]> git.proxmox.com Git - mirror_qemu.git/blame - hw/arm/boot.c
Merge remote-tracking branch 'remotes/thibault/tags/samuel-thibault' into staging
[mirror_qemu.git] / hw / arm / boot.c
CommitLineData
5fafdf24 1/*
16406950
PB
2 * ARM kernel loader.
3 *
9ee6e8bb 4 * Copyright (c) 2006-2007 CodeSourcery.
16406950
PB
5 * Written by Paul Brook
6 *
8e31bf38 7 * This code is licensed under the GPL.
16406950
PB
8 */
9
12b16722 10#include "qemu/osdep.h"
a8d25326 11#include "qemu-common.h"
c0dbca36 12#include "qemu/error-report.h"
da34e65c 13#include "qapi/error.h"
b77257d7 14#include <libfdt.h>
12ec8bd5 15#include "hw/arm/boot.h"
d8b1ae42 16#include "hw/arm/linux-boot-if.h"
baf6b681 17#include "sysemu/kvm.h"
9c17d615 18#include "sysemu/sysemu.h"
9695200a 19#include "sysemu/numa.h"
2744ece8 20#include "hw/boards.h"
71e8a915 21#include "sysemu/reset.h"
83c9f4ca 22#include "hw/loader.h"
ca20cf32 23#include "elf.h"
9c17d615 24#include "sysemu/device_tree.h"
1de7afc9 25#include "qemu/config-file.h"
922a01a0 26#include "qemu/option.h"
2198a121 27#include "exec/address-spaces.h"
ea358872 28#include "qemu/units.h"
16406950 29
4d9ebf75
MH
30/* Kernel boot protocol is specified in the kernel docs
31 * Documentation/arm/Booting and Documentation/arm64/booting.txt
32 * They have different preferred image load offsets from system RAM base.
33 */
f831f955
NH
34#define KERNEL_ARGS_ADDR 0x100
35#define KERNEL_NOLOAD_ADDR 0x02000000
36#define KERNEL_LOAD_ADDR 0x00010000
4d9ebf75 37#define KERNEL64_LOAD_ADDR 0x00080000
16406950 38
68115ed5
AB
39#define ARM64_TEXT_OFFSET_OFFSET 8
40#define ARM64_MAGIC_OFFSET 56
41
ea358872
SH
42#define BOOTLOADER_MAX_SIZE (4 * KiB)
43
3b77f6c3
IM
44AddressSpace *arm_boot_address_space(ARMCPU *cpu,
45 const struct arm_boot_info *info)
9f43d4c3
PM
46{
47 /* Return the address space to use for bootloader reads and writes.
48 * We prefer the secure address space if the CPU has it and we're
49 * going to boot the guest into it.
50 */
51 int asidx;
52 CPUState *cs = CPU(cpu);
53
54 if (arm_feature(&cpu->env, ARM_FEATURE_EL3) && info->secure_boot) {
55 asidx = ARMASIdx_S;
56 } else {
57 asidx = ARMASIdx_NS;
58 }
59
60 return cpu_get_address_space(cs, asidx);
61}
62
47b1da81 63typedef enum {
84e59397
PC
64 FIXUP_NONE = 0, /* do nothing */
65 FIXUP_TERMINATOR, /* end of insns */
66 FIXUP_BOARDID, /* overwrite with board ID number */
10b8ec73 67 FIXUP_BOARD_SETUP, /* overwrite with board specific setup code address */
751ebc13
RPB
68 FIXUP_ARGPTR_LO, /* overwrite with pointer to kernel args */
69 FIXUP_ARGPTR_HI, /* overwrite with pointer to kernel args (high half) */
70 FIXUP_ENTRYPOINT_LO, /* overwrite with kernel entry point */
71 FIXUP_ENTRYPOINT_HI, /* overwrite with kernel entry point (high half) */
84e59397
PC
72 FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
73 FIXUP_BOOTREG, /* overwrite with boot register address */
74 FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
47b1da81
PM
75 FIXUP_MAX,
76} FixupType;
77
78typedef struct ARMInsnFixup {
79 uint32_t insn;
80 FixupType fixup;
81} ARMInsnFixup;
82
4d9ebf75
MH
83static const ARMInsnFixup bootloader_aarch64[] = {
84 { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
85 { 0xaa1f03e1 }, /* mov x1, xzr */
86 { 0xaa1f03e2 }, /* mov x2, xzr */
87 { 0xaa1f03e3 }, /* mov x3, xzr */
88 { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
89 { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
751ebc13
RPB
90 { 0, FIXUP_ARGPTR_LO }, /* arg: .word @DTB Lower 32-bits */
91 { 0, FIXUP_ARGPTR_HI}, /* .word @DTB Higher 32-bits */
92 { 0, FIXUP_ENTRYPOINT_LO }, /* entry: .word @Kernel Entry Lower 32-bits */
93 { 0, FIXUP_ENTRYPOINT_HI }, /* .word @Kernel Entry Higher 32-bits */
4d9ebf75
MH
94 { 0, FIXUP_TERMINATOR }
95};
96
10b8ec73
PC
97/* A very small bootloader: call the board-setup code (if needed),
98 * set r0-r2, then jump to the kernel.
99 * If we're not calling boot setup code then we don't copy across
100 * the first BOOTLOADER_NO_BOARD_SETUP_OFFSET insns in this array.
101 */
102
47b1da81 103static const ARMInsnFixup bootloader[] = {
b4850e5a 104 { 0xe28fe004 }, /* add lr, pc, #4 */
10b8ec73
PC
105 { 0xe51ff004 }, /* ldr pc, [pc, #-4] */
106 { 0, FIXUP_BOARD_SETUP },
107#define BOOTLOADER_NO_BOARD_SETUP_OFFSET 3
47b1da81
PM
108 { 0xe3a00000 }, /* mov r0, #0 */
109 { 0xe59f1004 }, /* ldr r1, [pc, #4] */
110 { 0xe59f2004 }, /* ldr r2, [pc, #4] */
111 { 0xe59ff004 }, /* ldr pc, [pc, #4] */
112 { 0, FIXUP_BOARDID },
751ebc13
RPB
113 { 0, FIXUP_ARGPTR_LO },
114 { 0, FIXUP_ENTRYPOINT_LO },
47b1da81 115 { 0, FIXUP_TERMINATOR }
16406950
PB
116};
117
9d5ba9bf
ML
118/* Handling for secondary CPU boot in a multicore system.
119 * Unlike the uniprocessor/primary CPU boot, this is platform
120 * dependent. The default code here is based on the secondary
121 * CPU boot protocol used on realview/vexpress boards, with
122 * some parameterisation to increase its flexibility.
123 * QEMU platform models for which this code is not appropriate
124 * should override write_secondary_boot and secondary_cpu_reset_hook
125 * instead.
126 *
127 * This code enables the interrupt controllers for the secondary
128 * CPUs and then puts all the secondary CPUs into a loop waiting
129 * for an interprocessor interrupt and polling a configurable
130 * location for the kernel secondary CPU entry point.
