]> git.proxmox.com Git - mirror_qemu.git/blame - hw/arm/virt.c
numa: move numa global variable nb_numa_nodes into MachineState
[mirror_qemu.git] / hw / arm / virt.c
CommitLineData
f5fdcd6e
PM
1/*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
12b16722 31#include "qemu/osdep.h"
a8d25326 32#include "qemu-common.h"
350a9c9e 33#include "qemu/units.h"
e0561e60 34#include "qemu/option.h"
da34e65c 35#include "qapi/error.h"
f5fdcd6e 36#include "hw/sysbus.h"
12e9493d 37#include "hw/boards.h"
12ec8bd5 38#include "hw/arm/boot.h"
f5fdcd6e 39#include "hw/arm/primecell.h"
afe0b380 40#include "hw/arm/virt.h"
81c7db72 41#include "hw/block/flash.h"
6f2062b9
EH
42#include "hw/vfio/vfio-calxeda-xgmac.h"
43#include "hw/vfio/vfio-amd-xgbe.h"
94692dcd 44#include "hw/display/ramfb.h"
f5fdcd6e
PM
45#include "net/net.h"
46#include "sysemu/device_tree.h"
9695200a 47#include "sysemu/numa.h"
54d31236 48#include "sysemu/runstate.h"
f5fdcd6e
PM
49#include "sysemu/sysemu.h"
50#include "sysemu/kvm.h"
acf82361 51#include "hw/loader.h"
f5fdcd6e
PM
52#include "exec/address-spaces.h"
53#include "qemu/bitops.h"
54#include "qemu/error-report.h"
0b8fa32f 55#include "qemu/module.h"
4ab29b82 56#include "hw/pci-host/gpex.h"
5f7a5a0e
EA
57#include "hw/arm/sysbus-fdt.h"
58#include "hw/platform-bus.h"
a27bd6c7 59#include "hw/qdev-properties.h"
decf4f80 60#include "hw/arm/fdt.h"
95eb49c8
AJ
61#include "hw/intc/arm_gic.h"
62#include "hw/intc/arm_gicv3_common.h"
64552b6b 63#include "hw/irq.h"
e6fbcbc4 64#include "kvm_arm.h"
a2eb5c0c 65#include "hw/firmware/smbios.h"
b92ad394 66#include "qapi/visitor.h"
3e6ebb64 67#include "standard-headers/linux/input.h"
584105ea 68#include "hw/arm/smmuv3.h"
957e32cf 69#include "hw/acpi/acpi.h"
2ba956cc 70#include "target/arm/internals.h"
f5fdcd6e 71
3356ebce 72#define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
ab093c3c
AJ
73 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
74 void *data) \
75 { \
76 MachineClass *mc = MACHINE_CLASS(oc); \
77 virt_machine_##major##_##minor##_options(mc); \
78 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
3356ebce
AJ
79 if (latest) { \
80 mc->alias = "virt"; \
81 } \
ab093c3c
AJ
82 } \
83 static const TypeInfo machvirt_##major##_##minor##_info = { \
84 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
85 .parent = TYPE_VIRT_MACHINE, \
ab093c3c
AJ
86 .class_init = virt_##major##_##minor##_class_init, \
87 }; \
88 static void machvirt_machine_##major##_##minor##_init(void) \
89 { \
90 type_register_static(&machvirt_##major##_##minor##_info); \
91 } \
92 type_init(machvirt_machine_##major##_##minor##_init);
93
3356ebce
AJ
94#define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
95 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
96#define DEFINE_VIRT_MACHINE(major, minor) \
97 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
98
ab093c3c 99
a72d4363
AJ
100/* Number of external interrupt lines to configure the GIC with */
101#define NUM_IRQS 256
102
103#define PLATFORM_BUS_NUM_IRQS 64
104
50a17297 105/* Legacy RAM limit in GB (< version 4.0) */
957e32cf
EA
106#define LEGACY_RAMLIMIT_GB 255
107#define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
71c27684 108
f5fdcd6e
PM
109/* Addresses and sizes of our components.
110 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
111 * 128MB..256MB is used for miscellaneous device I/O.
112 * 256MB..1GB is reserved for possible future PCI support (ie where the
113 * PCI memory window will go if we add a PCI host controller).
114 * 1GB and up is RAM (which may happily spill over into the
115 * high memory region beyond 4GB).
116 * This represents a compromise between how much RAM can be given to
117 * a 32 bit VM and leaving space for expansion and in particular for PCI.
6e411af9
PM
118 * Note that devices should generally be placed at multiples of 0x10000,
119 * to accommodate guests using 64K pages.
f5fdcd6e 120 */
350a9c9e 121static const MemMapEntry base_memmap[] = {
f5fdcd6e 122 /* Space up to 0x8000000 is reserved for a boot ROM */
94edf02c
EA
123 [VIRT_FLASH] = { 0, 0x08000000 },
124 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
f5fdcd6e 125 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
94edf02c
EA
126 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
127 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
128 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
55ef3233
LM
129 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
130 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
b92ad394
PF
131 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
132 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
133 /* This redistributor space allows up to 2*64kB*123 CPUs */
134 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
94edf02c
EA
135 [VIRT_UART] = { 0x09000000, 0x00001000 },
136 [VIRT_RTC] = { 0x09010000, 0x00001000 },
0b341a85 137 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
b0a3721e 138 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
3df708eb 139 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
584105ea 140 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
94edf02c 141 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
f5fdcd6e 142 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
94edf02c 143 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
83ec1923 144 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
94edf02c
EA
145 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
146 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
147 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
957e32cf
EA
148 /* Actual RAM size depends on initial RAM and device memory settings */
149 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
350a9c9e
EA
150};
151
152/*
153 * Highmem IO Regions: This memory map is floating, located after the RAM.
154 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
155 * top of the RAM, so that its base get the same alignment as the size,
156 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
157 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
158 * Note the extended_memmap is sized so that it eventually also includes the
159 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
160 * index of base_memmap).
161 */
162static MemMapEntry extended_memmap[] = {
f90747c4 163 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
350a9c9e
EA
164 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
165 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
166 /* Second PCIe window */
167 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
f5fdcd6e
PM
168};
169
170static const int a15irqmap[] = {
171 [VIRT_UART] = 1,
6e411af9 172 [VIRT_RTC] = 2,
4ab29b82 173 [VIRT_PCIE] = 3, /* ... to 6 */
b0a3721e 174 [VIRT_GPIO] = 7,
3df708eb 175 [VIRT_SECURE_UART] = 8,
f5fdcd6e 176 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
bd204e63 177 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
584105ea 178 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
5f7a5a0e 179 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
f5fdcd6e
PM
180};
181
9ac4ef77 182static const char *valid_cpus[] = {
4414942e 183 ARM_CPU_TYPE_NAME("cortex-a7"),
ba1ba5cc
IM
184 ARM_CPU_TYPE_NAME("cortex-a15"),
185 ARM_CPU_TYPE_NAME("cortex-a53"),
186 ARM_CPU_TYPE_NAME("cortex-a57"),
2264faa5 187 ARM_CPU_TYPE_NAME("cortex-a72"),
ba1ba5cc 188 ARM_CPU_TYPE_NAME("host"),
9076ddb3 189 ARM_CPU_TYPE_NAME("max"),
f5fdcd6e
PM
190};
191
ba1ba5cc 192static bool cpu_type_valid(const char *cpu)
f5fdcd6e
PM
193{
194 int i;
195
9ac4ef77
PM
196 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
197 if (strcmp(cpu, valid_cpus[i]) == 0) {
198 return true;
f5fdcd6e
PM
199 }
200 }
9ac4ef77 201 return false;
f5fdcd6e
PM
202}
203
c8ef2bda 204static void create_fdt(VirtMachineState *vms)
f5fdcd6e 205{
aa570207
TX
206 MachineState *ms = MACHINE(vms);
207 int nb_numa_nodes = ms->numa_state->num_nodes;
c8ef2bda 208 void *fdt = create_device_tree(&vms->fdt_size);
f5fdcd6e
PM
209
210 if (!fdt) {
211 error_report("create_device_tree() failed");
212 exit(1);
213 }
214
c8ef2bda 215 vms->fdt = fdt;
f5fdcd6e
PM
216
217 /* Header */
5a4348d1
PC
218 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
219 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
220 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
f5fdcd6e 221
e2eb3d29 222 /* /chosen must exist for load_dtb to fill in necessary properties later */
5a4348d1 223 qemu_fdt_add_subnode(fdt, "/chosen");
f5fdcd6e
PM
224
225 /* Clock node, for the benefit of the UART. The kernel device tree
226 * binding documentation claims the PL011 node clock properties are
227 * optional but in practice if you omit them the kernel refuses to
228 * probe for the device.
229 */
c8ef2bda 230 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
5a4348d1
PC
231 qemu_fdt_add_subnode(fdt, "/apb-pclk");
232 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
233 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
234 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
235 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
f5fdcd6e 236 "clk24mhz");
c8ef2bda 237 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
f5fdcd6e 238
c7637c04
AJ
239 if (have_numa_distance) {
240 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
241 uint32_t *matrix = g_malloc0(size);
242 int idx, i, j;
243
244 for (i = 0; i < nb_numa_nodes; i++) {
245 for (j = 0; j < nb_numa_nodes; j++) {
246 idx = (i * nb_numa_nodes + j) * 3;
247 matrix[idx + 0] = cpu_to_be32(i);
248 matrix[idx + 1] = cpu_to_be32(j);
249 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
250 }
251 }
252
253 qemu_fdt_add_subnode(fdt, "/distance-map");
254 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
255 "numa-distance-map-v1");
256 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
257 matrix, size);
258 g_free(matrix);
259 }
06955739
PS
260}
261
055a7f2b 262static void fdt_add_timer_nodes(const VirtMachineState *vms)
f5fdcd6e 263{
156bc9a5
PM
264 /* On real hardware these interrupts are level-triggered.
265 * On KVM they were edge-triggered before host kernel version 4.4,
266 * and level-triggered afterwards.
