]> git.proxmox.com Git - mirror_qemu.git/blame - hw/arm/virt.c
q35/440fx/arm/spapr: Add QEMU 4.0 machine type
[mirror_qemu.git] / hw / arm / virt.c
CommitLineData
f5fdcd6e
PM
1/*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
12b16722 31#include "qemu/osdep.h"
da34e65c 32#include "qapi/error.h"
f5fdcd6e
PM
33#include "hw/sysbus.h"
34#include "hw/arm/arm.h"
35#include "hw/arm/primecell.h"
afe0b380 36#include "hw/arm/virt.h"
6f2062b9
EH
37#include "hw/vfio/vfio-calxeda-xgmac.h"
38#include "hw/vfio/vfio-amd-xgbe.h"
94692dcd 39#include "hw/display/ramfb.h"
f5fdcd6e
PM
40#include "hw/devices.h"
41#include "net/net.h"
42#include "sysemu/device_tree.h"
9695200a 43#include "sysemu/numa.h"
f5fdcd6e
PM
44#include "sysemu/sysemu.h"
45#include "sysemu/kvm.h"
1287f2b3 46#include "hw/compat.h"
acf82361 47#include "hw/loader.h"
f5fdcd6e
PM
48#include "exec/address-spaces.h"
49#include "qemu/bitops.h"
50#include "qemu/error-report.h"
4ab29b82 51#include "hw/pci-host/gpex.h"
5f7a5a0e
EA
52#include "hw/arm/sysbus-fdt.h"
53#include "hw/platform-bus.h"
decf4f80 54#include "hw/arm/fdt.h"
95eb49c8
AJ
55#include "hw/intc/arm_gic.h"
56#include "hw/intc/arm_gicv3_common.h"
e6fbcbc4 57#include "kvm_arm.h"
c30e1565 58#include "hw/smbios/smbios.h"
b92ad394 59#include "qapi/visitor.h"
3e6ebb64 60#include "standard-headers/linux/input.h"
584105ea 61#include "hw/arm/smmuv3.h"
f5fdcd6e 62
3356ebce 63#define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
ab093c3c
AJ
64 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
65 void *data) \
66 { \
67 MachineClass *mc = MACHINE_CLASS(oc); \
68 virt_machine_##major##_##minor##_options(mc); \
69 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
3356ebce
AJ
70 if (latest) { \
71 mc->alias = "virt"; \
72 } \
ab093c3c
AJ
73 } \
74 static const TypeInfo machvirt_##major##_##minor##_info = { \
75 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
76 .parent = TYPE_VIRT_MACHINE, \
77 .instance_init = virt_##major##_##minor##_instance_init, \
78 .class_init = virt_##major##_##minor##_class_init, \
79 }; \
80 static void machvirt_machine_##major##_##minor##_init(void) \
81 { \
82 type_register_static(&machvirt_##major##_##minor##_info); \
83 } \
84 type_init(machvirt_machine_##major##_##minor##_init);
85
3356ebce
AJ
86#define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
87 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
88#define DEFINE_VIRT_MACHINE(major, minor) \
89 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
90
ab093c3c 91
a72d4363
AJ
92/* Number of external interrupt lines to configure the GIC with */
93#define NUM_IRQS 256
94
95#define PLATFORM_BUS_NUM_IRQS 64
96
71c27684
PM
97/* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
98 * RAM can go up to the 256GB mark, leaving 256GB of the physical
99 * address space unallocated and free for future use between 256G and 512G.
100 * If we need to provide more RAM to VMs in the future then we need to:
101 * * allocate a second bank of RAM starting at 2TB and working up
102 * * fix the DT and ACPI table generation code in QEMU to correctly
103 * report two split lumps of RAM to the guest
104 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
105 * (We don't want to fill all the way up to 512GB with RAM because
106 * we might want it for non-RAM purposes later. Conversely it seems
107 * reasonable to assume that anybody configuring a VM with a quarter
108 * of a terabyte of RAM will be doing it on a host with more than a
109 * terabyte of physical address space.)
110 */
111#define RAMLIMIT_GB 255
112#define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
113
f5fdcd6e
PM
114/* Addresses and sizes of our components.
115 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
116 * 128MB..256MB is used for miscellaneous device I/O.
117 * 256MB..1GB is reserved for possible future PCI support (ie where the
118 * PCI memory window will go if we add a PCI host controller).
119 * 1GB and up is RAM (which may happily spill over into the
120 * high memory region beyond 4GB).
121 * This represents a compromise between how much RAM can be given to
122 * a 32 bit VM and leaving space for expansion and in particular for PCI.
6e411af9
PM
123 * Note that devices should generally be placed at multiples of 0x10000,
124 * to accommodate guests using 64K pages.
f5fdcd6e
PM
125 */
126static const MemMapEntry a15memmap[] = {
127 /* Space up to 0x8000000 is reserved for a boot ROM */
94edf02c
EA
128 [VIRT_FLASH] = { 0, 0x08000000 },
129 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
f5fdcd6e 130 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
94edf02c
EA
131 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
132 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
133 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
55ef3233
LM
134 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
135 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
b92ad394
PF
136 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
137 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
138 /* This redistributor space allows up to 2*64kB*123 CPUs */
139 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
94edf02c
EA
140 [VIRT_UART] = { 0x09000000, 0x00001000 },
141 [VIRT_RTC] = { 0x09010000, 0x00001000 },
0b341a85 142 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
b0a3721e 143 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
3df708eb 144 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
584105ea 145 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
94edf02c 146 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
f5fdcd6e 147 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
94edf02c 148 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
83ec1923 149 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
94edf02c
EA
150 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
151 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
152 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
71c27684 153 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
f90747c4
EA
154 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
155 [VIRT_GIC_REDIST2] = { 0x4000000000ULL, 0x4000000 },
601d626d 156 [VIRT_PCIE_ECAM_HIGH] = { 0x4010000000ULL, 0x10000000 },
5125f9cd
PF
157 /* Second PCIe window, 512GB wide at the 512GB boundary */
158 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
f5fdcd6e
PM
159};
160
161static const int a15irqmap[] = {
162 [VIRT_UART] = 1,
6e411af9 163 [VIRT_RTC] = 2,
4ab29b82 164 [VIRT_PCIE] = 3, /* ... to 6 */
b0a3721e 165 [VIRT_GPIO] = 7,
3df708eb 166 [VIRT_SECURE_UART] = 8,
f5fdcd6e 167 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
bd204e63 168 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
584105ea 169 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
5f7a5a0e 170 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
f5fdcd6e
PM
171};
172
9ac4ef77 173static const char *valid_cpus[] = {
ba1ba5cc
IM
174 ARM_CPU_TYPE_NAME("cortex-a15"),
175 ARM_CPU_TYPE_NAME("cortex-a53"),
176 ARM_CPU_TYPE_NAME("cortex-a57"),
2264faa5 177 ARM_CPU_TYPE_NAME("cortex-a72"),
ba1ba5cc 178 ARM_CPU_TYPE_NAME("host"),
9076ddb3 179 ARM_CPU_TYPE_NAME("max"),
f5fdcd6e
PM
180};
181
ba1ba5cc 182static bool cpu_type_valid(const char *cpu)
f5fdcd6e
PM
183{
184 int i;
185
9ac4ef77
PM
186 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
187 if (strcmp(cpu, valid_cpus[i]) == 0) {
188 return true;
f5fdcd6e
PM
189 }
190 }
9ac4ef77 191 return false;
f5fdcd6e
PM
192}
193
c8ef2bda 194static void create_fdt(VirtMachineState *vms)
f5fdcd6e 195{
c8ef2bda 196 void *fdt = create_device_tree(&vms->fdt_size);
f5fdcd6e
PM
197
198 if (!fdt) {
199 error_report("create_device_tree() failed");
200 exit(1);
201 }
202
c8ef2bda 203 vms->fdt = fdt;
f5fdcd6e
PM
204
205 /* Header */
5a4348d1
PC
206 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
207 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
208 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
f5fdcd6e 209
e2eb3d29 210 /* /chosen must exist for load_dtb to fill in necessary properties later */
5a4348d1 211 qemu_fdt_add_subnode(fdt, "/chosen");
f5fdcd6e
PM
212
213 /* Clock node, for the benefit of the UART. The kernel device tree
214 * binding documentation claims the PL011 node clock properties are
215 * optional but in practice if you omit them the kernel refuses to
216 * probe for the device.
217 */
c8ef2bda 218 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
5a4348d1
PC
219 qemu_fdt_add_subnode(fdt, "/apb-pclk");
220 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
221 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
222 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
223 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
f5fdcd6e 224 "clk24mhz");
c8ef2bda 225 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
f5fdcd6e 226
c7637c04
AJ
227 if (have_numa_distance) {
228 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
229 uint32_t *matrix = g_malloc0(size);
230 int idx, i, j;
231
232 for (i = 0; i < nb_numa_nodes; i++) {
233 for (j = 0; j < nb_numa_nodes; j++) {
234 idx = (i * nb_numa_nodes + j) * 3;
235 matrix[idx + 0] = cpu_to_be32(i);
236 matrix[idx + 1] = cpu_to_be32(j);
237 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
238 }
239 }
240
241 qemu_fdt_add_subnode(fdt, "/distance-map");
242 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
243 "numa-distance-map-v1");
244 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
245 matrix, size);
246 g_free(matrix);
247 }
06955739
PS
248}
249
055a7f2b 250static void fdt_add_timer_nodes(const VirtMachineState *vms)
f5fdcd6e 251{
156bc9a5
PM
252 /* On real hardware these interrupts are level-triggered.