131 */
bf471f79
PM
132#define DSB_INSN 0xf57ff04f
133#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
134
47b1da81
PM
135static const ARMInsnFixup smpboot[] = {
136 { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
137 { 0xe59f0028 }, /* ldr r0, bootreg_addr */
138 { 0xe3a01001 }, /* mov r1, #1 */
139 { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
140 { 0xe3a010ff }, /* mov r1, #0xff */
141 { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
142 { 0, FIXUP_DSB }, /* dsb */
143 { 0xe320f003 }, /* wfi */
144 { 0xe5901000 }, /* ldr r1, [r0] */
145 { 0xe1110001 }, /* tst r1, r1 */
146 { 0x0afffffb }, /* beq <wfi> */
147 { 0xe12fff11 }, /* bx r1 */
148 { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
149 { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
150 { 0, FIXUP_TERMINATOR }
9ee6e8bb
PB
151};
152
47b1da81 153static void write_bootloader(const char *name, hwaddr addr,
9f43d4c3
PM
154 const ARMInsnFixup *insns, uint32_t *fixupcontext,
155 AddressSpace *as)
47b1da81
PM
156{
157 /* Fix up the specified bootloader fragment and write it into
158 * guest memory using rom_add_blob_fixed(). fixupcontext is
159 * an array giving the values to write in for the fixup types
160 * which write a value into the code array.
161 */
162 int i, len;
163 uint32_t *code;
164
165 len = 0;
166 while (insns[len].fixup != FIXUP_TERMINATOR) {
167 len++;
168 }
169
170 code = g_new0(uint32_t, len);
171
172 for (i = 0; i < len; i++) {
173 uint32_t insn = insns[i].insn;
174 FixupType fixup = insns[i].fixup;
175
176 switch (fixup) {
177 case FIXUP_NONE:
178 break;
179 case FIXUP_BOARDID:
10b8ec73 180 case FIXUP_BOARD_SETUP:
751ebc13
RPB
181 case FIXUP_ARGPTR_LO:
182 case FIXUP_ARGPTR_HI:
183 case FIXUP_ENTRYPOINT_LO:
184 case FIXUP_ENTRYPOINT_HI:
47b1da81
PM
185 case FIXUP_GIC_CPU_IF:
186 case FIXUP_BOOTREG:
187 case FIXUP_DSB:
188 insn = fixupcontext[fixup];
189 break;
190 default:
191 abort();
192 }
193 code[i] = tswap32(insn);
194 }
195
ea358872
SH
196 assert((len * sizeof(uint32_t)) < BOOTLOADER_MAX_SIZE);
197
9f43d4c3 198 rom_add_blob_fixed_as(name, code, len * sizeof(uint32_t), addr, as);
47b1da81
PM
199
200 g_free(code);
201}
202
9543b0cd 203static void default_write_secondary(ARMCPU *cpu,
9d5ba9bf
ML
204 const struct arm_boot_info *info)
205{
47b1da81 206 uint32_t fixupcontext[FIXUP_MAX];
9f43d4c3 207 AddressSpace *as = arm_boot_address_space(cpu, info);
47b1da81
PM
208
209 fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
210 fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
211 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
212 fixupcontext[FIXUP_DSB] = DSB_INSN;
213 } else {
214 fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
9d5ba9bf 215 }
47b1da81
PM
216
217 write_bootloader("smpboot", info->smp_loader_start,
9f43d4c3 218 smpboot, fixupcontext, as);
9d5ba9bf
ML
219}
220
716536a9
AB
221void arm_write_secure_board_setup_dummy_smc(ARMCPU *cpu,
222 const struct arm_boot_info *info,
223 hwaddr mvbar_addr)
224{
9f43d4c3 225 AddressSpace *as = arm_boot_address_space(cpu, info);
716536a9
AB
226 int n;
227 uint32_t mvbar_blob[] = {
228 /* mvbar_addr: secure monitor vectors
229 * Default unimplemented and unused vectors to spin. Makes it
230 * easier to debug (as opposed to the CPU running away).
231 */
232 0xeafffffe, /* (spin) */
233 0xeafffffe, /* (spin) */
234 0xe1b0f00e, /* movs pc, lr ;SMC exception return */
235 0xeafffffe, /* (spin) */
236 0xeafffffe, /* (spin) */
237 0xeafffffe, /* (spin) */
238 0xeafffffe, /* (spin) */
239 0xeafffffe, /* (spin) */
240 };
241 uint32_t board_setup_blob[] = {
242 /* board setup addr */
243 0xe3a00e00 + (mvbar_addr >> 4), /* mov r0, #mvbar_addr */
244 0xee0c0f30, /* mcr p15, 0, r0, c12, c0, 1 ;set MVBAR */
245 0xee110f11, /* mrc p15, 0, r0, c1 , c1, 0 ;read SCR */
246 0xe3800031, /* orr r0, #0x31 ;enable AW, FW, NS */
247 0xee010f11, /* mcr p15, 0, r0, c1, c1, 0 ;write SCR */
248 0xe1a0100e, /* mov r1, lr ;save LR across SMC */
249 0xe1600070, /* smc #0 ;call monitor to flush SCR */
250 0xe1a0f001, /* mov pc, r1 ;return */
251 };
252
253 /* check that mvbar_addr is correctly aligned and relocatable (using MOV) */
254 assert((mvbar_addr & 0x1f) == 0 && (mvbar_addr >> 4) < 0x100);
255
256 /* check that these blobs don't overlap */
257 assert((mvbar_addr + sizeof(mvbar_blob) <= info->board_setup_addr)
258 || (info->board_setup_addr + sizeof(board_setup_blob) <= mvbar_addr));
259
260 for (n = 0; n < ARRAY_SIZE(mvbar_blob); n++) {
261 mvbar_blob[n] = tswap32(mvbar_blob[n]);
262 }
9f43d4c3
PM
263 rom_add_blob_fixed_as("board-setup-mvbar", mvbar_blob, sizeof(mvbar_blob),
264 mvbar_addr, as);
716536a9
AB
265
266 for (n = 0; n < ARRAY_SIZE(board_setup_blob); n++) {
267 board_setup_blob[n] = tswap32(board_setup_blob[n]);
268 }
9f43d4c3
PM
269 rom_add_blob_fixed_as("board-setup", board_setup_blob,
270 sizeof(board_setup_blob), info->board_setup_addr, as);
716536a9
AB
271}
272
5d309320 273static void default_reset_secondary(ARMCPU *cpu,
9d5ba9bf
ML
274 const struct arm_boot_info *info)
275{
9f43d4c3 276 AddressSpace *as = arm_boot_address_space(cpu, info);
4df81c6e 277 CPUState *cs = CPU(cpu);
5d309320 278
9f43d4c3 279 address_space_stl_notdirty(as, info->smp_bootreg_addr,
42874d3a 280 0, MEMTXATTRS_UNSPECIFIED, NULL);
4df81c6e 281 cpu_set_pc(cs, info->smp_loader_start);
9d5ba9bf
ML
282}
283
83bfffec
PM
284static inline bool have_dtb(const struct arm_boot_info *info)
285{
286 return info->dtb_filename || info->get_dtb;
287}
288
52b43737 289#define WRITE_WORD(p, value) do { \
9f43d4c3 290 address_space_stl_notdirty(as, p, value, \
42874d3a 291 MEMTXATTRS_UNSPECIFIED, NULL); \
52b43737
PB
292 p += 4; \
293} while (0)
294
9f43d4c3 295static void set_kernel_args(const struct arm_boot_info *info, AddressSpace *as)
16406950 296{
761c9eb0 297 int initrd_size = info->initrd_size;
a8170e5e
AK
298 hwaddr base = info->loader_start;
299 hwaddr p;
16406950 300
52b43737 301 p = base + KERNEL_ARGS_ADDR;
16406950 302 /* ATAG_CORE */
52b43737
PB
303 WRITE_WORD(p, 5);
304 WRITE_WORD(p, 0x54410001);
305 WRITE_WORD(p, 1);
306 WRITE_WORD(p, 0x1000);
307 WRITE_WORD(p, 0);
16406950 308 /* ATAG_MEM */
f93eb9ff 309 /* TODO: handle multiple chips on one ATAG list */
52b43737
PB
310 WRITE_WORD(p, 4);
311 WRITE_WORD(p, 0x54410002);
312 WRITE_WORD(p, info->ram_size);
313 WRITE_WORD(p, info->loader_start);
16406950
PB
314 if (initrd_size) {
315 /* ATAG_INITRD2 */
52b43737
PB
316 WRITE_WORD(p, 4);
