]> git.proxmox.com Git - mirror_qemu.git/blame - hw/arm/virt.c
pc: simplify MachineClass::get_hotplug_handler handling
[mirror_qemu.git] / hw / arm / virt.c
CommitLineData
f5fdcd6e
PM
1/*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
12b16722 31#include "qemu/osdep.h"
da34e65c 32#include "qapi/error.h"
f5fdcd6e
PM
33#include "hw/sysbus.h"
34#include "hw/arm/arm.h"
35#include "hw/arm/primecell.h"
afe0b380 36#include "hw/arm/virt.h"
6f2062b9
EH
37#include "hw/vfio/vfio-calxeda-xgmac.h"
38#include "hw/vfio/vfio-amd-xgbe.h"
f5fdcd6e
PM
39#include "hw/devices.h"
40#include "net/net.h"
fa1d36df 41#include "sysemu/block-backend.h"
f5fdcd6e 42#include "sysemu/device_tree.h"
9695200a 43#include "sysemu/numa.h"
f5fdcd6e
PM
44#include "sysemu/sysemu.h"
45#include "sysemu/kvm.h"
1287f2b3 46#include "hw/compat.h"
acf82361 47#include "hw/loader.h"
f5fdcd6e
PM
48#include "exec/address-spaces.h"
49#include "qemu/bitops.h"
50#include "qemu/error-report.h"
4ab29b82 51#include "hw/pci-host/gpex.h"
5f7a5a0e
EA
52#include "hw/arm/sysbus-fdt.h"
53#include "hw/platform-bus.h"
decf4f80 54#include "hw/arm/fdt.h"
95eb49c8
AJ
55#include "hw/intc/arm_gic.h"
56#include "hw/intc/arm_gicv3_common.h"
e6fbcbc4 57#include "kvm_arm.h"
c30e1565 58#include "hw/smbios/smbios.h"
b92ad394 59#include "qapi/visitor.h"
3e6ebb64 60#include "standard-headers/linux/input.h"
584105ea 61#include "hw/arm/smmuv3.h"
f5fdcd6e 62
3356ebce 63#define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
ab093c3c
AJ
64 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
65 void *data) \
66 { \
67 MachineClass *mc = MACHINE_CLASS(oc); \
68 virt_machine_##major##_##minor##_options(mc); \
69 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
3356ebce
AJ
70 if (latest) { \
71 mc->alias = "virt"; \
72 } \
ab093c3c
AJ
73 } \
74 static const TypeInfo machvirt_##major##_##minor##_info = { \
75 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
76 .parent = TYPE_VIRT_MACHINE, \
77 .instance_init = virt_##major##_##minor##_instance_init, \
78 .class_init = virt_##major##_##minor##_class_init, \
79 }; \
80 static void machvirt_machine_##major##_##minor##_init(void) \
81 { \
82 type_register_static(&machvirt_##major##_##minor##_info); \
83 } \
84 type_init(machvirt_machine_##major##_##minor##_init);
85
3356ebce
AJ
86#define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
87 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
88#define DEFINE_VIRT_MACHINE(major, minor) \
89 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
90
ab093c3c 91
a72d4363
AJ
92/* Number of external interrupt lines to configure the GIC with */
93#define NUM_IRQS 256
94
95#define PLATFORM_BUS_NUM_IRQS 64
96
97static ARMPlatformBusSystemParams platform_bus_params;
98
71c27684
PM
99/* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
100 * RAM can go up to the 256GB mark, leaving 256GB of the physical
101 * address space unallocated and free for future use between 256G and 512G.
102 * If we need to provide more RAM to VMs in the future then we need to:
103 * * allocate a second bank of RAM starting at 2TB and working up
104 * * fix the DT and ACPI table generation code in QEMU to correctly
105 * report two split lumps of RAM to the guest
106 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
107 * (We don't want to fill all the way up to 512GB with RAM because
108 * we might want it for non-RAM purposes later. Conversely it seems
109 * reasonable to assume that anybody configuring a VM with a quarter
110 * of a terabyte of RAM will be doing it on a host with more than a
111 * terabyte of physical address space.)
112 */
113#define RAMLIMIT_GB 255
114#define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
115
f5fdcd6e
PM
116/* Addresses and sizes of our components.
117 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
118 * 128MB..256MB is used for miscellaneous device I/O.
119 * 256MB..1GB is reserved for possible future PCI support (ie where the
120 * PCI memory window will go if we add a PCI host controller).
121 * 1GB and up is RAM (which may happily spill over into the
122 * high memory region beyond 4GB).
123 * This represents a compromise between how much RAM can be given to
124 * a 32 bit VM and leaving space for expansion and in particular for PCI.
6e411af9
PM
125 * Note that devices should generally be placed at multiples of 0x10000,
126 * to accommodate guests using 64K pages.
f5fdcd6e
PM
127 */
128static const MemMapEntry a15memmap[] = {
129 /* Space up to 0x8000000 is reserved for a boot ROM */
94edf02c
EA
130 [VIRT_FLASH] = { 0, 0x08000000 },
131 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
f5fdcd6e 132 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
94edf02c
EA
133 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
134 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
135 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
b92ad394
PF
136 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
137 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
138 /* This redistributor space allows up to 2*64kB*123 CPUs */
139 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
94edf02c
EA
140 [VIRT_UART] = { 0x09000000, 0x00001000 },
141 [VIRT_RTC] = { 0x09010000, 0x00001000 },
0b341a85 142 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
b0a3721e 143 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
3df708eb 144 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
584105ea 145 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
94edf02c 146 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
f5fdcd6e 147 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
94edf02c 148 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
83ec1923 149 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
94edf02c
EA
150 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
151 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
152 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
71c27684 153 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
5125f9cd
PF
154 /* Second PCIe window, 512GB wide at the 512GB boundary */
155 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
f5fdcd6e
PM
156};
157
158static const int a15irqmap[] = {
159 [VIRT_UART] = 1,
6e411af9 160 [VIRT_RTC] = 2,
4ab29b82 161 [VIRT_PCIE] = 3, /* ... to 6 */
b0a3721e 162 [VIRT_GPIO] = 7,
3df708eb 163 [VIRT_SECURE_UART] = 8,
f5fdcd6e 164 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
bd204e63 165 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
584105ea 166 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
5f7a5a0e 167 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
f5fdcd6e
PM
168};
169
9ac4ef77 170static const char *valid_cpus[] = {
ba1ba5cc
IM
171 ARM_CPU_TYPE_NAME("cortex-a15"),
172 ARM_CPU_TYPE_NAME("cortex-a53"),
173 ARM_CPU_TYPE_NAME("cortex-a57"),
174 ARM_CPU_TYPE_NAME("host"),
9076ddb3 175 ARM_CPU_TYPE_NAME("max"),
f5fdcd6e
PM
176};
177
ba1ba5cc 178static bool cpu_type_valid(const char *cpu)
f5fdcd6e
PM
179{
180 int i;
181
9ac4ef77
PM
182 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
183 if (strcmp(cpu, valid_cpus[i]) == 0) {
184 return true;
f5fdcd6e
PM
185 }
186 }
9ac4ef77 187 return false;
f5fdcd6e
PM
188}
189
c8ef2bda 190static void create_fdt(VirtMachineState *vms)
f5fdcd6e 191{
c8ef2bda 192 void *fdt = create_device_tree(&vms->fdt_size);
f5fdcd6e
PM
193
194 if (!fdt) {
195 error_report("create_device_tree() failed");
196 exit(1);
197 }
198
c8ef2bda 199 vms->fdt = fdt;
f5fdcd6e
PM
200
201 /* Header */
5a4348d1
PC
202 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
203 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
204 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
f5fdcd6e
PM
205
206 /*
207 * /chosen and /memory nodes must exist for load_dtb
208 * to fill in necessary properties later
209 */
5a4348d1
PC
210 qemu_fdt_add_subnode(fdt, "/chosen");
211 qemu_fdt_add_subnode(fdt, "/memory");
212 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
f5fdcd6e
PM
213
214 /* Clock node, for the benefit of the UART. The kernel device tree
215 * binding documentation claims the PL011 node clock properties are
216 * optional but in practice if you omit them the kernel refuses to
217 * probe for the device.