267 * On emulated QEMU they are level-triggered.
268 *
269 * Getting the DTB info about them wrong is awkward for some
270 * guest kernels:
271 * pre-4.8 ignore the DT and leave the interrupt configured
272 * with whatever the GIC reset value (or the bootloader) left it at
273 * 4.8 before rc6 honour the incorrect data by programming it back
274 * into the GIC, causing problems
275 * 4.8rc6 and later ignore the DT and always write "level triggered"
276 * into the GIC
277 *
278 * For backwards-compatibility, virt-2.8 and earlier will continue
279 * to say these are edge-triggered, but later machines will report
280 * the correct information.
f5fdcd6e 281 */
b32a9509 282 ARMCPU *armcpu;
156bc9a5
PM
283 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
284 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
285
286 if (vmc->claim_edge_triggered_timers) {
287 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
288 }
f5fdcd6e 289
055a7f2b 290 if (vms->gic_version == 2) {
b92ad394
PF
291 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
292 GIC_FDT_IRQ_PPI_CPU_WIDTH,
c8ef2bda 293 (1 << vms->smp_cpus) - 1);
b92ad394 294 }
f5fdcd6e 295
c8ef2bda 296 qemu_fdt_add_subnode(vms->fdt, "/timer");
b32a9509
CF
297
298 armcpu = ARM_CPU(qemu_get_cpu(0));
299 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
300 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
c8ef2bda 301 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
b32a9509
CF
302 compat, sizeof(compat));
303 } else {
c8ef2bda 304 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
b32a9509
CF
305 "arm,armv7-timer");
306 }
c8ef2bda
PM
307 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
308 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
ee246400
SZ
309 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
310 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
311 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
312 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
f5fdcd6e
PM
313}
314
c8ef2bda 315static void fdt_add_cpu_nodes(const VirtMachineState *vms)
f5fdcd6e
PM
316{
317 int cpu;
8d45c54d 318 int addr_cells = 1;
4ccf5826 319 const MachineState *ms = MACHINE(vms);
8d45c54d
PF
320
321 /*
322 * From Documentation/devicetree/bindings/arm/cpus.txt
323 * On ARM v8 64-bit systems value should be set to 2,
324 * that corresponds to the MPIDR_EL1 register size.
325 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
326 * in the system, #address-cells can be set to 1, since
327 * MPIDR_EL1[63:32] bits are not used for CPUs
328 * identification.
329 *
330 * Here we actually don't know whether our system is 32- or 64-bit one.
331 * The simplest way to go is to examine affinity IDs of all our CPUs. If
332 * at least one of them has Aff3 populated, we set #address-cells to 2.
333 */
c8ef2bda 334 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
8d45c54d
PF
335 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
336
337 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
338 addr_cells = 2;
339 break;
340 }
341 }
f5fdcd6e 342
c8ef2bda
PM
343 qemu_fdt_add_subnode(vms->fdt, "/cpus");
344 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
345 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
f5fdcd6e 346
c8ef2bda 347 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
f5fdcd6e
PM
348 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
349 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
4ccf5826 350 CPUState *cs = CPU(armcpu);
f5fdcd6e 351
c8ef2bda
PM
352 qemu_fdt_add_subnode(vms->fdt, nodename);
353 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
354 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
f5fdcd6e
PM
355 armcpu->dtb_compatible);
356
2013c566
PM
357 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
358 && vms->smp_cpus > 1) {
c8ef2bda 359 qemu_fdt_setprop_string(vms->fdt, nodename,
f5fdcd6e
PM
360 "enable-method", "psci");
361 }
362
8d45c54d 363 if (addr_cells == 2) {
c8ef2bda 364 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
8d45c54d
PF
365 armcpu->mp_affinity);
366 } else {
c8ef2bda 367 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
8d45c54d
PF
368 armcpu->mp_affinity);
369 }
370
4ccf5826
IM
371 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
372 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
373 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
9695200a
SZ
374 }
375
f5fdcd6e
PM
376 g_free(nodename);
377 }
378}
379
c8ef2bda 380static void fdt_add_its_gic_node(VirtMachineState *vms)
02f98731 381{
bb2a3348
EA
382 char *nodename;
383
c8ef2bda 384 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
bb2a3348
EA
385 nodename = g_strdup_printf("/intc/its@%" PRIx64,
386 vms->memmap[VIRT_GIC_ITS].base);
387 qemu_fdt_add_subnode(vms->fdt, nodename);
388 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
02f98731 389 "arm,gic-v3-its");
bb2a3348
EA
390 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
391 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
c8ef2bda
PM
392 2, vms->memmap[VIRT_GIC_ITS].base,
393 2, vms->memmap[VIRT_GIC_ITS].size);
bb2a3348
EA
394 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
395 g_free(nodename);
02f98731
PF
396}
397
c8ef2bda 398static void fdt_add_v2m_gic_node(VirtMachineState *vms)
f5fdcd6e 399{
bb2a3348
EA
400 char *nodename;
401
402 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
403 vms->memmap[VIRT_GIC_V2M].base);
c8ef2bda 404 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
bb2a3348
EA
405 qemu_fdt_add_subnode(vms->fdt, nodename);
406 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
bd204e63 407 "arm,gic-v2m-frame");
bb2a3348
EA
408 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
409 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
c8ef2bda
PM
410 2, vms->memmap[VIRT_GIC_V2M].base,
411 2, vms->memmap[VIRT_GIC_V2M].size);
bb2a3348
EA
412 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
413 g_free(nodename);
bd204e63 414}
f5fdcd6e 415
055a7f2b 416static void fdt_add_gic_node(VirtMachineState *vms)
bd204e63 417{
bb2a3348
EA
418 char *nodename;
419
c8ef2bda
PM
420 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
421 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
422
bb2a3348
EA
423 nodename = g_strdup_printf("/intc@%" PRIx64,
424 vms->memmap[VIRT_GIC_DIST].base);
425 qemu_fdt_add_subnode(vms->fdt, nodename);
426 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
427 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
428 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
429 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
430 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
055a7f2b 431 if (vms->gic_version == 3) {
f90747c4
EA
432 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
433
bb2a3348 434 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
b92ad394 435 "arm,gic-v3");
f90747c4 436
bb2a3348 437 qemu_fdt_setprop_cell(vms->fdt, nodename,
f90747c4
EA
438 "#redistributor-regions", nb_redist_regions);
439
440 if (nb_redist_regions == 1) {
bb2a3348 441 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
f90747c4
EA
442 2, vms->memmap[VIRT_GIC_DIST].base,
443 2, vms->memmap[VIRT_GIC_DIST].size,
444 2, vms->memmap[VIRT_GIC_REDIST].base,
445 2, vms->memmap[VIRT_GIC_REDIST].size);
446 } else {
bb2a3348 447 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
bf424a12
EA
448 2, vms->memmap[VIRT_GIC_DIST].base,
449 2, vms->memmap[VIRT_GIC_DIST].size,
450 2, vms->memmap[VIRT_GIC_REDIST].base,
451 2, vms->memmap[VIRT_GIC_REDIST].size,
452 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
453 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
f90747c4
EA
454 }
455
f29cacfb 456 if (vms->virt) {
bb2a3348 457 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
55ef3233 458 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
f29cacfb
PM
459 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
460 }
b92ad394
PF
461 } else {
462 /* 'cortex-a15-gic' means 'GIC v2' */
bb2a3348 463 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
b92ad394 464 "arm,cortex-a15-gic");
55ef3233
LM
465 if (!vms->virt) {
466 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
467 2, vms->memmap[VIRT_GIC_DIST].base,
468 2, vms->memmap[VIRT_GIC_DIST].size,
469 2, vms->memmap[VIRT_GIC_CPU].base,
470 2, vms->memmap[VIRT_GIC_CPU].size);
471 } else {
472 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
473 2, vms->memmap[VIRT_GIC_DIST].base,
474 2, vms->memmap[VIRT_GIC_DIST].size,
475 2, vms->memmap[VIRT_GIC_CPU].base,
476 2, vms->memmap[VIRT_GIC_CPU].size,
477 2, vms->memmap[VIRT_GIC_HYP].base,
478 2, vms->memmap[VIRT_GIC_HYP].size,
479 2, vms->memmap[VIRT_GIC_VCPU].base,
480 2, vms->memmap[VIRT_GIC_VCPU].size);
481 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
482 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
483 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
484 }
b92ad394
PF
485 }
486
bb2a3348
EA
487 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
488 g_free(nodename);
f5fdcd6e
PM
489}
490
055a7f2b 491static void fdt_add_pmu_nodes(const VirtMachineState *vms)
01fe6b60
SZ
492{
493 CPUState *cpu;
494 ARMCPU *armcpu;
495 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
496
497 CPU_FOREACH(cpu) {
498 armcpu = ARM_CPU(cpu);
3f07cb2a 499 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
01fe6b60
SZ
500 return;
501 }
3f07cb2a 502 if (kvm_enabled()) {
b2bfe9f7
AJ
503 if (kvm_irqchip_in_kernel()) {
504 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
3f07cb2a 505 }
b2bfe9f7 506 kvm_arm_pmu_init(cpu);
3f07cb2a 507 }
01fe6b60
SZ
508 }
509
055a7f2b 510 if (vms->gic_version == 2) {
01fe6b60
SZ
511 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
512 GIC_FDT_IRQ_PPI_CPU_WIDTH,
c8ef2bda 513 (1 << vms->smp_cpus) - 1);
01fe6b60
SZ
514 }
515
516 armcpu = ARM_CPU(qemu_get_cpu(0));
c8ef2bda 517 qemu_fdt_add_subnode(vms->fdt, "/pmu");
01fe6b60
SZ
518 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
519 const char compat[] = "arm,armv8-pmuv3";
c8ef2bda 520 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
01fe6b60 521 compat, sizeof(compat));
c8ef2bda 522 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
01fe6b60
SZ
523 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
524 }
525}
526
c8ef2bda 527static void create_its(VirtMachineState *vms, DeviceState *gicdev)
02f98731
PF
528{
529 const char *itsclass = its_class_name();
530 DeviceState *dev;
531
532 if (!itsclass) {
533 /* Do nothing if not supported */
534 return;
535 }
536
537 dev = qdev_create(NULL, itsclass);
538
539 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
540 &error_abort);
541 qdev_init_nofail(dev);
c8ef2bda 542 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
02f98731 543
c8ef2bda 544 fdt_add_its_gic_node(vms);
02f98731
PF
545}
546
c8ef2bda 547static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
bd204e63
CD
548{
549 int i;
c8ef2bda 550 int irq = vms->irqmap[VIRT_GIC_V2M];
bd204e63
CD
551 DeviceState *dev;
552
553 dev = qdev_create(NULL, "arm-gicv2m");
c8ef2bda 554 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
bd204e63
CD
555 qdev_prop_set_uint32(dev, "base-spi", irq);
556 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
557 qdev_init_nofail(dev);
558
559 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
560 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
561 }
562
c8ef2bda 563 fdt_add_v2m_gic_node(vms);
bd204e63
CD
564}
565
055a7f2b 566static void create_gic(VirtMachineState *vms, qemu_irq *pic)
64204743 567{
cc7d44c2 568 MachineState *ms = MACHINE(vms);
b92ad394 569 /* We create a standalone GIC */
64204743
PM
570 DeviceState *gicdev;
571 SysBusDevice *gicbusdev;
e6fbcbc4 572 const char *gictype;
055a7f2b 573 int type = vms->gic_version, i;
cc7d44c2 574 unsigned int smp_cpus = ms->smp.cpus;
03d72fa1 575 uint32_t nb_redist_regions = 0;
64204743 576
b92ad394 577 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
64204743
PM
578
579 gicdev = qdev_create(NULL, gictype);
b92ad394 580 qdev_prop_set_uint32(gicdev, "revision", type);
64204743
PM
581 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
582 /* Note that the num-irq property counts both internal and external
583 * interrupts; there are always 32 of the former (mandated by GIC spec).
