * again. There are no races with the code in xfs_buf_item_unpin(), | |
769 | * because we have a reference to the buffer this entire time. | |
770 | */ | |
771 | if (bip->bli_flags & XFS_BLI_STALE) { | |
1da177e4 LT |
772 | bip->bli_flags &= ~XFS_BLI_STALE; |
773 | ASSERT(XFS_BUF_ISSTALE(bp)); | |
774 | XFS_BUF_UNSTALE(bp); | |
775 | bip->bli_format.blf_flags &= ~XFS_BLI_CANCEL; | |
776 | } | |
777 | ||
778 | lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip); | |
779 | ASSERT(lidp != NULL); | |
780 | ||
781 | tp->t_flags |= XFS_TRANS_DIRTY; | |
782 | lidp->lid_flags |= XFS_LID_DIRTY; | |
783 | lidp->lid_flags &= ~XFS_LID_BUF_STALE; | |
784 | bip->bli_flags |= XFS_BLI_LOGGED; | |
785 | xfs_buf_item_log(bip, first, last); | |
1da177e4 LT |
786 | } |
787 | ||
788 | ||
789 | /* | |
790 | * This called to invalidate a buffer that is being used within | |
791 | * a transaction. Typically this is because the blocks in the | |
792 | * buffer are being freed, so we need to prevent it from being | |
793 | * written out when we're done. Allowing it to be written again | |
794 | * might overwrite data in the free blocks if they are reallocated | |
795 | * to a file. | |
796 | * | |
797 | * We prevent the buffer from being written out by clearing the | |
798 | * B_DELWRI flag. We can't always | |
799 | * get rid of the buf log item at this point, though, because | |
800 | * the buffer may still be pinned by another transaction. If that | |
801 | * is the case, then we'll wait until the buffer is committed to | |
802 | * disk for the last time (we can tell by the ref count) and | |
803 | * free it in xfs_buf_item_unpin(). Until it is cleaned up we | |
804 | * will keep the buffer locked so that the buffer and buf log item | |
805 | * are not reused. | |
806 | */ | |
807 | void | |
808 | xfs_trans_binval( | |
809 | xfs_trans_t *tp, | |
810 | xfs_buf_t *bp) | |
811 | { | |
812 | xfs_log_item_desc_t *lidp; | |
813 | xfs_buf_log_item_t *bip; | |
814 | ||
815 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
816 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
817 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
818 | ||
819 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
820 | lidp = xfs_trans_find_item(tp, (xfs_log_item_t*)bip); | |
821 | ASSERT(lidp != NULL); | |
822 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
823 | ||
0b1b213f CH |
824 | trace_xfs_trans_binval(bip); |
825 | ||
1da177e4 LT |
826 | if (bip->bli_flags & XFS_BLI_STALE) { |
827 | /* | |
828 | * If the buffer is already invalidated, then | |
829 | * just return. | |
830 | */ | |
831 | ASSERT(!(XFS_BUF_ISDELAYWRITE(bp))); | |
832 | ASSERT(XFS_BUF_ISSTALE(bp)); | |
833 | ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY))); | |
834 | ASSERT(!(bip->bli_format.blf_flags & XFS_BLI_INODE_BUF)); | |
835 | ASSERT(bip->bli_format.blf_flags & XFS_BLI_CANCEL); | |
836 | ASSERT(lidp->lid_flags & XFS_LID_DIRTY); | |
837 | ASSERT(tp->t_flags & XFS_TRANS_DIRTY); | |
1da177e4 LT |
838 | return; |
839 | } | |
840 | ||
841 | /* | |
842 | * Clear the dirty bit in the buffer and set the STALE flag | |
843 | * in the buf log item. The STALE flag will be used in | |
844 | * xfs_buf_item_unpin() to determine if it should clean up | |
845 | * when the last reference to the buf item is given up. | |
846 | * We set the XFS_BLI_CANCEL flag in the buf log format structure | |
847 | * and log the buf item. This will be used at recovery time | |
848 | * to determine that copies of the buffer in the log before | |
849 | * this should not be replayed. | |
850 | * We mark the item descriptor and the transaction dirty so | |
851 | * that we'll hold the buffer until after the commit. | |
852 | * | |
853 | * Since we're invalidating the buffer, we also clear the state | |
854 | * about which parts of the buffer have been logged. We also | |
855 | * clear the flag indicating that this is an inode buffer since | |
856 | * the data in the buffer will no longer be valid. | |
857 | * | |
858 | * We set the stale bit in the buffer as well since we're getting | |
859 | * rid of it. | |
860 | */ | |
861 | XFS_BUF_UNDELAYWRITE(bp); | |
862 | XFS_BUF_STALE(bp); | |
863 | bip->bli_flags |= XFS_BLI_STALE; | |