218 */
c8ef2bda 219 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
5a4348d1
PC
220 qemu_fdt_add_subnode(fdt, "/apb-pclk");
221 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
222 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
223 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
224 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
f5fdcd6e 225 "clk24mhz");
c8ef2bda 226 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
f5fdcd6e 227
c7637c04
AJ
228 if (have_numa_distance) {
229 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
230 uint32_t *matrix = g_malloc0(size);
231 int idx, i, j;
232
233 for (i = 0; i < nb_numa_nodes; i++) {
234 for (j = 0; j < nb_numa_nodes; j++) {
235 idx = (i * nb_numa_nodes + j) * 3;
236 matrix[idx + 0] = cpu_to_be32(i);
237 matrix[idx + 1] = cpu_to_be32(j);
238 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
239 }
240 }
241
242 qemu_fdt_add_subnode(fdt, "/distance-map");
243 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
244 "numa-distance-map-v1");
245 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
246 matrix, size);
247 g_free(matrix);
248 }
06955739
PS
249}
250
055a7f2b 251static void fdt_add_timer_nodes(const VirtMachineState *vms)
f5fdcd6e 252{
156bc9a5
PM
253 /* On real hardware these interrupts are level-triggered.
254 * On KVM they were edge-triggered before host kernel version 4.4,
255 * and level-triggered afterwards.
256 * On emulated QEMU they are level-triggered.
257 *
258 * Getting the DTB info about them wrong is awkward for some
259 * guest kernels:
260 * pre-4.8 ignore the DT and leave the interrupt configured
261 * with whatever the GIC reset value (or the bootloader) left it at
262 * 4.8 before rc6 honour the incorrect data by programming it back
263 * into the GIC, causing problems
264 * 4.8rc6 and later ignore the DT and always write "level triggered"
265 * into the GIC
266 *
267 * For backwards-compatibility, virt-2.8 and earlier will continue
268 * to say these are edge-triggered, but later machines will report
269 * the correct information.
f5fdcd6e 270 */
b32a9509 271 ARMCPU *armcpu;
156bc9a5
PM
272 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
273 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
274
275 if (vmc->claim_edge_triggered_timers) {
276 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
277 }
f5fdcd6e 278
055a7f2b 279 if (vms->gic_version == 2) {
b92ad394
PF
280 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
281 GIC_FDT_IRQ_PPI_CPU_WIDTH,
c8ef2bda 282 (1 << vms->smp_cpus) - 1);
b92ad394 283 }
f5fdcd6e 284
c8ef2bda 285 qemu_fdt_add_subnode(vms->fdt, "/timer");
b32a9509
CF
286
287 armcpu = ARM_CPU(qemu_get_cpu(0));
288 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
289 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
c8ef2bda 290 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
b32a9509
CF
291 compat, sizeof(compat));
292 } else {
c8ef2bda 293 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
b32a9509
CF
294 "arm,armv7-timer");
295 }
c8ef2bda
PM
296 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
297 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
ee246400
SZ
298 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
299 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
300 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
301 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
f5fdcd6e
PM
302}
303
c8ef2bda 304static void fdt_add_cpu_nodes(const VirtMachineState *vms)
f5fdcd6e
PM
305{
306 int cpu;
8d45c54d 307 int addr_cells = 1;
4ccf5826 308 const MachineState *ms = MACHINE(vms);
8d45c54d
PF
309
310 /*
311 * From Documentation/devicetree/bindings/arm/cpus.txt
312 * On ARM v8 64-bit systems value should be set to 2,
313 * that corresponds to the MPIDR_EL1 register size.
314 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
315 * in the system, #address-cells can be set to 1, since
316 * MPIDR_EL1[63:32] bits are not used for CPUs
317 * identification.
318 *
319 * Here we actually don't know whether our system is 32- or 64-bit one.
320 * The simplest way to go is to examine affinity IDs of all our CPUs. If
321 * at least one of them has Aff3 populated, we set #address-cells to 2.
322 */
c8ef2bda 323 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
8d45c54d
PF
324 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
325
326 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
327 addr_cells = 2;
328 break;
329 }
330 }
f5fdcd6e 331
c8ef2bda
PM
332 qemu_fdt_add_subnode(vms->fdt, "/cpus");
333 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
334 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
f5fdcd6e 335
c8ef2bda 336 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
f5fdcd6e
PM
337 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
338 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
4ccf5826 339 CPUState *cs = CPU(armcpu);
f5fdcd6e 340
c8ef2bda
PM
341 qemu_fdt_add_subnode(vms->fdt, nodename);
342 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
343 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
f5fdcd6e
PM
344 armcpu->dtb_compatible);
345
2013c566
PM
346 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
347 && vms->smp_cpus > 1) {
c8ef2bda 348 qemu_fdt_setprop_string(vms->fdt, nodename,
f5fdcd6e
PM
349 "enable-method", "psci");
350 }
351
8d45c54d 352 if (addr_cells == 2) {
c8ef2bda 353 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
8d45c54d
PF
354 armcpu->mp_affinity);
355 } else {
c8ef2bda 356 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
8d45c54d
PF
357 armcpu->mp_affinity);
358 }
359
4ccf5826
IM
360 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
361 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
362 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
9695200a
SZ
363 }
364
f5fdcd6e
PM
365 g_free(nodename);
366 }
367}
368
c8ef2bda 369static void fdt_add_its_gic_node(VirtMachineState *vms)
02f98731 370{
c8ef2bda
PM
371 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
372 qemu_fdt_add_subnode(vms->fdt, "/intc/its");
373 qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
02f98731 374 "arm,gic-v3-its");
c8ef2bda
PM
375 qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
376 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
377 2, vms->memmap[VIRT_GIC_ITS].base,
378 2, vms->memmap[VIRT_GIC_ITS].size);
379 qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
02f98731
PF
380}
381
c8ef2bda 382static void fdt_add_v2m_gic_node(VirtMachineState *vms)
f5fdcd6e 383{
c8ef2bda
PM
384 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
385 qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
386 qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
bd204e63 387 "arm,gic-v2m-frame");
c8ef2bda
PM
388 qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
389 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
390 2, vms->memmap[VIRT_GIC_V2M].base,
391 2, vms->memmap[VIRT_GIC_V2M].size);
392 qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
bd204e63 393}
f5fdcd6e 394
055a7f2b 395static void fdt_add_gic_node(VirtMachineState *vms)
bd204e63 396{
c8ef2bda
PM
397 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
398 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
399
400 qemu_fdt_add_subnode(vms->fdt, "/intc");
401 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
402 qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
403 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
404 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
405 qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
055a7f2b 406 if (vms->gic_version == 3) {
c8ef2bda 407 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
b92ad394 408 "arm,gic-v3");
c8ef2bda
PM
409 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
410 2, vms->memmap[VIRT_GIC_DIST].base,
411 2, vms->memmap[VIRT_GIC_DIST].size,
412 2, vms->memmap[VIRT_GIC_REDIST].base,
413 2, vms->memmap[VIRT_GIC_REDIST].size);
f29cacfb
PM
414 if (vms->virt) {
415 qemu_fdt_setprop_cells(vms->fdt, "/intc", "interrupts",
416 GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ,
417 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
418 }
b92ad394
PF
419 } else {
420 /* 'cortex-a15-gic' means 'GIC v2' */
c8ef2bda 421 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
b92ad394 422 "arm,cortex-a15-gic");
c8ef2bda
PM
423 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
424 2, vms->memmap[VIRT_GIC_DIST].base,
425 2, vms->memmap[VIRT_GIC_DIST].size,
426 2, vms->memmap[VIRT_GIC_CPU].base,
427 2, vms->memmap[VIRT_GIC_CPU].size);
b92ad394
PF
428 }
429
c8ef2bda 430 qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
f5fdcd6e
PM
431}
432
055a7f2b 433static void fdt_add_pmu_nodes(const VirtMachineState *vms)
01fe6b60
SZ
434{
435 CPUState *cpu;
436 ARMCPU *armcpu;
437 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
438
439 CPU_FOREACH(cpu) {
440 armcpu = ARM_CPU(cpu);
3f07cb2a 441 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
01fe6b60
SZ
442 return;
443 }
3f07cb2a 444 if (kvm_enabled()) {
b2bfe9f7
AJ
445 if (kvm_irqchip_in_kernel()) {
446 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
3f07cb2a 447 }
b2bfe9f7 448 kvm_arm_pmu_init(cpu);
3f07cb2a 449 }
01fe6b60
SZ
450 }
451
055a7f2b 452 if (vms->gic_version == 2) {
01fe6b60
SZ
453 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
454 GIC_FDT_IRQ_PPI_CPU_WIDTH,
c8ef2bda 455 (1 << vms->smp_cpus) - 1);
01fe6b60
SZ
456 }
457
458 armcpu = ARM_CPU(qemu_get_cpu(0));
c8ef2bda 459 qemu_fdt_add_subnode(vms->fdt, "/pmu");
01fe6b60
SZ
460 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
461 const char compat[] = "arm,armv8-pmuv3";
c8ef2bda 462 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
01fe6b60 463 compat, sizeof(compat));
c8ef2bda 464 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
01fe6b60
SZ
465 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
466 }
467}
468
c8ef2bda 469static void create_its(VirtMachineState *vms, DeviceState *gicdev)
02f98731
PF
470{
471 const char *itsclass = its_class_name();
472 DeviceState *dev;
473
474 if (!itsclass) {
475 /* Do nothing if not supported */
476 return;
477 }
478
479 dev = qdev_create(NULL, itsclass);
480
481 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
482 &error_abort);
483 qdev_init_nofail(dev);
c8ef2bda 484 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
02f98731 485
c8ef2bda 486 fdt_add_its_gic_node(vms);
02f98731
PF
487}
488
c8ef2bda 489static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
bd204e63
CD
490{
491 int i;
c8ef2bda 492 int irq = vms->irqmap[VIRT_GIC_V2M];
bd204e63
CD
493 DeviceState *dev;
494
495 dev = qdev_create(NULL, "arm-gicv2m");
c8ef2bda 496 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
bd204e63
CD
497 qdev_prop_set_uint32(dev, "base-spi", irq);
498 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
499 qdev_init_nofail(dev);
500
501 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
502 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
503 }
504
c8ef2bda 505 fdt_add_v2m_gic_node(vms);
bd204e63
CD
506}
507
055a7f2b 508static void create_gic(VirtMachineState *vms, qemu_irq *pic)
64204743 509{
b92ad394 510 /* We create a standalone GIC */
64204743
PM
511 DeviceState *gicdev;
512 SysBusDevice *gicbusdev;
e6fbcbc4 513 const char *gictype;
055a7f2b 514 int type = vms->gic_version, i;
64204743 515
b92ad394 516 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
64204743
PM
517
518 gicdev = qdev_create(NULL, gictype);
b92ad394 519 qdev_prop_set_uint32(gicdev, "revision", type);
64204743
PM
520 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
521 /* Note that the num-irq property counts both internal and external
522 * interrupts; there are always 32 of the former (mandated by GIC spec).
