]> git.proxmox.com Git - mirror_qemu.git/blame - hw/arm/virt.c
hw/arm/sysbus-fdt: Allow device matching with DT compatible value
[mirror_qemu.git] / hw / arm / virt.c
CommitLineData
f5fdcd6e
PM
1/*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
12b16722 31#include "qemu/osdep.h"
da34e65c 32#include "qapi/error.h"
f5fdcd6e
PM
33#include "hw/sysbus.h"
34#include "hw/arm/arm.h"
35#include "hw/arm/primecell.h"
afe0b380 36#include "hw/arm/virt.h"
6f2062b9
EH
37#include "hw/vfio/vfio-calxeda-xgmac.h"
38#include "hw/vfio/vfio-amd-xgbe.h"
94692dcd 39#include "hw/display/ramfb.h"
f5fdcd6e
PM
40#include "hw/devices.h"
41#include "net/net.h"
42#include "sysemu/device_tree.h"
9695200a 43#include "sysemu/numa.h"
f5fdcd6e
PM
44#include "sysemu/sysemu.h"
45#include "sysemu/kvm.h"
1287f2b3 46#include "hw/compat.h"
acf82361 47#include "hw/loader.h"
f5fdcd6e
PM
48#include "exec/address-spaces.h"
49#include "qemu/bitops.h"
50#include "qemu/error-report.h"
4ab29b82 51#include "hw/pci-host/gpex.h"
5f7a5a0e
EA
52#include "hw/arm/sysbus-fdt.h"
53#include "hw/platform-bus.h"
decf4f80 54#include "hw/arm/fdt.h"
95eb49c8
AJ
55#include "hw/intc/arm_gic.h"
56#include "hw/intc/arm_gicv3_common.h"
e6fbcbc4 57#include "kvm_arm.h"
c30e1565 58#include "hw/smbios/smbios.h"
b92ad394 59#include "qapi/visitor.h"
3e6ebb64 60#include "standard-headers/linux/input.h"
584105ea 61#include "hw/arm/smmuv3.h"
f5fdcd6e 62
3356ebce 63#define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
ab093c3c
AJ
64 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
65 void *data) \
66 { \
67 MachineClass *mc = MACHINE_CLASS(oc); \
68 virt_machine_##major##_##minor##_options(mc); \
69 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
3356ebce
AJ
70 if (latest) { \
71 mc->alias = "virt"; \
72 } \
ab093c3c
AJ
73 } \
74 static const TypeInfo machvirt_##major##_##minor##_info = { \
75 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
76 .parent = TYPE_VIRT_MACHINE, \
77 .instance_init = virt_##major##_##minor##_instance_init, \
78 .class_init = virt_##major##_##minor##_class_init, \
79 }; \
80 static void machvirt_machine_##major##_##minor##_init(void) \
81 { \
82 type_register_static(&machvirt_##major##_##minor##_info); \
83 } \
84 type_init(machvirt_machine_##major##_##minor##_init);
85
3356ebce
AJ
86#define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
87 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
88#define DEFINE_VIRT_MACHINE(major, minor) \
89 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
90
ab093c3c 91
a72d4363
AJ
92/* Number of external interrupt lines to configure the GIC with */
93#define NUM_IRQS 256
94
95#define PLATFORM_BUS_NUM_IRQS 64
96
71c27684
PM
97/* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
98 * RAM can go up to the 256GB mark, leaving 256GB of the physical
99 * address space unallocated and free for future use between 256G and 512G.
100 * If we need to provide more RAM to VMs in the future then we need to:
101 * * allocate a second bank of RAM starting at 2TB and working up
102 * * fix the DT and ACPI table generation code in QEMU to correctly
103 * report two split lumps of RAM to the guest
104 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
105 * (We don't want to fill all the way up to 512GB with RAM because
106 * we might want it for non-RAM purposes later. Conversely it seems
107 * reasonable to assume that anybody configuring a VM with a quarter
108 * of a terabyte of RAM will be doing it on a host with more than a
109 * terabyte of physical address space.)
110 */
111#define RAMLIMIT_GB 255
112#define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
113
f5fdcd6e
PM
114/* Addresses and sizes of our components.
115 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
116 * 128MB..256MB is used for miscellaneous device I/O.
117 * 256MB..1GB is reserved for possible future PCI support (ie where the
118 * PCI memory window will go if we add a PCI host controller).
119 * 1GB and up is RAM (which may happily spill over into the
120 * high memory region beyond 4GB).
121 * This represents a compromise between how much RAM can be given to
122 * a 32 bit VM and leaving space for expansion and in particular for PCI.
6e411af9
PM
123 * Note that devices should generally be placed at multiples of 0x10000,
124 * to accommodate guests using 64K pages.
f5fdcd6e
PM
125 */
126static const MemMapEntry a15memmap[] = {
127 /* Space up to 0x8000000 is reserved for a boot ROM */
94edf02c
EA
128 [VIRT_FLASH] = { 0, 0x08000000 },
129 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
f5fdcd6e 130 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
94edf02c
EA
131 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
132 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
133 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
55ef3233
LM
134 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
135 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
b92ad394
PF
136 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
137 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
138 /* This redistributor space allows up to 2*64kB*123 CPUs */
139 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
94edf02c
EA
140 [VIRT_UART] = { 0x09000000, 0x00001000 },
141 [VIRT_RTC] = { 0x09010000, 0x00001000 },
0b341a85 142 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
b0a3721e 143 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
3df708eb 144 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
584105ea 145 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
94edf02c 146 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
f5fdcd6e 147 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
94edf02c 148 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
83ec1923 149 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
94edf02c
EA
150 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
151 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
152 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
71c27684 153 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
f90747c4
EA
154 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
155 [VIRT_GIC_REDIST2] = { 0x4000000000ULL, 0x4000000 },
601d626d 156 [VIRT_PCIE_ECAM_HIGH] = { 0x4010000000ULL, 0x10000000 },
5125f9cd
PF
157 /* Second PCIe window, 512GB wide at the 512GB boundary */
158 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
f5fdcd6e
PM
159};
160
161static const int a15irqmap[] = {
162 [VIRT_UART] = 1,
6e411af9 163 [VIRT_RTC] = 2,
4ab29b82 164 [VIRT_PCIE] = 3, /* ... to 6 */
b0a3721e 165 [VIRT_GPIO] = 7,
3df708eb 166 [VIRT_SECURE_UART] = 8,
f5fdcd6e 167 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
bd204e63 168 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
584105ea 169 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
5f7a5a0e 170 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
f5fdcd6e
PM
171};
172
9ac4ef77 173static const char *valid_cpus[] = {
ba1ba5cc
IM
174 ARM_CPU_TYPE_NAME("cortex-a15"),
175 ARM_CPU_TYPE_NAME("cortex-a53"),
176 ARM_CPU_TYPE_NAME("cortex-a57"),
177 ARM_CPU_TYPE_NAME("host"),
9076ddb3 178 ARM_CPU_TYPE_NAME("max"),
f5fdcd6e
PM
179};
180
ba1ba5cc 181static bool cpu_type_valid(const char *cpu)
f5fdcd6e
PM
182{
183 int i;
184
9ac4ef77
PM
185 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
186 if (strcmp(cpu, valid_cpus[i]) == 0) {
187 return true;
f5fdcd6e
PM
188 }
189 }
9ac4ef77 190 return false;
f5fdcd6e
PM
191}
192
c8ef2bda 193static void create_fdt(VirtMachineState *vms)
f5fdcd6e 194{
c8ef2bda 195 void *fdt = create_device_tree(&vms->fdt_size);
f5fdcd6e
PM
196
197 if (!fdt) {
198 error_report("create_device_tree() failed");
199 exit(1);
200 }
201
c8ef2bda 202 vms->fdt = fdt;
f5fdcd6e
PM
203
204 /* Header */
5a4348d1
PC
205 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
206 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
207 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
f5fdcd6e 208
e2eb3d29 209 /* /chosen must exist for load_dtb to fill in necessary properties later */
5a4348d1 210 qemu_fdt_add_subnode(fdt, "/chosen");
f5fdcd6e
PM
211
212 /* Clock node, for the benefit of the UART. The kernel device tree
213 * binding documentation claims the PL011 node clock properties are
214 * optional but in practice if you omit them the kernel refuses to
215 * probe for the device.
216 */
c8ef2bda 217 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
5a4348d1
PC
218 qemu_fdt_add_subnode(fdt, "/apb-pclk");
219 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
220 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
221 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
222 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
f5fdcd6e 223 "clk24mhz");
c8ef2bda 224 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
f5fdcd6e 225
c7637c04
AJ
226 if (have_numa_distance) {
227 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
228 uint32_t *matrix = g_malloc0(size);
229 int idx, i, j;
230
231 for (i = 0; i < nb_numa_nodes; i++) {
232 for (j = 0; j < nb_numa_nodes; j++) {
233 idx = (i * nb_numa_nodes + j) * 3;
234 matrix[idx + 0] = cpu_to_be32(i);
235 matrix[idx + 1] = cpu_to_be32(j);
236 matrix[idx + 2] = cpu_to_be32(numa_info[i].distance[j]);
237 }
238 }
239
240 qemu_fdt_add_subnode(fdt, "/distance-map");
241 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
242 "numa-distance-map-v1");
243 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
244 matrix, size);
245 g_free(matrix);
246 }
06955739
PS
247}
248
055a7f2b 249static void fdt_add_timer_nodes(const VirtMachineState *vms)
f5fdcd6e 250{
156bc9a5
PM
251 /* On real hardware these interrupts are level-triggered.
