]> git.proxmox.com Git - mirror_qemu.git/blame - hw/arm/boot.c
target-arm: Add extended RVBAR support
[mirror_qemu.git] / hw / arm / boot.c
CommitLineData
5fafdf24 1/*
16406950
PB
2 * ARM kernel loader.
3 *
9ee6e8bb 4 * Copyright (c) 2006-2007 CodeSourcery.
16406950
PB
5 * Written by Paul Brook
6 *
8e31bf38 7 * This code is licensed under the GPL.
16406950
PB
8 */
9
412beee6 10#include "config.h"
83c9f4ca 11#include "hw/hw.h"
bd2be150 12#include "hw/arm/arm.h"
9c17d615 13#include "sysemu/sysemu.h"
83c9f4ca
PB
14#include "hw/boards.h"
15#include "hw/loader.h"
ca20cf32 16#include "elf.h"
9c17d615 17#include "sysemu/device_tree.h"
1de7afc9 18#include "qemu/config-file.h"
2198a121 19#include "exec/address-spaces.h"
16406950 20
4d9ebf75
MH
21/* Kernel boot protocol is specified in the kernel docs
22 * Documentation/arm/Booting and Documentation/arm64/booting.txt
23 * They have different preferred image load offsets from system RAM base.
24 */
16406950
PB
25#define KERNEL_ARGS_ADDR 0x100
26#define KERNEL_LOAD_ADDR 0x00010000
4d9ebf75 27#define KERNEL64_LOAD_ADDR 0x00080000
16406950 28
47b1da81
PM
29typedef enum {
30 FIXUP_NONE = 0, /* do nothing */
31 FIXUP_TERMINATOR, /* end of insns */
32 FIXUP_BOARDID, /* overwrite with board ID number */
33 FIXUP_ARGPTR, /* overwrite with pointer to kernel args */
34 FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */
35 FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
36 FIXUP_BOOTREG, /* overwrite with boot register address */
37 FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
38 FIXUP_MAX,
39} FixupType;
40
41typedef struct ARMInsnFixup {
42 uint32_t insn;
43 FixupType fixup;
44} ARMInsnFixup;
45
4d9ebf75
MH
46static const ARMInsnFixup bootloader_aarch64[] = {
47 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
48 { 0xaa1f03e1 }, /* mov x1, xzr */
49 { 0xaa1f03e2 }, /* mov x2, xzr */
50 { 0xaa1f03e3 }, /* mov x3, xzr */
51 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
52 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
53 { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */
54 { 0 }, /* .word @DTB Higher 32-bits */
55 { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */
56 { 0 }, /* .word @Kernel Entry Higher 32-bits */
57 { 0, FIXUP_TERMINATOR }
58};
59
16406950 60/* The worlds second smallest bootloader. Set r0-r2, then jump to kernel. */
47b1da81
PM
61static const ARMInsnFixup bootloader[] = {
62 { 0xe3a00000 }, /* mov r0, #0 */
63 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
64 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
65 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
66 { 0, FIXUP_BOARDID },
67 { 0, FIXUP_ARGPTR },
68 { 0, FIXUP_ENTRYPOINT },
69 { 0, FIXUP_TERMINATOR }
16406950
PB
70};
71
9d5ba9bf
ML
72/* Handling for secondary CPU boot in a multicore system.
73 * Unlike the uniprocessor/primary CPU boot, this is platform
74 * dependent. The default code here is based on the secondary
75 * CPU boot protocol used on realview/vexpress boards, with
76 * some parameterisation to increase its flexibility.
77 * QEMU platform models for which this code is not appropriate
78 * should override write_secondary_boot and secondary_cpu_reset_hook
79 * instead.
80 *
81 * This code enables the interrupt controllers for the secondary
82 * CPUs and then puts all the secondary CPUs into a loop waiting
83 * for an interprocessor interrupt and polling a configurable
84 * location for the kernel secondary CPU entry point.