317 WRITE_WORD(p, 0x54420005);
fc53b7d4 318 WRITE_WORD(p, info->initrd_start);
52b43737 319 WRITE_WORD(p, initrd_size);
16406950 320 }
f93eb9ff 321 if (info->kernel_cmdline && *info->kernel_cmdline) {
16406950
PB
322 /* ATAG_CMDLINE */
323 int cmdline_size;
324
f93eb9ff 325 cmdline_size = strlen(info->kernel_cmdline);
9f43d4c3
PM
326 address_space_write(as, p + 8, MEMTXATTRS_UNSPECIFIED,
327 (const uint8_t *)info->kernel_cmdline,
328 cmdline_size + 1);
16406950 329 cmdline_size = (cmdline_size >> 2) + 1;
52b43737
PB
330 WRITE_WORD(p, cmdline_size + 2);
331 WRITE_WORD(p, 0x54410009);
332 p += cmdline_size * 4;
16406950 333 }
f93eb9ff
AZ
334 if (info->atag_board) {
335 /* ATAG_BOARD */
336 int atag_board_len;
52b43737 337 uint8_t atag_board_buf[0x1000];
f93eb9ff 338
52b43737
PB
339 atag_board_len = (info->atag_board(info, atag_board_buf) + 3) & ~3;
340 WRITE_WORD(p, (atag_board_len + 8) >> 2);
341 WRITE_WORD(p, 0x414f4d50);
9f43d4c3
PM
342 address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
343 atag_board_buf, atag_board_len);
f93eb9ff
AZ
344 p += atag_board_len;
345 }
16406950 346 /* ATAG_END */
52b43737
PB
347 WRITE_WORD(p, 0);
348 WRITE_WORD(p, 0);
16406950
PB
349}
350
9f43d4c3
PM
351static void set_kernel_args_old(const struct arm_boot_info *info,
352 AddressSpace *as)
2b8f2d41 353{
a8170e5e 354 hwaddr p;
52b43737 355 const char *s;
761c9eb0 356 int initrd_size = info->initrd_size;
a8170e5e 357 hwaddr base = info->loader_start;
2b8f2d41
AZ
358
359 /* see linux/include/asm-arm/setup.h */
52b43737 360 p = base + KERNEL_ARGS_ADDR;
2b8f2d41 361 /* page_size */
52b43737 362 WRITE_WORD(p, 4096);
2b8f2d41 363 /* nr_pages */
52b43737 364 WRITE_WORD(p, info->ram_size / 4096);
2b8f2d41 365 /* ramdisk_size */
52b43737 366 WRITE_WORD(p, 0);
2b8f2d41
AZ
367#define FLAG_READONLY 1
368#define FLAG_RDLOAD 4
369#define FLAG_RDPROMPT 8
370 /* flags */
52b43737 371 WRITE_WORD(p, FLAG_READONLY | FLAG_RDLOAD | FLAG_RDPROMPT);
2b8f2d41 372 /* rootdev */
52b43737 373 WRITE_WORD(p, (31 << 8) | 0); /* /dev/mtdblock0 */
2b8f2d41 374 /* video_num_cols */
52b43737 375 WRITE_WORD(p, 0);
2b8f2d41 376 /* video_num_rows */
52b43737 377 WRITE_WORD(p, 0);
2b8f2d41 378 /* video_x */
52b43737 379 WRITE_WORD(p, 0);
2b8f2d41 380 /* video_y */
52b43737 381 WRITE_WORD(p, 0);
2b8f2d41 382 /* memc_control_reg */
52b43737 383 WRITE_WORD(p, 0);
2b8f2d41
AZ
384 /* unsigned char sounddefault */
385 /* unsigned char adfsdrives */
386 /* unsigned char bytes_per_char_h */
387 /* unsigned char bytes_per_char_v */
52b43737 388 WRITE_WORD(p, 0);
2b8f2d41 389 /* pages_in_bank[4] */
52b43737
PB
390 WRITE_WORD(p, 0);
391 WRITE_WORD(p, 0);
392 WRITE_WORD(p, 0);
393 WRITE_WORD(p, 0);
2b8f2d41 394 /* pages_in_vram */
52b43737 395 WRITE_WORD(p, 0);
2b8f2d41 396 /* initrd_start */
fc53b7d4
PM
397 if (initrd_size) {
398 WRITE_WORD(p, info->initrd_start);
399 } else {
52b43737 400 WRITE_WORD(p, 0);
fc53b7d4 401 }
2b8f2d41 402 /* initrd_size */
52b43737 403 WRITE_WORD(p, initrd_size);
2b8f2d41 404 /* rd_start */
52b43737 405 WRITE_WORD(p, 0);
2b8f2d41 406 /* system_rev */
52b43737 407 WRITE_WORD(p, 0);
2b8f2d41 408 /* system_serial_low */
52b43737 409 WRITE_WORD(p, 0);
2b8f2d41 410 /* system_serial_high */
52b43737 411 WRITE_WORD(p, 0);
2b8f2d41 412 /* mem_fclk_21285 */
52b43737 413 WRITE_WORD(p, 0);
2b8f2d41 414 /* zero unused fields */
52b43737
PB
415 while (p < base + KERNEL_ARGS_ADDR + 256 + 1024) {
416 WRITE_WORD(p, 0);
417 }
418 s = info->kernel_cmdline;
419 if (s) {
9f43d4c3
PM
420 address_space_write(as, p, MEMTXATTRS_UNSPECIFIED,
421 (const uint8_t *)s, strlen(s) + 1);
52b43737
PB
422 } else {
423 WRITE_WORD(p, 0);
424 }
2b8f2d41
AZ
425}
426
f08ced69
SK
427static int fdt_add_memory_node(void *fdt, uint32_t acells, hwaddr mem_base,
428 uint32_t scells, hwaddr mem_len,
429 int numa_node_id)
430{
431 char *nodename;
432 int ret;
433
434 nodename = g_strdup_printf("/memory@%" PRIx64, mem_base);
435 qemu_fdt_add_subnode(fdt, nodename);
436 qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
437 ret = qemu_fdt_setprop_sized_cells(fdt, nodename, "reg", acells, mem_base,
438 scells, mem_len);
439 if (ret < 0) {
440 goto out;
441 }
442
443 /* only set the NUMA ID if it is specified */
444 if (numa_node_id >= 0) {
445 ret = qemu_fdt_setprop_cell(fdt, nodename,
446 "numa-node-id", numa_node_id);
447 }
448out:
449 g_free(nodename);
450 return ret;
451}
452
4cbca7d9
AS
453static void fdt_add_psci_node(void *fdt)
454{
455 uint32_t cpu_suspend_fn;
456 uint32_t cpu_off_fn;
457 uint32_t cpu_on_fn;
458 uint32_t migrate_fn;
459 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
460 const char *psci_method;
461 int64_t psci_conduit;
c39770cd 462 int rc;
4cbca7d9
AS
463
464 psci_conduit = object_property_get_int(OBJECT(armcpu),
465 "psci-conduit",
466 &error_abort);
467 switch (psci_conduit) {
468 case QEMU_PSCI_CONDUIT_DISABLED:
469 return;
470 case QEMU_PSCI_CONDUIT_HVC:
471 psci_method = "hvc";
472 break;
473 case QEMU_PSCI_CONDUIT_SMC:
474 psci_method = "smc";
475 break;
476 default:
477 g_assert_not_reached();
478 }
479
c39770cd
AS
480 /*
481 * If /psci node is present in provided DTB, assume that no fixup
482 * is necessary and all PSCI configuration should be taken as-is
483 */
484 rc = fdt_path_offset(fdt, "/psci");
485 if (rc >= 0) {
486 return;
487 }
488
4cbca7d9
AS
489 qemu_fdt_add_subnode(fdt, "/psci");
490 if (armcpu->psci_version == 2) {
491 const char comp[] = "arm,psci-0.2\0arm,psci";
492 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
493
494 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
495 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
496 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
497 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
498 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
499 } else {
500 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
501 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
502 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
503 }
504 } else {
505 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
506
507 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
508 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
509 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
510 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
511 }
512
513 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
514 * to the instruction that should be used to invoke PSCI functions.