252 * On KVM they were edge-triggered before host kernel version 4.4,
253 * and level-triggered afterwards.
254 * On emulated QEMU they are level-triggered.
255 *
256 * Getting the DTB info about them wrong is awkward for some
257 * guest kernels:
258 * pre-4.8 ignore the DT and leave the interrupt configured
259 * with whatever the GIC reset value (or the bootloader) left it at
260 * 4.8 before rc6 honour the incorrect data by programming it back
261 * into the GIC, causing problems
262 * 4.8rc6 and later ignore the DT and always write "level triggered"
263 * into the GIC
264 *
265 * For backwards-compatibility, virt-2.8 and earlier will continue
266 * to say these are edge-triggered, but later machines will report
267 * the correct information.
f5fdcd6e 268 */
b32a9509 269 ARMCPU *armcpu;
156bc9a5
PM
270 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
271 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
272
273 if (vmc->claim_edge_triggered_timers) {
274 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
275 }
f5fdcd6e 276
055a7f2b 277 if (vms->gic_version == 2) {
b92ad394
PF
278 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
279 GIC_FDT_IRQ_PPI_CPU_WIDTH,
c8ef2bda 280 (1 << vms->smp_cpus) - 1);
b92ad394 281 }
f5fdcd6e 282
c8ef2bda 283 qemu_fdt_add_subnode(vms->fdt, "/timer");
b32a9509
CF
284
285 armcpu = ARM_CPU(qemu_get_cpu(0));
286 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
287 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
c8ef2bda 288 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
b32a9509
CF
289 compat, sizeof(compat));
290 } else {
c8ef2bda 291 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
b32a9509
CF
292 "arm,armv7-timer");
293 }
c8ef2bda
PM
294 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
295 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
ee246400
SZ
296 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
297 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
298 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
299 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
f5fdcd6e
PM
300}
301
c8ef2bda 302static void fdt_add_cpu_nodes(const VirtMachineState *vms)
f5fdcd6e
PM
303{
304 int cpu;
8d45c54d 305 int addr_cells = 1;
4ccf5826 306 const MachineState *ms = MACHINE(vms);
8d45c54d
PF
307
308 /*
309 * From Documentation/devicetree/bindings/arm/cpus.txt
310 * On ARM v8 64-bit systems value should be set to 2,
311 * that corresponds to the MPIDR_EL1 register size.
312 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
313 * in the system, #address-cells can be set to 1, since
314 * MPIDR_EL1[63:32] bits are not used for CPUs
315 * identification.
316 *
317 * Here we actually don't know whether our system is 32- or 64-bit one.
318 * The simplest way to go is to examine affinity IDs of all our CPUs. If
319 * at least one of them has Aff3 populated, we set #address-cells to 2.
320 */
c8ef2bda 321 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
8d45c54d
PF
322 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
323
324 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
325 addr_cells = 2;
326 break;
327 }
328 }
f5fdcd6e 329
c8ef2bda
PM
330 qemu_fdt_add_subnode(vms->fdt, "/cpus");
331 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
332 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
f5fdcd6e 333
c8ef2bda 334 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
f5fdcd6e
PM
335 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
336 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
4ccf5826 337 CPUState *cs = CPU(armcpu);
f5fdcd6e 338
c8ef2bda
PM
339 qemu_fdt_add_subnode(vms->fdt, nodename);
340 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
341 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
f5fdcd6e
PM
342 armcpu->dtb_compatible);
343
2013c566
PM
344 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
345 && vms->smp_cpus > 1) {
c8ef2bda 346 qemu_fdt_setprop_string(vms->fdt, nodename,
f5fdcd6e
PM
347 "enable-method", "psci");
348 }
349
8d45c54d 350 if (addr_cells == 2) {
c8ef2bda 351 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
8d45c54d
PF
352 armcpu->mp_affinity);
353 } else {
c8ef2bda 354 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
8d45c54d
PF
355 armcpu->mp_affinity);
356 }
357
4ccf5826
IM
358 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
359 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
360 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
9695200a
SZ
361 }
362
f5fdcd6e
PM
363 g_free(nodename);
364 }
365}
366
c8ef2bda 367static void fdt_add_its_gic_node(VirtMachineState *vms)
02f98731 368{
bb2a3348
EA
369 char *nodename;
370
c8ef2bda 371 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
bb2a3348
EA
372 nodename = g_strdup_printf("/intc/its@%" PRIx64,
373 vms->memmap[VIRT_GIC_ITS].base);
374 qemu_fdt_add_subnode(vms->fdt, nodename);
375 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
02f98731 376 "arm,gic-v3-its");
bb2a3348
EA
377 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
378 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
c8ef2bda
PM
379 2, vms->memmap[VIRT_GIC_ITS].base,
380 2, vms->memmap[VIRT_GIC_ITS].size);
bb2a3348
EA
381 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
382 g_free(nodename);
02f98731
PF
383}
384
c8ef2bda 385static void fdt_add_v2m_gic_node(VirtMachineState *vms)
f5fdcd6e 386{
bb2a3348
EA
387 char *nodename;
388
389 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
390 vms->memmap[VIRT_GIC_V2M].base);
c8ef2bda 391 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
bb2a3348
EA
392 qemu_fdt_add_subnode(vms->fdt, nodename);
393 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
bd204e63 394 "arm,gic-v2m-frame");
bb2a3348
EA
395 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
396 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
c8ef2bda
PM
397 2, vms->memmap[VIRT_GIC_V2M].base,
398 2, vms->memmap[VIRT_GIC_V2M].size);
bb2a3348
EA
399 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
400 g_free(nodename);
bd204e63 401}
f5fdcd6e 402
055a7f2b 403static void fdt_add_gic_node(VirtMachineState *vms)
bd204e63 404{
bb2a3348
EA
405 char *nodename;
406
c8ef2bda
PM
407 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
408 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
409
bb2a3348
EA
410 nodename = g_strdup_printf("/intc@%" PRIx64,
411 vms->memmap[VIRT_GIC_DIST].base);
412 qemu_fdt_add_subnode(vms->fdt, nodename);
413 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
414 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
415 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
416 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
417 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
055a7f2b 418 if (vms->gic_version == 3) {
f90747c4
EA
419 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
420
bb2a3348 421 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
b92ad394 422 "arm,gic-v3");
f90747c4 423
bb2a3348 424 qemu_fdt_setprop_cell(vms->fdt, nodename,
f90747c4
EA
425 "#redistributor-regions", nb_redist_regions);
426
427 if (nb_redist_regions == 1) {
bb2a3348 428 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
f90747c4
EA
429 2, vms->memmap[VIRT_GIC_DIST].base,
430 2, vms->memmap[VIRT_GIC_DIST].size,
431 2, vms->memmap[VIRT_GIC_REDIST].base,
432 2, vms->memmap[VIRT_GIC_REDIST].size);
433 } else {
bb2a3348 434 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
f90747c4
EA
435 2, vms->memmap[VIRT_GIC_DIST].base,
436 2, vms->memmap[VIRT_GIC_DIST].size,
437 2, vms->memmap[VIRT_GIC_REDIST].base,
438 2, vms->memmap[VIRT_GIC_REDIST].size,
439 2, vms->memmap[VIRT_GIC_REDIST2].base,
440 2, vms->memmap[VIRT_GIC_REDIST2].size);
441 }
442
f29cacfb 443 if (vms->virt) {
bb2a3348 444 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
55ef3233 445 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
f29cacfb
PM
446 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
447 }
b92ad394
PF
448 } else {
449 /* 'cortex-a15-gic' means 'GIC v2' */
bb2a3348 450 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
b92ad394 451 "arm,cortex-a15-gic");
55ef3233
LM
452 if (!vms->virt) {
453 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
454 2, vms->memmap[VIRT_GIC_DIST].base,
455 2, vms->memmap[VIRT_GIC_DIST].size,
456 2, vms->memmap[VIRT_GIC_CPU].base,
457 2, vms->memmap[VIRT_GIC_CPU].size);
458 } else {
459 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
460 2, vms->memmap[VIRT_GIC_DIST].base,
461 2, vms->memmap[VIRT_GIC_DIST].size,
462 2, vms->memmap[VIRT_GIC_CPU].base,
463 2, vms->memmap[VIRT_GIC_CPU].size,
464 2, vms->memmap[VIRT_GIC_HYP].base,
465 2, vms->memmap[VIRT_GIC_HYP].size,
466 2, vms->memmap[VIRT_GIC_VCPU].base,
467 2, vms->memmap[VIRT_GIC_VCPU].size);
468 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
469 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
470 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
471 }
b92ad394
PF
472 }
473
bb2a3348
EA
474 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
475 g_free(nodename);
f5fdcd6e
PM
476}
477
055a7f2b 478static void fdt_add_pmu_nodes(const VirtMachineState *vms)