85 */
bf471f79
PM
86#define DSB_INSN 0xf57ff04f
87#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
88
47b1da81
PM
89static const ARMInsnFixup smpboot[] = {
90 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
91 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
92 { 0xe3a01001 }, /* mov r1, #1 */
93 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
94 { 0xe3a010ff }, /* mov r1, #0xff */
95 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
96 { 0, FIXUP_DSB }, /* dsb */
97 { 0xe320f003 }, /* wfi */
98 { 0xe5901000 }, /* ldr r1, [r0] */
99 { 0xe1110001 }, /* tst r1, r1 */
100 { 0x0afffffb }, /* beq <wfi> */
101 { 0xe12fff11 }, /* bx r1 */
102 { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
103 { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
104 { 0, FIXUP_TERMINATOR }
9ee6e8bb
PB
105};
106
47b1da81
PM
107static void write_bootloader(const char *name, hwaddr addr,
108 const ARMInsnFixup *insns, uint32_t *fixupcontext)
109{
110 /* Fix up the specified bootloader fragment and write it into
111 * guest memory using rom_add_blob_fixed(). fixupcontext is
112 * an array giving the values to write in for the fixup types
113 * which write a value into the code array.
114 */
115 int i, len;
116 uint32_t *code;
117
118 len = 0;
119 while (insns[len].fixup != FIXUP_TERMINATOR) {
120 len++;
121 }
122
123 code = g_new0(uint32_t, len);
124
125 for (i = 0; i < len; i++) {
126 uint32_t insn = insns[i].insn;
127 FixupType fixup = insns[i].fixup;
128
129 switch (fixup) {
130 case FIXUP_NONE:
131 break;
132 case FIXUP_BOARDID:
133 case FIXUP_ARGPTR:
134 case FIXUP_ENTRYPOINT:
135 case FIXUP_GIC_CPU_IF:
136 case FIXUP_BOOTREG:
137 case FIXUP_DSB:
138 insn = fixupcontext[fixup];
139 break;
140 default:
141 abort();
142 }
143 code[i] = tswap32(insn);
144 }
145
146 rom_add_blob_fixed(name, code, len * sizeof(uint32_t), addr);
147
148 g_free(code);
149}
150
9543b0cd 151static void default_write_secondary(ARMCPU *cpu,
9d5ba9bf
ML
152 const struct arm_boot_info *info)
153{
47b1da81
PM
154 uint32_t fixupcontext[FIXUP_MAX];
155
156 fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
157 fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
158 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
159 fixupcontext[FIXUP_DSB] = DSB_INSN;
160 } else {
161 fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
9d5ba9bf 162 }
47b1da81
PM
163
164 write_bootloader("smpboot", info->smp_loader_start,
165 smpboot, fixupcontext);
9d5ba9bf
ML
166}
167
5d309320 168static void default_reset_secondary(ARMCPU *cpu,
9d5ba9bf
ML
169 const struct arm_boot_info *info)
170{
5d309320
AF
171 CPUARMState *env = &cpu->env;
172
2198a121 173 stl_phys_notdirty(&address_space_memory, info->smp_bootreg_addr, 0);
9d5ba9bf
ML
174 env->regs[15] = info->smp_loader_start;
175}
176
83bfffec
PM
177static inline bool have_dtb(const struct arm_boot_info *info)
178{
179 return info->dtb_filename || info->get_dtb;
180}
181
52b43737 182#define WRITE_WORD(p, value) do { \
2198a121 183 stl_phys_notdirty(&address_space_memory, p, value); \
52b43737
PB
184 p += 4; \
185} while (0)
186
761c9eb0 187static void set_kernel_args(const struct arm_boot_info *info)
16406950 188{
761c9eb0 189 int initrd_size = info->initrd_size;
a8170e5e
AK
190 hwaddr base = info->loader_start;
191 hwaddr p;
16406950 192
52b43737 193 p = base + KERNEL_ARGS_ADDR;
16406950 194 /* ATAG_CORE */
52b43737
PB
195 WRITE_WORD(p, 5);
196 WRITE_WORD(p, 0x54410001);
197 WRITE_WORD(p, 1);
198 WRITE_WORD(p, 0x1000);
199 WRITE_WORD(p, 0);
16406950 200 /* ATAG_MEM */
f93eb9ff 201 /* TODO: handle multiple chips on one ATAG list */
52b43737
PB
202 WRITE_WORD(p, 4);
203 WRITE_WORD(p, 0x54410002);
204 WRITE_WORD(p, info->ram_size);
205 WRITE_WORD(p, info->loader_start);
16406950
PB
206 if (initrd_size) {
207 /* ATAG_INITRD2 */
52b43737
PB
208 WRITE_WORD(p, 4);
209 WRITE_WORD(p, 0x54420005);