515 * However, the device tree binding uses 'method' instead, so that is
516 * what we should use here.
517 */
518 qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
519
520 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
521 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
522 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
523 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
524}
525
3b77f6c3 526int arm_load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
2744ece8 527 hwaddr addr_limit, AddressSpace *as, MachineState *ms)
412beee6 528{
412beee6 529 void *fdt = NULL;
e2eb3d29 530 int size, rc, n = 0;
70976c41 531 uint32_t acells, scells;
9695200a
SZ
532 unsigned int i;
533 hwaddr mem_base, mem_len;
e2eb3d29
EA
534 char **node_path;
535 Error *err = NULL;
412beee6 536
0fb79851
JR
537 if (binfo->dtb_filename) {
538 char *filename;
539 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, binfo->dtb_filename);
540 if (!filename) {
541 fprintf(stderr, "Couldn't open dtb file %s\n", binfo->dtb_filename);
542 goto fail;
543 }
412beee6 544
0fb79851
JR
545 fdt = load_device_tree(filename, &size);
546 if (!fdt) {
547 fprintf(stderr, "Couldn't open dtb file %s\n", filename);
548 g_free(filename);
549 goto fail;
550 }
412beee6 551 g_free(filename);
a554ecb4 552 } else {
0fb79851
JR
553 fdt = binfo->get_dtb(binfo, &size);
554 if (!fdt) {
555 fprintf(stderr, "Board was unable to create a dtb blob\n");
556 goto fail;
557 }
412beee6 558 }
412beee6 559
fee8ea12
AB
560 if (addr_limit > addr && size > (addr_limit - addr)) {
561 /* Installing the device tree blob at addr would exceed addr_limit.
562 * Whether this constitutes failure is up to the caller to decide,
563 * so just return 0 as size, i.e., no error.
564 */
565 g_free(fdt);
566 return 0;
567 }
568
58e71097
EA
569 acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells",
570 NULL, &error_fatal);
571 scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells",
572 NULL, &error_fatal);
9bfa659e
PM
573 if (acells == 0 || scells == 0) {
574 fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
c23045de 575 goto fail;
9bfa659e
PM
576 }
577
e4e34855 578 if (scells < 2 && binfo->ram_size >= 4 * GiB) {
70976c41
PM
579 /* This is user error so deserves a friendlier error message
580 * than the failure of setprop_sized_cells would provide
581 */
9bfa659e
PM
582 fprintf(stderr, "qemu: dtb file not compatible with "
583 "RAM size > 4GB\n");
c23045de 584 goto fail;
9bfa659e
PM
585 }
586
e2eb3d29
EA
587 /* nop all root nodes matching /memory or /memory@unit-address */
588 node_path = qemu_fdt_node_unit_path(fdt, "memory", &err);
589 if (err) {
590 error_report_err(err);
591 goto fail;
592 }
593 while (node_path[n]) {
594 if (g_str_has_prefix(node_path[n], "/memory")) {
595 qemu_fdt_nop_node(fdt, node_path[n]);
596 }
597 n++;
598 }
599 g_strfreev(node_path);
600
aa570207 601 if (ms->numa_state != NULL && ms->numa_state->num_nodes > 0) {
9695200a 602 mem_base = binfo->loader_start;
aa570207 603 for (i = 0; i < ms->numa_state->num_nodes; i++) {
7e721e7b 604 mem_len = ms->numa_state->nodes[i].node_mem;
f08ced69
SK
605 rc = fdt_add_memory_node(fdt, acells, mem_base,
606 scells, mem_len, i);
9695200a 607 if (rc < 0) {
f08ced69
SK
608 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
609 mem_base);
9695200a
SZ
610 goto fail;
611 }
612
9695200a 613 mem_base += mem_len;
9695200a
SZ
614 }
615 } else {
f08ced69
SK
616 rc = fdt_add_memory_node(fdt, acells, binfo->loader_start,
617 scells, binfo->ram_size, -1);
9695200a 618 if (rc < 0) {
f08ced69
SK
619 fprintf(stderr, "couldn't add /memory@%"PRIx64" node\n",
620 binfo->loader_start);
9695200a
SZ
621 goto fail;
622 }
412beee6
GL
623 }
624
b77257d7
GR
625 rc = fdt_path_offset(fdt, "/chosen");
626 if (rc < 0) {
627 qemu_fdt_add_subnode(fdt, "/chosen");
628 }
629
2744ece8 630 if (ms->kernel_cmdline && *ms->kernel_cmdline) {
5a4348d1 631 rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
2744ece8 632 ms->kernel_cmdline);
5e87975c
PC
633 if (rc < 0) {
634 fprintf(stderr, "couldn't set /chosen/bootargs\n");
c23045de 635 goto fail;
5e87975c 636 }
412beee6
GL
637 }
638
639 if (binfo->initrd_size) {
5a4348d1
PC
640 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
641 binfo->initrd_start);
412beee6
GL
642 if (rc < 0) {
643 fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
c23045de 644 goto fail;
412beee6
GL
645 }
646
5a4348d1
PC
647 rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
648 binfo->initrd_start + binfo->initrd_size);
412beee6
GL
649 if (rc < 0) {
650 fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
c23045de 651 goto fail;
412beee6
GL
652 }
653 }
3b1cceb8 654
4cbca7d9
AS
655 fdt_add_psci_node(fdt);
656
3b1cceb8
PM
657 if (binfo->modify_dtb) {
658 binfo->modify_dtb(binfo, fdt);
659 }
660
5a4348d1 661 qemu_fdt_dumpdtb(fdt, size);
412beee6 662
4c4bf654
AB
663 /* Put the DTB into the memory map as a ROM image: this will ensure
664 * the DTB is copied again upon reset, even if addr points into RAM.
