]> git.proxmox.com Git - mirror_qemu.git/blame - hw/arm/mps2-tz.c
sysbus: Convert to sysbus_realize() etc. with Coccinelle
[mirror_qemu.git] / hw / arm / mps2-tz.c
CommitLineData
5aff1c07
PM
1/*
2 * ARM V2M MPS2 board emulation, trustzone aware FPGA images
3 *
4 * Copyright (c) 2017 Linaro Limited
5 * Written by Peter Maydell
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 or
9 * (at your option) any later version.
10 */
11
12/* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger
13 * FPGA but is otherwise the same as the 2). Since the CPU itself
14 * and most of the devices are in the FPGA, the details of the board
15 * as seen by the guest depend significantly on the FPGA image.
16 * This source file covers the following FPGA images, for TrustZone cores:
17 * "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505
23f92423 18 * "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521
5aff1c07
PM
19 *
20 * Links to the TRM for the board itself and to the various Application
21 * Notes which document the FPGA images can be found here:
22 * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2
23 *
24 * Board TRM:
25 * http://infocenter.arm.com/help/topic/com.arm.doc.100112_0200_06_en/versatile_express_cortex_m_prototyping_systems_v2m_mps2_and_v2m_mps2plus_technical_reference_100112_0200_06_en.pdf
26 * Application Note AN505:
27 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0505b/index.html
23f92423
PM
28 * Application Note AN521:
29 * http://infocenter.arm.com/help/topic/com.arm.doc.dai0521c/index.html
5aff1c07
PM
30 *
31 * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide
32 * (ARM ECM0601256) for the details of some of the device layout:
33 * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
23f92423
PM
34 * Similarly, the AN521 uses the SSE-200, and the SSE-200 TRM defines
35 * most of the device layout:
36 * http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
37 *
5aff1c07
PM
38 */
39
40#include "qemu/osdep.h"
eba59997 41#include "qemu/units.h"
70a2cb8e 42#include "qemu/cutils.h"
5aff1c07
PM
43#include "qapi/error.h"
44#include "qemu/error-report.h"
12ec8bd5 45#include "hw/arm/boot.h"
5aff1c07
PM
46#include "hw/arm/armv7m.h"
47#include "hw/or-irq.h"
48#include "hw/boards.h"
49#include "exec/address-spaces.h"
50#include "sysemu/sysemu.h"
51#include "hw/misc/unimp.h"
52#include "hw/char/cmsdk-apb-uart.h"
53#include "hw/timer/cmsdk-apb-timer.h"
54#include "hw/misc/mps2-scc.h"
55#include "hw/misc/mps2-fpgaio.h"
665670aa 56#include "hw/misc/tz-mpc.h"
28e56f05 57#include "hw/misc/tz-msc.h"
6eee5d24 58#include "hw/arm/armsse.h"
28e56f05 59#include "hw/dma/pl080.h"
0d49759b 60#include "hw/ssi/pl022.h"
94630665 61#include "hw/net/lan9118.h"
5aff1c07
PM
62#include "net/net.h"
63#include "hw/core/split-irq.h"
64
4a30dc1c
PM
65#define MPS2TZ_NUMIRQ 92
66
5aff1c07
PM
67typedef enum MPS2TZFPGAType {
68 FPGA_AN505,
4a30dc1c 69 FPGA_AN521,
5aff1c07
PM
70} MPS2TZFPGAType;
71
72typedef struct {
73 MachineClass parent;
74 MPS2TZFPGAType fpga_type;
75 uint32_t scc_id;
23f92423 76 const char *armsse_type;
5aff1c07
PM
77} MPS2TZMachineClass;
78
79typedef struct {
80 MachineState parent;
81
93dbd103 82 ARMSSE iotkit;
665670aa 83 MemoryRegion ssram[3];
5aff1c07 84 MemoryRegion ssram1_m;
5aff1c07
PM
85 MPS2SCC scc;
86 MPS2FPGAIO fpgaio;
87 TZPPC ppc[5];
665670aa 88 TZMPC ssram_mpc[3];
0d49759b 89 PL022State spi[5];
5aff1c07
PM
90 UnimplementedDeviceState i2c[4];
91 UnimplementedDeviceState i2s_audio;
519655e6 92 UnimplementedDeviceState gpio[4];
5aff1c07 93 UnimplementedDeviceState gfx;
28e56f05
PM
94 PL080State dma[4];
95 TZMSC msc[4];
5aff1c07
PM
96 CMSDKAPBUART uart[5];
97 SplitIRQ sec_resp_splitter;
98 qemu_or_irq uart_irq_orgate;
519655e6 99 DeviceState *lan9118;
4a30dc1c 100 SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ];
5aff1c07
PM
101} MPS2TZMachineState;
102
103#define TYPE_MPS2TZ_MACHINE "mps2tz"
104#define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505")
23f92423 105#define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521")
5aff1c07