864 | bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_DIRTY); | |
865 | bip->bli_format.blf_flags &= ~XFS_BLI_INODE_BUF; | |
866 | bip->bli_format.blf_flags |= XFS_BLI_CANCEL; | |
867 | memset((char *)(bip->bli_format.blf_data_map), 0, | |
868 | (bip->bli_format.blf_map_size * sizeof(uint))); | |
869 | lidp->lid_flags |= XFS_LID_DIRTY|XFS_LID_BUF_STALE; | |
870 | tp->t_flags |= XFS_TRANS_DIRTY; | |
1da177e4 LT |
871 | } |
872 | ||
873 | /* | |
874 | * This call is used to indicate that the buffer contains on-disk | |
875 | * inodes which must be handled specially during recovery. They | |
876 | * require special handling because only the di_next_unlinked from | |
877 | * the inodes in the buffer should be recovered. The rest of the | |
878 | * data in the buffer is logged via the inodes themselves. | |
879 | * | |
880 | * All we do is set the XFS_BLI_INODE_BUF flag in the buffer's log | |
881 | * format structure so that we'll know what to do at recovery time. | |
882 | */ | |
883 | /* ARGSUSED */ | |
884 | void | |
885 | xfs_trans_inode_buf( | |
886 | xfs_trans_t *tp, | |
887 | xfs_buf_t *bp) | |
888 | { | |
889 | xfs_buf_log_item_t *bip; | |
890 | ||
891 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
892 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
893 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
894 | ||
895 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
896 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
897 | ||
898 | bip->bli_format.blf_flags |= XFS_BLI_INODE_BUF; | |
899 | } | |
900 | ||
901 | /* | |
902 | * This call is used to indicate that the buffer is going to | |
903 | * be staled and was an inode buffer. This means it gets | |
904 | * special processing during unpin - where any inodes | |
905 | * associated with the buffer should be removed from ail. | |
906 | * There is also special processing during recovery, | |
907 | * any replay of the inodes in the buffer needs to be | |
908 | * prevented as the buffer may have been reused. | |
909 | */ | |
910 | void | |
911 | xfs_trans_stale_inode_buf( | |
912 | xfs_trans_t *tp, | |
913 | xfs_buf_t *bp) | |
914 | { | |
915 | xfs_buf_log_item_t *bip; | |
916 | ||
917 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
918 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
919 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
920 | ||
921 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
922 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
923 | ||
924 | bip->bli_flags |= XFS_BLI_STALE_INODE; | |
925 | bip->bli_item.li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) | |
926 | xfs_buf_iodone; | |
927 | } | |
928 | ||
929 | ||
930 | ||
931 | /* | |
932 | * Mark the buffer as being one which contains newly allocated | |
933 | * inodes. We need to make sure that even if this buffer is | |
934 | * relogged as an 'inode buf' we still recover all of the inode | |
935 | * images in the face of a crash. This works in coordination with | |
936 | * xfs_buf_item_committed() to ensure that the buffer remains in the | |
937 | * AIL at its original location even after it has been relogged. | |
938 | */ | |
939 | /* ARGSUSED */ | |
940 | void | |
941 | xfs_trans_inode_alloc_buf( | |
942 | xfs_trans_t *tp, | |
943 | xfs_buf_t *bp) | |
944 | { | |
945 | xfs_buf_log_item_t *bip; | |
946 | ||
947 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
948 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
949 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
950 | ||
951 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
952 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
953 | ||
954 | bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF; | |
955 | } | |
956 | ||
957 | ||
958 | /* | |
959 | * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of | |
960 | * dquots. However, unlike in inode buffer recovery, dquot buffers get | |
961 | * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag). | |
962 | * The only thing that makes dquot buffers different from regular | |
963 | * buffers is that we must not replay dquot bufs when recovering | |
964 | * if a _corresponding_ quotaoff has happened. We also have to distinguish | |