253 * On KVM they were edge-triggered before host kernel version 4.4,
254 * and level-triggered afterwards.
255 * On emulated QEMU they are level-triggered.
256 *
257 * Getting the DTB info about them wrong is awkward for some
258 * guest kernels:
259 * pre-4.8 ignore the DT and leave the interrupt configured
260 * with whatever the GIC reset value (or the bootloader) left it at
261 * 4.8 before rc6 honour the incorrect data by programming it back
262 * into the GIC, causing problems
263 * 4.8rc6 and later ignore the DT and always write "level triggered"
264 * into the GIC
265 *
266 * For backwards-compatibility, virt-2.8 and earlier will continue
267 * to say these are edge-triggered, but later machines will report
268 * the correct information.
f5fdcd6e 269 */
b32a9509 270 ARMCPU *armcpu;
156bc9a5
PM
271 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
272 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
273
274 if (vmc->claim_edge_triggered_timers) {
275 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
276 }
f5fdcd6e 277
055a7f2b 278 if (vms->gic_version == 2) {
b92ad394
PF
279 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
280 GIC_FDT_IRQ_PPI_CPU_WIDTH,
c8ef2bda 281 (1 << vms->smp_cpus) - 1);
b92ad394 282 }
f5fdcd6e 283
c8ef2bda 284 qemu_fdt_add_subnode(vms->fdt, "/timer");
b32a9509
CF
285
286 armcpu = ARM_CPU(qemu_get_cpu(0));
287 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
288 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
c8ef2bda 289 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
b32a9509
CF
290 compat, sizeof(compat));
291 } else {
c8ef2bda 292 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
b32a9509
CF
293 "arm,armv7-timer");
294 }
c8ef2bda
PM
295 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
296 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
ee246400
SZ
297 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
298 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
299 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
300 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
f5fdcd6e
PM
301}
302
c8ef2bda 303static void fdt_add_cpu_nodes(const VirtMachineState *vms)
f5fdcd6e
PM
304{
305 int cpu;
8d45c54d 306 int addr_cells = 1;
4ccf5826 307 const MachineState *ms = MACHINE(vms);
8d45c54d
PF
308
309 /*
310 * From Documentation/devicetree/bindings/arm/cpus.txt
311 * On ARM v8 64-bit systems value should be set to 2,
312 * that corresponds to the MPIDR_EL1 register size.
313 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
314 * in the system, #address-cells can be set to 1, since
315 * MPIDR_EL1[63:32] bits are not used for CPUs
316 * identification.
317 *
318 * Here we actually don't know whether our system is 32- or 64-bit one.
319 * The simplest way to go is to examine affinity IDs of all our CPUs. If
320 * at least one of them has Aff3 populated, we set #address-cells to 2.
321 */
c8ef2bda 322 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
8d45c54d
PF
323 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
324
325 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
326 addr_cells = 2;
327 break;
328 }
329 }
f5fdcd6e 330
c8ef2bda
PM
331 qemu_fdt_add_subnode(vms->fdt, "/cpus");
332 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
333 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
f5fdcd6e 334
c8ef2bda 335 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
f5fdcd6e
PM
336 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
337 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
4ccf5826 338 CPUState *cs = CPU(armcpu);
f5fdcd6e 339
c8ef2bda
PM
340 qemu_fdt_add_subnode(vms->fdt, nodename);
341 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
342 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
f5fdcd6e
PM
343 armcpu->dtb_compatible);
344
2013c566
PM
345 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
346 && vms->smp_cpus > 1) {
c8ef2bda 347 qemu_fdt_setprop_string(vms->fdt, nodename,
f5fdcd6e
PM
348 "enable-method", "psci");
349 }
350
8d45c54d 351 if (addr_cells == 2) {
c8ef2bda 352 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
8d45c54d
PF
353 armcpu->mp_affinity);
354 } else {
c8ef2bda 355 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
8d45c54d
PF
356 armcpu->mp_affinity);
357 }
358
4ccf5826
IM
359 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
360 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
361 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
9695200a
SZ
362 }
363
f5fdcd6e
PM
364 g_free(nodename);
365 }
366}
367
c8ef2bda 368static void fdt_add_its_gic_node(VirtMachineState *vms)
02f98731 369{
bb2a3348
EA
370 char *nodename;
371
c8ef2bda 372 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
bb2a3348
EA
373 nodename = g_strdup_printf("/intc/its@%" PRIx64,
374 vms->memmap[VIRT_GIC_ITS].base);
375 qemu_fdt_add_subnode(vms->fdt, nodename);
376 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
02f98731 377 "arm,gic-v3-its");
bb2a3348
EA
378 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
379 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
c8ef2bda
PM
380 2, vms->memmap[VIRT_GIC_ITS].base,
381 2, vms->memmap[VIRT_GIC_ITS].size);
bb2a3348
EA
382 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
383 g_free(nodename);
02f98731
PF
384}
385
c8ef2bda 386static void fdt_add_v2m_gic_node(VirtMachineState *vms)
f5fdcd6e 387{
bb2a3348
EA
388 char *nodename;
389
390 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
391 vms->memmap[VIRT_GIC_V2M].base);
c8ef2bda 392 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
bb2a3348
EA
393 qemu_fdt_add_subnode(vms->fdt, nodename);
394 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
bd204e63 395 "arm,gic-v2m-frame");
bb2a3348
EA
396 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
397 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
c8ef2bda
PM
398 2, vms->memmap[VIRT_GIC_V2M].base,
399 2, vms->memmap[VIRT_GIC_V2M].size);
bb2a3348
EA
400 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
401 g_free(nodename);
bd204e63 402}
f5fdcd6e 403
055a7f2b 404static void fdt_add_gic_node(VirtMachineState *vms)
bd204e63 405{
bb2a3348
EA
406 char *nodename;
407
c8ef2bda
PM
408 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
409 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
410
bb2a3348
EA
411 nodename = g_strdup_printf("/intc@%" PRIx64,
412 vms->memmap[VIRT_GIC_DIST].base);
413 qemu_fdt_add_subnode(vms->fdt, nodename);
414 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
415 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
416 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
417 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
418 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
055a7f2b 419 if (vms->gic_version == 3) {
f90747c4
EA
420 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
421
bb2a3348 422 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
b92ad394 423 "arm,gic-v3");
f90747c4 424
bb2a3348 425 qemu_fdt_setprop_cell(vms->fdt, nodename,
f90747c4
EA
426 "#redistributor-regions", nb_redist_regions);
427
428 if (nb_redist_regions == 1) {
bb2a3348 429 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
f90747c4
EA
430 2, vms->memmap[VIRT_GIC_DIST].base,
431 2, vms->memmap[VIRT_GIC_DIST].size,
432 2, vms->memmap[VIRT_GIC_REDIST].base,
433 2, vms->memmap[VIRT_GIC_REDIST].size);
434 } else {
bb2a3348 435 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
f90747c4
EA
436 2, vms->memmap[VIRT_GIC_DIST].base,
437 2, vms->memmap[VIRT_GIC_DIST].size,
438 2, vms->memmap[VIRT_GIC_REDIST].base,
439 2, vms->memmap[VIRT_GIC_REDIST].size,
440 2, vms->memmap[VIRT_GIC_REDIST2].base,
441 2, vms->memmap[VIRT_GIC_REDIST2].size);
442 }
443
f29cacfb 444 if (vms->virt) {
bb2a3348 445 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
55ef3233 446 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
f29cacfb
PM
447 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
448 }
b92ad394
PF
449 } else {
450 /* 'cortex-a15-gic' means 'GIC v2' */
bb2a3348 451 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
b92ad394 452 "arm,cortex-a15-gic");
55ef3233
LM
453 if (!vms->virt) {
454 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
455 2, vms->memmap[VIRT_GIC_DIST].base,
456 2, vms->memmap[VIRT_GIC_DIST].size,
457 2, vms->memmap[VIRT_GIC_CPU].base,
458 2, vms->memmap[VIRT_GIC_CPU].size);
459 } else {
460 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
461 2, vms->memmap[VIRT_GIC_DIST].base,
462 2, vms->memmap[VIRT_GIC_DIST].size,
463 2, vms->memmap[VIRT_GIC_CPU].base,
464 2, vms->memmap[VIRT_GIC_CPU].size,
465 2, vms->memmap[VIRT_GIC_HYP].base,
466 2, vms->memmap[VIRT_GIC_HYP].size,
467 2, vms->memmap[VIRT_GIC_VCPU].base,
468 2, vms->memmap[VIRT_GIC_VCPU].size);
469 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
470 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
471 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
472 }
b92ad394
PF
473 }
474
bb2a3348
EA
475 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
476 g_free(nodename);
f5fdcd6e
PM
477}
478
055a7f2b 479static void fdt_add_pmu_nodes(const VirtMachineState *vms)
01fe6b60
SZ
480{
481 CPUState *cpu;
482 ARMCPU *armcpu;
483 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
484
485 CPU_FOREACH(cpu) {
486 armcpu = ARM_CPU(cpu);
3f07cb2a 487 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
01fe6b60
SZ
488 return;
489 }
3f07cb2a 490 if (kvm_enabled()) {
b2bfe9f7
AJ
491 if (kvm_irqchip_in_kernel()) {
492 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
3f07cb2a 493 }
b2bfe9f7 494 kvm_arm_pmu_init(cpu);
3f07cb2a 495 }
01fe6b60
SZ
496 }
497
055a7f2b 498 if (vms->gic_version == 2) {
01fe6b60
SZ
499 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
500 GIC_FDT_IRQ_PPI_CPU_WIDTH,
c8ef2bda 501 (1 << vms->smp_cpus) - 1);
01fe6b60
SZ
502 }
503
504 armcpu = ARM_CPU(qemu_get_cpu(0));
c8ef2bda 505 qemu_fdt_add_subnode(vms->fdt, "/pmu");
01fe6b60
SZ
506 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
507 const char compat[] = "arm,armv8-pmuv3";
c8ef2bda 508 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
01fe6b60 509 compat, sizeof(compat));
c8ef2bda 510 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
01fe6b60
SZ
511 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
512 }
513}
514
c8ef2bda 515static void create_its(VirtMachineState *vms, DeviceState *gicdev)
02f98731
PF
516{
517 const char *itsclass = its_class_name();
518 DeviceState *dev;
519
520 if (!itsclass) {
521 /* Do nothing if not supported */
522 return;
523 }
524
525 dev = qdev_create(NULL, itsclass);
526
527 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
528 &error_abort);
529 qdev_init_nofail(dev);
c8ef2bda 530 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
02f98731 531
c8ef2bda 532 fdt_add_its_gic_node(vms);
02f98731
PF
533}
534
c8ef2bda 535static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
bd204e63
CD
536{
537 int i;
c8ef2bda 538 int irq = vms->irqmap[VIRT_GIC_V2M];
bd204e63
CD
539 DeviceState *dev;
540
541 dev = qdev_create(NULL, "arm-gicv2m");
c8ef2bda 542 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
bd204e63
CD
543 qdev_prop_set_uint32(dev, "base-spi", irq);
544 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
545 qdev_init_nofail(dev);
546
547 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
548 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
549 }
550
c8ef2bda 551 fdt_add_v2m_gic_node(vms);
bd204e63
CD
552}
553
055a7f2b 554static void create_gic(VirtMachineState *vms, qemu_irq *pic)
64204743 555{
b92ad394 556 /* We create a standalone GIC */
64204743
PM
557 DeviceState *gicdev;
558 SysBusDevice *gicbusdev;
e6fbcbc4 559 const char *gictype;
055a7f2b 560 int type = vms->gic_version, i;
03d72fa1 561 uint32_t nb_redist_regions = 0;
64204743 562
b92ad394 563 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
64204743
PM
564
565 gicdev = qdev_create(NULL, gictype);
b92ad394 566 qdev_prop_set_uint32(gicdev, "revision", type);
64204743
PM
567 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
568 /* Note that the num-irq property counts both internal and external
569 * interrupts; there are always 32 of the former (mandated by GIC spec).