665 */
9f43d4c3 666 rom_add_blob_fixed_as("dtb", fdt, size, addr, as);
412beee6 667
c23045de
PM
668 g_free(fdt);
669
fee8ea12 670 return size;
c23045de
PM
671
672fail:
673 g_free(fdt);
674 return -1;
412beee6
GL
675}
676
6ed221b6 677static void do_cpu_reset(void *opaque)
f2d74978 678{
351d5666 679 ARMCPU *cpu = opaque;
4df81c6e 680 CPUState *cs = CPU(cpu);
351d5666 681 CPUARMState *env = &cpu->env;
462a8bc6 682 const struct arm_boot_info *info = env->boot_info;
f2d74978 683
4df81c6e 684 cpu_reset(cs);
f2d74978
PB
685 if (info) {
686 if (!info->is_linux) {
9776f636 687 int i;
f2d74978 688 /* Jump to the entry point. */
4df81c6e
PC
689 uint64_t entry = info->entry;
690
9776f636
PC
691 switch (info->endianness) {
692 case ARM_ENDIANNESS_LE:
693 env->cp15.sctlr_el[1] &= ~SCTLR_E0E;
694 for (i = 1; i < 4; ++i) {
695 env->cp15.sctlr_el[i] &= ~SCTLR_EE;
696 }
697 env->uncached_cpsr &= ~CPSR_E;
698 break;
699 case ARM_ENDIANNESS_BE8:
700 env->cp15.sctlr_el[1] |= SCTLR_E0E;
701 for (i = 1; i < 4; ++i) {
702 env->cp15.sctlr_el[i] |= SCTLR_EE;
703 }
704 env->uncached_cpsr |= CPSR_E;
705 break;
706 case ARM_ENDIANNESS_BE32:
707 env->cp15.sctlr_el[1] |= SCTLR_B;
708 break;
709 case ARM_ENDIANNESS_UNKNOWN:
710 break; /* Board's decision */
711 default:
712 g_assert_not_reached();
713 }
714
4df81c6e 715 cpu_set_pc(cs, entry);
f2d74978 716 } else {
c8e829b7
GB
717 /* If we are booting Linux then we need to check whether we are
718 * booting into secure or non-secure state and adjust the state
719 * accordingly. Out of reset, ARM is defined to be in secure state
720 * (SCR.NS = 0), we change that here if non-secure boot has been
721 * requested.
722 */
5097227c
GB
723 if (arm_feature(env, ARM_FEATURE_EL3)) {
724 /* AArch64 is defined to come out of reset into EL3 if enabled.
725 * If we are booting Linux then we need to adjust our EL as
726 * Linux expects us to be in EL2 or EL1. AArch32 resets into
727 * SVC, which Linux expects, so no privilege/exception level to
728 * adjust.
729 */
730 if (env->aarch64) {
48d21a57 731 env->cp15.scr_el3 |= SCR_RW;
5097227c 732 if (arm_feature(env, ARM_FEATURE_EL2)) {
48d21a57 733 env->cp15.hcr_el2 |= HCR_RW;
5097227c
GB
734 env->pstate = PSTATE_MODE_EL2h;
735 } else {
736 env->pstate = PSTATE_MODE_EL1h;
737 }
43118f43
PM
738 /* AArch64 kernels never boot in secure mode */
739 assert(!info->secure_boot);
740 /* This hook is only supported for AArch32 currently:
741 * bootloader_aarch64[] will not call the hook, and
742 * the code above has already dropped us into EL2 or EL1.
743 */
744 assert(!info->secure_board_setup);
5097227c
GB
745 }
746
bda816f0
PM
747 if (arm_feature(env, ARM_FEATURE_EL2)) {
748 /* If we have EL2 then Linux expects the HVC insn to work */
749 env->cp15.scr_el3 |= SCR_HCE;
750 }
751
5097227c 752 /* Set to non-secure if not a secure boot */
baf6b681
PC
753 if (!info->secure_boot &&
754 (cs != first_cpu || !info->secure_board_setup)) {
5097227c
GB
755 /* Linux expects non-secure state */
756 env->cp15.scr_el3 |= SCR_NS;
ece628fc
PM
757 /* Set NSACR.{CP11,CP10} so NS can access the FPU */
758 env->cp15.nsacr |= 3 << 10;
5097227c 759 }
c8e829b7
GB
760 }
761
299953b9
PM
762 if (!env->aarch64 && !info->secure_boot &&
763 arm_feature(env, ARM_FEATURE_EL2)) {
764 /*
765 * This is an AArch32 boot not to Secure state, and
766 * we have Hyp mode available, so boot the kernel into
767 * Hyp mode. This is not how the CPU comes out of reset,
768 * so we need to manually put it there.
769 */
770 cpsr_write(env, ARM_CPU_MODE_HYP, CPSR_M, CPSRWriteRaw);
771 }
772
4df81c6e 773 if (cs == first_cpu) {
9f43d4c3
PM
774 AddressSpace *as = arm_boot_address_space(cpu, info);
775
4df81c6e 776 cpu_set_pc(cs, info->loader_start);
4d9ebf75 777
83bfffec 778 if (!have_dtb(info)) {
412beee6 779 if (old_param) {
9f43d4c3 780 set_kernel_args_old(info, as);
412beee6 781 } else {
9f43d4c3 782 set_kernel_args(info, as);
412beee6 783 }
6ed221b6 784 }
f2d74978 785 } else {
5d309320 786 info->secondary_cpu_reset_hook(cpu, info);
f2d74978
PB
787 }
788 }
789 }
f2d74978
PB
790}
791
07abe45c
LE
792/**
793 * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
794 * by key.
795 * @fw_cfg: The firmware config instance to store the data in.
796 * @size_key: The firmware config key to store the size of the loaded
797 * data under, with fw_cfg_add_i32().
798 * @data_key: The firmware config key to store the loaded data under,
799 * with fw_cfg_add_bytes().
800 * @image_name: The name of the image file to load. If it is NULL, the
801 * function returns without doing anything.
802 * @try_decompress: Whether the image should be decompressed (gunzipped) before
803 * adding it to fw_cfg. If decompression fails, the image is
804 * loaded as-is.
805 *
806 * In case of failure, the function prints an error message to stderr and the
807 * process exits with status 1.