01fe6b60
SZ
479{
480 CPUState *cpu;
481 ARMCPU *armcpu;
482 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
483
484 CPU_FOREACH(cpu) {
485 armcpu = ARM_CPU(cpu);
3f07cb2a 486 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
01fe6b60
SZ
487 return;
488 }
3f07cb2a 489 if (kvm_enabled()) {
b2bfe9f7
AJ
490 if (kvm_irqchip_in_kernel()) {
491 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
3f07cb2a 492 }
b2bfe9f7 493 kvm_arm_pmu_init(cpu);
3f07cb2a 494 }
01fe6b60
SZ
495 }
496
055a7f2b 497 if (vms->gic_version == 2) {
01fe6b60
SZ
498 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
499 GIC_FDT_IRQ_PPI_CPU_WIDTH,
c8ef2bda 500 (1 << vms->smp_cpus) - 1);
01fe6b60
SZ
501 }
502
503 armcpu = ARM_CPU(qemu_get_cpu(0));
c8ef2bda 504 qemu_fdt_add_subnode(vms->fdt, "/pmu");
01fe6b60
SZ
505 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
506 const char compat[] = "arm,armv8-pmuv3";
c8ef2bda 507 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
01fe6b60 508 compat, sizeof(compat));
c8ef2bda 509 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
01fe6b60
SZ
510 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
511 }
512}
513
c8ef2bda 514static void create_its(VirtMachineState *vms, DeviceState *gicdev)
02f98731
PF
515{
516 const char *itsclass = its_class_name();
517 DeviceState *dev;
518
519 if (!itsclass) {
520 /* Do nothing if not supported */
521 return;
522 }
523
524 dev = qdev_create(NULL, itsclass);
525
526 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
527 &error_abort);
528 qdev_init_nofail(dev);
c8ef2bda 529 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
02f98731 530
c8ef2bda 531 fdt_add_its_gic_node(vms);
02f98731
PF
532}
533
c8ef2bda 534static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
bd204e63
CD
535{
536 int i;
c8ef2bda 537 int irq = vms->irqmap[VIRT_GIC_V2M];
bd204e63
CD
538 DeviceState *dev;
539
540 dev = qdev_create(NULL, "arm-gicv2m");
c8ef2bda 541 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
bd204e63
CD
542 qdev_prop_set_uint32(dev, "base-spi", irq);
543 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
544 qdev_init_nofail(dev);
545
546 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
547 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
548 }
549
c8ef2bda 550 fdt_add_v2m_gic_node(vms);
bd204e63
CD
551}
552
055a7f2b 553static void create_gic(VirtMachineState *vms, qemu_irq *pic)
64204743 554{
b92ad394 555 /* We create a standalone GIC */
64204743
PM
556 DeviceState *gicdev;
557 SysBusDevice *gicbusdev;
e6fbcbc4 558 const char *gictype;
055a7f2b 559 int type = vms->gic_version, i;
03d72fa1 560 uint32_t nb_redist_regions = 0;
64204743 561
b92ad394 562 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
64204743
PM
563
564 gicdev = qdev_create(NULL, gictype);
b92ad394 565 qdev_prop_set_uint32(gicdev, "revision", type);
64204743
PM
566 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
567 /* Note that the num-irq property counts both internal and external
568 * interrupts; there are always 32 of the former (mandated by GIC spec).
569 */
570 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
0e21f183 571 if (!kvm_irqchip_in_kernel()) {
0127937b 572 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
0e21f183 573 }
1e575b66
EA
574
575 if (type == 3) {
576 uint32_t redist0_capacity =
577 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
578 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
579
03d72fa1
EA
580 nb_redist_regions = virt_gicv3_redist_region_count(vms);
581
582 qdev_prop_set_uint32(gicdev, "len-redist-region-count",
583 nb_redist_regions);
1e575b66 584 qdev_prop_set_uint32(gicdev, "redist-region-count[0]", redist0_count);
03d72fa1
EA
585
586 if (nb_redist_regions == 2) {
587 uint32_t redist1_capacity =
588 vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE;
589
590 qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
591 MIN(smp_cpus - redist0_count, redist1_capacity));
592 }
55ef3233
LM
593 } else {
594 if (!kvm_irqchip_in_kernel()) {
595 qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
596 vms->virt);
597 }
1e575b66 598 }
64204743
PM
599 qdev_init_nofail(gicdev);
600 gicbusdev = SYS_BUS_DEVICE(gicdev);
c8ef2bda 601 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
b92ad394 602 if (type == 3) {
c8ef2bda 603 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
03d72fa1
EA
604 if (nb_redist_regions == 2) {
605 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_REDIST2].base);
606 }
b92ad394 607 } else {
c8ef2bda 608 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
55ef3233
LM
609 if (vms->virt) {
610 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
611 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
612 }
b92ad394 613 }
64204743 614
5454006a
PM
615 /* Wire the outputs from each CPU's generic timer and the GICv3
616 * maintenance interrupt signal to the appropriate GIC PPI inputs,
617 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
64204743
PM
618 */
619 for (i = 0; i < smp_cpus; i++) {
620 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
0e3e858f 621 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
a007b1f8
PM
622 int irq;
623 /* Mapping from the output timer irq lines from the CPU to the
624 * GIC PPI inputs we use for the virt board.
64204743 625 */
a007b1f8
PM
626 const int timer_irq[] = {
627 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
628 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
629 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
630 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
631 };
632
633 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
634 qdev_connect_gpio_out(cpudev, irq,
635 qdev_get_gpio_in(gicdev,
636 ppibase + timer_irq[irq]));
637 }
64204743 638
55ef3233
LM
639 if (type == 3) {
640 qemu_irq irq = qdev_get_gpio_in(gicdev,
641 ppibase + ARCH_GIC_MAINT_IRQ);
642 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
643 0, irq);
644 } else if (vms->virt) {
645 qemu_irq irq = qdev_get_gpio_in(gicdev,
646 ppibase + ARCH_GIC_MAINT_IRQ);
647 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
648 }
649
07f48730
AJ
650 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
651 qdev_get_gpio_in(gicdev, ppibase
652 + VIRTUAL_PMU_IRQ));
5454006a 653
64204743 654 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
8e7b4ca0
GB
655 sysbus_connect_irq(gicbusdev, i + smp_cpus,
656 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
5454006a
PM
657 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
658 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
659 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
660 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
64204743
PM
661 }
662
663 for (i = 0; i < NUM_IRQS; i++) {
664 pic[i] = qdev_get_gpio_in(gicdev, i);
665 }
666
055a7f2b 667 fdt_add_gic_node(vms);
bd204e63 668
ccc11b02 669 if (type == 3 && vms->its) {
c8ef2bda 670 create_its(vms, gicdev);
2231f69b 671 } else if (type == 2) {
c8ef2bda 672 create_v2m(vms, pic);
b92ad394 673 }
64204743
PM
674}
675
c8ef2bda 676static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
0ec7b3e7 677 MemoryRegion *mem, Chardev *chr)
f5fdcd6e
PM
678{
679 char *nodename;
c8ef2bda
PM
680 hwaddr base = vms->memmap[uart].base;
681 hwaddr size = vms->memmap[uart].size;
682 int irq = vms->irqmap[uart];
f5fdcd6e
PM
683 const char compat[] = "arm,pl011\0arm,primecell";
684 const char clocknames[] = "uartclk\0apb_pclk";
3df708eb
PM
685 DeviceState *dev = qdev_create(NULL, "pl011");
686 SysBusDevice *s = SYS_BUS_DEVICE(dev);
f5fdcd6e 687
9bbbf649 688 qdev_prop_set_chr(dev, "chardev", chr);
3df708eb
PM
689 qdev_init_nofail(dev);
690 memory_region_add_subregion(mem, base,
691 sysbus_mmio_get_region(s, 0));
692 sysbus_connect_irq(s, 0, pic[irq]);
f5fdcd6e
PM
693
694 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
c8ef2bda 695 qemu_fdt_add_subnode(vms->fdt, nodename);
f5fdcd6e 696 /* Note that we can't use setprop_string because of the embedded NUL */
c8ef2bda 697 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
f5fdcd6e 698 compat, sizeof(compat));
c8ef2bda 699 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
f5fdcd6e 700 2, base, 2, size);
c8ef2bda 701 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
f5fdcd6e 702 GIC_FDT_IRQ_TYPE_SPI, irq,
0be969a2 703 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
c8ef2bda
PM
704 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
705 vms->clock_phandle, vms->clock_phandle);
706 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
f5fdcd6e 707 clocknames, sizeof(clocknames));
f022b8e9 708
3df708eb 709 if (uart == VIRT_UART) {
c8ef2bda 710 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
3df708eb
PM
711 } else {
712 /* Mark as not usable by the normal world */
c8ef2bda
PM
713 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
714 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
3df708eb
PM
715 }
716
f5fdcd6e
PM
717 g_free(nodename);
718}
719
c8ef2bda 720static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
6e411af9
PM
721{
722 char *nodename;
c8ef2bda
PM
723 hwaddr base = vms->memmap[VIRT_RTC].base;