570 */
571 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
0e21f183 572 if (!kvm_irqchip_in_kernel()) {
0127937b 573 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
0e21f183 574 }
1e575b66
EA
575
576 if (type == 3) {
577 uint32_t redist0_capacity =
578 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
579 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
580
03d72fa1
EA
581 nb_redist_regions = virt_gicv3_redist_region_count(vms);
582
583 qdev_prop_set_uint32(gicdev, "len-redist-region-count",
584 nb_redist_regions);
1e575b66 585 qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
03d72fa1
EA
586
587 if (nb_redist_regions == 2) {
588 uint32_t redist1_capacity =
589 vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE;
590
591 qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
592 MIN(smp_cpus - redist0_count, redist1_capacity));
593 }
55ef3233
LM
594 } else {
595 if (!kvm_irqchip_in_kernel()) {
596 qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
597 vms->virt);
598 }
1e575b66 599 }
64204743
PM
600 qdev_init_nofail(gicdev);
601 gicbusdev = SYS_BUS_DEVICE(gicdev);
c8ef2bda 602 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
b92ad394 603 if (type == 3) {
c8ef2bda 604 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
03d72fa1
EA
605 if (nb_redist_regions == 2) {
606 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_REDIST2].base);
607 }
b92ad394 608 } else {
c8ef2bda 609 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
55ef3233
LM
610 if (vms->virt) {
611 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
612 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
613 }
b92ad394 614 }
64204743 615
5454006a
PM
616 /* Wire the outputs from each CPU's generic timer and the GICv3
617 * maintenance interrupt signal to the appropriate GIC PPI inputs,
618 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
64204743
PM
619 */
620 for (i = 0; i < smp_cpus; i++) {
621 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
0e3e858f 622 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
a007b1f8
PM
623 int irq;
624 /* Mapping from the output timer irq lines from the CPU to the
625 * GIC PPI inputs we use for the virt board.
64204743 626 */
a007b1f8
PM
627 const int timer_irq[] = {
628 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
629 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
630 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
631 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
632 };
633
634 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
635 qdev_connect_gpio_out(cpudev, irq,
636 qdev_get_gpio_in(gicdev,
637 ppibase + timer_irq[irq]));
638 }
64204743 639
55ef3233
LM
640 if (type == 3) {
641 qemu_irq irq = qdev_get_gpio_in(gicdev,
642 ppibase + ARCH_GIC_MAINT_IRQ);
643 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
644 0, irq);
645 } else if (vms->virt) {
646 qemu_irq irq = qdev_get_gpio_in(gicdev,
647 ppibase + ARCH_GIC_MAINT_IRQ);
648 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
649 }
650
07f48730
AJ
651 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
652 qdev_get_gpio_in(gicdev, ppibase
653 + VIRTUAL_PMU_IRQ));
5454006a 654
64204743 655 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
8e7b4ca0
GB
656 sysbus_connect_irq(gicbusdev, i + smp_cpus,
657 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
5454006a
PM
658 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
659 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
660 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
661 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
64204743
PM
662 }
663
664 for (i = 0; i < NUM_IRQS; i++) {
665 pic[i] = qdev_get_gpio_in(gicdev, i);
666 }
667
055a7f2b 668 fdt_add_gic_node(vms);
bd204e63 669
ccc11b02 670 if (type == 3 && vms->its) {
c8ef2bda 671 create_its(vms, gicdev);
2231f69b 672 } else if (type == 2) {
c8ef2bda 673 create_v2m(vms, pic);
b92ad394 674 }
64204743
PM
675}
676
c8ef2bda 677static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
0ec7b3e7 678 MemoryRegion *mem, Chardev *chr)
f5fdcd6e
PM
679{
680 char *nodename;
c8ef2bda
PM
681 hwaddr base = vms->memmap[uart].base;
682 hwaddr size = vms->memmap[uart].size;
683 int irq = vms->irqmap[uart];
f5fdcd6e
PM
684 const char compat[] = "arm,pl011\0arm,primecell";
685 const char clocknames[] = "uartclk\0apb_pclk";
3df708eb
PM
686 DeviceState *dev = qdev_create(NULL, "pl011");
687 SysBusDevice *s = SYS_BUS_DEVICE(dev);
f5fdcd6e 688
9bbbf649 689 qdev_prop_set_chr(dev, "chardev", chr);
3df708eb
PM
690 qdev_init_nofail(dev);
691 memory_region_add_subregion(mem, base,
692 sysbus_mmio_get_region(s, 0));
693 sysbus_connect_irq(s, 0, pic[irq]);
f5fdcd6e
PM
694
695 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
c8ef2bda 696 qemu_fdt_add_subnode(vms->fdt, nodename);
f5fdcd6e 697 /* Note that we can't use setprop_string because of the embedded NUL */
c8ef2bda 698 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
f5fdcd6e 699 compat, sizeof(compat));
c8ef2bda 700 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
f5fdcd6e 701 2, base, 2, size);
c8ef2bda 702 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
f5fdcd6e 703 GIC_FDT_IRQ_TYPE_SPI, irq,
0be969a2 704 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
c8ef2bda
PM
705 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
706 vms->clock_phandle, vms->clock_phandle);
707 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
f5fdcd6e 708 clocknames, sizeof(clocknames));
f022b8e9 709
3df708eb 710 if (uart == VIRT_UART) {
c8ef2bda 711 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
3df708eb
PM
712 } else {
713 /* Mark as not usable by the normal world */
c8ef2bda
PM
714 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
715 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
fb23d693
JF
716
717 qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
718 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
719 nodename);
3df708eb
PM
720 }
721
f5fdcd6e
PM
722 g_free(nodename);
723}
724
c8ef2bda 725static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
6e411af9
PM
726{
727 char *nodename;
c8ef2bda
PM
728 hwaddr base = vms->memmap[VIRT_RTC].base;
729 hwaddr size = vms->memmap[VIRT_RTC].size;
730 int irq = vms->irqmap[VIRT_RTC];
6e411af9
PM
731 const char compat[] = "arm,pl031\0arm,primecell";
732
733 sysbus_create_simple("pl031", base, pic[irq]);
734
735 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
c8ef2bda
PM
736 qemu_fdt_add_subnode(vms->fdt, nodename);
737 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
738 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
6e411af9 739 2, base, 2, size);
c8ef2bda 740 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
6e411af9 741 GIC_FDT_IRQ_TYPE_SPI, irq,
0be969a2 742 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
c8ef2bda
PM
743 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
744 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
6e411af9
PM
745 g_free(nodename);
746}
747
94f02c5e 748static DeviceState *gpio_key_dev;
4bedd849
SZ
749static void virt_powerdown_req(Notifier *n, void *opaque)
750{
751 /* use gpio Pin 3 for power button event */
94f02c5e 752 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
4bedd849
SZ
753}
754
755static Notifier virt_system_powerdown_notifier = {
756 .notify = virt_powerdown_req
757};
758
c8ef2bda 759static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
b0a3721e
SZ
760{
761 char *nodename;
94f02c5e 762 DeviceState *pl061_dev;
c8ef2bda
PM
763 hwaddr base = vms->memmap[VIRT_GPIO].base;
764 hwaddr size = vms->memmap[VIRT_GPIO].size;
765 int irq = vms->irqmap[VIRT_GPIO];
b0a3721e
SZ
766 const char compat[] = "arm,pl061\0arm,primecell";
767
4bedd849 768 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
b0a3721e 769
c8ef2bda 770 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
b0a3721e 771 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
c8ef2bda
PM
772 qemu_fdt_add_subnode(vms->fdt, nodename);
773 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
b0a3721e 774 2, base, 2, size);
c8ef2bda
PM
775 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
776 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
777 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
778 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
b0a3721e
SZ
779 GIC_FDT_IRQ_TYPE_SPI, irq,
780 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
c8ef2bda
PM
781 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
782 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
783 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
3e6ebb64 784
94f02c5e
SZ
785 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
786 qdev_get_gpio_in(pl061_dev, 3));
c8ef2bda
PM
787 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
788 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
789 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
790 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
3e6ebb64 791
c8ef2bda
PM
792 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
793 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
3e6ebb64 794 "label", "GPIO Key Poweroff");
c8ef2bda 795 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
3e6ebb64 796 KEY_POWER);
c8ef2bda 797 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
3e6ebb64 798 "gpios", phandle, 3, 0);
b0a3721e 799
4bedd849
SZ
800 /* connect powerdown request */
801 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
802
b0a3721e
SZ
803 g_free(nodename);
804}
805
c8ef2bda 806static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
f5fdcd6e
PM
807{
808 int i;
c8ef2bda 809 hwaddr size = vms->memmap[VIRT_MMIO].size;
f5fdcd6e 810
587078f0
LE
811 /* We create the transports in forwards order. Since qbus_realize()
812 * prepends (not appends) new child buses, the incrementing loop below will
813 * create a list of virtio-mmio buses with decreasing base addresses.