584 */
585 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
0e21f183 586 if (!kvm_irqchip_in_kernel()) {
0127937b 587 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
0e21f183 588 }
1e575b66
EA
589
590 if (type == 3) {
591 uint32_t redist0_capacity =
592 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
593 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
594
03d72fa1
EA
595 nb_redist_regions = virt_gicv3_redist_region_count(vms);
596
597 qdev_prop_set_uint32(gicdev, "len-redist-region-count",
598 nb_redist_regions);
1e575b66 599 qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
03d72fa1
EA
600
601 if (nb_redist_regions == 2) {
602 uint32_t redist1_capacity =
bf424a12 603 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
03d72fa1
EA
604
605 qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
606 MIN(smp_cpus - redist0_count, redist1_capacity));
607 }
55ef3233
LM
608 } else {
609 if (!kvm_irqchip_in_kernel()) {
610 qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
611 vms->virt);
612 }
1e575b66 613 }
64204743
PM
614 qdev_init_nofail(gicdev);
615 gicbusdev = SYS_BUS_DEVICE(gicdev);
c8ef2bda 616 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
b92ad394 617 if (type == 3) {
c8ef2bda 618 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
03d72fa1 619 if (nb_redist_regions == 2) {
bf424a12
EA
620 sysbus_mmio_map(gicbusdev, 2,
621 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
03d72fa1 622 }
b92ad394 623 } else {
c8ef2bda 624 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
55ef3233
LM
625 if (vms->virt) {
626 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
627 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
628 }
b92ad394 629 }
64204743 630
5454006a
PM
631 /* Wire the outputs from each CPU's generic timer and the GICv3
632 * maintenance interrupt signal to the appropriate GIC PPI inputs,
633 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
64204743
PM
634 */
635 for (i = 0; i < smp_cpus; i++) {
636 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
0e3e858f 637 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
a007b1f8
PM
638 int irq;
639 /* Mapping from the output timer irq lines from the CPU to the
640 * GIC PPI inputs we use for the virt board.
64204743 641 */
a007b1f8
PM
642 const int timer_irq[] = {
643 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
644 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
645 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
646 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
647 };
648
649 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
650 qdev_connect_gpio_out(cpudev, irq,
651 qdev_get_gpio_in(gicdev,
652 ppibase + timer_irq[irq]));
653 }
64204743 654
55ef3233
LM
655 if (type == 3) {
656 qemu_irq irq = qdev_get_gpio_in(gicdev,
657 ppibase + ARCH_GIC_MAINT_IRQ);
658 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
659 0, irq);
660 } else if (vms->virt) {
661 qemu_irq irq = qdev_get_gpio_in(gicdev,
662 ppibase + ARCH_GIC_MAINT_IRQ);
663 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
664 }
665
07f48730
AJ
666 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
667 qdev_get_gpio_in(gicdev, ppibase
668 + VIRTUAL_PMU_IRQ));
5454006a 669
64204743 670 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
8e7b4ca0
GB
671 sysbus_connect_irq(gicbusdev, i + smp_cpus,
672 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
5454006a
PM
673 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
674 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
675 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
676 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
64204743
PM
677 }
678
679 for (i = 0; i < NUM_IRQS; i++) {
680 pic[i] = qdev_get_gpio_in(gicdev, i);
681 }
682
055a7f2b 683 fdt_add_gic_node(vms);
bd204e63 684
ccc11b02 685 if (type == 3 && vms->its) {
c8ef2bda 686 create_its(vms, gicdev);
2231f69b 687 } else if (type == 2) {
c8ef2bda 688 create_v2m(vms, pic);
b92ad394 689 }
64204743
PM
690}
691
c8ef2bda 692static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
0ec7b3e7 693 MemoryRegion *mem, Chardev *chr)
f5fdcd6e
PM
694{
695 char *nodename;
c8ef2bda
PM
696 hwaddr base = vms->memmap[uart].base;
697 hwaddr size = vms->memmap[uart].size;
698 int irq = vms->irqmap[uart];
f5fdcd6e
PM
699 const char compat[] = "arm,pl011\0arm,primecell";
700 const char clocknames[] = "uartclk\0apb_pclk";
3df708eb
PM
701 DeviceState *dev = qdev_create(NULL, "pl011");
702 SysBusDevice *s = SYS_BUS_DEVICE(dev);
f5fdcd6e 703
9bbbf649 704 qdev_prop_set_chr(dev, "chardev", chr);
3df708eb
PM
705 qdev_init_nofail(dev);
706 memory_region_add_subregion(mem, base,
707 sysbus_mmio_get_region(s, 0));
708 sysbus_connect_irq(s, 0, pic[irq]);
f5fdcd6e
PM
709
710 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
c8ef2bda 711 qemu_fdt_add_subnode(vms->fdt, nodename);
f5fdcd6e 712 /* Note that we can't use setprop_string because of the embedded NUL */
c8ef2bda 713 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
f5fdcd6e 714 compat, sizeof(compat));
c8ef2bda 715 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
f5fdcd6e 716 2, base, 2, size);
c8ef2bda 717 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
f5fdcd6e 718 GIC_FDT_IRQ_TYPE_SPI, irq,
0be969a2 719 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
c8ef2bda
PM
720 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
721 vms->clock_phandle, vms->clock_phandle);
722 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
f5fdcd6e 723 clocknames, sizeof(clocknames));
f022b8e9 724
3df708eb 725 if (uart == VIRT_UART) {
c8ef2bda 726 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
3df708eb
PM
727 } else {
728 /* Mark as not usable by the normal world */
c8ef2bda
PM
729 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
730 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
fb23d693
JF
731
732 qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
733 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
734 nodename);
3df708eb
PM
735 }
736
f5fdcd6e
PM
737 g_free(nodename);
738}
739
c8ef2bda 740static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
6e411af9
PM
741{
742 char *nodename;
c8ef2bda
PM
743 hwaddr base = vms->memmap[VIRT_RTC].base;
744 hwaddr size = vms->memmap[VIRT_RTC].size;
745 int irq = vms->irqmap[VIRT_RTC];
6e411af9
PM
746 const char compat[] = "arm,pl031\0arm,primecell";
747
748 sysbus_create_simple("pl031", base, pic[irq]);
749
750 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
c8ef2bda
PM
751 qemu_fdt_add_subnode(vms->fdt, nodename);
752 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
753 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
6e411af9 754 2, base, 2, size);
c8ef2bda 755 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
6e411af9 756 GIC_FDT_IRQ_TYPE_SPI, irq,
0be969a2 757 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
c8ef2bda
PM
758 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
759 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
6e411af9
PM
760 g_free(nodename);
761}
762
94f02c5e 763static DeviceState *gpio_key_dev;
4bedd849
SZ
764static void virt_powerdown_req(Notifier *n, void *opaque)
765{
766 /* use gpio Pin 3 for power button event */
94f02c5e 767 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
4bedd849
SZ
768}
769
770static Notifier virt_system_powerdown_notifier = {
771 .notify = virt_powerdown_req
772};
773
c8ef2bda 774static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
b0a3721e
SZ
775{
776 char *nodename;
94f02c5e 777 DeviceState *pl061_dev;
c8ef2bda
PM
778 hwaddr base = vms->memmap[VIRT_GPIO].base;
779 hwaddr size = vms->memmap[VIRT_GPIO].size;
780 int irq = vms->irqmap[VIRT_GPIO];
b0a3721e
SZ
781 const char compat[] = "arm,pl061\0arm,primecell";
782
4bedd849 783 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
b0a3721e 784
c8ef2bda 785 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
b0a3721e 786 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
c8ef2bda
PM
787 qemu_fdt_add_subnode(vms->fdt, nodename);
788 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
b0a3721e 789 2, base, 2, size);
c8ef2bda
PM
790 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
791 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
792 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
793 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
b0a3721e
SZ
794 GIC_FDT_IRQ_TYPE_SPI, irq,
795 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
c8ef2bda
PM
796 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
797 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
798 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
3e6ebb64 799
94f02c5e
SZ
800 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
801 qdev_get_gpio_in(pl061_dev, 3));
c8ef2bda
PM
802 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
803 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
804 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
805 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
3e6ebb64 806
c8ef2bda
PM
807 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
808 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
3e6ebb64 809 "label", "GPIO Key Poweroff");
c8ef2bda 810 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
3e6ebb64 811 KEY_POWER);
c8ef2bda 812 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
3e6ebb64 813 "gpios", phandle, 3, 0);
b0a3721e 814
4bedd849
SZ
815 /* connect powerdown request */
816 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
817
b0a3721e
SZ
818 g_free(nodename);
819}
820
c8ef2bda 821static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
f5fdcd6e
PM
822{
823 int i;
c8ef2bda 824 hwaddr size = vms->memmap[VIRT_MMIO].size;
f5fdcd6e 825
587078f0
LE
826 /* We create the transports in forwards order. Since qbus_realize()
827 * prepends (not appends) new child buses, the incrementing loop below will
828 * create a list of virtio-mmio buses with decreasing base addresses.