724 hwaddr size = vms->memmap[VIRT_RTC].size;
725 int irq = vms->irqmap[VIRT_RTC];
6e411af9
PM
726 const char compat[] = "arm,pl031\0arm,primecell";
727
728 sysbus_create_simple("pl031", base, pic[irq]);
729
730 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
c8ef2bda
PM
731 qemu_fdt_add_subnode(vms->fdt, nodename);
732 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
733 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
6e411af9 734 2, base, 2, size);
c8ef2bda 735 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
6e411af9 736 GIC_FDT_IRQ_TYPE_SPI, irq,
0be969a2 737 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
c8ef2bda
PM
738 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
739 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
6e411af9
PM
740 g_free(nodename);
741}
742
94f02c5e 743static DeviceState *gpio_key_dev;
4bedd849
SZ
744static void virt_powerdown_req(Notifier *n, void *opaque)
745{
746 /* use gpio Pin 3 for power button event */
94f02c5e 747 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
4bedd849
SZ
748}
749
750static Notifier virt_system_powerdown_notifier = {
751 .notify = virt_powerdown_req
752};
753
c8ef2bda 754static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
b0a3721e
SZ
755{
756 char *nodename;
94f02c5e 757 DeviceState *pl061_dev;
c8ef2bda
PM
758 hwaddr base = vms->memmap[VIRT_GPIO].base;
759 hwaddr size = vms->memmap[VIRT_GPIO].size;
760 int irq = vms->irqmap[VIRT_GPIO];
b0a3721e
SZ
761 const char compat[] = "arm,pl061\0arm,primecell";
762
4bedd849 763 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
b0a3721e 764
c8ef2bda 765 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
b0a3721e 766 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
c8ef2bda
PM
767 qemu_fdt_add_subnode(vms->fdt, nodename);
768 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
b0a3721e 769 2, base, 2, size);
c8ef2bda
PM
770 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
771 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
772 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
773 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
b0a3721e
SZ
774 GIC_FDT_IRQ_TYPE_SPI, irq,
775 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
c8ef2bda
PM
776 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
777 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
778 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
3e6ebb64 779
94f02c5e
SZ
780 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
781 qdev_get_gpio_in(pl061_dev, 3));
c8ef2bda
PM
782 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
783 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
784 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
785 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
3e6ebb64 786
c8ef2bda
PM
787 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
788 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
3e6ebb64 789 "label", "GPIO Key Poweroff");
c8ef2bda 790 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
3e6ebb64 791 KEY_POWER);
c8ef2bda 792 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
3e6ebb64 793 "gpios", phandle, 3, 0);
b0a3721e 794
4bedd849
SZ
795 /* connect powerdown request */
796 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
797
b0a3721e
SZ
798 g_free(nodename);
799}
800
c8ef2bda 801static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
f5fdcd6e
PM
802{
803 int i;
c8ef2bda 804 hwaddr size = vms->memmap[VIRT_MMIO].size;
f5fdcd6e 805
587078f0
LE
806 /* We create the transports in forwards order. Since qbus_realize()
807 * prepends (not appends) new child buses, the incrementing loop below will
808 * create a list of virtio-mmio buses with decreasing base addresses.
809 *
810 * When a -device option is processed from the command line,
811 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
812 * order. The upshot is that -device options in increasing command line
813 * order are mapped to virtio-mmio buses with decreasing base addresses.
814 *
815 * When this code was originally written, that arrangement ensured that the
816 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
817 * the first -device on the command line. (The end-to-end order is a
818 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
819 * guest kernel's name-to-address assignment strategy.)
820 *
821 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
822 * the message, if not necessarily the code, of commit 70161ff336.
823 * Therefore the loop now establishes the inverse of the original intent.
824 *
825 * Unfortunately, we can't counteract the kernel change by reversing the
826 * loop; it would break existing command lines.
827 *
828 * In any case, the kernel makes no guarantee about the stability of
829 * enumeration order of virtio devices (as demonstrated by it changing
830 * between kernel versions). For reliable and stable identification
831 * of disks users must use UUIDs or similar mechanisms.
f5fdcd6e
PM
832 */
833 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
c8ef2bda
PM
834 int irq = vms->irqmap[VIRT_MMIO] + i;
835 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
f5fdcd6e
PM
836
837 sysbus_create_simple("virtio-mmio", base, pic[irq]);
838 }
839
587078f0
LE
840 /* We add dtb nodes in reverse order so that they appear in the finished
841 * device tree lowest address first.
842 *
843 * Note that this mapping is independent of the loop above. The previous
844 * loop influences virtio device to virtio transport assignment, whereas
845 * this loop controls how virtio transports are laid out in the dtb.
846 */
f5fdcd6e
PM
847 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
848 char *nodename;
c8ef2bda
PM
849 int irq = vms->irqmap[VIRT_MMIO] + i;
850 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
f5fdcd6e
PM
851
852 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
c8ef2bda
PM
853 qemu_fdt_add_subnode(vms->fdt, nodename);
854 qemu_fdt_setprop_string(vms->fdt, nodename,
5a4348d1 855 "compatible", "virtio,mmio");
c8ef2bda 856 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
5a4348d1 857 2, base, 2, size);
c8ef2bda 858 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
5a4348d1
PC
859 GIC_FDT_IRQ_TYPE_SPI, irq,
860 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
054bb7b2 861 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
f5fdcd6e
PM
862 g_free(nodename);
863 }
864}
865
acf82361 866static void create_one_flash(const char *name, hwaddr flashbase,
738a5d9f
PM
867 hwaddr flashsize, const char *file,
868 MemoryRegion *sysmem)
acf82361
PM
869{
870 /* Create and map a single flash device. We use the same
871 * parameters as the flash devices on the Versatile Express board.
872 */
873 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
874 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
16f4a8dc 875 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
acf82361
PM
876 const uint64_t sectorlength = 256 * 1024;
877
9b3d111a
MA
878 if (dinfo) {
879 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
880 &error_abort);
acf82361
PM
881 }
882
883 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
884 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
885 qdev_prop_set_uint8(dev, "width", 4);
886 qdev_prop_set_uint8(dev, "device-width", 2);
e9809422 887 qdev_prop_set_bit(dev, "big-endian", false);
acf82361
PM
888 qdev_prop_set_uint16(dev, "id0", 0x89);
889 qdev_prop_set_uint16(dev, "id1", 0x18);
890 qdev_prop_set_uint16(dev, "id2", 0x00);
891 qdev_prop_set_uint16(dev, "id3", 0x00);
892 qdev_prop_set_string(dev, "name", name);
893 qdev_init_nofail(dev);
894
738a5d9f
PM
895 memory_region_add_subregion(sysmem, flashbase,
896 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
acf82361 897
16f4a8dc 898 if (file) {
6e05a12f 899 char *fn;
4de9a883 900 int image_size;
acf82361
PM
901
902 if (drive_get(IF_PFLASH, 0, 0)) {
903 error_report("The contents of the first flash device may be "
904 "specified with -bios or with -drive if=pflash... "
905 "but you cannot use both options at once");
906 exit(1);
907 }
16f4a8dc 908 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
4de9a883 909 if (!fn) {
16f4a8dc 910 error_report("Could not find ROM image '%s'", file);
4de9a883
SW
911 exit(1);
912 }
16f4a8dc 913 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
4de9a883
SW
914 g_free(fn);
915 if (image_size < 0) {
16f4a8dc 916 error_report("Could not load ROM image '%s'", file);
acf82361
PM
917 exit(1);
918 }
919 }
16f4a8dc
PM
920}
921
c8ef2bda 922static void create_flash(const VirtMachineState *vms,
738a5d9f
PM
923 MemoryRegion *sysmem,
924 MemoryRegion *secure_sysmem)
16f4a8dc
PM
925{
926 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
927 * Any file passed via -bios goes in the first of these.
738a5d9f
PM
928 * sysmem is the system memory space. secure_sysmem is the secure view
929 * of the system, and the first flash device should be made visible only
930 * there. The second flash device is visible to both secure and nonsecure.
931 * If sysmem == secure_sysmem this means there is no separate Secure
932 * address space and both flash devices are generally visible.