fc53b7d4 210 WRITE_WORD(p, info->initrd_start);
52b43737 211 WRITE_WORD(p, initrd_size);
16406950 212 }
f93eb9ff 213 if (info->kernel_cmdline && *info->kernel_cmdline) {
16406950
PB
214 /* ATAG_CMDLINE */
215 int cmdline_size;
216
f93eb9ff 217 cmdline_size = strlen(info->kernel_cmdline);
e1fe50dc 218 cpu_physical_memory_write(p + 8, info->kernel_cmdline,
52b43737 219 cmdline_size + 1);
16406950 220 cmdline_size = (cmdline_size >> 2) + 1;
52b43737
PB
221 WRITE_WORD(p, cmdline_size + 2);
222 WRITE_WORD(p, 0x54410009);
223 p += cmdline_size * 4;
16406950 224 }
f93eb9ff
AZ
225 if (info->atag_board) {
226 /* ATAG_BOARD */
227 int atag_board_len;
52b43737 228 uint8_t atag_board_buf[0x1000];
f93eb9ff 229
52b43737
PB
230 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
231 WRITE_WORD(p, (atag_board_len + 8) >> 2);
232 WRITE_WORD(p, 0x414f4d50);
233 cpu_physical_memory_write(p, atag_board_buf, atag_board_len);
f93eb9ff
AZ
234 p += atag_board_len;
235 }
16406950 236 /* ATAG_END */
52b43737
PB
237 WRITE_WORD(p, 0);
238 WRITE_WORD(p, 0);
16406950
PB
239}
240
761c9eb0 241static void set_kernel_args_old(const struct arm_boot_info *info)
2b8f2d41 242{
a8170e5e 243 hwaddr p;
52b43737 244 const char *s;
761c9eb0 245 int initrd_size = info->initrd_size;
a8170e5e 246 hwaddr base = info->loader_start;
2b8f2d41
AZ
247
248 /* see linux/include/asm-arm/setup.h */
52b43737 249 p = base + KERNEL_ARGS_ADDR;
2b8f2d41 250 /* page_size */
52b43737 251 WRITE_WORD(p, 4096);
2b8f2d41 252 /* nr_pages */
52b43737 253 WRITE_WORD(p, info->ram_size / 4096);
2b8f2d41 254 /* ramdisk_size */
52b43737 255 WRITE_WORD(p, 0);
2b8f2d41
AZ
256#define FLAG_READONLY 1
257#define FLAG_RDLOAD 4
258#define FLAG_RDPROMPT 8
259 /* flags */
52b43737 260 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
2b8f2d41 261 /* rootdev */
52b43737 262 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
2b8f2d41 263 /* video_num_cols */
52b43737 264 WRITE_WORD(p, 0);
2b8f2d41 265 /* video_num_rows */
52b43737 266 WRITE_WORD(p, 0);
2b8f2d41 267 /* video_x */
52b43737 268 WRITE_WORD(p, 0);
2b8f2d41 269 /* video_y */
52b43737 270 WRITE_WORD(p, 0);
2b8f2d41 271 /* memc_control_reg */
52b43737 272 WRITE_WORD(p, 0);
2b8f2d41
AZ
273 /* unsigned char sounddefault */
274 /* unsigned char adfsdrives */
275 /* unsigned char bytes_per_char_h */
276 /* unsigned char bytes_per_char_v */
52b43737 277 WRITE_WORD(p, 0);
2b8f2d41 278 /* pages_in_bank[4] */
52b43737
PB
279 WRITE_WORD(p, 0);
280 WRITE_WORD(p, 0);
281 WRITE_WORD(p, 0);
282 WRITE_WORD(p, 0);
2b8f2d41 283 /* pages_in_vram */
52b43737 284 WRITE_WORD(p, 0);
2b8f2d41 285 /* initrd_start */
fc53b7d4
PM
286 if (initrd_size) {
287 WRITE_WORD(p, info->initrd_start);
288 } else {
52b43737 289 WRITE_WORD(p, 0);
fc53b7d4 290 }
2b8f2d41 291 /* initrd_size */
52b43737 292 WRITE_WORD(p, initrd_size);
2b8f2d41 293 /* rd_start */
52b43737 294 WRITE_WORD(p, 0);
2b8f2d41 295 /* system_rev */
52b43737 296 WRITE_WORD(p, 0);
2b8f2d41 297 /* system_serial_low */
52b43737 298 WRITE_WORD(p, 0);
2b8f2d41 299 /* system_serial_high */
52b43737 300 WRITE_WORD(p, 0);
2b8f2d41 301 /* mem_fclk_21285 */
52b43737 302 WRITE_WORD(p, 0);
2b8f2d41 303 /* zero unused fields */
52b43737
PB
304 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
305 WRITE_WORD(p, 0);
306 }
307 s = info->kernel_cmdline;
308 if (s) {
e1fe50dc 309 cpu_physical_memory_write(p, s, strlen(s) + 1);
52b43737
PB
310 } else {
311 WRITE_WORD(p, 0);
312 }
2b8f2d41
AZ
313}
314
fee8ea12
AB
315/**
316 * load_dtb() - load a device tree binary image into memory
317 * @addr: the address to load the image at
318 * @binfo: struct describing the boot environment
319 * @addr_limit: upper limit of the available memory area at @addr
320 *
321 * Load a device tree supplied by the machine or by the user with the
322 * '-dtb' command line option, and put it at offset @addr in target
323 * memory.