523 */
524 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
0e21f183 525 if (!kvm_irqchip_in_kernel()) {
0127937b 526 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
0e21f183 527 }
64204743
PM
528 qdev_init_nofail(gicdev);
529 gicbusdev = SYS_BUS_DEVICE(gicdev);
c8ef2bda 530 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
b92ad394 531 if (type == 3) {
c8ef2bda 532 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
b92ad394 533 } else {
c8ef2bda 534 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
b92ad394 535 }
64204743 536
5454006a
PM
537 /* Wire the outputs from each CPU's generic timer and the GICv3
538 * maintenance interrupt signal to the appropriate GIC PPI inputs,
539 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
64204743
PM
540 */
541 for (i = 0; i < smp_cpus; i++) {
542 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
0e3e858f 543 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
a007b1f8
PM
544 int irq;
545 /* Mapping from the output timer irq lines from the CPU to the
546 * GIC PPI inputs we use for the virt board.
64204743 547 */
a007b1f8
PM
548 const int timer_irq[] = {
549 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
550 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
551 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
552 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
553 };
554
555 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
556 qdev_connect_gpio_out(cpudev, irq,
557 qdev_get_gpio_in(gicdev,
558 ppibase + timer_irq[irq]));
559 }
64204743 560
5454006a
PM
561 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
562 qdev_get_gpio_in(gicdev, ppibase
563 + ARCH_GICV3_MAINT_IRQ));
07f48730
AJ
564 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
565 qdev_get_gpio_in(gicdev, ppibase
566 + VIRTUAL_PMU_IRQ));
5454006a 567
64204743 568 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
8e7b4ca0
GB
569 sysbus_connect_irq(gicbusdev, i + smp_cpus,
570 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
5454006a
PM
571 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
572 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
573 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
574 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
64204743
PM
575 }
576
577 for (i = 0; i < NUM_IRQS; i++) {
578 pic[i] = qdev_get_gpio_in(gicdev, i);
579 }
580
055a7f2b 581 fdt_add_gic_node(vms);
bd204e63 582
ccc11b02 583 if (type == 3 && vms->its) {
c8ef2bda 584 create_its(vms, gicdev);
2231f69b 585 } else if (type == 2) {
c8ef2bda 586 create_v2m(vms, pic);
b92ad394 587 }
64204743
PM
588}
589
c8ef2bda 590static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
0ec7b3e7 591 MemoryRegion *mem, Chardev *chr)
f5fdcd6e
PM
592{
593 char *nodename;
c8ef2bda
PM
594 hwaddr base = vms->memmap[uart].base;
595 hwaddr size = vms->memmap[uart].size;
596 int irq = vms->irqmap[uart];
f5fdcd6e
PM
597 const char compat[] = "arm,pl011\0arm,primecell";
598 const char clocknames[] = "uartclk\0apb_pclk";
3df708eb
PM
599 DeviceState *dev = qdev_create(NULL, "pl011");
600 SysBusDevice *s = SYS_BUS_DEVICE(dev);
f5fdcd6e 601
9bbbf649 602 qdev_prop_set_chr(dev, "chardev", chr);
3df708eb
PM
603 qdev_init_nofail(dev);
604 memory_region_add_subregion(mem, base,
605 sysbus_mmio_get_region(s, 0));
606 sysbus_connect_irq(s, 0, pic[irq]);
f5fdcd6e
PM
607
608 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
c8ef2bda 609 qemu_fdt_add_subnode(vms->fdt, nodename);
f5fdcd6e 610 /* Note that we can't use setprop_string because of the embedded NUL */
c8ef2bda 611 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
f5fdcd6e 612 compat, sizeof(compat));
c8ef2bda 613 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
f5fdcd6e 614 2, base, 2, size);
c8ef2bda 615 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
f5fdcd6e 616 GIC_FDT_IRQ_TYPE_SPI, irq,
0be969a2 617 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
c8ef2bda
PM
618 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
619 vms->clock_phandle, vms->clock_phandle);
620 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
f5fdcd6e 621 clocknames, sizeof(clocknames));
f022b8e9 622
3df708eb 623 if (uart == VIRT_UART) {
c8ef2bda 624 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
3df708eb
PM
625 } else {
626 /* Mark as not usable by the normal world */
c8ef2bda
PM
627 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
628 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
3df708eb
PM
629 }
630
f5fdcd6e
PM
631 g_free(nodename);
632}
633
c8ef2bda 634static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
6e411af9
PM
635{
636 char *nodename;
c8ef2bda
PM
637 hwaddr base = vms->memmap[VIRT_RTC].base;
638 hwaddr size = vms->memmap[VIRT_RTC].size;
639 int irq = vms->irqmap[VIRT_RTC];
6e411af9
PM
640 const char compat[] = "arm,pl031\0arm,primecell";
641
642 sysbus_create_simple("pl031", base, pic[irq]);
643
644 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
c8ef2bda
PM
645 qemu_fdt_add_subnode(vms->fdt, nodename);
646 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
647 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
6e411af9 648 2, base, 2, size);
c8ef2bda 649 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
6e411af9 650 GIC_FDT_IRQ_TYPE_SPI, irq,
0be969a2 651 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
c8ef2bda
PM
652 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
653 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
6e411af9
PM
654 g_free(nodename);
655}
656
94f02c5e 657static DeviceState *gpio_key_dev;
4bedd849
SZ
658static void virt_powerdown_req(Notifier *n, void *opaque)
659{
660 /* use gpio Pin 3 for power button event */
94f02c5e 661 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
4bedd849
SZ
662}
663
664static Notifier virt_system_powerdown_notifier = {
665 .notify = virt_powerdown_req
666};
667
c8ef2bda 668static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
b0a3721e
SZ
669{
670 char *nodename;
94f02c5e 671 DeviceState *pl061_dev;
c8ef2bda
PM
672 hwaddr base = vms->memmap[VIRT_GPIO].base;
673 hwaddr size = vms->memmap[VIRT_GPIO].size;
674 int irq = vms->irqmap[VIRT_GPIO];
b0a3721e
SZ
675 const char compat[] = "arm,pl061\0arm,primecell";
676
4bedd849 677 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
b0a3721e 678
c8ef2bda 679 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
b0a3721e 680 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
c8ef2bda
PM
681 qemu_fdt_add_subnode(vms->fdt, nodename);
682 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
b0a3721e 683 2, base, 2, size);
c8ef2bda
PM
684 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
685 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
686 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
687 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
b0a3721e
SZ
688 GIC_FDT_IRQ_TYPE_SPI, irq,
689 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
c8ef2bda
PM
690 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
691 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
692 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
3e6ebb64 693
94f02c5e
SZ
694 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
695 qdev_get_gpio_in(pl061_dev, 3));
c8ef2bda
PM
696 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
697 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
698 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
699 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
3e6ebb64 700
c8ef2bda
PM
701 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
702 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
3e6ebb64 703 "label", "GPIO Key Poweroff");
c8ef2bda 704 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
3e6ebb64 705 KEY_POWER);
c8ef2bda 706 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
3e6ebb64 707 "gpios", phandle, 3, 0);
b0a3721e 708
4bedd849
SZ
709 /* connect powerdown request */
710 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
711
b0a3721e
SZ
712 g_free(nodename);
713}
714
c8ef2bda 715static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
f5fdcd6e
PM
716{
717 int i;
c8ef2bda 718 hwaddr size = vms->memmap[VIRT_MMIO].size;
f5fdcd6e 719
587078f0
LE
720 /* We create the transports in forwards order. Since qbus_realize()
721 * prepends (not appends) new child buses, the incrementing loop below will
722 * create a list of virtio-mmio buses with decreasing base addresses.