PM
106
107#define MPS2TZ_MACHINE(obj) \
108 OBJECT_CHECK(MPS2TZMachineState, obj, TYPE_MPS2TZ_MACHINE)
109#define MPS2TZ_MACHINE_GET_CLASS(obj) \
110 OBJECT_GET_CLASS(MPS2TZMachineClass, obj, TYPE_MPS2TZ_MACHINE)
111#define MPS2TZ_MACHINE_CLASS(klass) \
112 OBJECT_CLASS_CHECK(MPS2TZMachineClass, klass, TYPE_MPS2TZ_MACHINE)
113
114/* Main SYSCLK frequency in Hz */
115#define SYSCLK_FRQ 20000000
116
5aff1c07
PM
117/* Create an alias of an entire original MemoryRegion @orig
118 * located at @base in the memory map.
119 */
120static void make_ram_alias(MemoryRegion *mr, const char *name,
121 MemoryRegion *orig, hwaddr base)
122{
123 memory_region_init_alias(mr, NULL, name, orig, 0,
124 memory_region_size(orig));
125 memory_region_add_subregion(get_system_memory(), base, mr);
126}
127
4a30dc1c
PM
128static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno)
129{
130 /* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
131 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
132
133 assert(irqno < MPS2TZ_NUMIRQ);
134
135 switch (mmc->fpga_type) {
136 case FPGA_AN505:
137 return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno);
138 case FPGA_AN521:
139 return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
140 default:
141 g_assert_not_reached();
142 }
143}
144
5aff1c07
PM
145/* Most of the devices in the AN505 FPGA image sit behind
146 * Peripheral Protection Controllers. These data structures
147 * define the layout of which devices sit behind which PPCs.
148 * The devfn for each port is a function which creates, configures
149 * and initializes the device, returning the MemoryRegion which
150 * needs to be plugged into the downstream end of the PPC port.
151 */
152typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque,
153 const char *name, hwaddr size);
154
155typedef struct PPCPortInfo {
156 const char *name;
157 MakeDevFn *devfn;
158 void *opaque;
159 hwaddr addr;
160 hwaddr size;
161} PPCPortInfo;
162
163typedef struct PPCInfo {
164 const char *name;
165 PPCPortInfo ports[TZ_NUM_PORTS];
166} PPCInfo;
167
168static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms,
169 void *opaque,
170 const char *name, hwaddr size)
171{
172 /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
173 * and return a pointer to its MemoryRegion.
174 */
175 UnimplementedDeviceState *uds = opaque;
176
8352a5b8 177 sysbus_init_child_obj(OBJECT(mms), name, uds, sizeof(*uds),
fcf13ca5 178 TYPE_UNIMPLEMENTED_DEVICE);
5aff1c07
PM
179 qdev_prop_set_string(DEVICE(uds), "name", name);
180 qdev_prop_set_uint64(DEVICE(uds), "size", size);
181 object_property_set_bool(OBJECT(uds), true, "realized", &error_fatal);
182 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
183}
184
185static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque,
186 const char *name, hwaddr size)
187{
188 CMSDKAPBUART *uart = opaque;
189 int i = uart - &mms->uart[0];
5aff1c07
PM
190 int rxirqno = i * 2;
191 int txirqno = i * 2 + 1;
192 int combirqno = i + 10;
193 SysBusDevice *s;
5aff1c07
PM
194 DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate);
195
b45ad788 196 sysbus_init_child_obj(OBJECT(mms), name, uart, sizeof(*uart),
fcf13ca5 197 TYPE_CMSDK_APB_UART);
fc38a112 198 qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
5aff1c07
PM
199 qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", SYSCLK_FRQ);
200 object_property_set_bool(OBJECT(uart), true, "realized", &error_fatal);
201 s = SYS_BUS_DEVICE(uart);
4a30dc1c
PM
202 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, txirqno));
203 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, rxirqno));
5aff1c07
PM
204 sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2));
205 sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1));
4a30dc1c 206 sysbus_connect_irq(s, 4, get_sse_irq_in(mms, combirqno));
5aff1c07
PM
207 return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
208}
209
210static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque,
211 const char *name, hwaddr size)
212{
213 MPS2SCC *scc = opaque;