324 *
325 * If @addr_limit contains a meaningful value (i.e., it is strictly greater
326 * than @addr), the device tree is only loaded if its size does not exceed
327 * the limit.
328 *
329 * Returns: the size of the device tree image on success,
330 * 0 if the image size exceeds the limit,
331 * -1 on errors.
a554ecb4
HZ
332 *
333 * Note: Must not be called unless have_dtb(binfo) is true.
fee8ea12
AB
334 */
335static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
336 hwaddr addr_limit)
412beee6 337{
412beee6 338 void *fdt = NULL;
412beee6 339 int size, rc;
70976c41 340 uint32_t acells, scells;
412beee6 341
0fb79851
JR
342 if (binfo->dtb_filename) {
343 char *filename;
344 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
345 if (!filename) {
346 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
347 goto fail;
348 }
412beee6 349
0fb79851
JR
350 fdt = load_device_tree(filename, &size);
351 if (!fdt) {
352 fprintf(stderr, "Couldn't open dtb file %s\n", filename);
353 g_free(filename);
354 goto fail;
355 }
412beee6 356 g_free(filename);
a554ecb4 357 } else {
0fb79851
JR
358 fdt = binfo->get_dtb(binfo, &size);
359 if (!fdt) {
360 fprintf(stderr, "Board was unable to create a dtb blob\n");
361 goto fail;
362 }
412beee6 363 }
412beee6 364
fee8ea12
AB
365 if (addr_limit > addr && size > (addr_limit - addr)) {
366 /* Installing the device tree blob at addr would exceed addr_limit.
367 * Whether this constitutes failure is up to the caller to decide,
368 * so just return 0 as size, i.e., no error.
369 */
370 g_free(fdt);
371 return 0;
372 }
373
5a4348d1
PC
374 acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells");
375 scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells");
9bfa659e
PM
376 if (acells == 0 || scells == 0) {
377 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
c23045de 378 goto fail;
9bfa659e
PM
379 }
380
70976c41
PM
381 if (scells < 2 && binfo->ram_size >= (1ULL << 32)) {
382 /* This is user error so deserves a friendlier error message
383 * than the failure of setprop_sized_cells would provide
384 */
9bfa659e
PM
385 fprintf(stderr, "qemu: dtb file not compatible with "
386 "RAM size > 4GB\n");
c23045de 387 goto fail;
9bfa659e
PM
388 }
389
5a4348d1
PC
390 rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg",
391 acells, binfo->loader_start,
392 scells, binfo->ram_size);
412beee6
GL
393 if (rc < 0) {
394 fprintf(stderr, "couldn't set /memory/reg\n");
c23045de 395 goto fail;
412beee6
GL
396 }
397
5e87975c 398 if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
5a4348d1
PC
399 rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
400 binfo->kernel_cmdline);
5e87975c
PC
401 if (rc < 0) {
402 fprintf(stderr, "couldn't set /chosen/bootargs\n");
c23045de 403 goto fail;
5e87975c 404 }
412beee6
GL
405 }
406
407 if (binfo->initrd_size) {
5a4348d1
PC
408 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
409 binfo->initrd_start);
412beee6
GL
410 if (rc < 0) {
411 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
c23045de 412 goto fail;
412beee6
GL
413 }
414
5a4348d1
PC
415 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
416 binfo->initrd_start + binfo->initrd_size);
412beee6
GL
417 if (rc < 0) {
418 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
c23045de 419 goto fail;
412beee6
GL
420 }
421 }
3b1cceb8
PM
422
423 if (binfo->modify_dtb) {
424 binfo->modify_dtb(binfo, fdt);
425 }
426
5a4348d1 427 qemu_fdt_dumpdtb(fdt, size);
412beee6 428
4c4bf654
AB
429 /* Put the DTB into the memory map as a ROM image: this will ensure
430 * the DTB is copied again upon reset, even if addr points into RAM.