16f4a8dc 933 */
c8ef2bda
PM
934 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
935 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
16f4a8dc 936 char *nodename;
acf82361 937
738a5d9f
PM
938 create_one_flash("virt.flash0", flashbase, flashsize,
939 bios_name, secure_sysmem);
940 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
941 NULL, sysmem);
acf82361 942
738a5d9f
PM
943 if (sysmem == secure_sysmem) {
944 /* Report both flash devices as a single node in the DT */
945 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
c8ef2bda
PM
946 qemu_fdt_add_subnode(vms->fdt, nodename);
947 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
948 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
738a5d9f
PM
949 2, flashbase, 2, flashsize,
950 2, flashbase + flashsize, 2, flashsize);
c8ef2bda 951 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
738a5d9f
PM
952 g_free(nodename);
953 } else {
954 /* Report the devices as separate nodes so we can mark one as
955 * only visible to the secure world.
956 */
957 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
c8ef2bda
PM
958 qemu_fdt_add_subnode(vms->fdt, nodename);
959 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
960 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
738a5d9f 961 2, flashbase, 2, flashsize);
c8ef2bda
PM
962 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
963 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
964 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
738a5d9f
PM
965 g_free(nodename);
966
967 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
c8ef2bda
PM
968 qemu_fdt_add_subnode(vms->fdt, nodename);
969 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
970 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
738a5d9f 971 2, flashbase + flashsize, 2, flashsize);
c8ef2bda 972 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
738a5d9f
PM
973 g_free(nodename);
974 }
acf82361
PM
975}
976
af1f60a4 977static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
578f3c7b 978{
c8ef2bda
PM
979 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
980 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
5836d168 981 FWCfgState *fw_cfg;
578f3c7b
LE
982 char *nodename;
983
5836d168
IM
984 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
985 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
578f3c7b
LE
986
987 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
c8ef2bda
PM
988 qemu_fdt_add_subnode(vms->fdt, nodename);
989 qemu_fdt_setprop_string(vms->fdt, nodename,
578f3c7b 990 "compatible", "qemu,fw-cfg-mmio");
c8ef2bda 991 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
578f3c7b 992 2, base, 2, size);
14efdb5c 993 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
578f3c7b 994 g_free(nodename);
af1f60a4 995 return fw_cfg;
578f3c7b
LE
996}
997
c8ef2bda 998static void create_pcie_irq_map(const VirtMachineState *vms,
9ac4ef77 999 uint32_t gic_phandle,
4ab29b82
AG
1000 int first_irq, const char *nodename)
1001{
1002 int devfn, pin;
dfd90a87 1003 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
4ab29b82
AG
1004 uint32_t *irq_map = full_irq_map;
1005
1006 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1007 for (pin = 0; pin < 4; pin++) {
1008 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1009 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1010 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1011 int i;
1012
1013 uint32_t map[] = {
1014 devfn << 8, 0, 0, /* devfn */
1015 pin + 1, /* PCI pin */
dfd90a87 1016 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
4ab29b82
AG
1017
1018 /* Convert map to big endian */
dfd90a87 1019 for (i = 0; i < 10; i++) {
4ab29b82
AG
1020 irq_map[i] = cpu_to_be32(map[i]);
1021 }
dfd90a87 1022 irq_map += 10;
4ab29b82
AG
1023 }
1024 }
1025
c8ef2bda 1026 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
4ab29b82
AG
1027 full_irq_map, sizeof(full_irq_map));
1028
c8ef2bda 1029 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
4ab29b82
AG
1030 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1031 0x7 /* PCI irq */);
1032}
1033
584105ea
PM
1034static void create_smmu(const VirtMachineState *vms, qemu_irq *pic,
1035 PCIBus *bus)
1036{
1037 char *node;
1038 const char compat[] = "arm,smmu-v3";
1039 int irq = vms->irqmap[VIRT_SMMU];
1040 int i;
1041 hwaddr base = vms->memmap[VIRT_SMMU].base;
1042 hwaddr size = vms->memmap[VIRT_SMMU].size;
1043 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1044 DeviceState *dev;
1045
1046 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1047 return;
1048 }
1049
1050 dev = qdev_create(NULL, "arm-smmuv3");
1051
1052 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1053 &error_abort);
1054 qdev_init_nofail(dev);
1055 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1056 for (i = 0; i < NUM_SMMU_IRQS; i++) {
1057 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1058 }
1059
1060 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1061 qemu_fdt_add_subnode(vms->fdt, node);
1062 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1063 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1064
1065 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1066 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1067 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1068 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1069 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1070
1071 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1072 sizeof(irq_names));
1073
1074 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1075 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1076 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1077
1078 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1079
1080 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1081 g_free(node);
1082}
1083
1084static void create_pcie(VirtMachineState *vms, qemu_irq *pic)
4ab29b82 1085{
c8ef2bda
PM
1086 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1087 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
1088 hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
1089 hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
1090 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1091 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
601d626d 1092 hwaddr base_ecam, size_ecam;
6a1f001b 1093 hwaddr base = base_mmio;
601d626d 1094 int nr_pcie_buses;
c8ef2bda 1095 int irq = vms->irqmap[VIRT_PCIE];
4ab29b82
AG
1096 MemoryRegion *mmio_alias;
1097 MemoryRegion *mmio_reg;
1098 MemoryRegion *ecam_alias;
1099 MemoryRegion *ecam_reg;
1100 DeviceState *dev;
1101 char *nodename;
601d626d 1102 int i, ecam_id;
fea9b3ca 1103 PCIHostState *pci;
4ab29b82 1104
4ab29b82
AG
1105 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1106 qdev_init_nofail(dev);
1107
601d626d
EA
1108 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1109 base_ecam = vms->memmap[ecam_id].base;
1110 size_ecam = vms->memmap[ecam_id].size;
1111 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
4ab29b82
AG
1112 /* Map only the first size_ecam bytes of ECAM space */
1113 ecam_alias = g_new0(MemoryRegion, 1);
1114 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1115 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1116 ecam_reg, 0, size_ecam);
1117 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1118
1119 /* Map the MMIO window into system address space so as to expose
1120 * the section of PCI MMIO space which starts at the same base address
1121 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1122 * the window).
1123 */
1124 mmio_alias = g_new0(MemoryRegion, 1);
1125 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1126 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1127 mmio_reg, base_mmio, size_mmio);
1128 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1129
0127937b 1130 if (vms->highmem) {
5125f9cd
PF
1131 /* Map high MMIO space */
1132 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1133
1134 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1135 mmio_reg, base_mmio_high, size_mmio_high);
1136 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1137 high_mmio_alias);
1138 }
1139
4ab29b82 1140 /* Map IO port space */
6a1f001b 1141 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
4ab29b82
AG
1142
1143 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1144 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
c9bb8e16 1145 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
4ab29b82
AG
1146 }
1147
fea9b3ca
AK
1148 pci = PCI_HOST_BRIDGE(dev);
1149 if (pci->bus) {
1150 for (i = 0; i < nb_nics; i++) {
1151 NICInfo *nd = &nd_table[i];
1152
1153 if (!nd->model) {
1154 nd->model = g_strdup("virtio");
1155 }
1156
1157 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1158 }
1159 }
1160
4ab29b82 1161 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
c8ef2bda
PM
1162 qemu_fdt_add_subnode(vms->fdt, nodename);
1163 qemu_fdt_setprop_string(vms->fdt, nodename,
4ab29b82 1164 "compatible", "pci-host-ecam-generic");
c8ef2bda
PM
1165 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1166 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1167 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
6d9c1b8d 1168 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
c8ef2bda 1169 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
4ab29b82 1170 nr_pcie_buses - 1);
c8ef2bda 1171 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
4ab29b82 1172
c8ef2bda
PM
1173 if (vms->msi_phandle) {
1174 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1175 vms->msi_phandle);
b92ad394 1176 }
bd204e63 1177
c8ef2bda 1178 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
4ab29b82 1179 2, base_ecam, 2, size_ecam);
5125f9cd 1180
0127937b 1181 if (vms->highmem) {
c8ef2bda 1182 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
5125f9cd
PF
1183 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1184 2, base_pio, 2, size_pio,
1185 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1186 2, base_mmio, 2, size_mmio,