829 *
830 * When a -device option is processed from the command line,
831 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
832 * order. The upshot is that -device options in increasing command line
833 * order are mapped to virtio-mmio buses with decreasing base addresses.
834 *
835 * When this code was originally written, that arrangement ensured that the
836 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
837 * the first -device on the command line. (The end-to-end order is a
838 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
839 * guest kernel's name-to-address assignment strategy.)
840 *
841 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
842 * the message, if not necessarily the code, of commit 70161ff336.
843 * Therefore the loop now establishes the inverse of the original intent.
844 *
845 * Unfortunately, we can't counteract the kernel change by reversing the
846 * loop; it would break existing command lines.
847 *
848 * In any case, the kernel makes no guarantee about the stability of
849 * enumeration order of virtio devices (as demonstrated by it changing
850 * between kernel versions). For reliable and stable identification
851 * of disks users must use UUIDs or similar mechanisms.
f5fdcd6e
PM
852 */
853 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
c8ef2bda
PM
854 int irq = vms->irqmap[VIRT_MMIO] + i;
855 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
f5fdcd6e
PM
856
857 sysbus_create_simple("virtio-mmio", base, pic[irq]);
858 }
859
587078f0
LE
860 /* We add dtb nodes in reverse order so that they appear in the finished
861 * device tree lowest address first.
862 *
863 * Note that this mapping is independent of the loop above. The previous
864 * loop influences virtio device to virtio transport assignment, whereas
865 * this loop controls how virtio transports are laid out in the dtb.
866 */
f5fdcd6e
PM
867 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
868 char *nodename;
c8ef2bda
PM
869 int irq = vms->irqmap[VIRT_MMIO] + i;
870 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
f5fdcd6e
PM
871
872 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
c8ef2bda
PM
873 qemu_fdt_add_subnode(vms->fdt, nodename);
874 qemu_fdt_setprop_string(vms->fdt, nodename,
5a4348d1 875 "compatible", "virtio,mmio");
c8ef2bda 876 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
5a4348d1 877 2, base, 2, size);
c8ef2bda 878 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
5a4348d1
PC
879 GIC_FDT_IRQ_TYPE_SPI, irq,
880 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
054bb7b2 881 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
f5fdcd6e
PM
882 g_free(nodename);
883 }
884}
885
e0561e60
MA
886#define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
887
888static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
889 const char *name,
890 const char *alias_prop_name)
acf82361 891{
e0561e60
MA
892 /*
893 * Create a single flash device. We use the same parameters as
894 * the flash devices on the Versatile Express board.
acf82361 895 */
81c7db72 896 DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
acf82361 897
e0561e60 898 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
acf82361
PM
899 qdev_prop_set_uint8(dev, "width", 4);
900 qdev_prop_set_uint8(dev, "device-width", 2);
e9809422 901 qdev_prop_set_bit(dev, "big-endian", false);
acf82361
PM
902 qdev_prop_set_uint16(dev, "id0", 0x89);
903 qdev_prop_set_uint16(dev, "id1", 0x18);
904 qdev_prop_set_uint16(dev, "id2", 0x00);
905 qdev_prop_set_uint16(dev, "id3", 0x00);
906 qdev_prop_set_string(dev, "name", name);
e0561e60
MA
907 object_property_add_child(OBJECT(vms), name, OBJECT(dev),
908 &error_abort);
909 object_property_add_alias(OBJECT(vms), alias_prop_name,
910 OBJECT(dev), "drive", &error_abort);
911 return PFLASH_CFI01(dev);
912}
acf82361 913
e0561e60
MA
914static void virt_flash_create(VirtMachineState *vms)
915{
916 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
917 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
918}
acf82361 919
e0561e60
MA
920static void virt_flash_map1(PFlashCFI01 *flash,
921 hwaddr base, hwaddr size,
922 MemoryRegion *sysmem)
923{
924 DeviceState *dev = DEVICE(flash);
acf82361 925
e0561e60
MA
926 assert(size % VIRT_FLASH_SECTOR_SIZE == 0);
927 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
928 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
929 qdev_init_nofail(dev);
930
931 memory_region_add_subregion(sysmem, base,
932 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
933 0));
16f4a8dc
PM
934}
935
e0561e60
MA
936static void virt_flash_map(VirtMachineState *vms,
937 MemoryRegion *sysmem,
938 MemoryRegion *secure_sysmem)
16f4a8dc 939{
e0561e60
MA
940 /*
941 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
738a5d9f
PM
942 * sysmem is the system memory space. secure_sysmem is the secure view
943 * of the system, and the first flash device should be made visible only
944 * there. The second flash device is visible to both secure and nonsecure.
945 * If sysmem == secure_sysmem this means there is no separate Secure
946 * address space and both flash devices are generally visible.
16f4a8dc 947 */
c8ef2bda
PM
948 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
949 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
acf82361 950
e0561e60
MA
951 virt_flash_map1(vms->flash[0], flashbase, flashsize,
952 secure_sysmem);
953 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
954 sysmem);
955}
956
957static void virt_flash_fdt(VirtMachineState *vms,
958 MemoryRegion *sysmem,
959 MemoryRegion *secure_sysmem)
960{
961 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
962 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
963 char *nodename;
acf82361 964
738a5d9f
PM
965 if (sysmem == secure_sysmem) {
966 /* Report both flash devices as a single node in the DT */
967 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
c8ef2bda
PM
968 qemu_fdt_add_subnode(vms->fdt, nodename);
969 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
970 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
738a5d9f
PM
971 2, flashbase, 2, flashsize,
972 2, flashbase + flashsize, 2, flashsize);
c8ef2bda 973 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
738a5d9f
PM
974 g_free(nodename);
975 } else {
e0561e60
MA
976 /*
977 * Report the devices as separate nodes so we can mark one as
738a5d9f
PM
978 * only visible to the secure world.
979 */
980 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
c8ef2bda
PM
981 qemu_fdt_add_subnode(vms->fdt, nodename);
982 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
983 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
738a5d9f 984 2, flashbase, 2, flashsize);
c8ef2bda
PM
985 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
986 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
987 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
738a5d9f
PM
988 g_free(nodename);
989
990 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
c8ef2bda
PM
991 qemu_fdt_add_subnode(vms->fdt, nodename);
992 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
993 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
738a5d9f 994 2, flashbase + flashsize, 2, flashsize);
c8ef2bda 995 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
738a5d9f
PM
996 g_free(nodename);
997 }
acf82361
PM
998}
999
e0561e60
MA
1000static bool virt_firmware_init(VirtMachineState *vms,
1001 MemoryRegion *sysmem,
1002 MemoryRegion *secure_sysmem)
1003{
1004 int i;
1005 BlockBackend *pflash_blk0;
1006
1007 /* Map legacy -drive if=pflash to machine properties */
1008 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1009 pflash_cfi01_legacy_drive(vms->flash[i],
1010 drive_get(IF_PFLASH, 0, i));
1011 }
1012
1013 virt_flash_map(vms, sysmem, secure_sysmem);
1014
1015 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1016
1017 if (bios_name) {
1018 char *fname;
1019 MemoryRegion *mr;
1020 int image_size;
1021
1022 if (pflash_blk0) {
1023 error_report("The contents of the first flash device may be "
1024 "specified with -bios or with -drive if=pflash... "
1025 "but you cannot use both options at once");
1026 exit(1);
1027 }
1028
1029 /* Fall back to -bios */
1030
1031 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1032 if (!fname) {
1033 error_report("Could not find ROM image '%s'", bios_name);
1034 exit(1);
1035 }
1036 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1037 image_size = load_image_mr(fname, mr);
1038 g_free(fname);
1039 if (image_size < 0) {
1040 error_report("Could not load ROM image '%s'", bios_name);
1041 exit(1);
1042 }
1043 }
1044
1045 return pflash_blk0 || bios_name;
1046}
1047
af1f60a4 1048static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
578f3c7b 1049{
cc7d44c2 1050 MachineState *ms = MACHINE(vms);
c8ef2bda
PM
1051 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1052 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
5836d168 1053 FWCfgState *fw_cfg;
578f3c7b
LE
1054 char *nodename;
1055
5836d168 1056 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
cc7d44c2 1057 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
578f3c7b
LE
1058
1059 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
c8ef2bda
PM
1060 qemu_fdt_add_subnode(vms->fdt, nodename);
1061 qemu_fdt_setprop_string(vms->fdt, nodename,
578f3c7b 1062 "compatible", "qemu,fw-cfg-mmio");
c8ef2bda 1063 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
578f3c7b 1064 2, base, 2, size);
14efdb5c 1065 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
578f3c7b 1066 g_free(nodename);
af1f60a4 1067 return fw_cfg;
578f3c7b
LE
1068}
1069
c8ef2bda 1070static void create_pcie_irq_map(const VirtMachineState *vms,
9ac4ef77 1071 uint32_t gic_phandle,
4ab29b82
AG
1072 int first_irq, const char *nodename)
1073{
1074 int devfn, pin;
dfd90a87 1075 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
4ab29b82
AG
1076 uint32_t *irq_map = full_irq_map;
1077
1078 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1079 for (pin = 0; pin < 4; pin++) {
1080 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1081 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1082 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1083 int i;
1084
1085 uint32_t map[] = {
1086 devfn << 8, 0, 0, /* devfn */
1087 pin + 1, /* PCI pin */
dfd90a87 1088 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
4ab29b82
AG
1089
1090 /* Convert map to big endian */
dfd90a87 1091 for (i = 0; i < 10; i++) {
4ab29b82
AG
1092 irq_map[i] = cpu_to_be32(map[i]);
1093 }
dfd90a87 1094 irq_map += 10;
4ab29b82
AG
1095 }
1096 }
1097
c8ef2bda 1098 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
4ab29b82
AG
1099 full_irq_map, sizeof(full_irq_map));
1100
c8ef2bda 1101 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
4ab29b82
AG