965 | * between usr dquot bufs and grp dquot bufs, because usr and grp quotas | |
966 | * can be turned off independently. | |
967 | */ | |
968 | /* ARGSUSED */ | |
969 | void | |
970 | xfs_trans_dquot_buf( | |
971 | xfs_trans_t *tp, | |
972 | xfs_buf_t *bp, | |
973 | uint type) | |
974 | { | |
975 | xfs_buf_log_item_t *bip; | |
976 | ||
977 | ASSERT(XFS_BUF_ISBUSY(bp)); | |
978 | ASSERT(XFS_BUF_FSPRIVATE2(bp, xfs_trans_t *) == tp); | |
979 | ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL); | |
980 | ASSERT(type == XFS_BLI_UDQUOT_BUF || | |
c8ad20ff | 981 | type == XFS_BLI_PDQUOT_BUF || |
1da177e4 LT |
982 | type == XFS_BLI_GDQUOT_BUF); |
983 | ||
984 | bip = XFS_BUF_FSPRIVATE(bp, xfs_buf_log_item_t *); | |
985 | ASSERT(atomic_read(&bip->bli_refcount) > 0); | |
986 | ||
987 | bip->bli_format.blf_flags |= type; | |
988 | } | |
989 | ||
990 | /* | |
991 | * Check to see if a buffer matching the given parameters is already | |
992 | * a part of the given transaction. Only check the first, embedded | |
993 | * chunk, since we don't want to spend all day scanning large transactions. | |
994 | */ | |
995 | STATIC xfs_buf_t * | |
996 | xfs_trans_buf_item_match( | |
997 | xfs_trans_t *tp, | |
998 | xfs_buftarg_t *target, | |
999 | xfs_daddr_t blkno, | |
1000 | int len) | |
1001 | { | |
1002 | xfs_log_item_chunk_t *licp; | |
1003 | xfs_log_item_desc_t *lidp; | |
1004 | xfs_buf_log_item_t *blip; | |
1005 | xfs_buf_t *bp; | |
1006 | int i; | |
1007 | ||
1008 | bp = NULL; | |
1009 | len = BBTOB(len); | |
1010 | licp = &tp->t_items; | |
39dab9d7 | 1011 | if (!xfs_lic_are_all_free(licp)) { |
1da177e4 LT |
1012 | for (i = 0; i < licp->lic_unused; i++) { |
1013 | /* | |
1014 | * Skip unoccupied slots. | |
1015 | */ | |
39dab9d7 | 1016 | if (xfs_lic_isfree(licp, i)) { |
1da177e4 LT |
1017 | continue; |
1018 | } | |
1019 | ||
39dab9d7 | 1020 | lidp = xfs_lic_slot(licp, i); |
1da177e4 LT |
1021 | blip = (xfs_buf_log_item_t *)lidp->lid_item; |
1022 | if (blip->bli_item.li_type != XFS_LI_BUF) { | |
1023 | continue; | |
1024 | } | |
1025 | ||
1026 | bp = blip->bli_buf; | |
1027 | if ((XFS_BUF_TARGET(bp) == target) && | |
1028 | (XFS_BUF_ADDR(bp) == blkno) && | |
1029 | (XFS_BUF_COUNT(bp) == len)) { | |
1030 | /* | |
1031 | * We found it. Break out and | |
1032 | * return the pointer to the buffer. | |
1033 | */ | |
1034 | break; | |
1035 | } else { | |
1036 | bp = NULL; | |
1037 | } | |
1038 | } | |
1039 | } | |
1040 | return bp; | |
1041 | } | |
1042 | ||
1043 | /* | |
1044 | * Check to see if a buffer matching the given parameters is already | |
1045 | * a part of the given transaction. Check all the chunks, we | |
1046 | * want to be thorough. | |
1047 | */ | |
1048 | STATIC xfs_buf_t * | |
1049 | xfs_trans_buf_item_match_all( | |
1050 | xfs_trans_t *tp, | |
1051 | xfs_buftarg_t *target, | |
1052 | xfs_daddr_t blkno, | |
1053 | int len) | |
1054 | { | |
1055 | xfs_log_item_chunk_t *licp; | |
1056 | xfs_log_item_desc_t *lidp; | |
1057 | xfs_buf_log_item_t *blip; | |
1058 | xfs_buf_t *bp; | |
1059 | int i; | |
1060 | ||
1061 | bp = NULL; | |
1062 | len = BBTOB(len); | |
1063 | for (licp = &tp->t_items; licp != NULL; licp = licp->lic_next) { | |
39dab9d7 | 1064 | if (xfs_lic_are_all_free(licp)) { |
1da177e4 LT |
1065 | ASSERT(licp == &tp->t_items); |
1066 | ASSERT(licp->lic_next == NULL); | |
1067 | return NULL; | |
1068 | } | |
1069 | for (i = 0; i < licp->lic_unused; i++) { | |
1070 | /* | |
1071 | * Skip unoccupied slots. | |
1072 | */ | |
39dab9d7 | 1073 | if (xfs_lic_isfree(licp, i)) { |
1da177e4 LT |
1074 | continue; |
1075 | } | |
1076 | ||
39dab9d7 | 1077 | lidp = xfs_lic_slot(licp, i); |
1da177e4 LT |
1078 | blip = (xfs_buf_log_item_t *)lidp->lid_item; |
1079 | if (blip->bli_item.li_type != XFS_LI_BUF) { | |
1080 | continue; | |
1081 | } | |
1082 | ||
1083 | bp = blip->bli_buf; | |
1084 | if ((XFS_BUF_TARGET(bp) == target) && | |
1085 | (XFS_BUF_ADDR(bp) == blkno) && | |
1086 | (XFS_BUF_COUNT(bp) == len)) { | |
1087 | /* | |
1088 | * We found it. Break out and | |
1089 | * return the pointer to the buffer. | |
1090 | */ | |
1091 | return bp; | |
1092 | } | |
1093 | } | |
1094 | } | |
1095 | return NULL; | |
1096 | } |