814 *
815 * When a -device option is processed from the command line,
816 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
817 * order. The upshot is that -device options in increasing command line
818 * order are mapped to virtio-mmio buses with decreasing base addresses.
819 *
820 * When this code was originally written, that arrangement ensured that the
821 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
822 * the first -device on the command line. (The end-to-end order is a
823 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
824 * guest kernel's name-to-address assignment strategy.)
825 *
826 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
827 * the message, if not necessarily the code, of commit 70161ff336.
828 * Therefore the loop now establishes the inverse of the original intent.
829 *
830 * Unfortunately, we can't counteract the kernel change by reversing the
831 * loop; it would break existing command lines.
832 *
833 * In any case, the kernel makes no guarantee about the stability of
834 * enumeration order of virtio devices (as demonstrated by it changing
835 * between kernel versions). For reliable and stable identification
836 * of disks users must use UUIDs or similar mechanisms.
f5fdcd6e
PM
837 */
838 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
c8ef2bda
PM
839 int irq = vms->irqmap[VIRT_MMIO] + i;
840 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
f5fdcd6e
PM
841
842 sysbus_create_simple("virtio-mmio", base, pic[irq]);
843 }
844
587078f0
LE
845 /* We add dtb nodes in reverse order so that they appear in the finished
846 * device tree lowest address first.
847 *
848 * Note that this mapping is independent of the loop above. The previous
849 * loop influences virtio device to virtio transport assignment, whereas
850 * this loop controls how virtio transports are laid out in the dtb.
851 */
f5fdcd6e
PM
852 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
853 char *nodename;
c8ef2bda
PM
854 int irq = vms->irqmap[VIRT_MMIO] + i;
855 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
f5fdcd6e
PM
856
857 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
c8ef2bda
PM
858 qemu_fdt_add_subnode(vms->fdt, nodename);
859 qemu_fdt_setprop_string(vms->fdt, nodename,
5a4348d1 860 "compatible", "virtio,mmio");
c8ef2bda 861 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
5a4348d1 862 2, base, 2, size);
c8ef2bda 863 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
5a4348d1
PC
864 GIC_FDT_IRQ_TYPE_SPI, irq,
865 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
054bb7b2 866 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
f5fdcd6e
PM
867 g_free(nodename);
868 }
869}
870
acf82361 871static void create_one_flash(const char *name, hwaddr flashbase,
738a5d9f
PM
872 hwaddr flashsize, const char *file,
873 MemoryRegion *sysmem)
acf82361
PM
874{
875 /* Create and map a single flash device. We use the same
876 * parameters as the flash devices on the Versatile Express board.
877 */
878 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
879 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
16f4a8dc 880 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
acf82361
PM
881 const uint64_t sectorlength = 256 * 1024;
882
9b3d111a
MA
883 if (dinfo) {
884 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
885 &error_abort);
acf82361
PM
886 }
887
888 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
889 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
890 qdev_prop_set_uint8(dev, "width", 4);
891 qdev_prop_set_uint8(dev, "device-width", 2);
e9809422 892 qdev_prop_set_bit(dev, "big-endian", false);
acf82361
PM
893 qdev_prop_set_uint16(dev, "id0", 0x89);
894 qdev_prop_set_uint16(dev, "id1", 0x18);
895 qdev_prop_set_uint16(dev, "id2", 0x00);
896 qdev_prop_set_uint16(dev, "id3", 0x00);
897 qdev_prop_set_string(dev, "name", name);
898 qdev_init_nofail(dev);
899
738a5d9f
PM
900 memory_region_add_subregion(sysmem, flashbase,
901 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
acf82361 902
16f4a8dc 903 if (file) {
6e05a12f 904 char *fn;
4de9a883 905 int image_size;
acf82361
PM
906
907 if (drive_get(IF_PFLASH, 0, 0)) {
908 error_report("The contents of the first flash device may be "
909 "specified with -bios or with -drive if=pflash... "
910 "but you cannot use both options at once");
911 exit(1);
912 }
16f4a8dc 913 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
4de9a883 914 if (!fn) {
16f4a8dc 915 error_report("Could not find ROM image '%s'", file);
4de9a883
SW
916 exit(1);
917 }
16f4a8dc 918 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
4de9a883
SW
919 g_free(fn);
920 if (image_size < 0) {
16f4a8dc 921 error_report("Could not load ROM image '%s'", file);
acf82361
PM
922 exit(1);
923 }
924 }
16f4a8dc
PM
925}
926
c8ef2bda 927static void create_flash(const VirtMachineState *vms,
738a5d9f
PM
928 MemoryRegion *sysmem,
929 MemoryRegion *secure_sysmem)
16f4a8dc
PM
930{
931 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
932 * Any file passed via -bios goes in the first of these.
738a5d9f
PM
933 * sysmem is the system memory space. secure_sysmem is the secure view
934 * of the system, and the first flash device should be made visible only
935 * there. The second flash device is visible to both secure and nonsecure.
936 * If sysmem == secure_sysmem this means there is no separate Secure
937 * address space and both flash devices are generally visible.
16f4a8dc 938 */
c8ef2bda
PM
939 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
940 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
16f4a8dc 941 char *nodename;
acf82361 942
738a5d9f
PM
943 create_one_flash("virt.flash0", flashbase, flashsize,
944 bios_name, secure_sysmem);
945 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
946 NULL, sysmem);
acf82361 947
738a5d9f
PM
948 if (sysmem == secure_sysmem) {
949 /* Report both flash devices as a single node in the DT */
950 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
c8ef2bda
PM
951 qemu_fdt_add_subnode(vms->fdt, nodename);
952 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
953 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
738a5d9f
PM
954 2, flashbase, 2, flashsize,
955 2, flashbase + flashsize, 2, flashsize);
c8ef2bda 956 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
738a5d9f
PM
957 g_free(nodename);
958 } else {
959 /* Report the devices as separate nodes so we can mark one as
960 * only visible to the secure world.