1102 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1103 0x7 /* PCI irq */);
1104}
1105
584105ea
PM
1106static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1107 PCIBus *bus)
1108{
1109 char *node;
1110 const char compat[] = "arm,smmu-v3";
1111 int irq = vms->irqmap[VIRT_SMMU];
1112 int i;
1113 hwaddr base = vms->memmap[VIRT_SMMU].base;
1114 hwaddr size = vms->memmap[VIRT_SMMU].size;
1115 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1116 DeviceState *dev;
1117
1118 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1119 return;
1120 }
1121
1122 dev = qdev_create(NULL, "arm-smmuv3");
1123
1124 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1125 &error_abort);
1126 qdev_init_nofail(dev);
1127 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1128 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1129 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1130 }
1131
1132 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1133 qemu_fdt_add_subnode(vms->fdt, node);
1134 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1135 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1136
1137 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1138 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1139 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1140 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1141 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1142
1143 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1144 sizeof(irq_names));
1145
1146 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1147 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1148 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1149
1150 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1151
1152 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1153 g_free(node);
1154}
1155
1156static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
4ab29b82 1157{
c8ef2bda
PM
1158 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1159 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
bf424a12
EA
1160 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1161 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
c8ef2bda
PM
1162 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1163 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
601d626d 1164 hwaddr base_ecam, size_ecam;
6a1f001b 1165 hwaddr base = base_mmio;
601d626d 1166 int nr_pcie_buses;
c8ef2bda 1167 int irq = vms->irqmap[VIRT_PCIE];
4ab29b82
AG
1168 MemoryRegion *mmio_alias;
1169 MemoryRegion *mmio_reg;
1170 MemoryRegion *ecam_alias;
1171 MemoryRegion *ecam_reg;
1172 DeviceState *dev;
1173 char *nodename;
601d626d 1174 int i, ecam_id;
fea9b3ca 1175 PCIHostState *pci;
4ab29b82 1176
4ab29b82
AG
1177 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1178 qdev_init_nofail(dev);
1179
601d626d
EA
1180 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1181 base_ecam = vms->memmap[ecam_id].base;
1182 size_ecam = vms->memmap[ecam_id].size;
1183 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
4ab29b82
AG
1184 /* Map only the first size_ecam bytes of ECAM space */
1185 ecam_alias = g_new0(MemoryRegion, 1);
1186 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1187 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1188 ecam_reg, 0, size_ecam);
1189 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1190
1191 /* Map the MMIO window into system address space so as to expose
1192 * the section of PCI MMIO space which starts at the same base address
1193 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1194 * the window).
1195 */
1196 mmio_alias = g_new0(MemoryRegion, 1);
1197 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1198 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1199 mmio_reg, base_mmio, size_mmio);
1200 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1201
0127937b 1202 if (vms->highmem) {
5125f9cd
PF
1203 /* Map high MMIO space */
1204 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1205
1206 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1207 mmio_reg, base_mmio_high, size_mmio_high);
1208 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1209 high_mmio_alias);
1210 }
1211
4ab29b82 1212 /* Map IO port space */
6a1f001b 1213 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
4ab29b82
AG
1214
1215 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1216 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
c9bb8e16 1217 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
4ab29b82
AG
1218 }
1219
fea9b3ca
AK
1220 pci = PCI_HOST_BRIDGE(dev);
1221 if (pci->bus) {
1222 for (i = 0; i < nb_nics; i++) {
1223 NICInfo *nd = &nd_table[i];
1224
1225 if (!nd->model) {
1226 nd->model = g_strdup("virtio");
1227 }
1228
1229 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1230 }
1231 }
1232
4ab29b82 1233 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
c8ef2bda
PM
1234 qemu_fdt_add_subnode(vms->fdt, nodename);
1235 qemu_fdt_setprop_string(vms->fdt, nodename,
4ab29b82 1236 "compatible", "pci-host-ecam-generic");
c8ef2bda
PM
1237 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1238 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1239 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
6d9c1b8d 1240 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
c8ef2bda 1241 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
4ab29b82 1242 nr_pcie_buses - 1);
c8ef2bda 1243 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
4ab29b82 1244
c8ef2bda
PM
1245 if (vms->msi_phandle) {
1246 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1247 vms->msi_phandle);
b92ad394 1248 }
bd204e63 1249
c8ef2bda 1250 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
4ab29b82 1251 2, base_ecam, 2, size_ecam);
5125f9cd 1252
0127937b 1253 if (vms->highmem) {
c8ef2bda 1254 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
5125f9cd
PF
1255 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1256 2, base_pio, 2, size_pio,
1257 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1258 2, base_mmio, 2, size_mmio,
1259 1, FDT_PCI_RANGE_MMIO_64BIT,
1260 2, base_mmio_high,
1261 2, base_mmio_high, 2, size_mmio_high);
1262 } else {
c8ef2bda 1263 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
5125f9cd
PF
1264 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1265 2, base_pio, 2, size_pio,
1266 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1267 2, base_mmio, 2, size_mmio);
1268 }
4ab29b82 1269
c8ef2bda
PM
1270 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1271 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
4ab29b82 1272
584105ea
PM
1273 if (vms->iommu) {
1274 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1275
1276 create_smmu(vms, pic, pci->bus);
1277
1278 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1279 0x0, vms->iommu_phandle, 0x0, 0x10000);
1280 }
1281
4ab29b82
AG
1282 g_free(nodename);
1283}
1284
c8ef2bda 1285static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
5f7a5a0e
EA
1286{
1287 DeviceState *dev;
1288 SysBusDevice *s;
1289 int i;
5f7a5a0e
EA
1290 MemoryRegion *sysmem = get_system_memory();
1291
5f7a5a0e
EA
1292 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1293 dev->id = TYPE_PLATFORM_BUS_DEVICE;
3b77f6c3
IM
1294 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1295 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
5f7a5a0e 1296 qdev_init_nofail(dev);
a3fc8396 1297 vms->platform_bus_dev = dev;
5f7a5a0e 1298
3b77f6c3
IM
1299 s = SYS_BUS_DEVICE(dev);
1300 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1301 int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
5f7a5a0e
EA
1302 sysbus_connect_irq(s, i, pic[irqn]);
1303 }
1304
1305 memory_region_add_subregion(sysmem,
3b77f6c3 1306 vms->memmap[VIRT_PLATFORM_BUS].base,
5f7a5a0e
EA
1307 sysbus_mmio_get_region(s, 0));
1308}
1309
c8ef2bda 1310static void create_secure_ram(VirtMachineState *vms,
9ac4ef77 1311 MemoryRegion *secure_sysmem)
83ec1923
PM
1312{
1313 MemoryRegion *secram = g_new(MemoryRegion, 1);
1314 char *nodename;
c8ef2bda
PM
1315 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1316 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
83ec1923 1317
98a99ce0
PM
1318 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1319 &error_fatal);
83ec1923
PM
1320 memory_region_add_subregion(secure_sysmem, base, secram);
1321
1322 nodename = g_strdup_printf("/secram@%" PRIx64, base);
c8ef2bda
PM
1323 qemu_fdt_add_subnode(vms->fdt, nodename);
1324 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1325 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1326 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1327 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
83ec1923
PM
1328
1329 g_free(nodename);
1330}
1331
f5fdcd6e
PM
1332static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1333{
9ac4ef77
PM
1334 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1335 bootinfo);
f5fdcd6e
PM
1336
1337 *fdt_size = board->fdt_size;
1338 return board->fdt;
1339}
1340
e9a8e474 1341static void virt_build_smbios(VirtMachineState *vms)
c30e1565 1342{
dfadc3bf
WH
1343 MachineClass *mc = MACHINE_GET_CLASS(vms);
1344 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
c30e1565
WH
1345 uint8_t *smbios_tables, *smbios_anchor;
1346 size_t smbios_tables_len, smbios_anchor_len;
bab27ea2 1347 const char *product = "QEMU Virtual Machine";
c30e1565 1348
bab27ea2
AJ
1349 if (kvm_enabled()) {
1350 product = "KVM Virtual Machine";
1351 }
1352
1353 smbios_set_defaults("QEMU", product,
dfadc3bf
WH
1354 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1355 true, SMBIOS_ENTRY_POINT_30);
c30e1565 1356
a0628599 1357 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
c30e1565
WH
1358 &smbios_anchor, &smbios_anchor_len);
1359
1360 if (smbios_anchor) {
af1f60a4 1361 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
c30e1565 1362 smbios_tables, smbios_tables_len);
af1f60a4 1363 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
c30e1565
WH
1364 smbios_anchor, smbios_anchor_len);
1365 }
1366}
1367
d7c2e2db 1368static
054f4dc9 1369void virt_machine_done(Notifier *notifier, void *data)
d7c2e2db 1370{
054f4dc9
AJ
1371 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1372 machine_done);
2744ece8 1373 MachineState *ms = MACHINE(vms);
3b77f6c3
IM
1374 ARMCPU *cpu = ARM_CPU(first_cpu);
1375 struct arm_boot_info *info = &vms->bootinfo;
1376 AddressSpace *as = arm_boot_address_space(cpu, info);
1377
1378 /*
1379 * If the user provided a dtb, we assume the dynamic sysbus nodes
1380 * already are integrated there. This corresponds to a use case where
1381 * the dynamic sysbus nodes are complex and their generation is not yet
1382 * supported. In that case the user can take charge of the guest dt
1383 * while qemu takes charge of the qom stuff.