214 DeviceState *sccdev;
215 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
216
b45ad788
MA
217 sysbus_init_child_obj(OBJECT(mms), "scc", scc, sizeof(*scc),
218 TYPE_MPS2_SCC);
5aff1c07 219 sccdev = DEVICE(scc);
5aff1c07 220 qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2);
cb159db9 221 qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008);
5aff1c07
PM
222 qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id);
223 object_property_set_bool(OBJECT(scc), true, "realized", &error_fatal);
224 return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0);
225}
226
227static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque,
228 const char *name, hwaddr size)
229{
230 MPS2FPGAIO *fpgaio = opaque;
231
b45ad788
MA
232 sysbus_init_child_obj(OBJECT(mms), "fpgaio", fpgaio, sizeof(*fpgaio),
233 TYPE_MPS2_FPGAIO);
5aff1c07
PM
234 object_property_set_bool(OBJECT(fpgaio), true, "realized", &error_fatal);
235 return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0);
236}
237
519655e6
PM
238static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque,
239 const char *name, hwaddr size)
240{
241 SysBusDevice *s;
519655e6
PM
242 NICInfo *nd = &nd_table[0];
243
244 /* In hardware this is a LAN9220; the LAN9118 is software compatible
245 * except that it doesn't support the checksum-offload feature.
246 */
247 qemu_check_nic_model(nd, "lan9118");
3e80f690 248 mms->lan9118 = qdev_new(TYPE_LAN9118);
519655e6 249 qdev_set_nic_properties(mms->lan9118, nd);
519655e6
PM
250
251 s = SYS_BUS_DEVICE(mms->lan9118);
3c6ef471 252 sysbus_realize_and_unref(s, &error_fatal);
4a30dc1c 253 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 16));
519655e6
PM
254 return sysbus_mmio_get_region(s, 0);
255}
256
665670aa
PM
257static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque,
258 const char *name, hwaddr size)
259{
260 TZMPC *mpc = opaque;
261 int i = mpc - &mms->ssram_mpc[0];
262 MemoryRegion *ssram = &mms->ssram[i];
263 MemoryRegion *upstream;
264 char *mpcname = g_strdup_printf("%s-mpc", name);
265 static uint32_t ramsize[] = { 0x00400000, 0x00200000, 0x00200000 };
266 static uint32_t rambase[] = { 0x00000000, 0x28000000, 0x28200000 };
267
268 memory_region_init_ram(ssram, NULL, name, ramsize[i], &error_fatal);
269
b45ad788 270 sysbus_init_child_obj(OBJECT(mms), mpcname, mpc, sizeof(*mpc),
fcf13ca5 271 TYPE_TZ_MPC);
665670aa
PM
272 object_property_set_link(OBJECT(mpc), OBJECT(ssram),
273 "downstream", &error_fatal);
274 object_property_set_bool(OBJECT(mpc), true, "realized", &error_fatal);
275 /* Map the upstream end of the MPC into system memory */
276 upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
277 memory_region_add_subregion(get_system_memory(), rambase[i], upstream);
278 /* and connect its interrupt to the IoTKit */
279 qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
280 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
281 "mpcexp_status", i));
282
283 /* The first SSRAM is a special case as it has an alias; accesses to
284 * the alias region at 0x00400000 must also go to the MPC upstream.
285 */
286 if (i == 0) {
287 make_ram_alias(&mms->ssram1_m, "mps.ssram1_m", upstream, 0x00400000);
288 }
289
290 g_free(mpcname);
291 /* Return the register interface MR for our caller to map behind the PPC */
292 return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
293}
294
28e56f05
PM
295static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque,
296 const char *name, hwaddr size)
297{
298 PL080State *dma = opaque;
299 int i = dma - &mms->dma[0];
300 SysBusDevice *s;
301 char *mscname = g_strdup_printf("%s-msc", name);
302 TZMSC *msc = &mms->msc[i];
303 DeviceState *iotkitdev = DEVICE(&mms->iotkit);
304 MemoryRegion *msc_upstream;
305 MemoryRegion *msc_downstream;
306
307 /*
308 * Each DMA device is a PL081 whose transaction master interface
309 * is guarded by a Master Security Controller. The downstream end of
310 * the MSC connects to the IoTKit AHB Slave Expansion port, so the
311 * DMA devices can see all devices and memory that the CPU does.