961 */
962 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
c8ef2bda
PM
963 qemu_fdt_add_subnode(vms->fdt, nodename);
964 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
965 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
738a5d9f 966 2, flashbase, 2, flashsize);
c8ef2bda
PM
967 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
968 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
969 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
738a5d9f
PM
970 g_free(nodename);
971
972 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
c8ef2bda
PM
973 qemu_fdt_add_subnode(vms->fdt, nodename);
974 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
975 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
738a5d9f 976 2, flashbase + flashsize, 2, flashsize);
c8ef2bda 977 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
738a5d9f
PM
978 g_free(nodename);
979 }
acf82361
PM
980}
981
af1f60a4 982static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
578f3c7b 983{
c8ef2bda
PM
984 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
985 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
5836d168 986 FWCfgState *fw_cfg;
578f3c7b
LE
987 char *nodename;
988
5836d168
IM
989 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
990 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
578f3c7b
LE
991
992 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
c8ef2bda
PM
993 qemu_fdt_add_subnode(vms->fdt, nodename);
994 qemu_fdt_setprop_string(vms->fdt, nodename,
578f3c7b 995 "compatible", "qemu,fw-cfg-mmio");
c8ef2bda 996 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
578f3c7b 997 2, base, 2, size);
14efdb5c 998 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
578f3c7b 999 g_free(nodename);
af1f60a4 1000 return fw_cfg;
578f3c7b
LE
1001}
1002
c8ef2bda 1003static void create_pcie_irq_map(const VirtMachineState *vms,
9ac4ef77 1004 uint32_t gic_phandle,
4ab29b82
AG
1005 int first_irq, const char *nodename)
1006{
1007 int devfn, pin;
dfd90a87 1008 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
4ab29b82
AG
1009 uint32_t *irq_map = full_irq_map;
1010
1011 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1012 for (pin = 0; pin < 4; pin++) {
1013 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1014 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1015 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1016 int i;
1017
1018 uint32_t map[] = {
1019 devfn << 8, 0, 0, /* devfn */
1020 pin + 1, /* PCI pin */
dfd90a87 1021 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
4ab29b82
AG
1022
1023 /* Convert map to big endian */
dfd90a87 1024 for (i = 0; i < 10; i++) {
4ab29b82
AG
1025 irq_map[i] = cpu_to_be32(map[i]);
1026 }
dfd90a87 1027 irq_map += 10;
4ab29b82
AG
1028 }
1029 }
1030
c8ef2bda 1031 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
4ab29b82
AG
1032 full_irq_map, sizeof(full_irq_map));
1033
c8ef2bda 1034 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
4ab29b82
AG
1035 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1036 0x7 /* PCI irq */);
1037}
1038
584105ea
PM
1039static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1040 PCIBus *bus)
1041{
1042 char *node;
1043 const char compat[] = "arm,smmu-v3";
1044 int irq = vms->irqmap[VIRT_SMMU];
1045 int i;
1046 hwaddr base = vms->memmap[VIRT_SMMU].base;
1047 hwaddr size = vms->memmap[VIRT_SMMU].size;
1048 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1049 DeviceState *dev;
1050
1051 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1052 return;
1053 }
1054
1055 dev = qdev_create(NULL, "arm-smmuv3");
1056
1057 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1058 &error_abort);
1059 qdev_init_nofail(dev);
1060 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1061 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1062 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1063 }
1064
1065 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1066 qemu_fdt_add_subnode(vms->fdt, node);
1067 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1068 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1069
1070 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1071 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1072 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1073 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1074 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1075
1076 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1077 sizeof(irq_names));
1078
1079 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1080 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1081 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1082
1083 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1084
1085 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1086 g_free(node);
1087}
1088
1089static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
4ab29b82 1090{
c8ef2bda
PM
1091 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1092 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1093 hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
1094 hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
1095 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1096 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
601d626d 1097 hwaddr base_ecam, size_ecam;
6a1f001b 1098 hwaddr base = base_mmio;
601d626d 1099 int nr_pcie_buses;
c8ef2bda 1100 int irq = vms->irqmap[VIRT_PCIE];
4ab29b82
AG
1101 MemoryRegion *mmio_alias;
1102 MemoryRegion *mmio_reg;
1103 MemoryRegion *ecam_alias;
1104 MemoryRegion *ecam_reg;
1105 DeviceState *dev;
1106 char *nodename;
601d626d 1107 int i, ecam_id;
fea9b3ca 1108 PCIHostState *pci;
4ab29b82 1109
4ab29b82
AG
1110 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1111 qdev_init_nofail(dev);
1112
601d626d
EA
1113 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1114 base_ecam = vms->memmap[ecam_id].base;
1115 size_ecam = vms->memmap[ecam_id].size;
1116 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
4ab29b82
AG
1117 /* Map only the first size_ecam bytes of ECAM space */
1118 ecam_alias = g_new0(MemoryRegion, 1);
1119 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1120 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1121 ecam_reg, 0, size_ecam);
1122 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1123
1124 /* Map the MMIO window into system address space so as to expose
1125 * the section of PCI MMIO space which starts at the same base address
1126 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1127 * the window).
1128 */
1129 mmio_alias = g_new0(MemoryRegion, 1);
1130 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1131 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1132 mmio_reg, base_mmio, size_mmio);
1133 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1134
0127937b 1135 if (vms->highmem) {
5125f9cd
PF
1136 /* Map high MMIO space */
1137 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1138
1139 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1140 mmio_reg, base_mmio_high, size_mmio_high);
1141 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1142 high_mmio_alias);
1143 }
1144
4ab29b82 1145 /* Map IO port space */
6a1f001b 1146 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
4ab29b82
AG
1147
1148 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1149 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
c9bb8e16 1150 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
4ab29b82
AG
1151 }
1152
fea9b3ca
AK
1153 pci = PCI_HOST_BRIDGE(dev);
1154 if (pci->bus) {
1155 for (i = 0; i < nb_nics; i++) {
1156 NICInfo *nd = &nd_table[i];
1157
1158 if (!nd->model) {
1159 nd->model = g_strdup("virtio");
1160 }
1161
1162 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1163 }
1164 }
1165
4ab29b82 1166 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
c8ef2bda
PM
1167 qemu_fdt_add_subnode(vms->fdt, nodename);
1168 qemu_fdt_setprop_string(vms->fdt, nodename,
4ab29b82 1169 "compatible", "pci-host-ecam-generic");
c8ef2bda
PM
1170 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1171 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1172 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
6d9c1b8d 1173 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
c8ef2bda 1174 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
4ab29b82 1175 nr_pcie_buses - 1);
c8ef2bda 1176 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
4ab29b82 1177
c8ef2bda
PM
1178 if (vms->msi_phandle) {
1179 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1180 vms->msi_phandle);
b92ad394 1181 }
bd204e63 1182
c8ef2bda 1183 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
4ab29b82 1184 2, base_ecam, 2, size_ecam);
5125f9cd 1185
0127937b 1186 if (vms->highmem) {
c8ef2bda 1187 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
5125f9cd
PF
1188 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1189 2, base_pio, 2, size_pio,
1190 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1191 2, base_mmio, 2, size_mmio,
1192 1, FDT_PCI_RANGE_MMIO_64BIT,
1193 2, base_mmio_high,
1194 2, base_mmio_high, 2, size_mmio_high);
1195 } else {
c8ef2bda 1196 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
5125f9cd
PF
1197 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1198 2, base_pio, 2, size_pio,
1199 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1200 2, base_mmio, 2, size_mmio);
1201 }
4ab29b82 1202
c8ef2bda
PM
1203 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1204 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
4ab29b82 1205
584105ea
PM
1206 if (vms->iommu) {
1207 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1208
1209 create_smmu(vms, pic, pci->bus);
1210
1211 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1212 0x0, vms->iommu_phandle, 0x0, 0x10000);
1213 }
1214
4ab29b82
AG
1215 g_free(nodename);
1216}
1217
c8ef2bda 1218static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
5f7a5a0e
EA
1219{
1220 DeviceState *dev;
1221 SysBusDevice *s;
1222 int i;
5f7a5a0e
EA
1223 MemoryRegion *sysmem = get_system_memory();
1224
5f7a5a0e
EA
1225 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1226 dev->id = TYPE_PLATFORM_BUS_DEVICE;
3b77f6c3
IM
1227 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1228 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
5f7a5a0e 1229 qdev_init_nofail(dev);
a3fc8396 1230 vms->platform_bus_dev = dev;
5f7a5a0e 1231
3b77f6c3
IM
1232 s = SYS_BUS_DEVICE(dev);
1233 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1234 int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
5f7a5a0e
EA
1235 sysbus_connect_irq(s, i, pic[irqn]);
1236 }
1237
1238 memory_region_add_subregion(sysmem,
3b77f6c3 1239 vms->memmap[VIRT_PLATFORM_BUS].base,
5f7a5a0e
EA
1240 sysbus_mmio_get_region(s, 0));
1241}
1242
c8ef2bda 1243static void create_secure_ram(VirtMachineState *vms,
9ac4ef77 1244 MemoryRegion *secure_sysmem)
83ec1923
PM
1245{
1246 MemoryRegion *secram = g_new(MemoryRegion, 1);
1247 char *nodename;
c8ef2bda
PM
1248 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1249 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
83ec1923 1250
98a99ce0
PM
1251 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1252 &error_fatal);
83ec1923
PM
1253 memory_region_add_subregion(secure_sysmem, base, secram);
1254
1255 nodename = g_strdup_printf("/secram@%" PRIx64, base);
c8ef2bda
PM
1256 qemu_fdt_add_subnode(vms->fdt, nodename);
1257 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1258 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1259 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1260 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
83ec1923
PM
1261
1262 g_free(nodename);
1263}
1264
f5fdcd6e
PM
1265static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1266{
9ac4ef77
PM
1267 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1268 bootinfo);
f5fdcd6e
PM
1269
1270 *fdt_size = board->fdt_size;
1271 return board->fdt;
1272}
1273
e9a8e474 1274static void virt_build_smbios(VirtMachineState *vms)
c30e1565 1275{
dfadc3bf
WH
1276 MachineClass *mc = MACHINE_GET_CLASS(vms);
1277 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
c30e1565
WH
1278 uint8_t *smbios_tables, *smbios_anchor;
1279 size_t smbios_tables_len, smbios_anchor_len;
bab27ea2 1280 const char *product = "QEMU Virtual Machine";
c30e1565 1281
af1f60a4 1282 if (!vms->fw_cfg) {
c30e1565
WH
1283 return;
1284 }
1285
bab27ea2
AJ
1286 if (kvm_enabled()) {
1287 product = "KVM Virtual Machine";
1288 }
1289
1290 smbios_set_defaults("QEMU", product,
dfadc3bf
WH
1291 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1292 true, SMBIOS_ENTRY_POINT_30);
c30e1565
WH
1293
1294 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1295 &smbios_anchor, &smbios_anchor_len);
1296
1297 if (smbios_anchor) {
af1f60a4 1298 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
c30e1565 1299 smbios_tables, smbios_tables_len);
af1f60a4 1300 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
c30e1565
WH
1301 smbios_anchor, smbios_anchor_len);
1302 }
1303}
1304
d7c2e2db 1305static
054f4dc9 1306void virt_machine_done(Notifier *notifier, void *data)
d7c2e2db 1307{
054f4dc9
AJ
1308 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1309 machine_done);
3b77f6c3
IM
1310 ARMCPU *cpu = ARM_CPU(first_cpu);
1311 struct arm_boot_info *info = &vms->bootinfo;
1312 AddressSpace *as = arm_boot_address_space(cpu, info);
1313
1314 /*
1315 * If the user provided a dtb, we assume the dynamic sysbus nodes
1316 * already are integrated there. This corresponds to a use case where
1317 * the dynamic sysbus nodes are complex and their generation is not yet
1318 * supported. In that case the user can take charge of the guest dt
1319 * while qemu takes charge of the qom stuff.