1384 */
1385 if (info->dtb_filename == NULL) {
1386 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1387 vms->memmap[VIRT_PLATFORM_BUS].base,
1388 vms->memmap[VIRT_PLATFORM_BUS].size,
1389 vms->irqmap[VIRT_PLATFORM_BUS]);
1390 }
2744ece8 1391 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
3b77f6c3
IM
1392 exit(1);
1393 }
054f4dc9 1394
e9a8e474
AJ
1395 virt_acpi_setup(vms);
1396 virt_build_smbios(vms);
d7c2e2db
SZ
1397}
1398
46de5913
IM
1399static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1400{
1401 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1402 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1403
1404 if (!vmc->disallow_affinity_adjustment) {
1405 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1406 * GIC's target-list limitations. 32-bit KVM hosts currently
1407 * always create clusters of 4 CPUs, but that is expected to
1408 * change when they gain support for gicv3. When KVM is enabled
1409 * it will override the changes we make here, therefore our
1410 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1411 * and to improve SGI efficiency.
1412 */
1413 if (vms->gic_version == 3) {
1414 clustersz = GICV3_TARGETLIST_BITS;
1415 } else {
1416 clustersz = GIC_TARGETLIST_BITS;
1417 }
1418 }
1419 return arm_cpu_mp_affinity(idx, clustersz);
1420}
1421
350a9c9e
EA
1422static void virt_set_memmap(VirtMachineState *vms)
1423{
957e32cf
EA
1424 MachineState *ms = MACHINE(vms);
1425 hwaddr base, device_memory_base, device_memory_size;
350a9c9e
EA
1426 int i;
1427
1428 vms->memmap = extended_memmap;
1429
1430 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1431 vms->memmap[i] = base_memmap[i];
1432 }
1433
957e32cf
EA
1434 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1435 error_report("unsupported number of memory slots: %"PRIu64,
1436 ms->ram_slots);
1437 exit(EXIT_FAILURE);
1438 }
1439
1440 /*
1441 * We compute the base of the high IO region depending on the
1442 * amount of initial and device memory. The device memory start/size
1443 * is aligned on 1GiB. We never put the high IO region below 256GiB
1444 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1445 * The device region size assumes 1GiB page max alignment per slot.
1446 */
1447 device_memory_base =
1448 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1449 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1450
1451 /* Base address of the high IO region */
1452 base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1453 if (base < device_memory_base) {
1454 error_report("maxmem/slots too huge");
1455 exit(EXIT_FAILURE);
1456 }
1457 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1458 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1459 }
350a9c9e
EA
1460
1461 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1462 hwaddr size = extended_memmap[i].size;
1463
1464 base = ROUND_UP(base, size);
1465 vms->memmap[i].base = base;
1466 vms->memmap[i].size = size;
1467 base += size;
1468 }
957e32cf
EA
1469 vms->highest_gpa = base - 1;
1470 if (device_memory_size > 0) {
1471 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1472 ms->device_memory->base = device_memory_base;
1473 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1474 "device-memory", device_memory_size);
1475 }
350a9c9e
EA
1476}
1477
3ef96221 1478static void machvirt_init(MachineState *machine)
f5fdcd6e 1479{
e5a5604f 1480 VirtMachineState *vms = VIRT_MACHINE(machine);
95eb49c8 1481 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
17d3d0e2
IM
1482 MachineClass *mc = MACHINE_GET_CLASS(machine);
1483 const CPUArchIdList *possible_cpus;
f5fdcd6e
PM
1484 qemu_irq pic[NUM_IRQS];
1485 MemoryRegion *sysmem = get_system_memory();
3df708eb 1486 MemoryRegion *secure_sysmem = NULL;
7ea686f5 1487 int n, virt_max_cpus;
f5fdcd6e 1488 MemoryRegion *ram = g_new(MemoryRegion, 1);
e0561e60 1489 bool firmware_loaded;
17ec075a 1490 bool aarch64 = true;
cc7d44c2
LX
1491 unsigned int smp_cpus = machine->smp.cpus;
1492 unsigned int max_cpus = machine->smp.max_cpus;
f5fdcd6e 1493
c9650222
EA
1494 /*
1495 * In accelerated mode, the memory map is computed earlier in kvm_type()
1496 * to create a VM with the right number of IPA bits.
1497 */
1498 if (!vms->memmap) {
1499 virt_set_memmap(vms);
1500 }
350a9c9e 1501
b92ad394
PF
1502 /* We can probe only here because during property set
1503 * KVM is not available yet
1504 */
dc16538a
PM
1505 if (vms->gic_version <= 0) {
1506 /* "host" or "max" */
0bf8039d 1507 if (!kvm_enabled()) {
dc16538a
PM
1508 if (vms->gic_version == 0) {
1509 error_report("gic-version=host requires KVM");
1510 exit(1);
1511 } else {
1512 /* "max": currently means 3 for TCG */
1513 vms->gic_version = 3;
1514 }
1515 } else {
1516 vms->gic_version = kvm_arm_vgic_probe();
1517 if (!vms->gic_version) {
1518 error_report(
1519 "Unable to determine GIC version supported by host");
1520 exit(1);
1521 }
b92ad394
PF
1522 }
1523 }
1524
ba1ba5cc
IM
1525 if (!cpu_type_valid(machine->cpu_type)) {
1526 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
f5fdcd6e
PM
1527 exit(1);
1528 }
1529
e0561e60
MA
1530 if (vms->secure) {
1531 if (kvm_enabled()) {
1532 error_report("mach-virt: KVM does not support Security extensions");
1533 exit(1);
1534 }
1535
1536 /*
1537 * The Secure view of the world is the same as the NonSecure,
1538 * but with a few extra devices. Create it as a container region
1539 * containing the system memory at low priority; any secure-only
1540 * devices go in at higher priority and take precedence.
1541 */
1542 secure_sysmem = g_new(MemoryRegion, 1);
1543 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1544 UINT64_MAX);
1545 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1546 }
1547
1548 firmware_loaded = virt_firmware_init(vms, sysmem,
1549 secure_sysmem ?: sysmem);
1550
4824a61a
PM
1551 /* If we have an EL3 boot ROM then the assumption is that it will
1552 * implement PSCI itself, so disable QEMU's internal implementation
1553 * so it doesn't get in the way. Instead of starting secondary
1554 * CPUs in PSCI powerdown state we will start them all running and
1555 * let the boot ROM sort them out.
f29cacfb
PM
1556 * The usual case is that we do use QEMU's PSCI implementation;
1557 * if the guest has EL2 then we will use SMC as the conduit,
1558 * and otherwise we will use HVC (for backwards compatibility and
1559 * because if we're using KVM then we must use HVC).
4824a61a 1560 */
2013c566
PM
1561 if (vms->secure && firmware_loaded) {
1562 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
f29cacfb
PM
1563 } else if (vms->virt) {
1564 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2013c566
PM
1565 } else {
1566 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1567 }
4824a61a 1568
4b280b72
AJ
1569 /* The maximum number of CPUs depends on the GIC version, or on how
1570 * many redistributors we can fit into the memory map.
1571 */
055a7f2b 1572 if (vms->gic_version == 3) {
bf424a12
EA
1573 virt_max_cpus =
1574 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1575 virt_max_cpus +=
1576 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
4b280b72 1577 } else {
7ea686f5 1578 virt_max_cpus = GIC_NCPU;
4b280b72
AJ
1579 }
1580
7ea686f5 1581 if (max_cpus > virt_max_cpus) {
4b280b72
AJ
1582 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1583 "supported by machine 'mach-virt' (%d)",
7ea686f5 1584 max_cpus, virt_max_cpus);
4b280b72
AJ
1585 exit(1);
1586 }
1587
c8ef2bda 1588 vms->smp_cpus = smp_cpus;
f5fdcd6e 1589
f29cacfb
PM
1590 if (vms->virt && kvm_enabled()) {
1591 error_report("mach-virt: KVM does not support providing "
1592 "Virtualization extensions to the guest CPU");
1593 exit(1);
1594 }
1595
c8ef2bda 1596 create_fdt(vms);
f5fdcd6e 1597
17d3d0e2
IM
1598 possible_cpus = mc->possible_cpu_arch_ids(machine);
1599 for (n = 0; n < possible_cpus->len; n++) {
1600 Object *cpuobj;
d9c34f9c 1601 CPUState *cs;
46de5913 1602
17d3d0e2
IM
1603 if (n >= smp_cpus) {
1604 break;
1605 }
1606
d342eb76 1607 cpuobj = object_new(possible_cpus->cpus[n].type);
17d3d0e2 1608 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
46de5913 1609 "mp-affinity", NULL);
f313369f 1610
d9c34f9c
IM
1611 cs = CPU(cpuobj);
1612 cs->cpu_index = n;
1613
a0ceb640
IM
1614 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1615 &error_fatal);
bd4c1bfe 1616
17ec075a
EA
1617 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1618
e5a5604f
GB
1619 if (!vms->secure) {
1620 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1621 }
1622
f29cacfb 1623 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
c25bd18a
PM
1624 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1625 }
1626
2013c566
PM
1627 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1628 object_property_set_int(cpuobj, vms->psci_conduit,
4824a61a 1629 "psci-conduit", NULL);
211b0169 1630
4824a61a
PM
1631 /* Secondary CPUs start in PSCI powered-down state */
1632 if (n > 0) {
1633 object_property_set_bool(cpuobj, true,
1634 "start-powered-off", NULL);
1635 }
f5fdcd6e 1636 }
ba750085 1637
1141d1eb
WH
1638 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1639 object_property_set_bool(cpuobj, false, "pmu", NULL);
1640 }
1641
ba750085 1642 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
c8ef2bda 1643 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
ba750085
PM
1644 "reset-cbar", &error_abort);
1645 }
1646
1d939a68
PM
1647 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1648 &error_abort);
3df708eb
PM
1649 if (vms->secure) {
1650 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1651 "secure-memory", &error_abort);
1652 }
1d939a68 1653
c88bc3e0 1654 object_property_set_bool(cpuobj, true, "realized", &error_fatal);
dbb74759 1655 object_unref(cpuobj);
f5fdcd6e 1656 }
055a7f2b 1657 fdt_add_timer_nodes(vms);
c8ef2bda 1658 fdt_add_cpu_nodes(vms);
f5fdcd6e 1659
2ba956cc
EA
1660 if (!kvm_enabled()) {
1661 ARMCPU *cpu = ARM_CPU(first_cpu);
1662 bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL);
1663
1664 if (aarch64 && vms->highmem) {
1665 int requested_pa_size, pamax = arm_pamax(cpu);
1666
1667 requested_pa_size = 64 - clz64(vms->highest_gpa);
1668 if (pamax < requested_pa_size) {
1669 error_report("VCPU supports less PA bits (%d) than requested "
1670 "by the memory map (%d)", pamax, requested_pa_size);
1671 exit(1);
1672 }
1673 }
1674 }
1675
c8623c02
DM
1676 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1677 machine->ram_size);
c8ef2bda 1678 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
957e32cf
EA
1679 if (machine->device_memory) {
1680 memory_region_add_subregion(sysmem, machine->device_memory->base,
1681 &machine->device_memory->mr);
1682 }
f5fdcd6e 1683
80734cbd 1684 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
acf82361 1685
055a7f2b 1686 create_gic(vms, pic);
f5fdcd6e 1687
055a7f2b 1688 fdt_add_pmu_nodes(vms);
01fe6b60 1689
9bca0edb 1690 create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
3df708eb
PM
1691
1692 if (vms->secure) {
c8ef2bda 1693 create_secure_ram(vms, secure_sysmem);
9bca0edb 1694 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
3df708eb 1695 }
f5fdcd6e 1696
17ec075a
EA
1697 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1698
c8ef2bda 1699 create_rtc(vms, pic);
6e411af9 1700
0127937b 1701 create_pcie(vms, pic);
4ab29b82 1702
c8ef2bda 1703 create_gpio(vms, pic);
b0a3721e 1704
f5fdcd6e
PM
1705 /* Create mmio transports, so the user can create virtio backends
1706 * (which will be automatically plugged in to the transports). If
1707 * no backend is created the transport will just sit harmlessly idle.