723 *
724 * When a -device option is processed from the command line,
725 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
726 * order. The upshot is that -device options in increasing command line
727 * order are mapped to virtio-mmio buses with decreasing base addresses.
728 *
729 * When this code was originally written, that arrangement ensured that the
730 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
731 * the first -device on the command line. (The end-to-end order is a
732 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
733 * guest kernel's name-to-address assignment strategy.)
734 *
735 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
736 * the message, if not necessarily the code, of commit 70161ff336.
737 * Therefore the loop now establishes the inverse of the original intent.
738 *
739 * Unfortunately, we can't counteract the kernel change by reversing the
740 * loop; it would break existing command lines.
741 *
742 * In any case, the kernel makes no guarantee about the stability of
743 * enumeration order of virtio devices (as demonstrated by it changing
744 * between kernel versions). For reliable and stable identification
745 * of disks users must use UUIDs or similar mechanisms.
f5fdcd6e
PM
746 */
747 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
c8ef2bda
PM
748 int irq = vms->irqmap[VIRT_MMIO] + i;
749 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
f5fdcd6e
PM
750
751 sysbus_create_simple("virtio-mmio", base, pic[irq]);
752 }
753
587078f0
LE
754 /* We add dtb nodes in reverse order so that they appear in the finished
755 * device tree lowest address first.
756 *
757 * Note that this mapping is independent of the loop above. The previous
758 * loop influences virtio device to virtio transport assignment, whereas
759 * this loop controls how virtio transports are laid out in the dtb.
760 */
f5fdcd6e
PM
761 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
762 char *nodename;
c8ef2bda
PM
763 int irq = vms->irqmap[VIRT_MMIO] + i;
764 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
f5fdcd6e
PM
765
766 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
c8ef2bda
PM
767 qemu_fdt_add_subnode(vms->fdt, nodename);
768 qemu_fdt_setprop_string(vms->fdt, nodename,
5a4348d1 769 "compatible", "virtio,mmio");
c8ef2bda 770 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
5a4348d1 771 2, base, 2, size);
c8ef2bda 772 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
5a4348d1
PC
773 GIC_FDT_IRQ_TYPE_SPI, irq,
774 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
054bb7b2 775 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
f5fdcd6e
PM
776 g_free(nodename);
777 }
778}
779
acf82361 780static void create_one_flash(const char *name, hwaddr flashbase,
738a5d9f
PM
781 hwaddr flashsize, const char *file,
782 MemoryRegion *sysmem)
acf82361
PM
783{
784 /* Create and map a single flash device. We use the same
785 * parameters as the flash devices on the Versatile Express board.
786 */
787 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
788 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
16f4a8dc 789 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
acf82361
PM
790 const uint64_t sectorlength = 256 * 1024;
791
9b3d111a
MA
792 if (dinfo) {
793 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
794 &error_abort);
acf82361
PM
795 }
796
797 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
798 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
799 qdev_prop_set_uint8(dev, "width", 4);
800 qdev_prop_set_uint8(dev, "device-width", 2);
e9809422 801 qdev_prop_set_bit(dev, "big-endian", false);
acf82361
PM
802 qdev_prop_set_uint16(dev, "id0", 0x89);
803 qdev_prop_set_uint16(dev, "id1", 0x18);
804 qdev_prop_set_uint16(dev, "id2", 0x00);
805 qdev_prop_set_uint16(dev, "id3", 0x00);
806 qdev_prop_set_string(dev, "name", name);
807 qdev_init_nofail(dev);
808
738a5d9f
PM
809 memory_region_add_subregion(sysmem, flashbase,
810 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
acf82361 811
16f4a8dc 812 if (file) {
6e05a12f 813 char *fn;
4de9a883 814 int image_size;
acf82361
PM
815
816 if (drive_get(IF_PFLASH, 0, 0)) {
817 error_report("The contents of the first flash device may be "
818 "specified with -bios or with -drive if=pflash... "
819 "but you cannot use both options at once");
820 exit(1);
821 }
16f4a8dc 822 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
4de9a883 823 if (!fn) {
16f4a8dc 824 error_report("Could not find ROM image '%s'", file);
4de9a883
SW
825 exit(1);
826 }
16f4a8dc 827 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
4de9a883
SW
828 g_free(fn);
829 if (image_size < 0) {
16f4a8dc 830 error_report("Could not load ROM image '%s'", file);
acf82361
PM
831 exit(1);
832 }
833 }
16f4a8dc
PM
834}
835
c8ef2bda 836static void create_flash(const VirtMachineState *vms,
738a5d9f
PM
837 MemoryRegion *sysmem,
838 MemoryRegion *secure_sysmem)
16f4a8dc
PM
839{
840 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
841 * Any file passed via -bios goes in the first of these.
738a5d9f
PM
842 * sysmem is the system memory space. secure_sysmem is the secure view
843 * of the system, and the first flash device should be made visible only
844 * there. The second flash device is visible to both secure and nonsecure.
845 * If sysmem == secure_sysmem this means there is no separate Secure
846 * address space and both flash devices are generally visible.
16f4a8dc 847 */
c8ef2bda
PM
848 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
849 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
16f4a8dc 850 char *nodename;
acf82361 851
738a5d9f
PM
852 create_one_flash("virt.flash0", flashbase, flashsize,
853 bios_name, secure_sysmem);
854 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
855 NULL, sysmem);
acf82361 856
738a5d9f
PM
857 if (sysmem == secure_sysmem) {
858 /* Report both flash devices as a single node in the DT */
859 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
c8ef2bda
PM
860 qemu_fdt_add_subnode(vms->fdt, nodename);
861 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
862 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
738a5d9f
PM
863 2, flashbase, 2, flashsize,
864 2, flashbase + flashsize, 2, flashsize);
c8ef2bda 865 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
738a5d9f
PM
866 g_free(nodename);
867 } else {
868 /* Report the devices as separate nodes so we can mark one as
869 * only visible to the secure world.