431 */
432 rom_add_blob_fixed("dtb", fdt, size, addr);
412beee6 433
c23045de
PM
434 g_free(fdt);
435
fee8ea12 436 return size;
c23045de
PM
437
438fail:
439 g_free(fdt);
440 return -1;
412beee6
GL
441}
442
6ed221b6 443static void do_cpu_reset(void *opaque)
f2d74978 444{
351d5666
AF
445 ARMCPU *cpu = opaque;
446 CPUARMState *env = &cpu->env;
462a8bc6 447 const struct arm_boot_info *info = env->boot_info;
f2d74978 448
351d5666 449 cpu_reset(CPU(cpu));
f2d74978
PB
450 if (info) {
451 if (!info->is_linux) {
452 /* Jump to the entry point. */
a9047ec3
PM
453 if (env->aarch64) {
454 env->pc = info->entry;
455 } else {
456 env->regs[15] = info->entry & 0xfffffffe;
457 env->thumb = info->entry & 1;
458 }
f2d74978 459 } else {
c8e829b7
GB
460 /* If we are booting Linux then we need to check whether we are
461 * booting into secure or non-secure state and adjust the state
462 * accordingly. Out of reset, ARM is defined to be in secure state
463 * (SCR.NS = 0), we change that here if non-secure boot has been
464 * requested.
465 */
466 if (arm_feature(env, ARM_FEATURE_EL3) && !info->secure_boot) {
467 env->cp15.scr_el3 |= SCR_NS;
468 }
469
182735ef 470 if (CPU(cpu) == first_cpu) {
4d9ebf75
MH
471 if (env->aarch64) {
472 env->pc = info->loader_start;
473 } else {
474 env->regs[15] = info->loader_start;
475 }
476
83bfffec 477 if (!have_dtb(info)) {
412beee6
GL
478 if (old_param) {
479 set_kernel_args_old(info);
480 } else {
481 set_kernel_args(info);
482 }
6ed221b6 483 }
f2d74978 484 } else {
5d309320 485 info->secondary_cpu_reset_hook(cpu, info);
f2d74978
PB
486 }
487 }
488 }
f2d74978
PB
489}
490
07abe45c
LE
491/**
492 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
493 * by key.
494 * @fw_cfg: The firmware config instance to store the data in.
495 * @size_key: The firmware config key to store the size of the loaded
496 * data under, with fw_cfg_add_i32().
497 * @data_key: The firmware config key to store the loaded data under,
498 * with fw_cfg_add_bytes().
499 * @image_name: The name of the image file to load. If it is NULL, the
500 * function returns without doing anything.
501 * @try_decompress: Whether the image should be decompressed (gunzipped) before
502 * adding it to fw_cfg. If decompression fails, the image is
503 * loaded as-is.
504 *
505 * In case of failure, the function prints an error message to stderr and the
506 * process exits with status 1.
507 */
508static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
509 uint16_t data_key, const char *image_name,
510 bool try_decompress)
511{
512 size_t size = -1;
513 uint8_t *data;
514
515 if (image_name == NULL) {
516 return;
517 }
518
519 if (try_decompress) {
520 size = load_image_gzipped_buffer(image_name,
521 LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
522 }
523
524 if (size == (size_t)-1) {
525 gchar *contents;
526 gsize length;
527
528 if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
529 fprintf(stderr, "failed to load \"%s\"\n", image_name);
530 exit(1);
531 }
532 size = length;
533 data = (uint8_t *)contents;
534 }
535
536 fw_cfg_add_i32(fw_cfg, size_key, size);
537 fw_cfg_add_bytes(fw_cfg, data_key, data, size);
538}
539
3aaa8dfa 540void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
16406950 541{
c6faa758 542 CPUState *cs;
16406950
PB
543 int kernel_size;
544 int initrd_size;
1c7b3754 545 int is_linux = 0;
92df8450 546 uint64_t elf_entry, elf_low_addr, elf_high_addr;
da0af40d 547 int elf_machine;
4d9ebf75 548 hwaddr entry, kernel_load_offset;
ca20cf32 549 int big_endian;
4d9ebf75 550 static const ARMInsnFixup *primary_loader;
16406950 551
c6faa758
AB
552 /* CPU objects (unlike devices) are not automatically reset on system
553 * reset, so we must always register a handler to do so. If we're
554 * actually loading a kernel, the handler is also responsible for
555 * arranging that we start it correctly.