808 */
809static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
810 uint16_t data_key, const char *image_name,
811 bool try_decompress)
812{
813 size_t size = -1;
814 uint8_t *data;
815
816 if (image_name == NULL) {
817 return;
818 }
819
820 if (try_decompress) {
821 size = load_image_gzipped_buffer(image_name,
822 LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
823 }
824
825 if (size == (size_t)-1) {
826 gchar *contents;
827 gsize length;
828
829 if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
c0dbca36 830 error_report("failed to load \"%s\"", image_name);
07abe45c
LE
831 exit(1);
832 }
833 size = length;
834 data = (uint8_t *)contents;
835 }
836
837 fw_cfg_add_i32(fw_cfg, size_key, size);
838 fw_cfg_add_bytes(fw_cfg, data_key, data, size);
839}
840
d8b1ae42
PM
841static int do_arm_linux_init(Object *obj, void *opaque)
842{
843 if (object_dynamic_cast(obj, TYPE_ARM_LINUX_BOOT_IF)) {
844 ARMLinuxBootIf *albif = ARM_LINUX_BOOT_IF(obj);
845 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_GET_CLASS(obj);
846 struct arm_boot_info *info = opaque;
847
848 if (albifc->arm_linux_init) {
849 albifc->arm_linux_init(albif, info->secure_boot);
850 }
851 }
852 return 0;
853}
854
a3f0ecfd
AL
855static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
856 uint64_t *lowaddr, uint64_t *highaddr,
857 int elf_machine, AddressSpace *as)
9776f636
PC
858{
859 bool elf_is64;
860 union {
861 Elf32_Ehdr h32;
862 Elf64_Ehdr h64;
863 } elf_header;
864 int data_swab = 0;
865 bool big_endian;
a3f0ecfd 866 int64_t ret = -1;
9776f636
PC
867 Error *err = NULL;
868
869
870 load_elf_hdr(info->kernel_filename, &elf_header, &elf_is64, &err);
871 if (err) {
36f876ce 872 error_free(err);
9776f636
PC
873 return ret;
874 }
875
876 if (elf_is64) {
877 big_endian = elf_header.h64.e_ident[EI_DATA] == ELFDATA2MSB;
878 info->endianness = big_endian ? ARM_ENDIANNESS_BE8
879 : ARM_ENDIANNESS_LE;
880 } else {
881 big_endian = elf_header.h32.e_ident[EI_DATA] == ELFDATA2MSB;
882 if (big_endian) {
883 if (bswap32(elf_header.h32.e_flags) & EF_ARM_BE8) {
884 info->endianness = ARM_ENDIANNESS_BE8;
885 } else {
886 info->endianness = ARM_ENDIANNESS_BE32;
887 /* In BE32, the CPU has a different view of the per-byte
888 * address map than the rest of the system. BE32 ELF files
889 * are organised such that they can be programmed through
890 * the CPU's per-word byte-reversed view of the world. QEMU
891 * however loads ELF files independently of the CPU. So
892 * tell the ELF loader to byte reverse the data for us.
893 */
894 data_swab = 2;
895 }
896 } else {
897 info->endianness = ARM_ENDIANNESS_LE;
898 }
899 }
900
4366e1db 901 ret = load_elf_as(info->kernel_filename, NULL, NULL, NULL,
9f43d4c3
PM
902 pentry, lowaddr, highaddr, big_endian, elf_machine,
903 1, data_swab, as);
9776f636
PC
904 if (ret <= 0) {
905 /* The header loaded but the image didn't */
906 exit(1);
907 }
908
909 return ret;
910}
911
68115ed5 912static uint64_t load_aarch64_image(const char *filename, hwaddr mem_base,
9f43d4c3 913 hwaddr *entry, AddressSpace *as)
68115ed5
AB
914{
915 hwaddr kernel_load_offset = KERNEL64_LOAD_ADDR;
5e6dbe1e 916 uint64_t kernel_size = 0;
68115ed5
AB
917 uint8_t *buffer;
918 int size;
919
920 /* On aarch64, it's the bootloader's job to uncompress the kernel. */
921 size = load_image_gzipped_buffer(filename, LOAD_IMAGE_MAX_GUNZIP_BYTES,
922 &buffer);
923
924 if (size < 0) {
925 gsize len;
926
927 /* Load as raw file otherwise */
928 if (!g_file_get_contents(filename, (char **)&buffer, &len, NULL)) {
929 return -1;
930 }
931 size = len;
932 }
933
934 /* check the arm64 magic header value -- very old kernels may not have it */
27640407
MAL
935 if (size > ARM64_MAGIC_OFFSET + 4 &&
936 memcmp(buffer + ARM64_MAGIC_OFFSET, "ARM\x64", 4) == 0) {
68115ed5
AB
937 uint64_t hdrvals[2];
938
939 /* The arm64 Image header has text_offset and image_size fields at 8 and
940 * 16 bytes into the Image header, respectively. The text_offset field
941 * is only valid if the image_size is non-zero.
942 */
943 memcpy(&hdrvals, buffer + ARM64_TEXT_OFFSET_OFFSET, sizeof(hdrvals));
5e6dbe1e
PM
944
945 kernel_size = le64_to_cpu(hdrvals[1]);
946
947 if (kernel_size != 0) {
68115ed5 948 kernel_load_offset = le64_to_cpu(hdrvals[0]);
ea358872
SH
949
950 /*
951 * We write our startup "bootloader" at the very bottom of RAM,
952 * so that bit can't be used for the image. Luckily the Image
953 * format specification is that the image requests only an offset
954 * from a 2MB boundary, not an absolute load address. So if the
955 * image requests an offset that might mean it overlaps with the
956 * bootloader, we can just load it starting at 2MB+offset rather
957 * than 0MB + offset.
958 */
959 if (kernel_load_offset < BOOTLOADER_MAX_SIZE) {
960 kernel_load_offset += 2 * MiB;
961 }
68115ed5
AB
962 }
963 }
964
5e6dbe1e
PM
965 /*
966 * Kernels before v3.17 don't populate the image_size field, and
967 * raw images have no header. For those our best guess at the size
968 * is the size of the Image file itself.
969 */
970 if (kernel_size == 0) {
971 kernel_size = size;
972 }
973
68115ed5 974 *entry = mem_base + kernel_load_offset;
9f43d4c3 975 rom_add_blob_fixed_as(filename, buffer, size, *entry, as);
68115ed5
AB
976
977 g_free(buffer);
978
5e6dbe1e 979 return kernel_size;
68115ed5
AB
980}
981
d33774ee
PM
982static void arm_setup_direct_kernel_boot(ARMCPU *cpu,
983 struct arm_boot_info *info)
16406950 984{
d33774ee 985 /* Set up for a direct boot of a kernel image file. */
c6faa758 986 CPUState *cs;
d33774ee 987 AddressSpace *as = arm_boot_address_space(cpu, info);
16406950
PB
988 int kernel_size;
989 int initrd_size;
1c7b3754 990 int is_linux = 0;
d5fef92f
PM
991 uint64_t elf_entry;
992 /* Addresses of first byte used and first byte not used by the image */
67505c11 993 uint64_t image_low_addr = 0, image_high_addr = 0;
da0af40d 994 int elf_machine;
68115ed5 995 hwaddr entry;
4d9ebf75 996 static const ARMInsnFixup *primary_loader;
e70af24b 997 uint64_t ram_end = info->loader_start + info->ram_size;
daf90626 998
4d9ebf75
MH
999 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1000 primary_loader = bootloader_aarch64;
da0af40d 1001 elf_machine = EM_AARCH64;
4d9ebf75
MH
1002 } else {
1003 primary_loader = bootloader;
10b8ec73
PC
1004 if (!info->write_board_setup) {
1005 primary_loader += BOOTLOADER_NO_BOARD_SETUP_OFFSET;
1006 }
da0af40d 1007 elf_machine = EM_ARM;
4d9ebf75
MH
1008 }
1009
9d5ba9bf
ML
1010 if (!info->secondary_cpu_reset_hook) {
1011 info->secondary_cpu_reset_hook = default_reset_secondary;
1012 }
1013 if (!info->write_secondary_boot) {
1014 info->write_secondary_boot = default_write_secondary;
1015 }
1016
f2d74978
PB
1017 if (info->nb_cpus == 0)
1018 info->nb_cpus = 1;
f93eb9ff 1019
1c7b3754 1020 /* Assume that raw images are linux kernels, and ELF images are not. */
d5fef92f
PM
1021 kernel_size = arm_load_elf(info, &elf_entry, &image_low_addr,
1022 &image_high_addr, elf_machine, as);
92df8450 1023 if (kernel_size > 0 && have_dtb(info)) {
c3a42358
PM
1024 /*
1025 * If there is still some room left at the base of RAM, try and put
92df8450
AB
1026 * the DTB there like we do for images loaded with -bios or -pflash.