1708 */
c8ef2bda 1709 create_virtio_devices(vms, pic);
f5fdcd6e 1710
af1f60a4
AJ
1711 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1712 rom_set_fw(vms->fw_cfg);
d7c2e2db 1713
3b77f6c3 1714 create_platform_bus(vms, pic);
578f3c7b 1715
c8ef2bda 1716 vms->bootinfo.ram_size = machine->ram_size;
c8ef2bda
PM
1717 vms->bootinfo.nb_cpus = smp_cpus;
1718 vms->bootinfo.board_id = -1;
1719 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1720 vms->bootinfo.get_dtb = machvirt_dtb;
3b77f6c3 1721 vms->bootinfo.skip_dtb_autoload = true;
c8ef2bda 1722 vms->bootinfo.firmware_loaded = firmware_loaded;
2744ece8 1723 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
5f7a5a0e 1724
3b77f6c3
IM
1725 vms->machine_done.notify = virt_machine_done;
1726 qemu_add_machine_init_done_notifier(&vms->machine_done);
f5fdcd6e
PM
1727}
1728
083a5890
GB
1729static bool virt_get_secure(Object *obj, Error **errp)
1730{
1731 VirtMachineState *vms = VIRT_MACHINE(obj);
1732
1733 return vms->secure;
1734}
1735
1736static void virt_set_secure(Object *obj, bool value, Error **errp)
1737{
1738 VirtMachineState *vms = VIRT_MACHINE(obj);
1739
1740 vms->secure = value;
1741}
1742
f29cacfb
PM
1743static bool virt_get_virt(Object *obj, Error **errp)
1744{
1745 VirtMachineState *vms = VIRT_MACHINE(obj);
1746
1747 return vms->virt;
1748}
1749
1750static void virt_set_virt(Object *obj, bool value, Error **errp)
1751{
1752 VirtMachineState *vms = VIRT_MACHINE(obj);
1753
1754 vms->virt = value;
1755}
1756
5125f9cd
PF
1757static bool virt_get_highmem(Object *obj, Error **errp)
1758{
1759 VirtMachineState *vms = VIRT_MACHINE(obj);
1760
1761 return vms->highmem;
1762}
1763
1764static void virt_set_highmem(Object *obj, bool value, Error **errp)
1765{
1766 VirtMachineState *vms = VIRT_MACHINE(obj);
1767
1768 vms->highmem = value;
1769}
1770
ccc11b02
EA
1771static bool virt_get_its(Object *obj, Error **errp)
1772{
1773 VirtMachineState *vms = VIRT_MACHINE(obj);
1774
1775 return vms->its;
1776}
1777
1778static void virt_set_its(Object *obj, bool value, Error **errp)
1779{
1780 VirtMachineState *vms = VIRT_MACHINE(obj);
1781
1782 vms->its = value;
1783}
1784
b92ad394
PF
1785static char *virt_get_gic_version(Object *obj, Error **errp)
1786{
1787 VirtMachineState *vms = VIRT_MACHINE(obj);
1788 const char *val = vms->gic_version == 3 ? "3" : "2";
1789
1790 return g_strdup(val);
1791}
1792
1793static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1794{
1795 VirtMachineState *vms = VIRT_MACHINE(obj);
1796
1797 if (!strcmp(value, "3")) {
1798 vms->gic_version = 3;
1799 } else if (!strcmp(value, "2")) {
1800 vms->gic_version = 2;
1801 } else if (!strcmp(value, "host")) {
1802 vms->gic_version = 0; /* Will probe later */
dc16538a
PM
1803 } else if (!strcmp(value, "max")) {
1804 vms->gic_version = -1; /* Will probe later */
b92ad394 1805 } else {
7b55044f 1806 error_setg(errp, "Invalid gic-version value");
dc16538a 1807 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
b92ad394
PF
1808 }
1809}
1810
e24e3454
EA
1811static char *virt_get_iommu(Object *obj, Error **errp)
1812{
1813 VirtMachineState *vms = VIRT_MACHINE(obj);
1814
1815 switch (vms->iommu) {
1816 case VIRT_IOMMU_NONE:
1817 return g_strdup("none");
1818 case VIRT_IOMMU_SMMUV3:
1819 return g_strdup("smmuv3");
1820 default:
1821 g_assert_not_reached();
1822 }
1823}
1824
1825static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1826{
1827 VirtMachineState *vms = VIRT_MACHINE(obj);
1828
1829 if (!strcmp(value, "smmuv3")) {
1830 vms->iommu = VIRT_IOMMU_SMMUV3;
1831 } else if (!strcmp(value, "none")) {
1832 vms->iommu = VIRT_IOMMU_NONE;
1833 } else {
1834 error_setg(errp, "Invalid iommu value");
1835 error_append_hint(errp, "Valid values are none, smmuv3.\n");
1836 }
1837}
1838
ea089eeb
IM
1839static CpuInstanceProperties
1840virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1841{
1842 MachineClass *mc = MACHINE_GET_CLASS(ms);
1843 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1844
1845 assert(cpu_index < possible_cpus->len);
1846 return possible_cpus->cpus[cpu_index].props;
1847}
1848
79e07936
IM
1849static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1850{
aa570207 1851 return idx % ms->numa_state->num_nodes;
79e07936
IM
1852}
1853
17d3d0e2
IM
1854static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1855{
1856 int n;
cc7d44c2 1857 unsigned int max_cpus = ms->smp.max_cpus;
17d3d0e2
IM
1858 VirtMachineState *vms = VIRT_MACHINE(ms);
1859
1860 if (ms->possible_cpus) {
1861 assert(ms->possible_cpus->len == max_cpus);
1862 return ms->possible_cpus;
1863 }
1864
1865 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1866 sizeof(CPUArchId) * max_cpus);
1867 ms->possible_cpus->len = max_cpus;
1868 for (n = 0; n < ms->possible_cpus->len; n++) {
d342eb76 1869 ms->possible_cpus->cpus[n].type = ms->cpu_type;
17d3d0e2
IM
1870 ms->possible_cpus->cpus[n].arch_id =
1871 virt_cpu_mp_affinity(vms, n);
1872 ms->possible_cpus->cpus[n].props.has_thread_id = true;
1873 ms->possible_cpus->cpus[n].props.thread_id = n;
17d3d0e2
IM
1874 }
1875 return ms->possible_cpus;
1876}
1877
a3fc8396
IM
1878static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1879 DeviceState *dev, Error **errp)
1880{
1881 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1882
1883 if (vms->platform_bus_dev) {
1884 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1885 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1886 SYS_BUS_DEVICE(dev));
1887 }
1888 }
1889}
1890
1891static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1892 DeviceState *dev)
1893{
1894 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1895 return HOTPLUG_HANDLER(machine);
1896 }
1897
1898 return NULL;
1899}
1900
c9650222
EA
1901/*
1902 * for arm64 kvm_type [7-0] encodes the requested number of bits
1903 * in the IPA address space
1904 */
1905static int virt_kvm_type(MachineState *ms, const char *type_str)
1906{
1907 VirtMachineState *vms = VIRT_MACHINE(ms);
1908 int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
1909 int requested_pa_size;
1910
1911 /* we freeze the memory map to compute the highest gpa */
1912 virt_set_memmap(vms);
1913
1914 requested_pa_size = 64 - clz64(vms->highest_gpa);
1915
1916 if (requested_pa_size > max_vm_pa_size) {
1917 error_report("-m and ,maxmem option values "
1918 "require an IPA range (%d bits) larger than "
1919 "the one supported by the host (%d bits)",
1920 requested_pa_size, max_vm_pa_size);
1921 exit(1);
1922 }
1923 /*
1924 * By default we return 0 which corresponds to an implicit legacy
1925 * 40b IPA setting. Otherwise we return the actual requested PA
1926 * logsize
1927 */
1928 return requested_pa_size > 40 ? requested_pa_size : 0;
1929}
1930
ed796373
WH
1931static void virt_machine_class_init(ObjectClass *oc, void *data)
1932{
9c94d8e6 1933 MachineClass *mc = MACHINE_CLASS(oc);
a3fc8396 1934 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
9c94d8e6
WH
1935
1936 mc->init = machvirt_init;
b10fbd53
EA
1937 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1938 * The value may be reduced later when we have more information about the
9c94d8e6
WH
1939 * configuration of the particular instance.