870 */
871 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
c8ef2bda
PM
872 qemu_fdt_add_subnode(vms->fdt, nodename);
873 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
874 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
738a5d9f 875 2, flashbase, 2, flashsize);
c8ef2bda
PM
876 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
877 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
878 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
738a5d9f
PM
879 g_free(nodename);
880
881 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
c8ef2bda
PM
882 qemu_fdt_add_subnode(vms->fdt, nodename);
883 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
884 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
738a5d9f 885 2, flashbase + flashsize, 2, flashsize);
c8ef2bda 886 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
738a5d9f
PM
887 g_free(nodename);
888 }
acf82361
PM
889}
890
af1f60a4 891static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
578f3c7b 892{
c8ef2bda
PM
893 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
894 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
5836d168 895 FWCfgState *fw_cfg;
578f3c7b
LE
896 char *nodename;
897
5836d168
IM
898 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
899 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
578f3c7b
LE
900
901 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
c8ef2bda
PM
902 qemu_fdt_add_subnode(vms->fdt, nodename);
903 qemu_fdt_setprop_string(vms->fdt, nodename,
578f3c7b 904 "compatible", "qemu,fw-cfg-mmio");
c8ef2bda 905 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
578f3c7b 906 2, base, 2, size);
14efdb5c 907 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
578f3c7b 908 g_free(nodename);
af1f60a4 909 return fw_cfg;
578f3c7b
LE
910}
911
c8ef2bda 912static void create_pcie_irq_map(const VirtMachineState *vms,
9ac4ef77 913 uint32_t gic_phandle,
4ab29b82
AG
914 int first_irq, const char *nodename)
915{
916 int devfn, pin;
dfd90a87 917 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
4ab29b82
AG
918 uint32_t *irq_map = full_irq_map;
919
920 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
921 for (pin = 0; pin < 4; pin++) {
922 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
923 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
924 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
925 int i;
926
927 uint32_t map[] = {
928 devfn << 8, 0, 0, /* devfn */
929 pin + 1, /* PCI pin */
dfd90a87 930 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
4ab29b82
AG
931
932 /* Convert map to big endian */
dfd90a87 933 for (i = 0; i < 10; i++) {
4ab29b82
AG
934 irq_map[i] = cpu_to_be32(map[i]);
935 }
dfd90a87 936 irq_map += 10;
4ab29b82
AG
937 }
938 }
939
c8ef2bda 940 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
4ab29b82
AG
941 full_irq_map, sizeof(full_irq_map));
942
c8ef2bda 943 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
4ab29b82
AG
944 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
945 0x7 /* PCI irq */);
946}
947
584105ea
PM
948static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
949 PCIBus *bus)
950{
951 char *node;
952 const char compat[] = "arm,smmu-v3";
953 int irq = vms->irqmap[VIRT_SMMU];
954 int i;
955 hwaddr base = vms->memmap[VIRT_SMMU].base;
956 hwaddr size = vms->memmap[VIRT_SMMU].size;
957 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
958 DeviceState *dev;
959
960 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
961 return;
962 }
963
964 dev = qdev_create(NULL, "arm-smmuv3");
965
966 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
967 &error_abort);
968 qdev_init_nofail(dev);
969 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
970 for (i = 0; i < NUM_SMMU_IRQS; i++) {
971 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
972 }
973
974 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
975 qemu_fdt_add_subnode(vms->fdt, node);
976 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
977 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
978
979 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
980 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
981 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
982 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
983 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
984
985 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
986 sizeof(irq_names));
987
988 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
989 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
990 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
991
992 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
993
994 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
995 g_free(node);
996}
997
998static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
4ab29b82 999{
c8ef2bda
PM
1000 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1001 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1002 hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
1003 hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
1004 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1005 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
1006 hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
1007 hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
6a1f001b
SZ
1008 hwaddr base = base_mmio;
1009 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
c8ef2bda 1010 int irq = vms->irqmap[VIRT_PCIE];
4ab29b82
AG
1011 MemoryRegion *mmio_alias;
1012 MemoryRegion *mmio_reg;
1013 MemoryRegion *ecam_alias;
1014 MemoryRegion *ecam_reg;
1015 DeviceState *dev;
1016 char *nodename;
1017 int i;
fea9b3ca 1018 PCIHostState *pci;
4ab29b82 1019
4ab29b82
AG
1020 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1021 qdev_init_nofail(dev);
1022
1023 /* Map only the first size_ecam bytes of ECAM space */
1024 ecam_alias = g_new0(MemoryRegion, 1);
1025 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1026 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1027 ecam_reg, 0, size_ecam);
1028 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1029
1030 /* Map the MMIO window into system address space so as to expose
1031 * the section of PCI MMIO space which starts at the same base address
1032 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1033 * the window).
1034 */
1035 mmio_alias = g_new0(MemoryRegion, 1);
1036 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1037 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1038 mmio_reg, base_mmio, size_mmio);
1039 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1040
0127937b 1041 if (vms->highmem) {
5125f9cd
PF
1042 /* Map high MMIO space */
1043 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1044
1045 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1046 mmio_reg, base_mmio_high, size_mmio_high);
1047 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1048 high_mmio_alias);
1049 }
1050
4ab29b82 1051 /* Map IO port space */
6a1f001b 1052 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
4ab29b82
AG
1053
1054 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1055 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
c9bb8e16 1056 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
4ab29b82
AG
1057 }
1058
fea9b3ca
AK
1059 pci = PCI_HOST_BRIDGE(dev);
1060 if (pci->bus) {
1061 for (i = 0; i < nb_nics; i++) {
1062 NICInfo *nd = &nd_table[i];
1063
1064 if (!nd->model) {
1065 nd->model = g_strdup("virtio");
1066 }
1067
1068 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1069 }
1070 }
1071
4ab29b82 1072 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
c8ef2bda
PM
1073 qemu_fdt_add_subnode(vms->fdt, nodename);
1074 qemu_fdt_setprop_string(vms->fdt, nodename,
4ab29b82 1075 "compatible", "pci-host-ecam-generic");
c8ef2bda
PM
1076 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1077 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1078 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
6d9c1b8d 1079 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
c8ef2bda 1080 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
4ab29b82 1081 nr_pcie_buses - 1);
c8ef2bda 1082 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
4ab29b82 1083
c8ef2bda
PM
1084 if (vms->msi_phandle) {
1085 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1086 vms->msi_phandle);
b92ad394 1087 }
bd204e63 1088
c8ef2bda 1089 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
4ab29b82 1090 2, base_ecam, 2, size_ecam);
5125f9cd 1091
0127937b 1092 if (vms->highmem) {
c8ef2bda 1093 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
5125f9cd
PF
1094 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1095 2, base_pio, 2, size_pio,
1096 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1097 2, base_mmio, 2, size_mmio,
1098 1, FDT_PCI_RANGE_MMIO_64BIT,
1099 2, base_mmio_high,
1100 2, base_mmio_high, 2, size_mmio_high);
1101 } else {
c8ef2bda 1102 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
5125f9cd
PF
1103 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1104 2, base_pio, 2, size_pio,
1105 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1106 2, base_mmio, 2, size_mmio);
1107 }
4ab29b82 1108
c8ef2bda
PM
1109 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1110 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
4ab29b82 1111
584105ea
PM
1112 if (vms->iommu) {
1113 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1114
1115 create_smmu(vms, pic, pci->bus);
1116
1117 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1118 0x0, vms->iommu_phandle, 0x0, 0x10000);
1119 }
1120
4ab29b82
AG
1121 g_free(nodename);
1122}
1123
c8ef2bda 1124static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
5f7a5a0e
EA
1125{
1126 DeviceState *dev;
1127 SysBusDevice *s;
1128 int i;
1129 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1130 MemoryRegion *sysmem = get_system_memory();
1131
c8ef2bda
PM
1132 platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
1133 platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
1134 platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
5f7a5a0e
EA
1135 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1136
1137 fdt_params->system_params = &platform_bus_params;
c8ef2bda 1138 fdt_params->binfo = &vms->bootinfo;
5f7a5a0e
EA
1139 fdt_params->intc = "/intc";
1140 /*
1141 * register a machine init done notifier that creates the device tree
1142 * nodes of the platform bus and its children dynamic sysbus devices
1143 */
1144 arm_register_platform_bus_fdt_creator(fdt_params);
1145
1146 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1147 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1148 qdev_prop_set_uint32(dev, "num_irqs",
1149 platform_bus_params.platform_bus_num_irqs);
1150 qdev_prop_set_uint32(dev, "mmio_size",
1151 platform_bus_params.platform_bus_size);
1152 qdev_init_nofail(dev);
1153 s = SYS_BUS_DEVICE(dev);
1154
1155 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1156 int irqn = platform_bus_params.platform_bus_first_irq + i;
1157 sysbus_connect_irq(s, i, pic[irqn]);
1158 }
1159
1160 memory_region_add_subregion(sysmem,
1161 platform_bus_params.platform_bus_base,
1162 sysbus_mmio_get_region(s, 0));
1163}
1164
c8ef2bda 1165static void create_secure_ram(VirtMachineState *vms,
9ac4ef77 1166 MemoryRegion *secure_sysmem)
83ec1923
PM
1167{
1168 MemoryRegion *secram = g_new(MemoryRegion, 1);
1169 char *nodename;
c8ef2bda
PM
1170 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1171 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
83ec1923 1172
98a99ce0
PM
1173 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1174 &error_fatal);
83ec1923
PM
1175 memory_region_add_subregion(secure_sysmem, base, secram);
1176
1177 nodename = g_strdup_printf("/secram@%" PRIx64, base);
c8ef2bda
PM
1178 qemu_fdt_add_subnode(vms->fdt, nodename);
1179 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1180 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1181 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1182 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
83ec1923
PM
1183
1184 g_free(nodename);
1185}
1186
f5fdcd6e
PM
1187static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1188{
9ac4ef77
PM
1189 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1190 bootinfo);
f5fdcd6e
PM
1191
1192 *fdt_size = board->fdt_size;
1193 return board->fdt;
1194}
1195
e9a8e474 1196static void virt_build_smbios(VirtMachineState *vms)
c30e1565 1197{
dfadc3bf
WH
1198 MachineClass *mc = MACHINE_GET_CLASS(vms);
1199 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
c30e1565
WH
1200 uint8_t *smbios_tables, *smbios_anchor;
1201 size_t smbios_tables_len, smbios_anchor_len;
bab27ea2 1202 const char *product = "QEMU Virtual Machine";
c30e1565 1203
af1f60a4 1204 if (!vms->fw_cfg) {
c30e1565
WH
1205 return;
1206 }
1207
bab27ea2
AJ
1208 if (kvm_enabled()) {
1209 product = "KVM Virtual Machine";
1210 }
1211
1212 smbios_set_defaults("QEMU", product,
dfadc3bf
WH
1213 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1214 true, SMBIOS_ENTRY_POINT_30);
c30e1565
WH
1215
1216 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1217 &smbios_anchor, &smbios_anchor_len);
1218
1219 if (smbios_anchor) {
af1f60a4 1220 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
c30e1565 1221 smbios_tables, smbios_tables_len);
af1f60a4 1222 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
c30e1565
WH
1223 smbios_anchor, smbios_anchor_len);
1224 }
1225}
1226
d7c2e2db 1227static
054f4dc9 1228void virt_machine_done(Notifier *notifier, void *data)
d7c2e2db 1229{
054f4dc9
AJ
1230 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1231 machine_done);
1232
e9a8e474
AJ
1233 virt_acpi_setup(vms);
1234 virt_build_smbios(vms);
d7c2e2db
SZ
1235}
1236
46de5913
IM
1237static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1238{
1239 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1240 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1241
1242 if (!vmc->disallow_affinity_adjustment) {
1243 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1244 * GIC's target-list limitations. 32-bit KVM hosts currently
1245 * always create clusters of 4 CPUs, but that is expected to
1246 * change when they gain support for gicv3. When KVM is enabled
1247 * it will override the changes we make here, therefore our
1248 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1249 * and to improve SGI efficiency.