312 */
313 sysbus_init_child_obj(OBJECT(mms), mscname, msc, sizeof(*msc), TYPE_TZ_MSC);
314 msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0);
315 object_property_set_link(OBJECT(msc), OBJECT(msc_downstream),
316 "downstream", &error_fatal);
317 object_property_set_link(OBJECT(msc), OBJECT(mms),
318 "idau", &error_fatal);
319 object_property_set_bool(OBJECT(msc), true, "realized", &error_fatal);
320
321 qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0,
322 qdev_get_gpio_in_named(iotkitdev,
323 "mscexp_status", i));
324 qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i,
325 qdev_get_gpio_in_named(DEVICE(msc),
326 "irq_clear", 0));
327 qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i,
328 qdev_get_gpio_in_named(DEVICE(msc),
329 "cfg_nonsec", 0));
330 qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter),
331 ARRAY_SIZE(mms->ppc) + i,
332 qdev_get_gpio_in_named(DEVICE(msc),
333 "cfg_sec_resp", 0));
334 msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0);
335
336 sysbus_init_child_obj(OBJECT(mms), name, dma, sizeof(*dma), TYPE_PL081);
337 object_property_set_link(OBJECT(dma), OBJECT(msc_upstream),
338 "downstream", &error_fatal);
339 object_property_set_bool(OBJECT(dma), true, "realized", &error_fatal);
340
341 s = SYS_BUS_DEVICE(dma);
342 /* Wire up DMACINTR, DMACINTERR, DMACINTTC */
4a30dc1c
PM
343 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 58 + i * 3));
344 sysbus_connect_irq(s, 1, get_sse_irq_in(mms, 56 + i * 3));
345 sysbus_connect_irq(s, 2, get_sse_irq_in(mms, 57 + i * 3));
28e56f05 346
7081e9b6 347 g_free(mscname);
28e56f05
PM
348 return sysbus_mmio_get_region(s, 0);
349}
350
0d49759b
PM
351static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque,
352 const char *name, hwaddr size)
353{
354 /*
355 * The AN505 has five PL022 SPI controllers.
356 * One of these should have the LCD controller behind it; the others
357 * are connected only to the FPGA's "general purpose SPI connector"
358 * or "shield" expansion connectors.
359 * Note that if we do implement devices behind SPI, the chip select
360 * lines are set via the "MISC" register in the MPS2 FPGAIO device.
361 */
362 PL022State *spi = opaque;
363 int i = spi - &mms->spi[0];
0d49759b
PM
364 SysBusDevice *s;
365
b45ad788 366 sysbus_init_child_obj(OBJECT(mms), name, spi, sizeof(*spi), TYPE_PL022);
0d49759b
PM
367 object_property_set_bool(OBJECT(spi), true, "realized", &error_fatal);
368 s = SYS_BUS_DEVICE(spi);
4a30dc1c 369 sysbus_connect_irq(s, 0, get_sse_irq_in(mms, 51 + i));
0d49759b
PM
370 return sysbus_mmio_get_region(s, 0);
371}
372
5aff1c07
PM
373static void mps2tz_common_init(MachineState *machine)
374{
375 MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine);
4a30dc1c 376 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms);
5aff1c07
PM
377 MachineClass *mc = MACHINE_GET_CLASS(machine);
378 MemoryRegion *system_memory = get_system_memory();
379 DeviceState *iotkitdev;
380 DeviceState *dev_splitter;
381 int i;
382
383 if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
384 error_report("This board can only be used with CPU %s",
385 mc->default_cpu_type);
386 exit(1);
387 }
388
70a2cb8e
IM
389 if (machine->ram_size != mc->default_ram_size) {
390 char *sz = size_to_str(mc->default_ram_size);
391 error_report("Invalid RAM size, should be %s", sz);
392 g_free(sz);
393 exit(EXIT_FAILURE);
394 }
395
2e256c04 396 sysbus_init_child_obj(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit,
23f92423 397 sizeof(mms->iotkit), mmc->armsse_type);
5aff1c07
PM
398 iotkitdev = DEVICE(&mms->iotkit);
399 object_property_set_link(OBJECT(&mms->iotkit), OBJECT(system_memory),
400 "memory", &error_abort);
4a30dc1c 401 qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", MPS2TZ_NUMIRQ);
5aff1c07
PM
402 qdev_prop_set_uint32(iotkitdev, "MAINCLK", SYSCLK_FRQ);
403 object_property_set_bool(OBJECT(&mms->iotkit), true, "realized",
404 &error_fatal);
405
4a30dc1c
PM
406 /*
407 * The AN521 needs us to create splitters to feed the IRQ inputs
408 * for each CPU in the SSE-200 from each device in the board.