1027 */
d5fef92f
PM
1028 if (image_low_addr > info->loader_start
1029 || image_high_addr < info->loader_start) {
c3a42358 1030 /*
d5fef92f 1031 * Set image_low_addr as address limit for arm_load_dtb if it may be
92df8450
AB
1032 * pointing into RAM, otherwise pass '0' (no limit)
1033 */
d5fef92f
PM
1034 if (image_low_addr < info->loader_start) {
1035 image_low_addr = 0;
92df8450 1036 }
3b77f6c3 1037 info->dtb_start = info->loader_start;
d5fef92f 1038 info->dtb_limit = image_low_addr;
92df8450
AB
1039 }
1040 }
1c7b3754
PB
1041 entry = elf_entry;
1042 if (kernel_size < 0) {
f831f955
NH
1043 uint64_t loadaddr = info->loader_start + KERNEL_NOLOAD_ADDR;
1044 kernel_size = load_uimage_as(info->kernel_filename, &entry, &loadaddr,
9f43d4c3 1045 &is_linux, NULL, NULL, as);
67505c11
PM
1046 if (kernel_size >= 0) {
1047 image_low_addr = loadaddr;
1048 image_high_addr = image_low_addr + kernel_size;
1049 }
1c7b3754 1050 }
6f5d3cbe 1051 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
68115ed5 1052 kernel_size = load_aarch64_image(info->kernel_filename,
9f43d4c3 1053 info->loader_start, &entry, as);
6f5d3cbe 1054 is_linux = 1;
67505c11
PM
1055 if (kernel_size >= 0) {
1056 image_low_addr = entry;
1057 image_high_addr = image_low_addr + kernel_size;
1058 }
68115ed5
AB
1059 } else if (kernel_size < 0) {
1060 /* 32-bit ARM */
1061 entry = info->loader_start + KERNEL_LOAD_ADDR;
9f43d4c3 1062 kernel_size = load_image_targphys_as(info->kernel_filename, entry,
e70af24b 1063 ram_end - KERNEL_LOAD_ADDR, as);
1c7b3754 1064 is_linux = 1;
67505c11
PM
1065 if (kernel_size >= 0) {
1066 image_low_addr = entry;
1067 image_high_addr = image_low_addr + kernel_size;
1068 }
1c7b3754
PB
1069 }
1070 if (kernel_size < 0) {
c0dbca36 1071 error_report("could not load kernel '%s'", info->kernel_filename);
1c7b3754
PB
1072 exit(1);
1073 }
852dc64d
PM
1074
1075 if (kernel_size > info->ram_size) {
1076 error_report("kernel '%s' is too large to fit in RAM "
1077 "(kernel size %d, RAM size %" PRId64 ")",
1078 info->kernel_filename, kernel_size, info->ram_size);
1079 exit(1);
1080 }
1081
f2d74978 1082 info->entry = entry;
e6b2b20d
PM
1083
1084 /*
1085 * We want to put the initrd far enough into RAM that when the
1086 * kernel is uncompressed it will not clobber the initrd. However
1087 * on boards without much RAM we must ensure that we still leave
1088 * enough room for a decent sized initrd, and on boards with large
1089 * amounts of RAM we must avoid the initrd being so far up in RAM
1090 * that it is outside lowmem and inaccessible to the kernel.
1091 * So for boards with less than 256MB of RAM we put the initrd
1092 * halfway into RAM, and for boards with 256MB of RAM or more we put
1093 * the initrd at 128MB.
1094 * We also refuse to put the initrd somewhere that will definitely
1095 * overlay the kernel we just loaded, though for kernel formats which
1096 * don't tell us their exact size (eg self-decompressing 32-bit kernels)
1097 * we might still make a bad choice here.
1098 */
1099 info->initrd_start = info->loader_start +
e4e34855 1100 MIN(info->ram_size / 2, 128 * MiB);
67505c11
PM
1101 if (image_high_addr) {
1102 info->initrd_start = MAX(info->initrd_start, image_high_addr);
1103 }
e6b2b20d
PM
1104 info->initrd_start = TARGET_PAGE_ALIGN(info->initrd_start);
1105
f2d74978 1106 if (is_linux) {
47b1da81
PM
1107 uint32_t fixupcontext[FIXUP_MAX];
1108
f93eb9ff 1109 if (info->initrd_filename) {
852dc64d
PM
1110
1111 if (info->initrd_start >= ram_end) {
1112 error_report("not enough space after kernel to load initrd");
1113 exit(1);
1114 }
1115
9f43d4c3
PM
1116 initrd_size = load_ramdisk_as(info->initrd_filename,
1117 info->initrd_start,
e70af24b 1118 ram_end - info->initrd_start, as);
fd76663e 1119 if (initrd_size < 0) {
9f43d4c3
PM
1120 initrd_size = load_image_targphys_as(info->initrd_filename,
1121 info->initrd_start,
e70af24b 1122 ram_end -
9f43d4c3
PM
1123 info->initrd_start,
1124 as);
fd76663e 1125 }
daf90626 1126 if (initrd_size < 0) {
c0dbca36
AF
1127 error_report("could not load initrd '%s'",
1128 info->initrd_filename);
daf90626
PB
1129 exit(1);
1130 }
b48b0640 1131 if (info->initrd_start + initrd_size > ram_end) {
852dc64d
PM
1132 error_report("could not load initrd '%s': "
1133 "too big to fit into RAM after the kernel",
1134 info->initrd_filename);
b48b0640 1135 exit(1);
852dc64d 1136 }
daf90626
PB
1137 } else {
1138 initrd_size = 0;
1139 }
412beee6
GL
1140 info->initrd_size = initrd_size;
1141
47b1da81 1142 fixupcontext[FIXUP_BOARDID] = info->board_id;
10b8ec73 1143 fixupcontext[FIXUP_BOARD_SETUP] = info->board_setup_addr;
412beee6 1144
c3a42358
PM
1145 /*
1146 * for device tree boot, we pass the DTB directly in r2. Otherwise
412beee6
GL
1147 * we point to the kernel args.