1187 1, FDT_PCI_RANGE_MMIO_64BIT,
1188 2, base_mmio_high,
1189 2, base_mmio_high, 2, size_mmio_high);
1190 } else {
c8ef2bda 1191 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
5125f9cd
PF
1192 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1193 2, base_pio, 2, size_pio,
1194 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1195 2, base_mmio, 2, size_mmio);
1196 }
4ab29b82 1197
c8ef2bda
PM
1198 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1199 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
4ab29b82 1200
584105ea
PM
1201 if (vms->iommu) {
1202 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1203
1204 create_smmu(vms, pic, pci->bus);
1205
1206 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1207 0x0, vms->iommu_phandle, 0x0, 0x10000);
1208 }
1209
4ab29b82
AG
1210 g_free(nodename);
1211}
1212
c8ef2bda 1213static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
5f7a5a0e
EA
1214{
1215 DeviceState *dev;
1216 SysBusDevice *s;
1217 int i;
5f7a5a0e
EA
1218 MemoryRegion *sysmem = get_system_memory();
1219
5f7a5a0e
EA
1220 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1221 dev->id = TYPE_PLATFORM_BUS_DEVICE;
3b77f6c3
IM
1222 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1223 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
5f7a5a0e 1224 qdev_init_nofail(dev);
a3fc8396 1225 vms->platform_bus_dev = dev;
5f7a5a0e 1226
3b77f6c3
IM
1227 s = SYS_BUS_DEVICE(dev);
1228 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
1229 int irqn = vms->irqmap[VIRT_PLATFORM_BUS] + i;
5f7a5a0e
EA
1230 sysbus_connect_irq(s, i, pic[irqn]);
1231 }
1232
1233 memory_region_add_subregion(sysmem,
3b77f6c3 1234 vms->memmap[VIRT_PLATFORM_BUS].base,
5f7a5a0e
EA
1235 sysbus_mmio_get_region(s, 0));
1236}
1237
c8ef2bda 1238static void create_secure_ram(VirtMachineState *vms,
9ac4ef77 1239 MemoryRegion *secure_sysmem)
83ec1923
PM
1240{
1241 MemoryRegion *secram = g_new(MemoryRegion, 1);
1242 char *nodename;
c8ef2bda
PM
1243 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1244 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
83ec1923 1245
98a99ce0
PM
1246 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1247 &error_fatal);
83ec1923
PM
1248 memory_region_add_subregion(secure_sysmem, base, secram);
1249
1250 nodename = g_strdup_printf("/secram@%" PRIx64, base);
c8ef2bda
PM
1251 qemu_fdt_add_subnode(vms->fdt, nodename);
1252 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1253 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1254 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1255 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
83ec1923
PM
1256
1257 g_free(nodename);
1258}
1259
f5fdcd6e
PM
1260static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1261{
9ac4ef77
PM
1262 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1263 bootinfo);
f5fdcd6e
PM
1264
1265 *fdt_size = board->fdt_size;
1266 return board->fdt;
1267}
1268
e9a8e474 1269static void virt_build_smbios(VirtMachineState *vms)
c30e1565 1270{
dfadc3bf
WH
1271 MachineClass *mc = MACHINE_GET_CLASS(vms);
1272 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
c30e1565
WH
1273 uint8_t *smbios_tables, *smbios_anchor;
1274 size_t smbios_tables_len, smbios_anchor_len;
bab27ea2 1275 const char *product = "QEMU Virtual Machine";
c30e1565 1276
af1f60a4 1277 if (!vms->fw_cfg) {
c30e1565
WH
1278 return;
1279 }
1280
bab27ea2
AJ
1281 if (kvm_enabled()) {
1282 product = "KVM Virtual Machine";
1283 }
1284
1285 smbios_set_defaults("QEMU", product,
dfadc3bf
WH
1286 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1287 true, SMBIOS_ENTRY_POINT_30);
c30e1565
WH
1288
1289 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1290 &smbios_anchor, &smbios_anchor_len);
1291
1292 if (smbios_anchor) {
af1f60a4 1293 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
c30e1565 1294 smbios_tables, smbios_tables_len);
af1f60a4 1295 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
c30e1565
WH
1296 smbios_anchor, smbios_anchor_len);
1297 }
1298}
1299
d7c2e2db 1300static
054f4dc9 1301void virt_machine_done(Notifier *notifier, void *data)
d7c2e2db 1302{
054f4dc9
AJ
1303 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1304 machine_done);
3b77f6c3
IM
1305 ARMCPU *cpu = ARM_CPU(first_cpu);
1306 struct arm_boot_info *info = &vms->bootinfo;
1307 AddressSpace *as = arm_boot_address_space(cpu, info);
1308
1309 /*
1310 * If the user provided a dtb, we assume the dynamic sysbus nodes
1311 * already are integrated there. This corresponds to a use case where
1312 * the dynamic sysbus nodes are complex and their generation is not yet
1313 * supported. In that case the user can take charge of the guest dt
1314 * while qemu takes charge of the qom stuff.
1315 */
1316 if (info->dtb_filename == NULL) {
1317 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1318 vms->memmap[VIRT_PLATFORM_BUS].base,
1319 vms->memmap[VIRT_PLATFORM_BUS].size,
1320 vms->irqmap[VIRT_PLATFORM_BUS]);
1321 }
1322 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as) < 0) {
1323 exit(1);
1324 }
054f4dc9 1325
e9a8e474
AJ
1326 virt_acpi_setup(vms);
1327 virt_build_smbios(vms);
d7c2e2db
SZ
1328}
1329
46de5913
IM
1330static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1331{
1332 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1333 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1334
1335 if (!vmc->disallow_affinity_adjustment) {
1336 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1337 * GIC's target-list limitations. 32-bit KVM hosts currently
1338 * always create clusters of 4 CPUs, but that is expected to
1339 * change when they gain support for gicv3. When KVM is enabled
1340 * it will override the changes we make here, therefore our
1341 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1342 * and to improve SGI efficiency.
1343 */
1344 if (vms->gic_version == 3) {
1345 clustersz = GICV3_TARGETLIST_BITS;
1346 } else {
1347 clustersz = GIC_TARGETLIST_BITS;
1348 }
1349 }
1350 return arm_cpu_mp_affinity(idx, clustersz);
1351}
1352
3ef96221 1353static void machvirt_init(MachineState *machine)
f5fdcd6e 1354{
e5a5604f 1355 VirtMachineState *vms = VIRT_MACHINE(machine);
95eb49c8 1356 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
17d3d0e2
IM
1357 MachineClass *mc = MACHINE_GET_CLASS(machine);
1358 const CPUArchIdList *possible_cpus;
f5fdcd6e
PM
1359 qemu_irq pic[NUM_IRQS];
1360 MemoryRegion *sysmem = get_system_memory();
3df708eb 1361 MemoryRegion *secure_sysmem = NULL;
7ea686f5 1362 int n, virt_max_cpus;
f5fdcd6e 1363 MemoryRegion *ram = g_new(MemoryRegion, 1);
4824a61a 1364 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
17ec075a 1365 bool aarch64 = true;
f5fdcd6e 1366
b92ad394
PF
1367 /* We can probe only here because during property set
1368 * KVM is not available yet
1369 */
dc16538a
PM
1370 if (vms->gic_version <= 0) {
1371 /* "host" or "max" */
0bf8039d 1372 if (!kvm_enabled()) {
dc16538a
PM
1373 if (vms->gic_version == 0) {
1374 error_report("gic-version=host requires KVM");
1375 exit(1);
1376 } else {
1377 /* "max": currently means 3 for TCG */
1378 vms->gic_version = 3;
1379 }
1380 } else {
1381 vms->gic_version = kvm_arm_vgic_probe();
1382 if (!vms->gic_version) {
1383 error_report(
1384 "Unable to determine GIC version supported by host");
1385 exit(1);
1386 }
b92ad394
PF
1387 }
1388 }
1389
ba1ba5cc
IM
1390 if (!cpu_type_valid(machine->cpu_type)) {
1391 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
f5fdcd6e
PM
1392 exit(1);
1393 }
1394
4824a61a
PM
1395 /* If we have an EL3 boot ROM then the assumption is that it will
1396 * implement PSCI itself, so disable QEMU's internal implementation
1397 * so it doesn't get in the way. Instead of starting secondary
1398 * CPUs in PSCI powerdown state we will start them all running and
1399 * let the boot ROM sort them out.
f29cacfb
PM
1400 * The usual case is that we do use QEMU's PSCI implementation;
1401 * if the guest has EL2 then we will use SMC as the conduit,
1402 * and otherwise we will use HVC (for backwards compatibility and
1403 * because if we're using KVM then we must use HVC).
4824a61a 1404 */
2013c566
PM
1405 if (vms->secure && firmware_loaded) {
1406 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
f29cacfb
PM
1407 } else if (vms->virt) {
1408 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2013c566
PM
1409 } else {
1410 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1411 }
4824a61a 1412
4b280b72
AJ
1413 /* The maximum number of CPUs depends on the GIC version, or on how
1414 * many redistributors we can fit into the memory map.
1415 */
055a7f2b 1416 if (vms->gic_version == 3) {
1e575b66 1417 virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
03d72fa1 1418 virt_max_cpus += vms->memmap[VIRT_GIC_REDIST2].size / GICV3_REDIST_SIZE;
4b280b72 1419 } else {
7ea686f5 1420 virt_max_cpus = GIC_NCPU;
4b280b72
AJ
1421 }
1422
7ea686f5 1423 if (max_cpus > virt_max_cpus) {
4b280b72
AJ
1424 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1425 "supported by machine 'mach-virt' (%d)",
7ea686f5 1426 max_cpus, virt_max_cpus);
4b280b72
AJ
1427 exit(1);
1428 }
1429
c8ef2bda 1430 vms->smp_cpus = smp_cpus;
f5fdcd6e 1431
c8ef2bda 1432 if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
71c27684 1433 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
f5fdcd6e
PM
1434 exit(1);
1435 }
1436
f29cacfb
PM
1437 if (vms->virt && kvm_enabled()) {
1438 error_report("mach-virt: KVM does not support providing "
1439 "Virtualization extensions to the guest CPU");
1440 exit(1);
1441 }
1442
3df708eb
PM
1443 if (vms->secure) {
1444 if (kvm_enabled()) {
1445 error_report("mach-virt: KVM does not support Security extensions");
1446 exit(1);
1447 }
1448
1449 /* The Secure view of the world is the same as the NonSecure,
1450 * but with a few extra devices. Create it as a container region
1451 * containing the system memory at low priority; any secure-only
1452 * devices go in at higher priority and take precedence.