1250 */
1251 if (vms->gic_version == 3) {
1252 clustersz = GICV3_TARGETLIST_BITS;
1253 } else {
1254 clustersz = GIC_TARGETLIST_BITS;
1255 }
1256 }
1257 return arm_cpu_mp_affinity(idx, clustersz);
1258}
1259
3ef96221 1260static void machvirt_init(MachineState *machine)
f5fdcd6e 1261{
e5a5604f 1262 VirtMachineState *vms = VIRT_MACHINE(machine);
95eb49c8 1263 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
17d3d0e2
IM
1264 MachineClass *mc = MACHINE_GET_CLASS(machine);
1265 const CPUArchIdList *possible_cpus;
f5fdcd6e
PM
1266 qemu_irq pic[NUM_IRQS];
1267 MemoryRegion *sysmem = get_system_memory();
3df708eb 1268 MemoryRegion *secure_sysmem = NULL;
7ea686f5 1269 int n, virt_max_cpus;
f5fdcd6e 1270 MemoryRegion *ram = g_new(MemoryRegion, 1);
4824a61a 1271 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
f5fdcd6e 1272
b92ad394
PF
1273 /* We can probe only here because during property set
1274 * KVM is not available yet
1275 */
dc16538a
PM
1276 if (vms->gic_version <= 0) {
1277 /* "host" or "max" */
0bf8039d 1278 if (!kvm_enabled()) {
dc16538a
PM
1279 if (vms->gic_version == 0) {
1280 error_report("gic-version=host requires KVM");
1281 exit(1);
1282 } else {
1283 /* "max": currently means 3 for TCG */
1284 vms->gic_version = 3;
1285 }
1286 } else {
1287 vms->gic_version = kvm_arm_vgic_probe();
1288 if (!vms->gic_version) {
1289 error_report(
1290 "Unable to determine GIC version supported by host");
1291 exit(1);
1292 }
b92ad394
PF
1293 }
1294 }
1295
ba1ba5cc
IM
1296 if (!cpu_type_valid(machine->cpu_type)) {
1297 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
f5fdcd6e
PM
1298 exit(1);
1299 }
1300
4824a61a
PM
1301 /* If we have an EL3 boot ROM then the assumption is that it will
1302 * implement PSCI itself, so disable QEMU's internal implementation
1303 * so it doesn't get in the way. Instead of starting secondary
1304 * CPUs in PSCI powerdown state we will start them all running and
1305 * let the boot ROM sort them out.
f29cacfb
PM
1306 * The usual case is that we do use QEMU's PSCI implementation;
1307 * if the guest has EL2 then we will use SMC as the conduit,
1308 * and otherwise we will use HVC (for backwards compatibility and
1309 * because if we're using KVM then we must use HVC).
4824a61a 1310 */
2013c566
PM
1311 if (vms->secure && firmware_loaded) {
1312 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
f29cacfb
PM
1313 } else if (vms->virt) {
1314 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2013c566
PM
1315 } else {
1316 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1317 }
4824a61a 1318
4b280b72
AJ
1319 /* The maximum number of CPUs depends on the GIC version, or on how
1320 * many redistributors we can fit into the memory map.
1321 */
055a7f2b 1322 if (vms->gic_version == 3) {
c8ef2bda 1323 virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
4b280b72 1324 } else {
7ea686f5 1325 virt_max_cpus = GIC_NCPU;
4b280b72
AJ
1326 }
1327
7ea686f5 1328 if (max_cpus > virt_max_cpus) {
4b280b72
AJ
1329 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1330 "supported by machine 'mach-virt' (%d)",
7ea686f5 1331 max_cpus, virt_max_cpus);
4b280b72
AJ
1332 exit(1);
1333 }
1334
c8ef2bda 1335 vms->smp_cpus = smp_cpus;
f5fdcd6e 1336
c8ef2bda 1337 if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
71c27684 1338 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
f5fdcd6e
PM
1339 exit(1);
1340 }
1341
f29cacfb
PM
1342 if (vms->virt && kvm_enabled()) {
1343 error_report("mach-virt: KVM does not support providing "
1344 "Virtualization extensions to the guest CPU");
1345 exit(1);
1346 }
1347
3df708eb
PM
1348 if (vms->secure) {
1349 if (kvm_enabled()) {
1350 error_report("mach-virt: KVM does not support Security extensions");
1351 exit(1);
1352 }
1353
1354 /* The Secure view of the world is the same as the NonSecure,
1355 * but with a few extra devices. Create it as a container region
1356 * containing the system memory at low priority; any secure-only
1357 * devices go in at higher priority and take precedence.