1940 */
b10fbd53 1941 mc->max_cpus = 512;
6f2062b9
EH
1942 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1943 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
94692dcd 1944 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
4ebc0b61 1945 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
9c94d8e6
WH
1946 mc->block_default_type = IF_VIRTIO;
1947 mc->no_cdrom = 1;
1948 mc->pci_allow_0_address = true;
a2519ad1
PM
1949 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1950 mc->minimum_page_bits = 12;
17d3d0e2 1951 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
ea089eeb 1952 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
ba1ba5cc 1953 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
79e07936 1954 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
c9650222 1955 mc->kvm_type = virt_kvm_type;
debbdc00 1956 assert(!mc->get_hotplug_handler);
a3fc8396
IM
1957 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1958 hc->plug = virt_machine_device_plug_cb;
cd5ff833 1959 mc->numa_mem_supported = true;
ed796373
WH
1960}
1961
95159760 1962static void virt_instance_init(Object *obj)
083a5890
GB
1963{
1964 VirtMachineState *vms = VIRT_MACHINE(obj);
ccc11b02 1965 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
083a5890 1966
2d710006
PM
1967 /* EL3 is disabled by default on virt: this makes us consistent
1968 * between KVM and TCG for this board, and it also allows us to
1969 * boot UEFI blobs which assume no TrustZone support.
1970 */
1971 vms->secure = false;
083a5890
GB
1972 object_property_add_bool(obj, "secure", virt_get_secure,
1973 virt_set_secure, NULL);
1974 object_property_set_description(obj, "secure",
1975 "Set on/off to enable/disable the ARM "
1976 "Security Extensions (TrustZone)",
1977 NULL);
5125f9cd 1978
f29cacfb
PM
1979 /* EL2 is also disabled by default, for similar reasons */
1980 vms->virt = false;
1981 object_property_add_bool(obj, "virtualization", virt_get_virt,
1982 virt_set_virt, NULL);
1983 object_property_set_description(obj, "virtualization",
1984 "Set on/off to enable/disable emulating a "
1985 "guest CPU which implements the ARM "
1986 "Virtualization Extensions",
1987 NULL);
1988
5125f9cd
PF
1989 /* High memory is enabled by default */
1990 vms->highmem = true;
1991 object_property_add_bool(obj, "highmem", virt_get_highmem,
1992 virt_set_highmem, NULL);
1993 object_property_set_description(obj, "highmem",
1994 "Set on/off to enable/disable using "
1995 "physical address space above 32 bits",
1996 NULL);
b92ad394
PF
1997 /* Default GIC type is v2 */
1998 vms->gic_version = 2;
1999 object_property_add_str(obj, "gic-version", virt_get_gic_version,
2000 virt_set_gic_version, NULL);
2001 object_property_set_description(obj, "gic-version",
2002 "Set GIC version. "
2003 "Valid values are 2, 3 and host", NULL);
9ac4ef77 2004
17ec075a
EA
2005 vms->highmem_ecam = !vmc->no_highmem_ecam;
2006
ccc11b02
EA
2007 if (vmc->no_its) {
2008 vms->its = false;
2009 } else {
2010 /* Default allows ITS instantiation */
2011 vms->its = true;
2012 object_property_add_bool(obj, "its", virt_get_its,
2013 virt_set_its, NULL);
2014 object_property_set_description(obj, "its",
2015 "Set on/off to enable/disable "
2016 "ITS instantiation",
2017 NULL);
2018 }
2019
e24e3454
EA
2020 /* Default disallows iommu instantiation */
2021 vms->iommu = VIRT_IOMMU_NONE;
2022 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
2023 object_property_set_description(obj, "iommu",
2024 "Set the IOMMU type. "
2025 "Valid values are none and smmuv3",
2026 NULL);
2027
9ac4ef77 2028 vms->irqmap = a15irqmap;
e0561e60
MA
2029
2030 virt_flash_create(vms);
083a5890
GB
2031}
2032
95159760
EH
2033static const TypeInfo virt_machine_info = {
2034 .name = TYPE_VIRT_MACHINE,
2035 .parent = TYPE_MACHINE,
2036 .abstract = true,
2037 .instance_size = sizeof(VirtMachineState),
2038 .class_size = sizeof(VirtMachineClass),
2039 .class_init = virt_machine_class_init,
bbac02f1 2040 .instance_init = virt_instance_init,
95159760
EH
2041 .interfaces = (InterfaceInfo[]) {
2042 { TYPE_HOTPLUG_HANDLER },
2043 { }
2044 },
2045};
2046
2047static void machvirt_machine_init(void)
2048{
2049 type_register_static(&virt_machine_info);
2050}
2051type_init(machvirt_machine_init);
2052
9aec2e52
CH
2053static void virt_machine_4_2_options(MachineClass *mc)
2054{
2055}
2056DEFINE_VIRT_MACHINE_AS_LATEST(4, 2)
2057
9bf2650b
CH
2058static void virt_machine_4_1_options(MachineClass *mc)
2059{
9aec2e52
CH
2060 virt_machine_4_2_options(mc);
2061 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
9bf2650b 2062}
9aec2e52 2063DEFINE_VIRT_MACHINE(4, 1)
9bf2650b 2064
84e060bf
AW
2065static void virt_machine_4_0_options(MachineClass *mc)
2066{
9bf2650b
CH
2067 virt_machine_4_1_options(mc);
2068 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
84e060bf 2069}
9bf2650b 2070DEFINE_VIRT_MACHINE(4, 0)
84e060bf 2071
22907d2b
AJ
2072static void virt_machine_3_1_options(MachineClass *mc)
2073{
84e060bf 2074 virt_machine_4_0_options(mc);
abd93cc7 2075 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
22907d2b 2076}
84e060bf 2077DEFINE_VIRT_MACHINE(3, 1)
22907d2b 2078
8ae9a1ca
EA
2079static void virt_machine_3_0_options(MachineClass *mc)
2080{
22907d2b 2081 virt_machine_3_1_options(mc);
ddb3235d 2082 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
8ae9a1ca 2083}
22907d2b
AJ
2084DEFINE_VIRT_MACHINE(3, 0)
2085
a2a05159
PM
2086static void virt_machine_2_12_options(MachineClass *mc)
2087{
17ec075a
EA
2088 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2089
8ae9a1ca 2090 virt_machine_3_0_options(mc);
0d47310b 2091 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
17ec075a 2092 vmc->no_highmem_ecam = true;
b10fbd53 2093 mc->max_cpus = 255;
a2a05159 2094}
8ae9a1ca 2095DEFINE_VIRT_MACHINE(2, 12)
a2a05159 2096
79283dda
EA
2097static void virt_machine_2_11_options(MachineClass *mc)
2098{
dfadc3bf
WH
2099 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2100
a2a05159 2101 virt_machine_2_12_options(mc);
43df70a9 2102 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
dfadc3bf 2103 vmc->smbios_old_sys_ver = true;
79283dda 2104}
a2a05159 2105DEFINE_VIRT_MACHINE(2, 11)
79283dda 2106
f22ab6cb
EA
2107static void virt_machine_2_10_options(MachineClass *mc)
2108{
79283dda 2109 virt_machine_2_11_options(mc);
503224f4 2110 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
846690de
PM
2111 /* before 2.11 we never faulted accesses to bad addresses */
2112 mc->ignore_memory_transaction_failures = true;
f22ab6cb 2113}
79283dda 2114DEFINE_VIRT_MACHINE(2, 10)
f22ab6cb 2115
e353aac5
PM
2116static void virt_machine_2_9_options(MachineClass *mc)
2117{
f22ab6cb 2118 virt_machine_2_10_options(mc);
3e803152 2119 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
e353aac5 2120}
f22ab6cb 2121DEFINE_VIRT_MACHINE(2, 9)
e353aac5 2122
96b0439b
AJ
2123static void virt_machine_2_8_options(MachineClass *mc)
2124{
156bc9a5
PM
2125 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2126
e353aac5 2127 virt_machine_2_9_options(mc);
edc24ccd 2128 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
156bc9a5
PM
2129 /* For 2.8 and earlier we falsely claimed in the DT that
2130 * our timers were edge-triggered, not level-triggered.
2131 */
2132 vmc->claim_edge_triggered_timers = true;
96b0439b 2133}
e353aac5 2134DEFINE_VIRT_MACHINE(2, 8)
96b0439b 2135
1287f2b3
AJ
2136static void virt_machine_2_7_options(MachineClass *mc)
2137{
2231f69b
AJ
2138 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2139
96b0439b 2140 virt_machine_2_8_options(mc);
5a995064 2141 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2231f69b
AJ
2142 /* ITS was introduced with 2.8 */
2143 vmc->no_its = true;
a2519ad1
PM
2144 /* Stick with 1K pages for migration compatibility */
2145 mc->minimum_page_bits = 0;
1287f2b3 2146}
96b0439b 2147DEFINE_VIRT_MACHINE(2, 7)
1287f2b3 2148
ab093c3c 2149static void virt_machine_2_6_options(MachineClass *mc)
c2919690 2150{
95eb49c8
AJ
2151 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2152
1287f2b3 2153 virt_machine_2_7_options(mc);
ff8f261f 2154 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
95eb49c8 2155 vmc->disallow_affinity_adjustment = true;
1141d1eb
WH
2156 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2157 vmc->no_pmu = true;
c2919690 2158}
1287f2b3 2159DEFINE_VIRT_MACHINE(2, 6)