1320 */
1321 if (info->dtb_filename == NULL) {
1322 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1323 vms->memmap[VIRT_PLATFORM_BUS].base,
1324 vms->memmap[VIRT_PLATFORM_BUS].size,
1325 vms->irqmap[VIRT_PLATFORM_BUS]);
1326 }
1327 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1328 exit(1);
1329 }
054f4dc9 1330
e9a8e474
AJ
1331 virt_acpi_setup(vms);
1332 virt_build_smbios(vms);
d7c2e2db
SZ
1333}
1334
46de5913
IM
1335static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1336{
1337 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1338 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1339
1340 if (!vmc->disallow_affinity_adjustment) {
1341 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1342 * GIC's target-list limitations. 32-bit KVM hosts currently
1343 * always create clusters of 4 CPUs, but that is expected to
1344 * change when they gain support for gicv3. When KVM is enabled
1345 * it will override the changes we make here, therefore our
1346 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1347 * and to improve SGI efficiency.
1348 */
1349 if (vms->gic_version == 3) {
1350 clustersz = GICV3_TARGETLIST_BITS;
1351 } else {
1352 clustersz = GIC_TARGETLIST_BITS;
1353 }
1354 }
1355 return arm_cpu_mp_affinity(idx, clustersz);
1356}
1357
3ef96221 1358static void machvirt_init(MachineState *machine)
f5fdcd6e 1359{
e5a5604f 1360 VirtMachineState *vms = VIRT_MACHINE(machine);
95eb49c8 1361 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
17d3d0e2
IM
1362 MachineClass *mc = MACHINE_GET_CLASS(machine);
1363 const CPUArchIdList *possible_cpus;
f5fdcd6e
PM
1364 qemu_irq pic[NUM_IRQS];
1365 MemoryRegion *sysmem = get_system_memory();
3df708eb 1366 MemoryRegion *secure_sysmem = NULL;
7ea686f5 1367 int n, virt_max_cpus;
f5fdcd6e 1368 MemoryRegion *ram = g_new(MemoryRegion, 1);
4824a61a 1369 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
17ec075a 1370 bool aarch64 = true;
f5fdcd6e 1371
b92ad394
PF
1372 /* We can probe only here because during property set
1373 * KVM is not available yet
1374 */
dc16538a
PM
1375 if (vms->gic_version <= 0) {
1376 /* "host" or "max" */
0bf8039d 1377 if (!kvm_enabled()) {
dc16538a
PM
1378 if (vms->gic_version == 0) {
1379 error_report("gic-version=host requires KVM");
1380 exit(1);
1381 } else {
1382 /* "max": currently means 3 for TCG */
1383 vms->gic_version = 3;
1384 }
1385 } else {
1386 vms->gic_version = kvm_arm_vgic_probe();
1387 if (!vms->gic_version) {
1388 error_report(
1389 "Unable to determine GIC version supported by host");
1390 exit(1);
1391 }
b92ad394
PF
1392 }
1393 }
1394
ba1ba5cc
IM
1395 if (!cpu_type_valid(machine->cpu_type)) {
1396 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
f5fdcd6e
PM
1397 exit(1);
1398 }
1399
4824a61a
PM
1400 /* If we have an EL3 boot ROM then the assumption is that it will
1401 * implement PSCI itself, so disable QEMU's internal implementation
1402 * so it doesn't get in the way. Instead of starting secondary
1403 * CPUs in PSCI powerdown state we will start them all running and
1404 * let the boot ROM sort them out.
f29cacfb
PM
1405 * The usual case is that we do use QEMU's PSCI implementation;
1406 * if the guest has EL2 then we will use SMC as the conduit,
1407 * and otherwise we will use HVC (for backwards compatibility and
1408 * because if we're using KVM then we must use HVC).
4824a61a 1409 */
2013c566
PM
1410 if (vms->secure && firmware_loaded) {
1411 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
f29cacfb
PM
1412 } else if (vms->virt) {
1413 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2013c566
PM
1414 } else {
1415 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1416 }
4824a61a 1417
4b280b72
AJ
1418 /* The maximum number of CPUs depends on the GIC version, or on how
1419 * many redistributors we can fit into the memory map.
1420 */
055a7f2b 1421 if (vms->gic_version == 3) {
1e575b66 1422 virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
03d72fa1 1423 virt_max_cpus += vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE;
4b280b72 1424 } else {
7ea686f5 1425 virt_max_cpus = GIC_NCPU;
4b280b72
AJ
1426 }
1427
7ea686f5 1428 if (max_cpus > virt_max_cpus) {
4b280b72
AJ
1429 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1430 "supported by machine 'mach-virt' (%d)",
7ea686f5 1431 max_cpus, virt_max_cpus);
4b280b72
AJ
1432 exit(1);
1433 }
1434
c8ef2bda 1435 vms->smp_cpus = smp_cpus;
f5fdcd6e 1436
c8ef2bda 1437 if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
71c27684 1438 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
f5fdcd6e
PM
1439 exit(1);
1440 }
1441
f29cacfb
PM
1442 if (vms->virt && kvm_enabled()) {
1443 error_report("mach-virt: KVM does not support providing "
1444 "Virtualization extensions to the guest CPU");
1445 exit(1);
1446 }
1447
3df708eb
PM
1448 if (vms->secure) {
1449 if (kvm_enabled()) {
1450 error_report("mach-virt: KVM does not support Security extensions");
1451 exit(1);
1452 }
1453
1454 /* The Secure view of the world is the same as the NonSecure,
1455 * but with a few extra devices. Create it as a container region
1456 * containing the system memory at low priority; any secure-only
1457 * devices go in at higher priority and take precedence.
1458 */
1459 secure_sysmem = g_new(MemoryRegion, 1);
1460 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1461 UINT64_MAX);
1462 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1463 }
1464
c8ef2bda 1465 create_fdt(vms);
f5fdcd6e 1466
17d3d0e2
IM
1467 possible_cpus = mc->possible_cpu_arch_ids(machine);
1468 for (n = 0; n < possible_cpus->len; n++) {
1469 Object *cpuobj;
d9c34f9c 1470 CPUState *cs;
46de5913 1471
17d3d0e2
IM
1472 if (n >= smp_cpus) {
1473 break;
1474 }
1475
d342eb76 1476 cpuobj = object_new(possible_cpus->cpus[n].type);
17d3d0e2 1477 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
46de5913 1478 "mp-affinity", NULL);
f313369f 1479
d9c34f9c
IM
1480 cs = CPU(cpuobj);
1481 cs->cpu_index = n;
1482
a0ceb640
IM
1483 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1484 &error_fatal);
bd4c1bfe 1485
17ec075a
EA
1486 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1487
e5a5604f
GB
1488 if (!vms->secure) {
1489 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1490 }
1491
f29cacfb 1492 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
c25bd18a
PM
1493 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1494 }
1495
2013c566
PM
1496 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1497 object_property_set_int(cpuobj, vms->psci_conduit,
4824a61a 1498 "psci-conduit", NULL);
211b0169 1499
4824a61a
PM
1500 /* Secondary CPUs start in PSCI powered-down state */
1501 if (n > 0) {
1502 object_property_set_bool(cpuobj, true,
1503 "start-powered-off", NULL);
1504 }
f5fdcd6e 1505 }
ba750085 1506
1141d1eb
WH
1507 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1508 object_property_set_bool(cpuobj, false, "pmu", NULL);
1509 }
1510
ba750085 1511 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
c8ef2bda 1512 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
ba750085
PM
1513 "reset-cbar", &error_abort);
1514 }
1515
1d939a68
PM
1516 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1517 &error_abort);
3df708eb
PM
1518 if (vms->secure) {
1519 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1520 "secure-memory", &error_abort);
1521 }
1d939a68 1522
c88bc3e0 1523 object_property_set_bool(cpuobj, true, "realized", &error_fatal);
dbb74759 1524 object_unref(cpuobj);
f5fdcd6e 1525 }
055a7f2b 1526 fdt_add_timer_nodes(vms);
c8ef2bda 1527 fdt_add_cpu_nodes(vms);
f5fdcd6e 1528
c8623c02
DM
1529 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1530 machine->ram_size);
c8ef2bda 1531 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
f5fdcd6e 1532
c8ef2bda 1533 create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
acf82361 1534
055a7f2b 1535 create_gic(vms, pic);
f5fdcd6e 1536
055a7f2b 1537 fdt_add_pmu_nodes(vms);
01fe6b60 1538
9bca0edb 1539 create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
3df708eb
PM
1540
1541 if (vms->secure) {
c8ef2bda 1542 create_secure_ram(vms, secure_sysmem);
9bca0edb 1543 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
3df708eb 1544 }
f5fdcd6e 1545
17ec075a
EA
1546 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1547
c8ef2bda 1548 create_rtc(vms, pic);
6e411af9 1549
0127937b 1550 create_pcie(vms, pic);
4ab29b82 1551
c8ef2bda 1552 create_gpio(vms, pic);
b0a3721e 1553
f5fdcd6e
PM
1554 /* Create mmio transports, so the user can create virtio backends
1555 * (which will be automatically plugged in to the transports). If
1556 * no backend is created the transport will just sit harmlessly idle.