409 */
410 if (mmc->fpga_type == FPGA_AN521) {
411 for (i = 0; i < MPS2TZ_NUMIRQ; i++) {
412 char *name = g_strdup_printf("mps2-irq-splitter%d", i);
413 SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
414
9fc7fc4d
MA
415 object_initialize_child_with_props(OBJECT(machine), name,
416 splitter, sizeof(*splitter),
417 TYPE_SPLIT_IRQ, &error_fatal,
418 NULL);
4a30dc1c
PM
419 g_free(name);
420
421 object_property_set_int(OBJECT(splitter), 2, "num-lines",
422 &error_fatal);
423 object_property_set_bool(OBJECT(splitter), true, "realized",
424 &error_fatal);
425 qdev_connect_gpio_out(DEVICE(splitter), 0,
426 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
427 "EXP_IRQ", i));
428 qdev_connect_gpio_out(DEVICE(splitter), 1,
429 qdev_get_gpio_in_named(DEVICE(&mms->iotkit),
430 "EXP_CPU1_IRQ", i));
431 }
432 }
433
5aff1c07 434 /* The sec_resp_cfg output from the IoTKit must be split into multiple
28e56f05 435 * lines, one for each of the PPCs we create here, plus one per MSC.
5aff1c07 436 */
7840938e 437 object_initialize_child(OBJECT(machine), "sec-resp-splitter",
9fc7fc4d 438 &mms->sec_resp_splitter, TYPE_SPLIT_IRQ);
28e56f05
PM
439 object_property_set_int(OBJECT(&mms->sec_resp_splitter),
440 ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc),
5aff1c07
PM
441 "num-lines", &error_fatal);
442 object_property_set_bool(OBJECT(&mms->sec_resp_splitter), true,
443 "realized", &error_fatal);
444 dev_splitter = DEVICE(&mms->sec_resp_splitter);
445 qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0,
446 qdev_get_gpio_in(dev_splitter, 0));
447
448 /* The IoTKit sets up much of the memory layout, including
449 * the aliases between secure and non-secure regions in the
450 * address space. The FPGA itself contains:
451 *
452 * 0x00000000..0x003fffff SSRAM1
453 * 0x00400000..0x007fffff alias of SSRAM1
454 * 0x28000000..0x283fffff 4MB SSRAM2 + SSRAM3
455 * 0x40100000..0x4fffffff AHB Master Expansion 1 interface devices
456 * 0x80000000..0x80ffffff 16MB PSRAM
457 */
458
459 /* The FPGA images have an odd combination of different RAMs,
460 * because in hardware they are different implementations and
461 * connected to different buses, giving varying performance/size
462 * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily
463 * call the 16MB our "system memory", as it's the largest lump.
464 */
70a2cb8e 465 memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
5aff1c07 466
5aff1c07
PM
467 /* The overflow IRQs for all UARTs are ORed together.
468 * Tx, Rx and "combined" IRQs are sent to the NVIC separately.
469 * Create the OR gate for this.