556 */
557 for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
558 qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
559 }
560
16406950 561 /* Load the kernel. */
07abe45c 562 if (!info->kernel_filename || info->firmware_loaded) {
69e7f76f
AB
563
564 if (have_dtb(info)) {
07abe45c
LE
565 /* If we have a device tree blob, but no kernel to supply it to (or
566 * the kernel is supposed to be loaded by the bootloader), copy the
567 * DTB to the base of RAM for the bootloader to pick up.
69e7f76f
AB
568 */
569 if (load_dtb(info->loader_start, info, 0) < 0) {
570 exit(1);
571 }
572 }
573
07abe45c
LE
574 if (info->kernel_filename) {
575 FWCfgState *fw_cfg;
576 bool try_decompressing_kernel;
577
578 fw_cfg = fw_cfg_find();
579 try_decompressing_kernel = arm_feature(&cpu->env,
580 ARM_FEATURE_AARCH64);
581
582 /* Expose the kernel, the command line, and the initrd in fw_cfg.
583 * We don't process them here at all, it's all left to the
584 * firmware.
585 */
586 load_image_to_fw_cfg(fw_cfg,
587 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
588 info->kernel_filename,
589 try_decompressing_kernel);
590 load_image_to_fw_cfg(fw_cfg,
591 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
592 info->initrd_filename, false);
593
594 if (info->kernel_cmdline) {
595 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
596 strlen(info->kernel_cmdline) + 1);
597 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
598 info->kernel_cmdline);
599 }
600 }
601
602 /* We will start from address 0 (typically a boot ROM image) in the
603 * same way as hardware.
9546dbab
PM
604 */
605 return;
16406950 606 }
daf90626 607
4d9ebf75
MH
608 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
609 primary_loader = bootloader_aarch64;
610 kernel_load_offset = KERNEL64_LOAD_ADDR;
da0af40d 611 elf_machine = EM_AARCH64;
4d9ebf75
MH
612 } else {
613 primary_loader = bootloader;
614 kernel_load_offset = KERNEL_LOAD_ADDR;
da0af40d 615 elf_machine = EM_ARM;
4d9ebf75
MH
616 }
617
2ff3de68 618 info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
412beee6 619
9d5ba9bf
ML
620 if (!info->secondary_cpu_reset_hook) {
621 info->secondary_cpu_reset_hook = default_reset_secondary;
622 }
623 if (!info->write_secondary_boot) {
624 info->write_secondary_boot = default_write_secondary;
625 }
626
f2d74978
PB
627 if (info->nb_cpus == 0)
628 info->nb_cpus = 1;
f93eb9ff 629
ca20cf32
BS
630#ifdef TARGET_WORDS_BIGENDIAN
631 big_endian = 1;
632#else
633 big_endian = 0;
634#endif
635
fc53b7d4
PM
636 /* We want to put the initrd far enough into RAM that when the
637 * kernel is uncompressed it will not clobber the initrd. However
638 * on boards without much RAM we must ensure that we still leave
639 * enough room for a decent sized initrd, and on boards with large
640 * amounts of RAM we must avoid the initrd being so far up in RAM
641 * that it is outside lowmem and inaccessible to the kernel.
642 * So for boards with less than 256MB of RAM we put the initrd
643 * halfway into RAM, and for boards with 256MB of RAM or more we put
644 * the initrd at 128MB.
645 */
646 info->initrd_start = info->loader_start +
647 MIN(info->ram_size / 2, 128 * 1024 * 1024);
648
1c7b3754 649 /* Assume that raw images are linux kernels, and ELF images are not. */
409dbce5 650 kernel_size = load_elf(info->kernel_filename, NULL, NULL, &elf_entry,
92df8450
AB
651 &elf_low_addr, &elf_high_addr, big_endian,
652 elf_machine, 1);
653 if (kernel_size > 0 && have_dtb(info)) {
654 /* If there is still some room left at the base of RAM, try and put
655 * the DTB there like we do for images loaded with -bios or -pflash.