1453 */
1454 secure_sysmem = g_new(MemoryRegion, 1);
1455 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1456 UINT64_MAX);
1457 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1458 }
1459
c8ef2bda 1460 create_fdt(vms);
f5fdcd6e 1461
17d3d0e2
IM
1462 possible_cpus = mc->possible_cpu_arch_ids(machine);
1463 for (n = 0; n < possible_cpus->len; n++) {
1464 Object *cpuobj;
d9c34f9c 1465 CPUState *cs;
46de5913 1466
17d3d0e2
IM
1467 if (n >= smp_cpus) {
1468 break;
1469 }
1470
d342eb76 1471 cpuobj = object_new(possible_cpus->cpus[n].type);
17d3d0e2 1472 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
46de5913 1473 "mp-affinity", NULL);
f313369f 1474
d9c34f9c
IM
1475 cs = CPU(cpuobj);
1476 cs->cpu_index = n;
1477
a0ceb640
IM
1478 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1479 &error_fatal);
bd4c1bfe 1480
17ec075a
EA
1481 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1482
e5a5604f
GB
1483 if (!vms->secure) {
1484 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1485 }
1486
f29cacfb 1487 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
c25bd18a
PM
1488 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1489 }
1490
2013c566
PM
1491 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1492 object_property_set_int(cpuobj, vms->psci_conduit,
4824a61a 1493 "psci-conduit", NULL);
211b0169 1494
4824a61a
PM
1495 /* Secondary CPUs start in PSCI powered-down state */
1496 if (n > 0) {
1497 object_property_set_bool(cpuobj, true,
1498 "start-powered-off", NULL);
1499 }
f5fdcd6e 1500 }
ba750085 1501
1141d1eb
WH
1502 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1503 object_property_set_bool(cpuobj, false, "pmu", NULL);
1504 }
1505
ba750085 1506 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
c8ef2bda 1507 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
ba750085
PM
1508 "reset-cbar", &error_abort);
1509 }
1510
1d939a68
PM
1511 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1512 &error_abort);
3df708eb
PM
1513 if (vms->secure) {
1514 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1515 "secure-memory", &error_abort);
1516 }
1d939a68 1517
c88bc3e0 1518 object_property_set_bool(cpuobj, true, "realized", &error_fatal);
dbb74759 1519 object_unref(cpuobj);
f5fdcd6e 1520 }
055a7f2b 1521 fdt_add_timer_nodes(vms);
c8ef2bda 1522 fdt_add_cpu_nodes(vms);
f5fdcd6e 1523
c8623c02
DM
1524 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1525 machine->ram_size);
c8ef2bda 1526 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
f5fdcd6e 1527
c8ef2bda 1528 create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
acf82361 1529
055a7f2b 1530 create_gic(vms, pic);
f5fdcd6e 1531
055a7f2b 1532 fdt_add_pmu_nodes(vms);
01fe6b60 1533
9bca0edb 1534 create_uart(vms, pic, VIRT_UART, sysmem, serial_hd(0));
3df708eb
PM
1535
1536 if (vms->secure) {
c8ef2bda 1537 create_secure_ram(vms, secure_sysmem);
9bca0edb 1538 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
3df708eb 1539 }
f5fdcd6e 1540
17ec075a
EA
1541 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1542
c8ef2bda 1543 create_rtc(vms, pic);
6e411af9 1544
0127937b 1545 create_pcie(vms, pic);
4ab29b82 1546
c8ef2bda 1547 create_gpio(vms, pic);
b0a3721e 1548
f5fdcd6e
PM
1549 /* Create mmio transports, so the user can create virtio backends
1550 * (which will be automatically plugged in to the transports). If
1551 * no backend is created the transport will just sit harmlessly idle.
1552 */
c8ef2bda 1553 create_virtio_devices(vms, pic);
f5fdcd6e 1554
af1f60a4
AJ
1555 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1556 rom_set_fw(vms->fw_cfg);
d7c2e2db 1557
3b77f6c3 1558 create_platform_bus(vms, pic);
578f3c7b 1559
c8ef2bda
PM
1560 vms->bootinfo.ram_size = machine->ram_size;
1561 vms->bootinfo.kernel_filename = machine->kernel_filename;
1562 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1563 vms->bootinfo.initrd_filename = machine->initrd_filename;
1564 vms->bootinfo.nb_cpus = smp_cpus;
1565 vms->bootinfo.board_id = -1;
1566 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1567 vms->bootinfo.get_dtb = machvirt_dtb;
3b77f6c3 1568 vms->bootinfo.skip_dtb_autoload = true;
c8ef2bda
PM
1569 vms->bootinfo.firmware_loaded = firmware_loaded;
1570 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
5f7a5a0e 1571
3b77f6c3
IM
1572 vms->machine_done.notify = virt_machine_done;
1573 qemu_add_machine_init_done_notifier(&vms->machine_done);
f5fdcd6e
PM
1574}
1575
083a5890
GB
1576static bool virt_get_secure(Object *obj, Error **errp)
1577{
1578 VirtMachineState *vms = VIRT_MACHINE(obj);
1579
1580 return vms->secure;
1581}
1582
1583static void virt_set_secure(Object *obj, bool value, Error **errp)
1584{
1585 VirtMachineState *vms = VIRT_MACHINE(obj);
1586
1587 vms->secure = value;
1588}
1589
f29cacfb
PM
1590static bool virt_get_virt(Object *obj, Error **errp)
1591{
1592 VirtMachineState *vms = VIRT_MACHINE(obj);
1593
1594 return vms->virt;
1595}
1596
1597static void virt_set_virt(Object *obj, bool value, Error **errp)
1598{
1599 VirtMachineState *vms = VIRT_MACHINE(obj);
1600
1601 vms->virt = value;
1602}
1603
5125f9cd
PF
1604static bool virt_get_highmem(Object *obj, Error **errp)
1605{
1606 VirtMachineState *vms = VIRT_MACHINE(obj);
1607
1608 return vms->highmem;
1609}
1610
1611static void virt_set_highmem(Object *obj, bool value, Error **errp)
1612{
1613 VirtMachineState *vms = VIRT_MACHINE(obj);
1614
1615 vms->highmem = value;
1616}
1617
ccc11b02
EA
1618static bool virt_get_its(Object *obj, Error **errp)
1619{
1620 VirtMachineState *vms = VIRT_MACHINE(obj);
1621
1622 return vms->its;
1623}
1624
1625static void virt_set_its(Object *obj, bool value, Error **errp)
1626{
1627 VirtMachineState *vms = VIRT_MACHINE(obj);
1628
1629 vms->its = value;
1630}
1631
b92ad394
PF
1632static char *virt_get_gic_version(Object *obj, Error **errp)
1633{
1634 VirtMachineState *vms = VIRT_MACHINE(obj);
1635 const char *val = vms->gic_version == 3 ? "3" : "2";
1636
1637 return g_strdup(val);
1638}
1639
1640static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1641{
1642 VirtMachineState *vms = VIRT_MACHINE(obj);
1643
1644 if (!strcmp(value, "3")) {
1645 vms->gic_version = 3;
1646 } else if (!strcmp(value, "2")) {
1647 vms->gic_version = 2;
1648 } else if (!strcmp(value, "host")) {
1649 vms->gic_version = 0; /* Will probe later */
dc16538a
PM
1650 } else if (!strcmp(value, "max")) {
1651 vms->gic_version = -1; /* Will probe later */
b92ad394 1652 } else {
7b55044f 1653 error_setg(errp, "Invalid gic-version value");
dc16538a 1654 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
b92ad394
PF
1655 }
1656}
1657
e24e3454
EA
1658static char *virt_get_iommu(Object *obj, Error **errp)
1659{
1660 VirtMachineState *vms = VIRT_MACHINE(obj);
1661
1662 switch (vms->iommu) {
1663 case VIRT_IOMMU_NONE:
1664 return g_strdup("none");
1665 case VIRT_IOMMU_SMMUV3:
1666 return g_strdup("smmuv3");
1667 default:
1668 g_assert_not_reached();
1669 }
1670}
1671
1672static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1673{
1674 VirtMachineState *vms = VIRT_MACHINE(obj);
1675
1676 if (!strcmp(value, "smmuv3")) {
1677 vms->iommu = VIRT_IOMMU_SMMUV3;
1678 } else if (!strcmp(value, "none")) {
1679 vms->iommu = VIRT_IOMMU_NONE;
1680 } else {
1681 error_setg(errp, "Invalid iommu value");
1682 error_append_hint(errp, "Valid values are none, smmuv3.\n");
1683 }
1684}
1685
ea089eeb
IM
1686static CpuInstanceProperties
1687virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1688{
1689 MachineClass *mc = MACHINE_GET_CLASS(ms);
1690 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1691
1692 assert(cpu_index < possible_cpus->len);
1693 return possible_cpus->cpus[cpu_index].props;
1694}
1695
79e07936
IM
1696static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1697{
1698 return idx % nb_numa_nodes;
1699}
1700
17d3d0e2
IM
1701static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1702{
1703 int n;
1704 VirtMachineState *vms = VIRT_MACHINE(ms);
1705
1706 if (ms->possible_cpus) {
1707 assert(ms->possible_cpus->len == max_cpus);
1708 return ms->possible_cpus;
1709 }
1710
1711 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1712 sizeof(CPUArchId) * max_cpus);
1713 ms->possible_cpus->len = max_cpus;
1714 for (n = 0; n < ms->possible_cpus->len; n++) {
d342eb76 1715 ms->possible_cpus->cpus[n].type = ms->cpu_type;
17d3d0e2
IM
1716 ms->possible_cpus->cpus[n].arch_id =
1717 virt_cpu_mp_affinity(vms, n);
1718 ms->possible_cpus->cpus[n].props.has_thread_id = true;
1719 ms->possible_cpus->cpus[n].props.thread_id = n;
17d3d0e2
IM
1720 }
1721 return ms->possible_cpus;
1722}
1723
a3fc8396
IM
1724static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1725 DeviceState *dev, Error **errp)
1726{
1727 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1728
1729 if (vms->platform_bus_dev) {
1730 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1731 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1732 SYS_BUS_DEVICE(dev));
1733 }
1734 }
1735}
1736
1737static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1738 DeviceState *dev)
1739{
1740 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1741 return HOTPLUG_HANDLER(machine);
1742 }
1743
1744 return NULL;
1745}
1746
ed796373
WH
1747static void virt_machine_class_init(ObjectClass *oc, void *data)
1748{
9c94d8e6 1749 MachineClass *mc = MACHINE_CLASS(oc);
a3fc8396 1750 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
9c94d8e6
WH
1751
1752 mc->init = machvirt_init;
b10fbd53
EA
1753 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
1754 * The value may be reduced later when we have more information about the
9c94d8e6
WH
1755 * configuration of the particular instance.