1557 */
c8ef2bda 1558 create_virtio_devices(vms, pic);
f5fdcd6e 1559
af1f60a4
AJ
1560 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1561 rom_set_fw(vms->fw_cfg);
d7c2e2db 1562
3b77f6c3 1563 create_platform_bus(vms, pic);
578f3c7b 1564
c8ef2bda
PM
1565 vms->bootinfo.ram_size = machine->ram_size;
1566 vms->bootinfo.kernel_filename = machine->kernel_filename;
1567 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1568 vms->bootinfo.initrd_filename = machine->initrd_filename;
1569 vms->bootinfo.nb_cpus = smp_cpus;
1570 vms->bootinfo.board_id = -1;
1571 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1572 vms->bootinfo.get_dtb = machvirt_dtb;
3b77f6c3 1573 vms->bootinfo.skip_dtb_autoload = true;
c8ef2bda
PM
1574 vms->bootinfo.firmware_loaded = firmware_loaded;
1575 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
5f7a5a0e 1576
3b77f6c3
IM
1577 vms->machine_done.notify = virt_machine_done;
1578 qemu_add_machine_init_done_notifier(&vms->machine_done);
f5fdcd6e
PM
1579}
1580
083a5890
GB
1581static bool virt_get_secure(Object *obj, Error **errp)
1582{
1583 VirtMachineState *vms = VIRT_MACHINE(obj);
1584
1585 return vms->secure;
1586}
1587
1588static void virt_set_secure(Object *obj, bool value, Error **errp)
1589{
1590 VirtMachineState *vms = VIRT_MACHINE(obj);
1591
1592 vms->secure = value;
1593}
1594
f29cacfb
PM
1595static bool virt_get_virt(Object *obj, Error **errp)
1596{
1597 VirtMachineState *vms = VIRT_MACHINE(obj);
1598
1599 return vms->virt;
1600}
1601
1602static void virt_set_virt(Object *obj, bool value, Error **errp)
1603{
1604 VirtMachineState *vms = VIRT_MACHINE(obj);
1605
1606 vms->virt = value;
1607}
1608
5125f9cd
PF
1609static bool virt_get_highmem(Object *obj, Error **errp)
1610{
1611 VirtMachineState *vms = VIRT_MACHINE(obj);
1612
1613 return vms->highmem;
1614}
1615
1616static void virt_set_highmem(Object *obj, bool value, Error **errp)
1617{
1618 VirtMachineState *vms = VIRT_MACHINE(obj);
1619
1620 vms->highmem = value;
1621}
1622
ccc11b02
EA
1623static bool virt_get_its(Object *obj, Error **errp)
1624{
1625 VirtMachineState *vms = VIRT_MACHINE(obj);
1626
1627 return vms->its;
1628}
1629
1630static void virt_set_its(Object *obj, bool value, Error **errp)
1631{
1632 VirtMachineState *vms = VIRT_MACHINE(obj);
1633
1634 vms->its = value;
1635}
1636
b92ad394
PF
1637static char *virt_get_gic_version(Object *obj, Error **errp)
1638{
1639 VirtMachineState *vms = VIRT_MACHINE(obj);
1640 const char *val = vms->gic_version == 3 ? "3" : "2";
1641
1642 return g_strdup(val);
1643}
1644
1645static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1646{
1647 VirtMachineState *vms = VIRT_MACHINE(obj);
1648
1649 if (!strcmp(value, "3")) {
1650 vms->gic_version = 3;
1651 } else if (!strcmp(value, "2")) {
1652 vms->gic_version = 2;
1653 } else if (!strcmp(value, "host")) {
1654 vms->gic_version = 0; /* Will probe later */
dc16538a
PM
1655 } else if (!strcmp(value, "max")) {
1656 vms->gic_version = -1; /* Will probe later */
b92ad394 1657 } else {
7b55044f 1658 error_setg(errp, "Invalid gic-version value");
dc16538a 1659 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
b92ad394
PF
1660 }
1661}
1662
e24e3454
EA
1663static char *virt_get_iommu(Object *obj, Error **errp)
1664{
1665 VirtMachineState *vms = VIRT_MACHINE(obj);
1666
1667 switch (vms->iommu) {
1668 case VIRT_IOMMU_NONE:
1669 return g_strdup("none");
1670 case VIRT_IOMMU_SMMUV3:
1671 return g_strdup("smmuv3");
1672 default:
1673 g_assert_not_reached();
1674 }
1675}
1676
1677static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1678{
1679 VirtMachineState *vms = VIRT_MACHINE(obj);
1680
1681 if (!strcmp(value, "smmuv3")) {
1682 vms->iommu = VIRT_IOMMU_SMMUV3;
1683 } else if (!strcmp(value, "none")) {
1684 vms->iommu = VIRT_IOMMU_NONE;
1685 } else {
1686 error_setg(errp, "Invalid iommu value");
1687 error_append_hint(errp, "Valid values are none, smmuv3.\n");
1688 }
1689}
1690
ea089eeb
IM
1691static CpuInstanceProperties
1692virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1693{
1694 MachineClass *mc = MACHINE_GET_CLASS(ms);
1695 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1696
1697 assert(cpu_index < possible_cpus->len);
1698 return possible_cpus->cpus[cpu_index].props;
1699}
1700
79e07936
IM
1701static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1702{
1703 return idx % nb_numa_nodes;
1704}
1705
17d3d0e2
IM
1706static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1707{
1708 int n;
1709 VirtMachineState *vms = VIRT_MACHINE(ms);
1710
1711 if (ms->possible_cpus) {
1712 assert(ms->possible_cpus->len == max_cpus);
1713 return ms->possible_cpus;
1714 }
1715
1716 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1717 sizeof(CPUArchId) * max_cpus);
1718 ms->possible_cpus->len = max_cpus;
1719 for (n = 0; n < ms->possible_cpus->len; n++) {
d342eb76 1720 ms->possible_cpus->cpus[n].type = ms->cpu_type;
17d3d0e2
IM
1721 ms->possible_cpus->cpus[n].arch_id =
1722 virt_cpu_mp_affinity(vms, n);
1723 ms->possible_cpus->cpus[n].props.has_thread_id = true;
1724 ms->possible_cpus->cpus[n].props.thread_id = n;
17d3d0e2
IM
1725 }
1726 return ms->possible_cpus;
1727}
1728
a3fc8396
IM
1729static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1730 DeviceState *dev, Error **errp)
1731{
1732 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1733
1734 if (vms->platform_bus_dev) {
1735 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1736 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1737 SYS_BUS_DEVICE(dev));
1738 }
1739 }
1740}
1741
1742static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1743 DeviceState *dev)
1744{
1745 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1746 return HOTPLUG_HANDLER(machine);
1747 }
1748
1749 return NULL;
1750}
1751
ed796373
WH
1752static void virt_machine_class_init(ObjectClass *oc, void *data)
1753{
9c94d8e6 1754 MachineClass *mc = MACHINE_CLASS(oc);
a3fc8396 1755 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
9c94d8e6
WH
1756
1757 mc->init = machvirt_init;
b10fbd53
EA
1758 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1759 * The value may be reduced later when we have more information about the
9c94d8e6
WH
1760 * configuration of the particular instance.
1761 */
b10fbd53 1762 mc->max_cpus = 512;
6f2062b9
EH
1763 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1764 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
94692dcd 1765 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
4ebc0b61 1766 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
9c94d8e6
WH
1767 mc->block_default_type = IF_VIRTIO;
1768 mc->no_cdrom = 1;
1769 mc->pci_allow_0_address = true;
a2519ad1
PM
1770 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1771 mc->minimum_page_bits = 12;
17d3d0e2 1772 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
ea089eeb 1773 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
ba1ba5cc 1774 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
79e07936 1775 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
debbdc00 1776 assert(!mc->get_hotplug_handler);
a3fc8396
IM
1777 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1778 hc->plug = virt_machine_device_plug_cb;
ed796373
WH
1779}
1780
1781static const TypeInfo virt_machine_info = {
1782 .name = TYPE_VIRT_MACHINE,
1783 .parent = TYPE_MACHINE,
1784 .abstract = true,
1785 .instance_size = sizeof(VirtMachineState),
1786 .class_size = sizeof(VirtMachineClass),
1787 .class_init = virt_machine_class_init,
a3fc8396
IM
1788 .interfaces = (InterfaceInfo[]) {
1789 { TYPE_HOTPLUG_HANDLER },
1790 { }
1791 },
ed796373
WH
1792};
1793
7a2ecd95
AJ
1794static void machvirt_machine_init(void)
1795{
1796 type_register_static(&virt_machine_info);
1797}
1798type_init(machvirt_machine_init);
1799
84e060bf 1800static void virt_4_0_instance_init(Object *obj)
083a5890
GB
1801{
1802 VirtMachineState *vms = VIRT_MACHINE(obj);
ccc11b02 1803 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
083a5890 1804
2d710006
PM
1805 /* EL3 is disabled by default on virt: this makes us consistent
1806 * between KVM and TCG for this board, and it also allows us to
1807 * boot UEFI blobs which assume no TrustZone support.