656 */
657 if (elf_low_addr > info->loader_start
658 || elf_high_addr < info->loader_start) {
659 /* Pass elf_low_addr as address limit to load_dtb if it may be
660 * pointing into RAM, otherwise pass '0' (no limit)
661 */
662 if (elf_low_addr < info->loader_start) {
663 elf_low_addr = 0;
664 }
665 if (load_dtb(info->loader_start, info, elf_low_addr) < 0) {
666 exit(1);
667 }
668 }
669 }
1c7b3754
PB
670 entry = elf_entry;
671 if (kernel_size < 0) {
5a9154e0 672 kernel_size = load_uimage(info->kernel_filename, &entry, NULL,
25bda50a 673 &is_linux, NULL, NULL);
1c7b3754 674 }
6f5d3cbe
RJ
675 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
676 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
677 entry = info->loader_start + kernel_load_offset;
678 kernel_size = load_image_gzipped(info->kernel_filename, entry,
679 info->ram_size - kernel_load_offset);
680 is_linux = 1;
681 }
1c7b3754 682 if (kernel_size < 0) {
4d9ebf75 683 entry = info->loader_start + kernel_load_offset;
3b760e04 684 kernel_size = load_image_targphys(info->kernel_filename, entry,
4d9ebf75 685 info->ram_size - kernel_load_offset);
1c7b3754
PB
686 is_linux = 1;
687 }
688 if (kernel_size < 0) {
f93eb9ff
AZ
689 fprintf(stderr, "qemu: could not load kernel '%s'\n",
690 info->kernel_filename);
1c7b3754
PB
691 exit(1);
692 }
f2d74978
PB
693 info->entry = entry;
694 if (is_linux) {
47b1da81
PM
695 uint32_t fixupcontext[FIXUP_MAX];
696
f93eb9ff 697 if (info->initrd_filename) {
fd76663e
SB
698 initrd_size = load_ramdisk(info->initrd_filename,
699 info->initrd_start,
700 info->ram_size -
701 info->initrd_start);
702 if (initrd_size < 0) {
703 initrd_size = load_image_targphys(info->initrd_filename,
704 info->initrd_start,
705 info->ram_size -
706 info->initrd_start);
707 }
daf90626
PB
708 if (initrd_size < 0) {
709 fprintf(stderr, "qemu: could not load initrd '%s'\n",
f93eb9ff 710 info->initrd_filename);
daf90626
PB
711 exit(1);
712 }
713 } else {
714 initrd_size = 0;
715 }
412beee6
GL
716 info->initrd_size = initrd_size;
717
47b1da81 718 fixupcontext[FIXUP_BOARDID] = info->board_id;
412beee6
GL
719
720 /* for device tree boot, we pass the DTB directly in r2. Otherwise
721 * we point to the kernel args.
722 */
83bfffec 723 if (have_dtb(info)) {
98ed805c
PM
724 /* Place the DTB after the initrd in memory. Note that some
725 * kernels will trash anything in the 4K page the initrd
726 * ends in, so make sure the DTB isn't caught up in that.
727 */
728 hwaddr dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
729 4096);
fee8ea12 730 if (load_dtb(dtb_start, info, 0) < 0) {
412beee6
GL
731 exit(1);
732 }
47b1da81 733 fixupcontext[FIXUP_ARGPTR] = dtb_start;
412beee6 734 } else {
47b1da81 735 fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR;
3871481c
PM
736 if (info->ram_size >= (1ULL << 32)) {
737 fprintf(stderr, "qemu: RAM size must be less than 4GB to boot"
738 " Linux kernel using ATAGS (try passing a device tree"
739 " using -dtb)\n");
740 exit(1);
741 }
412beee6 742 }
47b1da81
PM
743 fixupcontext[FIXUP_ENTRYPOINT] = entry;
744
745 write_bootloader("bootloader", info->loader_start,
4d9ebf75 746 primary_loader, fixupcontext);
47b1da81 747
52b43737 748 if (info->nb_cpus > 1) {
9543b0cd 749 info->write_secondary_boot(cpu, info);
52b43737 750 }
16406950 751 }
f2d74978 752 info->is_linux = is_linux;
6ed221b6 753
c6faa758
AB
754 for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
755 ARM_CPU(cs)->env.boot_info = info;
6ed221b6 756 }
16406950 757}