470 */
7840938e 471 object_initialize_child(OBJECT(mms), "uart-irq-orgate",
9fc7fc4d 472 &mms->uart_irq_orgate, TYPE_OR_IRQ);
5aff1c07
PM
473 object_property_set_int(OBJECT(&mms->uart_irq_orgate), 10, "num-lines",
474 &error_fatal);
475 object_property_set_bool(OBJECT(&mms->uart_irq_orgate), true,
476 "realized", &error_fatal);
477 qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0,
4a30dc1c 478 get_sse_irq_in(mms, 15));
5aff1c07
PM
479
480 /* Most of the devices in the FPGA are behind Peripheral Protection
481 * Controllers. The required order for initializing things is:
482 * + initialize the PPC
483 * + initialize, configure and realize downstream devices
484 * + connect downstream device MemoryRegions to the PPC
485 * + realize the PPC
486 * + map the PPC's MemoryRegions to the places in the address map
487 * where the downstream devices should appear
488 * + wire up the PPC's control lines to the IoTKit object
489 */
490
491 const PPCInfo ppcs[] = { {
492 .name = "apb_ppcexp0",
493 .ports = {
665670aa
PM
494 { "ssram-0", make_mpc, &mms->ssram_mpc[0], 0x58007000, 0x1000 },
495 { "ssram-1", make_mpc, &mms->ssram_mpc[1], 0x58008000, 0x1000 },
496 { "ssram-2", make_mpc, &mms->ssram_mpc[2], 0x58009000, 0x1000 },
5aff1c07
PM
497 },
498 }, {
499 .name = "apb_ppcexp1",
500 .ports = {
0d49759b
PM
501 { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000 },
502 { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000 },
503 { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000 },
504 { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000 },
505 { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000 },
5aff1c07
PM
506 { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000 },
507 { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000 },
508 { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000 },
509 { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000 },
510 { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000 },
511 { "i2c0", make_unimp_dev, &mms->i2c[0], 0x40207000, 0x1000 },
512 { "i2c1", make_unimp_dev, &mms->i2c[1], 0x40208000, 0x1000 },
513 { "i2c2", make_unimp_dev, &mms->i2c[2], 0x4020c000, 0x1000 },
514 { "i2c3", make_unimp_dev, &mms->i2c[3], 0x4020d000, 0x1000 },
515 },
516 }, {
517 .name = "apb_ppcexp2",
518 .ports = {
519 { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 },
520 { "i2s-audio", make_unimp_dev, &mms->i2s_audio,
521 0x40301000, 0x1000 },
522 { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 },
523 },
524 }, {
525 .name = "ahb_ppcexp0",
526 .ports = {
527 { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 },
528 { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 },
529 { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 },
530 { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 },
531 { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 },
519655e6 532 { "eth", make_eth_dev, NULL, 0x42000000, 0x100000 },
5aff1c07
PM
533 },
534 }, {
535 .name = "ahb_ppcexp1",
536 .ports = {
28e56f05
PM
537 { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000 },
538 { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000 },
539 { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000 },
540 { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000 },
5aff1c07
PM
541 },
542 },
543 };
544
545 for (i = 0; i < ARRAY_SIZE(ppcs); i++) {
546 const PPCInfo *ppcinfo = &ppcs[i];
547 TZPPC *ppc = &mms->ppc[i];
548 DeviceState *ppcdev;
549 int port;
550 char *gpioname;
551
fcf13ca5 552 sysbus_init_child_obj(OBJECT(machine), ppcinfo->name, ppc,
8352a5b8 553 sizeof(*ppc), TYPE_TZ_PPC);
5aff1c07
PM
554 ppcdev = DEVICE(ppc);
555
556 for (port = 0; port < TZ_NUM_PORTS; port++) {
557 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
558 MemoryRegion *mr;
559 char *portname;
560
561 if (!pinfo->devfn) {
562 continue;
563 }
564
565 mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
566 portname = g_strdup_printf("port[%d]", port);
567 object_property_set_link(OBJECT(ppc), OBJECT(mr),
568 portname, &error_fatal);
569 g_free(portname);
570 }
571
572 object_property_set_bool(OBJECT(ppc), true, "realized", &error_fatal);
573
574 for (port = 0; port < TZ_NUM_PORTS; port++) {
575 const PPCPortInfo *pinfo = &ppcinfo->ports[port];
576
577 if (!pinfo->devfn) {
578 continue;
579 }
580 sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
581
582 gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
583 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
584 qdev_get_gpio_in_named(ppcdev,
585 "cfg_nonsec",
586 port));
587 g_free(gpioname);
588 gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
589 qdev_connect_gpio_out_named(iotkitdev, gpioname, port,
590 qdev_get_gpio_in_named(ppcdev,
591 "cfg_ap", port));
592 g_free(gpioname);
593 }
594
595 gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
596 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
597 qdev_get_gpio_in_named(ppcdev,
598 "irq_enable", 0));
599 g_free(gpioname);
600 gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
601 qdev_connect_gpio_out_named(iotkitdev, gpioname, 0,
602 qdev_get_gpio_in_named(ppcdev,
603 "irq_clear", 0));
604 g_free(gpioname);
605 gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
606 qdev_connect_gpio_out_named(ppcdev, "irq", 0,
607 qdev_get_gpio_in_named(iotkitdev,
608 gpioname, 0));
609 g_free(gpioname);
610
611 qdev_connect_gpio_out(dev_splitter, i,
612 qdev_get_gpio_in_named(ppcdev,
613 "cfg_sec_resp", 0));
614 }
615
5aff1c07
PM
616 create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000);
617
618 armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x400000);
619}
620
28e56f05
PM
621static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address,
622 int *iregion, bool *exempt, bool *ns, bool *nsc)
623{
624 /*
625 * The MPS2 TZ FPGA images have IDAUs in them which are connected to
626 * the Master Security Controllers. Thes have the same logic as
627 * is used by the IoTKit for the IDAU connected to the CPU, except
628 * that MSCs don't care about the NSC attribute.