1358 */
1359 secure_sysmem = g_new(MemoryRegion, 1);
1360 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1361 UINT64_MAX);
1362 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1363 }
1364
c8ef2bda 1365 create_fdt(vms);
f5fdcd6e 1366
17d3d0e2
IM
1367 possible_cpus = mc->possible_cpu_arch_ids(machine);
1368 for (n = 0; n < possible_cpus->len; n++) {
1369 Object *cpuobj;
d9c34f9c 1370 CPUState *cs;
46de5913 1371
17d3d0e2
IM
1372 if (n >= smp_cpus) {
1373 break;
1374 }
1375
d342eb76 1376 cpuobj = object_new(possible_cpus->cpus[n].type);
17d3d0e2 1377 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
46de5913 1378 "mp-affinity", NULL);
f313369f 1379
d9c34f9c
IM
1380 cs = CPU(cpuobj);
1381 cs->cpu_index = n;
1382
a0ceb640
IM
1383 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1384 &error_fatal);
bd4c1bfe 1385
e5a5604f
GB
1386 if (!vms->secure) {
1387 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1388 }
1389
f29cacfb 1390 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
c25bd18a
PM
1391 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1392 }
1393
2013c566
PM
1394 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1395 object_property_set_int(cpuobj, vms->psci_conduit,
4824a61a 1396 "psci-conduit", NULL);
211b0169 1397
4824a61a
PM
1398 /* Secondary CPUs start in PSCI powered-down state */
1399 if (n > 0) {
1400 object_property_set_bool(cpuobj, true,
1401 "start-powered-off", NULL);
1402 }
f5fdcd6e 1403 }
ba750085 1404
1141d1eb
WH
1405 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1406 object_property_set_bool(cpuobj, false, "pmu", NULL);
1407 }
1408
ba750085 1409 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
c8ef2bda 1410 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
ba750085
PM
1411 "reset-cbar", &error_abort);
1412 }
1413
1d939a68
PM
1414 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1415 &error_abort);
3df708eb
PM
1416 if (vms->secure) {
1417 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1418 "secure-memory", &error_abort);
1419 }
1d939a68 1420
c88bc3e0 1421 object_property_set_bool(cpuobj, true, "realized", &error_fatal);
dbb74759 1422 object_unref(cpuobj);
f5fdcd6e 1423 }
055a7f2b 1424 fdt_add_timer_nodes(vms);
c8ef2bda 1425 fdt_add_cpu_nodes(vms);
f5fdcd6e 1426
c8623c02
DM
1427 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1428 machine->ram_size);
c8ef2bda 1429 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
f5fdcd6e 1430
c8ef2bda 1431 create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
acf82361 1432
055a7f2b 1433 create_gic(vms, pic);
f5fdcd6e 1434
055a7f2b 1435 fdt_add_pmu_nodes(vms);
01fe6b60 1436
9bca0edb 1437 create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
3df708eb
PM
1438
1439 if (vms->secure) {
c8ef2bda 1440 create_secure_ram(vms, secure_sysmem);
9bca0edb 1441 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
3df708eb 1442 }
f5fdcd6e 1443
c8ef2bda 1444 create_rtc(vms, pic);
6e411af9 1445
0127937b 1446 create_pcie(vms, pic);
4ab29b82 1447
c8ef2bda 1448 create_gpio(vms, pic);
b0a3721e 1449
f5fdcd6e
PM
1450 /* Create mmio transports, so the user can create virtio backends
1451 * (which will be automatically plugged in to the transports). If
1452 * no backend is created the transport will just sit harmlessly idle.
1453 */
c8ef2bda 1454 create_virtio_devices(vms, pic);
f5fdcd6e 1455
af1f60a4
AJ
1456 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1457 rom_set_fw(vms->fw_cfg);
d7c2e2db 1458
054f4dc9
AJ
1459 vms->machine_done.notify = virt_machine_done;
1460 qemu_add_machine_init_done_notifier(&vms->machine_done);
578f3c7b 1461
c8ef2bda
PM
1462 vms->bootinfo.ram_size = machine->ram_size;
1463 vms->bootinfo.kernel_filename = machine->kernel_filename;
1464 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1465 vms->bootinfo.initrd_filename = machine->initrd_filename;
1466 vms->bootinfo.nb_cpus = smp_cpus;
1467 vms->bootinfo.board_id = -1;
1468 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1469 vms->bootinfo.get_dtb = machvirt_dtb;
1470 vms->bootinfo.firmware_loaded = firmware_loaded;
1471 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
5f7a5a0e
EA
1472
1473 /*
1474 * arm_load_kernel machine init done notifier registration must
1475 * happen before the platform_bus_create call. In this latter,
1476 * another notifier is registered which adds platform bus nodes.
1477 * Notifiers are executed in registration reverse order.
1478 */
c8ef2bda 1479 create_platform_bus(vms, pic);
f5fdcd6e
PM
1480}
1481
083a5890
GB
1482static bool virt_get_secure(Object *obj, Error **errp)
1483{
1484 VirtMachineState *vms = VIRT_MACHINE(obj);
1485
1486 return vms->secure;
1487}
1488
1489static void virt_set_secure(Object *obj, bool value, Error **errp)
1490{
1491 VirtMachineState *vms = VIRT_MACHINE(obj);
1492
1493 vms->secure = value;
1494}
1495
f29cacfb
PM
1496static bool virt_get_virt(Object *obj, Error **errp)
1497{
1498 VirtMachineState *vms = VIRT_MACHINE(obj);
1499
1500 return vms->virt;
1501}
1502
1503static void virt_set_virt(Object *obj, bool value, Error **errp)
1504{
1505 VirtMachineState *vms = VIRT_MACHINE(obj);
1506
1507 vms->virt = value;
1508}
1509
5125f9cd
PF
1510static bool virt_get_highmem(Object *obj, Error **errp)
1511{
1512 VirtMachineState *vms = VIRT_MACHINE(obj);
1513
1514 return vms->highmem;
1515}
1516
1517static void virt_set_highmem(Object *obj, bool value, Error **errp)
1518{
1519 VirtMachineState *vms = VIRT_MACHINE(obj);
1520
1521 vms->highmem = value;
1522}
1523
ccc11b02
EA
1524static bool virt_get_its(Object *obj, Error **errp)
1525{
1526 VirtMachineState *vms = VIRT_MACHINE(obj);
1527
1528 return vms->its;
1529}
1530
1531static void virt_set_its(Object *obj, bool value, Error **errp)
1532{
1533 VirtMachineState *vms = VIRT_MACHINE(obj);
1534
1535 vms->its = value;
1536}
1537
b92ad394
PF
1538static char *virt_get_gic_version(Object *obj, Error **errp)
1539{
1540 VirtMachineState *vms = VIRT_MACHINE(obj);
1541 const char *val = vms->gic_version == 3 ? "3" : "2";
1542
1543 return g_strdup(val);
1544}
1545
1546static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1547{
1548 VirtMachineState *vms = VIRT_MACHINE(obj);
1549
1550 if (!strcmp(value, "3")) {
1551 vms->gic_version = 3;
1552 } else if (!strcmp(value, "2")) {
1553 vms->gic_version = 2;
1554 } else if (!strcmp(value, "host")) {
1555 vms->gic_version = 0; /* Will probe later */
dc16538a
PM
1556 } else if (!strcmp(value, "max")) {
1557 vms->gic_version = -1; /* Will probe later */
b92ad394 1558 } else {
7b55044f 1559 error_setg(errp, "Invalid gic-version value");
dc16538a 1560 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
b92ad394
PF
1561 }
1562}
1563
e24e3454
EA
1564static char *virt_get_iommu(Object *obj, Error **errp)
1565{
1566 VirtMachineState *vms = VIRT_MACHINE(obj);
1567
1568 switch (vms->iommu) {
1569 case VIRT_IOMMU_NONE:
1570 return g_strdup("none");
1571 case VIRT_IOMMU_SMMUV3:
1572 return g_strdup("smmuv3");
1573 default:
1574 g_assert_not_reached();
1575 }
1576}
1577
1578static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1579{
1580 VirtMachineState *vms = VIRT_MACHINE(obj);
1581
1582 if (!strcmp(value, "smmuv3")) {
1583 vms->iommu = VIRT_IOMMU_SMMUV3;
1584 } else if (!strcmp(value, "none")) {
1585 vms->iommu = VIRT_IOMMU_NONE;
1586 } else {
1587 error_setg(errp, "Invalid iommu value");
1588 error_append_hint(errp, "Valid values are none, smmuv3.\n");
1589 }
1590}
1591
ea089eeb
IM
1592static CpuInstanceProperties
1593virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1594{
1595 MachineClass *mc = MACHINE_GET_CLASS(ms);
1596 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1597
1598 assert(cpu_index < possible_cpus->len);
1599 return possible_cpus->cpus[cpu_index].props;
1600}
1601
79e07936
IM
1602static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1603{
1604 return idx % nb_numa_nodes;
1605}
1606
17d3d0e2
IM
1607static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1608{
1609 int n;
1610 VirtMachineState *vms = VIRT_MACHINE(ms);
1611
1612 if (ms->possible_cpus) {
1613 assert(ms->possible_cpus->len == max_cpus);
1614 return ms->possible_cpus;
1615 }
1616
1617 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1618 sizeof(CPUArchId) * max_cpus);
1619 ms->possible_cpus->len = max_cpus;
1620 for (n = 0; n < ms->possible_cpus->len; n++) {
d342eb76 1621 ms->possible_cpus->cpus[n].type = ms->cpu_type;
17d3d0e2
IM
1622 ms->possible_cpus->cpus[n].arch_id =
1623 virt_cpu_mp_affinity(vms, n);
1624 ms->possible_cpus->cpus[n].props.has_thread_id = true;
1625 ms->possible_cpus->cpus[n].props.thread_id = n;
17d3d0e2
IM
1626 }
1627 return ms->possible_cpus;
1628}
1629
ed796373
WH
1630static void virt_machine_class_init(ObjectClass *oc, void *data)
1631{
9c94d8e6
WH
1632 MachineClass *mc = MACHINE_CLASS(oc);
1633
1634 mc->init = machvirt_init;
1635 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1636 * it later in machvirt_init, where we have more information about the
1637 * configuration of the particular instance.