1148 */
83bfffec 1149 if (have_dtb(info)) {
76e2aef3 1150 hwaddr align;
76e2aef3
AG
1151
1152 if (elf_machine == EM_AARCH64) {
1153 /*
1154 * Some AArch64 kernels on early bootup map the fdt region as
1155 *
1156 * [ ALIGN_DOWN(fdt, 2MB) ... ALIGN_DOWN(fdt, 2MB) + 2MB ]
1157 *
1158 * Let's play safe and prealign it to 2MB to give us some space.
1159 */
e4e34855 1160 align = 2 * MiB;
76e2aef3
AG
1161 } else {
1162 /*
1163 * Some 32bit kernels will trash anything in the 4K page the
1164 * initrd ends in, so make sure the DTB isn't caught up in that.
1165 */
e4e34855 1166 align = 4 * KiB;
76e2aef3
AG
1167 }
1168
1169 /* Place the DTB after the initrd in memory with alignment. */
3b77f6c3
IM
1170 info->dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
1171 align);
852dc64d
PM
1172 if (info->dtb_start >= ram_end) {
1173 error_report("Not enough space for DTB after kernel/initrd");
1174 exit(1);
1175 }
751ebc13
RPB
1176 fixupcontext[FIXUP_ARGPTR_LO] = info->dtb_start;
1177 fixupcontext[FIXUP_ARGPTR_HI] = info->dtb_start >> 32;
412beee6 1178 } else {
751ebc13
RPB
1179 fixupcontext[FIXUP_ARGPTR_LO] =
1180 info->loader_start + KERNEL_ARGS_ADDR;
1181 fixupcontext[FIXUP_ARGPTR_HI] =
1182 (info->loader_start + KERNEL_ARGS_ADDR) >> 32;
e4e34855 1183 if (info->ram_size >= 4 * GiB) {
c0dbca36
AF
1184 error_report("RAM size must be less than 4GB to boot"
1185 " Linux kernel using ATAGS (try passing a device tree"
1186 " using -dtb)");
3871481c
PM
1187 exit(1);
1188 }
412beee6 1189 }
751ebc13
RPB
1190 fixupcontext[FIXUP_ENTRYPOINT_LO] = entry;
1191 fixupcontext[FIXUP_ENTRYPOINT_HI] = entry >> 32;
47b1da81
PM
1192
1193 write_bootloader("bootloader", info->loader_start,
9f43d4c3 1194 primary_loader, fixupcontext, as);
47b1da81 1195
52b43737 1196 if (info->nb_cpus > 1) {
9543b0cd 1197 info->write_secondary_boot(cpu, info);
52b43737 1198 }
10b8ec73
PC
1199 if (info->write_board_setup) {
1200 info->write_board_setup(cpu, info);
1201 }
d8b1ae42 1202
c3a42358
PM
1203 /*
1204 * Notify devices which need to fake up firmware initialization
d8b1ae42
PM
1205 * that we're doing a direct kernel boot.
1206 */
1207 object_child_foreach_recursive(object_get_root(),
1208 do_arm_linux_init, info);
16406950 1209 }
f2d74978 1210 info->is_linux = is_linux;
6ed221b6 1211
0c949276 1212 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
c6faa758 1213 ARM_CPU(cs)->env.boot_info = info;
6ed221b6 1214 }
d33774ee
PM
1215}
1216
4c0f2687
PM
1217static void arm_setup_firmware_boot(ARMCPU *cpu, struct arm_boot_info *info)
1218{
1219 /* Set up for booting firmware (which might load a kernel via fw_cfg) */
1220
1221 if (have_dtb(info)) {
1222 /*
1223 * If we have a device tree blob, but no kernel to supply it to (or
1224 * the kernel is supposed to be loaded by the bootloader), copy the
1225 * DTB to the base of RAM for the bootloader to pick up.
1226 */
1227 info->dtb_start = info->loader_start;
1228 }
1229
1230 if (info->kernel_filename) {
1231 FWCfgState *fw_cfg;
1232 bool try_decompressing_kernel;
1233
1234 fw_cfg = fw_cfg_find();
1235 try_decompressing_kernel = arm_feature(&cpu->env,
1236 ARM_FEATURE_AARCH64);
1237
1238 /*
1239 * Expose the kernel, the command line, and the initrd in fw_cfg.
1240 * We don't process them here at all, it's all left to the
1241 * firmware.
1242 */
1243 load_image_to_fw_cfg(fw_cfg,
1244 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
1245 info->kernel_filename,
1246 try_decompressing_kernel);
1247 load_image_to_fw_cfg(fw_cfg,
1248 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
1249 info->initrd_filename, false);
1250
1251 if (info->kernel_cmdline) {
1252 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1253 strlen(info->kernel_cmdline) + 1);
1254 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
1255 info->kernel_cmdline);
1256 }
1257 }
1258
1259 /*
1260 * We will start from address 0 (typically a boot ROM image) in the
2a5bdfc8
PM
1261 * same way as hardware. Leave env->boot_info NULL, so that
1262 * do_cpu_reset() knows it does not need to alter the PC on reset.
4c0f2687
PM
1263 */
1264}
1265
2744ece8 1266void arm_load_kernel(ARMCPU *cpu, MachineState *ms, struct arm_boot_info *info)
d33774ee
PM
1267{
1268 CPUState *cs;
1269 AddressSpace *as = arm_boot_address_space(cpu, info);
1270
1271 /*
1272 * CPU objects (unlike devices) are not automatically reset on system
1273 * reset, so we must always register a handler to do so. If we're
1274 * actually loading a kernel, the handler is also responsible for
1275 * arranging that we start it correctly.
1276 */
1277 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
1278 qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
1279 }
1280
1281 /*
1282 * The board code is not supposed to set secure_board_setup unless
1283 * running its code in secure mode is actually possible, and KVM
1284 * doesn't support secure.
1285 */
1286 assert(!(info->secure_board_setup && kvm_enabled()));
2744ece8
TX
1287 info->kernel_filename = ms->kernel_filename;
1288 info->kernel_cmdline = ms->kernel_cmdline;
1289 info->initrd_filename = ms->initrd_filename;
d33774ee
PM
1290 info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
1291 info->dtb_limit = 0;
1292
1293 /* Load the kernel. */
1294 if (!info->kernel_filename || info->firmware_loaded) {
4c0f2687 1295 arm_setup_firmware_boot(cpu, info);
d33774ee
PM
1296 } else {
1297 arm_setup_direct_kernel_boot(cpu, info);
1298 }
63a183ed 1299
3b77f6c3 1300 if (!info->skip_dtb_autoload && have_dtb(info)) {
2744ece8 1301 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
3b77f6c3
IM
1302 exit(1);
1303 }
1304 }
ac9d32e3 1305}
d8b1ae42
PM
1306
1307static const TypeInfo arm_linux_boot_if_info = {
1308 .name = TYPE_ARM_LINUX_BOOT_IF,
1309 .parent = TYPE_INTERFACE,
1310 .class_size = sizeof(ARMLinuxBootIfClass),
1311};
1312
1313static void arm_linux_boot_register_types(void)
1314{
1315 type_register_static(&arm_linux_boot_if_info);
1316}
1317
1318type_init(arm_linux_boot_register_types)