629 */
630 int region = extract32(address, 28, 4);
631
632 *ns = !(region & 1);
633 *nsc = false;
634 /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */
635 *exempt = (address & 0xeff00000) == 0xe0000000;
636 *iregion = region;
637}
638
5aff1c07
PM
639static void mps2tz_class_init(ObjectClass *oc, void *data)
640{
641 MachineClass *mc = MACHINE_CLASS(oc);
28e56f05 642 IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc);
5aff1c07
PM
643
644 mc->init = mps2tz_common_init;
28e56f05 645 iic->check = mps2_tz_idau_check;
70a2cb8e
IM
646 mc->default_ram_size = 16 * MiB;
647 mc->default_ram_id = "mps.ram";
5aff1c07
PM
648}
649
650static void mps2tz_an505_class_init(ObjectClass *oc, void *data)
651{
652 MachineClass *mc = MACHINE_CLASS(oc);
653 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
654
655 mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33";
23f92423
PM
656 mc->default_cpus = 1;
657 mc->min_cpus = mc->default_cpus;
658 mc->max_cpus = mc->default_cpus;
5aff1c07
PM
659 mmc->fpga_type = FPGA_AN505;
660 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
cb159db9 661 mmc->scc_id = 0x41045050;
23f92423
PM
662 mmc->armsse_type = TYPE_IOTKIT;
663}
664
665static void mps2tz_an521_class_init(ObjectClass *oc, void *data)
666{
667 MachineClass *mc = MACHINE_CLASS(oc);
668 MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc);
669
670 mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33";
671 mc->default_cpus = 2;
672 mc->min_cpus = mc->default_cpus;
673 mc->max_cpus = mc->default_cpus;
674 mmc->fpga_type = FPGA_AN521;
675 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
676 mmc->scc_id = 0x41045210;
677 mmc->armsse_type = TYPE_SSE200;
5aff1c07
PM
678}
679
680static const TypeInfo mps2tz_info = {
681 .name = TYPE_MPS2TZ_MACHINE,
682 .parent = TYPE_MACHINE,
683 .abstract = true,
684 .instance_size = sizeof(MPS2TZMachineState),
685 .class_size = sizeof(MPS2TZMachineClass),
686 .class_init = mps2tz_class_init,
28e56f05
PM
687 .interfaces = (InterfaceInfo[]) {
688 { TYPE_IDAU_INTERFACE },
689 { }
690 },
5aff1c07
PM
691};
692
693static const TypeInfo mps2tz_an505_info = {
694 .name = TYPE_MPS2TZ_AN505_MACHINE,
695 .parent = TYPE_MPS2TZ_MACHINE,
696 .class_init = mps2tz_an505_class_init,
697};
698
23f92423
PM
699static const TypeInfo mps2tz_an521_info = {
700 .name = TYPE_MPS2TZ_AN521_MACHINE,
701 .parent = TYPE_MPS2TZ_MACHINE,
702 .class_init = mps2tz_an521_class_init,
703};
704
5aff1c07
PM
705static void mps2tz_machine_init(void)
706{
707 type_register_static(&mps2tz_info);
708 type_register_static(&mps2tz_an505_info);
23f92423 709 type_register_static(&mps2tz_an521_info);
5aff1c07
PM
710}
711
712type_init(mps2tz_machine_init);