1638 */
079019f2 1639 mc->max_cpus = 255;
6f2062b9
EH
1640 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1641 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
9c94d8e6
WH
1642 mc->block_default_type = IF_VIRTIO;
1643 mc->no_cdrom = 1;
1644 mc->pci_allow_0_address = true;
a2519ad1
PM
1645 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1646 mc->minimum_page_bits = 12;
17d3d0e2 1647 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
ea089eeb 1648 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
ba1ba5cc 1649 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
79e07936 1650 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
ed796373
WH
1651}
1652
1653static const TypeInfo virt_machine_info = {
1654 .name = TYPE_VIRT_MACHINE,
1655 .parent = TYPE_MACHINE,
1656 .abstract = true,
1657 .instance_size = sizeof(VirtMachineState),
1658 .class_size = sizeof(VirtMachineClass),
1659 .class_init = virt_machine_class_init,
1660};
1661
7a2ecd95
AJ
1662static void machvirt_machine_init(void)
1663{
1664 type_register_static(&virt_machine_info);
1665}
1666type_init(machvirt_machine_init);
1667
a2a05159 1668static void virt_2_12_instance_init(Object *obj)
083a5890
GB
1669{
1670 VirtMachineState *vms = VIRT_MACHINE(obj);
ccc11b02 1671 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
083a5890 1672
2d710006
PM
1673 /* EL3 is disabled by default on virt: this makes us consistent
1674 * between KVM and TCG for this board, and it also allows us to
1675 * boot UEFI blobs which assume no TrustZone support.
1676 */
1677 vms->secure = false;
083a5890
GB
1678 object_property_add_bool(obj, "secure", virt_get_secure,
1679 virt_set_secure, NULL);
1680 object_property_set_description(obj, "secure",
1681 "Set on/off to enable/disable the ARM "
1682 "Security Extensions (TrustZone)",
1683 NULL);
5125f9cd 1684
f29cacfb
PM
1685 /* EL2 is also disabled by default, for similar reasons */
1686 vms->virt = false;
1687 object_property_add_bool(obj, "virtualization", virt_get_virt,
1688 virt_set_virt, NULL);
1689 object_property_set_description(obj, "virtualization",
1690 "Set on/off to enable/disable emulating a "
1691 "guest CPU which implements the ARM "
1692 "Virtualization Extensions",
1693 NULL);
1694
5125f9cd
PF
1695 /* High memory is enabled by default */
1696 vms->highmem = true;
1697 object_property_add_bool(obj, "highmem", virt_get_highmem,
1698 virt_set_highmem, NULL);
1699 object_property_set_description(obj, "highmem",
1700 "Set on/off to enable/disable using "
1701 "physical address space above 32 bits",
1702 NULL);
b92ad394
PF
1703 /* Default GIC type is v2 */
1704 vms->gic_version = 2;
1705 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1706 virt_set_gic_version, NULL);
1707 object_property_set_description(obj, "gic-version",
1708 "Set GIC version. "
1709 "Valid values are 2, 3 and host", NULL);
9ac4ef77 1710
ccc11b02
EA
1711 if (vmc->no_its) {
1712 vms->its = false;
1713 } else {
1714 /* Default allows ITS instantiation */
1715 vms->its = true;
1716 object_property_add_bool(obj, "its", virt_get_its,
1717 virt_set_its, NULL);
1718 object_property_set_description(obj, "its",
1719 "Set on/off to enable/disable "
1720 "ITS instantiation",
1721 NULL);
1722 }
1723
e24e3454
EA
1724 /* Default disallows iommu instantiation */
1725 vms->iommu = VIRT_IOMMU_NONE;
1726 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
1727 object_property_set_description(obj, "iommu",
1728 "Set the IOMMU type. "
1729 "Valid values are none and smmuv3",
1730 NULL);
1731
9ac4ef77
PM
1732 vms->memmap = a15memmap;
1733 vms->irqmap = a15irqmap;
083a5890
GB
1734}
1735
a2a05159
PM
1736static void virt_machine_2_12_options(MachineClass *mc)
1737{
1738}
1739DEFINE_VIRT_MACHINE_AS_LATEST(2, 12)
1740
1741#define VIRT_COMPAT_2_11 \
1742 HW_COMPAT_2_11
1743
1744static void virt_2_11_instance_init(Object *obj)
1745{
1746 virt_2_12_instance_init(obj);
1747}
1748
79283dda
EA
1749static void virt_machine_2_11_options(MachineClass *mc)
1750{
dfadc3bf
WH
1751 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1752
a2a05159
PM
1753 virt_machine_2_12_options(mc);
1754 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_11);
dfadc3bf 1755 vmc->smbios_old_sys_ver = true;
79283dda 1756}
a2a05159 1757DEFINE_VIRT_MACHINE(2, 11)
79283dda
EA
1758
1759#define VIRT_COMPAT_2_10 \
1760 HW_COMPAT_2_10
1761
1762static void virt_2_10_instance_init(Object *obj)
1763{
1764 virt_2_11_instance_init(obj);
1765}
1766
f22ab6cb
EA
1767static void virt_machine_2_10_options(MachineClass *mc)
1768{
79283dda
EA
1769 virt_machine_2_11_options(mc);
1770 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_10);
f22ab6cb 1771}
79283dda 1772DEFINE_VIRT_MACHINE(2, 10)
f22ab6cb
EA
1773
1774#define VIRT_COMPAT_2_9 \
1775 HW_COMPAT_2_9
1776
1777static void virt_2_9_instance_init(Object *obj)
1778{
1779 virt_2_10_instance_init(obj);
1780}
1781
e353aac5
PM
1782static void virt_machine_2_9_options(MachineClass *mc)
1783{
f22ab6cb
EA
1784 virt_machine_2_10_options(mc);
1785 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_9);
e353aac5 1786}
f22ab6cb 1787DEFINE_VIRT_MACHINE(2, 9)
e353aac5
PM
1788
1789#define VIRT_COMPAT_2_8 \
1790 HW_COMPAT_2_8
1791
1792static void virt_2_8_instance_init(Object *obj)
1793{
1794 virt_2_9_instance_init(obj);
1795}
1796
96b0439b
AJ
1797static void virt_machine_2_8_options(MachineClass *mc)
1798{
156bc9a5
PM
1799 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1800
e353aac5
PM
1801 virt_machine_2_9_options(mc);
1802 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
156bc9a5
PM
1803 /* For 2.8 and earlier we falsely claimed in the DT that
1804 * our timers were edge-triggered, not level-triggered.
1805 */
1806 vmc->claim_edge_triggered_timers = true;
96b0439b 1807}
e353aac5 1808DEFINE_VIRT_MACHINE(2, 8)
96b0439b
AJ
1809
1810#define VIRT_COMPAT_2_7 \
1811 HW_COMPAT_2_7
1812
1813static void virt_2_7_instance_init(Object *obj)
1814{
1815 virt_2_8_instance_init(obj);
1816}
1817
1287f2b3
AJ
1818static void virt_machine_2_7_options(MachineClass *mc)
1819{
2231f69b
AJ
1820 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1821
96b0439b
AJ
1822 virt_machine_2_8_options(mc);
1823 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
2231f69b
AJ
1824 /* ITS was introduced with 2.8 */
1825 vmc->no_its = true;
a2519ad1
PM
1826 /* Stick with 1K pages for migration compatibility */
1827 mc->minimum_page_bits = 0;
1287f2b3 1828}
96b0439b 1829DEFINE_VIRT_MACHINE(2, 7)
1287f2b3
AJ
1830
1831#define VIRT_COMPAT_2_6 \
1832 HW_COMPAT_2_6
1833
1834static void virt_2_6_instance_init(Object *obj)
1835{
1836 virt_2_7_instance_init(obj);
1837}
1838
ab093c3c 1839static void virt_machine_2_6_options(MachineClass *mc)
c2919690 1840{
95eb49c8
AJ
1841 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1842
1287f2b3
AJ
1843 virt_machine_2_7_options(mc);
1844 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
95eb49c8 1845 vmc->disallow_affinity_adjustment = true;
1141d1eb
WH
1846 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1847 vmc->no_pmu = true;
c2919690 1848}
1287f2b3 1849DEFINE_VIRT_MACHINE(2, 6)