1808 */
1809 vms->secure = false;
083a5890
GB
1810 object_property_add_bool(obj, "secure", virt_get_secure,
1811 virt_set_secure, NULL);
1812 object_property_set_description(obj, "secure",
1813 "Set on/off to enable/disable the ARM "
1814 "Security Extensions (TrustZone)",
1815 NULL);
5125f9cd 1816
f29cacfb
PM
1817 /* EL2 is also disabled by default, for similar reasons */
1818 vms->virt = false;
1819 object_property_add_bool(obj, "virtualization", virt_get_virt,
1820 virt_set_virt, NULL);
1821 object_property_set_description(obj, "virtualization",
1822 "Set on/off to enable/disable emulating a "
1823 "guest CPU which implements the ARM "
1824 "Virtualization Extensions",
1825 NULL);
1826
5125f9cd
PF
1827 /* High memory is enabled by default */
1828 vms->highmem = true;
1829 object_property_add_bool(obj, "highmem", virt_get_highmem,
1830 virt_set_highmem, NULL);
1831 object_property_set_description(obj, "highmem",
1832 "Set on/off to enable/disable using "
1833 "physical address space above 32 bits",
1834 NULL);
b92ad394
PF
1835 /* Default GIC type is v2 */
1836 vms->gic_version = 2;
1837 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1838 virt_set_gic_version, NULL);
1839 object_property_set_description(obj, "gic-version",
1840 "Set GIC version. "
1841 "Valid values are 2, 3 and host", NULL);
9ac4ef77 1842
17ec075a
EA
1843 vms->highmem_ecam = !vmc->no_highmem_ecam;
1844
ccc11b02
EA
1845 if (vmc->no_its) {
1846 vms->its = false;
1847 } else {
1848 /* Default allows ITS instantiation */
1849 vms->its = true;
1850 object_property_add_bool(obj, "its", virt_get_its,
1851 virt_set_its, NULL);
1852 object_property_set_description(obj, "its",
1853 "Set on/off to enable/disable "
1854 "ITS instantiation",
1855 NULL);
1856 }
1857
e24e3454
EA
1858 /* Default disallows iommu instantiation */
1859 vms->iommu = VIRT_IOMMU_NONE;
1860 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
1861 object_property_set_description(obj, "iommu",
1862 "Set the IOMMU type. "
1863 "Valid values are none and smmuv3",
1864 NULL);
1865
9ac4ef77
PM
1866 vms->memmap = a15memmap;
1867 vms->irqmap = a15irqmap;
083a5890
GB
1868}
1869
84e060bf
AW
1870static void virt_machine_4_0_options(MachineClass *mc)
1871{
1872}
1873DEFINE_VIRT_MACHINE_AS_LATEST(4, 0)
1874
1875#define VIRT_COMPAT_3_1 \
1876 HW_COMPAT_3_1
1877
1878static void virt_3_1_instance_init(Object *obj)
1879{
1880 virt_4_0_instance_init(obj);
1881}
1882
22907d2b
AJ
1883static void virt_machine_3_1_options(MachineClass *mc)
1884{
84e060bf
AW
1885 virt_machine_4_0_options(mc);
1886 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_3_1);
22907d2b 1887}
84e060bf 1888DEFINE_VIRT_MACHINE(3, 1)
22907d2b 1889
7c3db4fd
EA
1890#define VIRT_COMPAT_3_0 \
1891 HW_COMPAT_3_0
1892
22907d2b
AJ
1893static void virt_3_0_instance_init(Object *obj)
1894{
1895 virt_3_1_instance_init(obj);
1896}
1897
8ae9a1ca
EA
1898static void virt_machine_3_0_options(MachineClass *mc)
1899{
22907d2b 1900 virt_machine_3_1_options(mc);
7c3db4fd 1901 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_3_0);
8ae9a1ca 1902}
22907d2b
AJ
1903DEFINE_VIRT_MACHINE(3, 0)
1904
1905#define VIRT_COMPAT_2_12 \
1906 HW_COMPAT_2_12
8ae9a1ca
EA
1907
1908static void virt_2_12_instance_init(Object *obj)
1909{
1910 virt_3_0_instance_init(obj);
1911}
1912
a2a05159
PM
1913static void virt_machine_2_12_options(MachineClass *mc)
1914{
17ec075a
EA
1915 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1916
8ae9a1ca 1917 virt_machine_3_0_options(mc);
f548222c 1918 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_12);
17ec075a 1919 vmc->no_highmem_ecam = true;
b10fbd53 1920 mc->max_cpus = 255;
a2a05159 1921}
8ae9a1ca 1922DEFINE_VIRT_MACHINE(2, 12)
a2a05159
PM
1923
1924#define VIRT_COMPAT_2_11 \
1925 HW_COMPAT_2_11
1926
1927static void virt_2_11_instance_init(Object *obj)
1928{
1929 virt_2_12_instance_init(obj);
1930}
1931
79283dda
EA
1932static void virt_machine_2_11_options(MachineClass *mc)
1933{
dfadc3bf
WH
1934 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1935
a2a05159
PM
1936 virt_machine_2_12_options(mc);
1937 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_11);
dfadc3bf 1938 vmc->smbios_old_sys_ver = true;
79283dda 1939}
a2a05159 1940DEFINE_VIRT_MACHINE(2, 11)
79283dda
EA
1941
1942#define VIRT_COMPAT_2_10 \
1943 HW_COMPAT_2_10
1944
1945static void virt_2_10_instance_init(Object *obj)
1946{
1947 virt_2_11_instance_init(obj);
1948}
1949
f22ab6cb
EA
1950static void virt_machine_2_10_options(MachineClass *mc)
1951{
79283dda
EA
1952 virt_machine_2_11_options(mc);
1953 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_10);
846690de
PM
1954 /* before 2.11 we never faulted accesses to bad addresses */
1955 mc->ignore_memory_transaction_failures = true;
f22ab6cb 1956}
79283dda 1957DEFINE_VIRT_MACHINE(2, 10)
f22ab6cb
EA
1958
1959#define VIRT_COMPAT_2_9 \
1960 HW_COMPAT_2_9
1961
1962static void virt_2_9_instance_init(Object *obj)
1963{
1964 virt_2_10_instance_init(obj);
1965}
1966
e353aac5
PM
1967static void virt_machine_2_9_options(MachineClass *mc)
1968{
f22ab6cb
EA
1969 virt_machine_2_10_options(mc);
1970 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_9);
e353aac5 1971}
f22ab6cb 1972DEFINE_VIRT_MACHINE(2, 9)
e353aac5
PM
1973
1974#define VIRT_COMPAT_2_8 \
1975 HW_COMPAT_2_8
1976
1977static void virt_2_8_instance_init(Object *obj)
1978{
1979 virt_2_9_instance_init(obj);
1980}
1981
96b0439b
AJ
1982static void virt_machine_2_8_options(MachineClass *mc)
1983{
156bc9a5
PM
1984 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1985
e353aac5
PM
1986 virt_machine_2_9_options(mc);
1987 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
156bc9a5
PM
1988 /* For 2.8 and earlier we falsely claimed in the DT that
1989 * our timers were edge-triggered, not level-triggered.
1990 */
1991 vmc->claim_edge_triggered_timers = true;
96b0439b 1992}
e353aac5 1993DEFINE_VIRT_MACHINE(2, 8)
96b0439b
AJ
1994
1995#define VIRT_COMPAT_2_7 \
1996 HW_COMPAT_2_7
1997
1998static void virt_2_7_instance_init(Object *obj)
1999{
2000 virt_2_8_instance_init(obj);
2001}
2002
1287f2b3
AJ
2003static void virt_machine_2_7_options(MachineClass *mc)
2004{
2231f69b
AJ
2005 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2006
96b0439b
AJ
2007 virt_machine_2_8_options(mc);
2008 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
2231f69b
AJ
2009 /* ITS was introduced with 2.8 */
2010 vmc->no_its = true;
a2519ad1
PM
2011 /* Stick with 1K pages for migration compatibility */
2012 mc->minimum_page_bits = 0;
1287f2b3 2013}
96b0439b 2014DEFINE_VIRT_MACHINE(2, 7)
1287f2b3
AJ
2015
2016#define VIRT_COMPAT_2_6 \
2017 HW_COMPAT_2_6
2018
2019static void virt_2_6_instance_init(Object *obj)
2020{
2021 virt_2_7_instance_init(obj);
2022}
2023
ab093c3c 2024static void virt_machine_2_6_options(MachineClass *mc)
c2919690 2025{
95eb49c8
AJ
2026 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2027
1287f2b3
AJ
2028 virt_machine_2_7_options(mc);
2029 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
95eb49c8 2030 vmc->disallow_affinity_adjustment = true;
1141d1eb
WH
2031 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2032 vmc->no_pmu = true;
c2919690 2033}
1287f2b3 2034DEFINE_VIRT_MACHINE(2, 6)