1756 */
b10fbd53 1757 mc->max_cpus = 512;
6f2062b9
EH
1758 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
1759 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
94692dcd 1760 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
9c94d8e6
WH
1761 mc->block_default_type = IF_VIRTIO;
1762 mc->no_cdrom = 1;
1763 mc->pci_allow_0_address = true;
a2519ad1
PM
1764 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1765 mc->minimum_page_bits = 12;
17d3d0e2 1766 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
ea089eeb 1767 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
ba1ba5cc 1768 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
79e07936 1769 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
debbdc00 1770 assert(!mc->get_hotplug_handler);
a3fc8396
IM
1771 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1772 hc->plug = virt_machine_device_plug_cb;
ed796373
WH
1773}
1774
1775static const TypeInfo virt_machine_info = {
1776 .name = TYPE_VIRT_MACHINE,
1777 .parent = TYPE_MACHINE,
1778 .abstract = true,
1779 .instance_size = sizeof(VirtMachineState),
1780 .class_size = sizeof(VirtMachineClass),
1781 .class_init = virt_machine_class_init,
a3fc8396
IM
1782 .interfaces = (InterfaceInfo[]) {
1783 { TYPE_HOTPLUG_HANDLER },
1784 { }
1785 },
ed796373
WH
1786};
1787
7a2ecd95
AJ
1788static void machvirt_machine_init(void)
1789{
1790 type_register_static(&virt_machine_info);
1791}
1792type_init(machvirt_machine_init);
1793
22907d2b 1794static void virt_3_1_instance_init(Object *obj)
083a5890
GB
1795{
1796 VirtMachineState *vms = VIRT_MACHINE(obj);
ccc11b02 1797 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
083a5890 1798
2d710006
PM
1799 /* EL3 is disabled by default on virt: this makes us consistent
1800 * between KVM and TCG for this board, and it also allows us to
1801 * boot UEFI blobs which assume no TrustZone support.
1802 */
1803 vms->secure = false;
083a5890
GB
1804 object_property_add_bool(obj, "secure", virt_get_secure,
1805 virt_set_secure, NULL);
1806 object_property_set_description(obj, "secure",
1807 "Set on/off to enable/disable the ARM "
1808 "Security Extensions (TrustZone)",
1809 NULL);
5125f9cd 1810
f29cacfb
PM
1811 /* EL2 is also disabled by default, for similar reasons */
1812 vms->virt = false;
1813 object_property_add_bool(obj, "virtualization", virt_get_virt,
1814 virt_set_virt, NULL);
1815 object_property_set_description(obj, "virtualization",
1816 "Set on/off to enable/disable emulating a "
1817 "guest CPU which implements the ARM "
1818 "Virtualization Extensions",
1819 NULL);
1820
5125f9cd
PF
1821 /* High memory is enabled by default */
1822 vms->highmem = true;
1823 object_property_add_bool(obj, "highmem", virt_get_highmem,
1824 virt_set_highmem, NULL);
1825 object_property_set_description(obj, "highmem",
1826 "Set on/off to enable/disable using "
1827 "physical address space above 32 bits",
1828 NULL);
b92ad394
PF
1829 /* Default GIC type is v2 */
1830 vms->gic_version = 2;
1831 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1832 virt_set_gic_version, NULL);
1833 object_property_set_description(obj, "gic-version",
1834 "Set GIC version. "
1835 "Valid values are 2, 3 and host", NULL);
9ac4ef77 1836
17ec075a
EA
1837 vms->highmem_ecam = !vmc->no_highmem_ecam;
1838
ccc11b02
EA
1839 if (vmc->no_its) {
1840 vms->its = false;
1841 } else {
1842 /* Default allows ITS instantiation */
1843 vms->its = true;
1844 object_property_add_bool(obj, "its", virt_get_its,
1845 virt_set_its, NULL);
1846 object_property_set_description(obj, "its",
1847 "Set on/off to enable/disable "
1848 "ITS instantiation",
1849 NULL);
1850 }
1851
e24e3454
EA
1852 /* Default disallows iommu instantiation */
1853 vms->iommu = VIRT_IOMMU_NONE;
1854 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
1855 object_property_set_description(obj, "iommu",
1856 "Set the IOMMU type. "
1857 "Valid values are none and smmuv3",
1858 NULL);
1859
9ac4ef77
PM
1860 vms->memmap = a15memmap;
1861 vms->irqmap = a15irqmap;
083a5890
GB
1862}
1863
22907d2b
AJ
1864static void virt_machine_3_1_options(MachineClass *mc)
1865{
1866}
1867DEFINE_VIRT_MACHINE_AS_LATEST(3, 1)
1868
1869static void virt_3_0_instance_init(Object *obj)
1870{
1871 virt_3_1_instance_init(obj);
1872}
1873
8ae9a1ca
EA
1874static void virt_machine_3_0_options(MachineClass *mc)
1875{
22907d2b 1876 virt_machine_3_1_options(mc);
8ae9a1ca 1877}
22907d2b
AJ
1878DEFINE_VIRT_MACHINE(3, 0)
1879
1880#define VIRT_COMPAT_2_12 \
1881 HW_COMPAT_2_12
8ae9a1ca
EA
1882
1883static void virt_2_12_instance_init(Object *obj)
1884{
1885 virt_3_0_instance_init(obj);
1886}
1887
a2a05159
PM
1888static void virt_machine_2_12_options(MachineClass *mc)
1889{
17ec075a
EA
1890 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1891
8ae9a1ca 1892 virt_machine_3_0_options(mc);
f548222c 1893 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_12);
17ec075a 1894 vmc->no_highmem_ecam = true;
b10fbd53 1895 mc->max_cpus = 255;
a2a05159 1896}
8ae9a1ca 1897DEFINE_VIRT_MACHINE(2, 12)
a2a05159
PM
1898
1899#define VIRT_COMPAT_2_11 \
1900 HW_COMPAT_2_11
1901
1902static void virt_2_11_instance_init(Object *obj)
1903{
1904 virt_2_12_instance_init(obj);
1905}
1906
79283dda
EA
1907static void virt_machine_2_11_options(MachineClass *mc)
1908{
dfadc3bf
WH
1909 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1910
a2a05159
PM
1911 virt_machine_2_12_options(mc);
1912 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_11);
dfadc3bf 1913 vmc->smbios_old_sys_ver = true;
79283dda 1914}
a2a05159 1915DEFINE_VIRT_MACHINE(2, 11)
79283dda
EA
1916
1917#define VIRT_COMPAT_2_10 \
1918 HW_COMPAT_2_10
1919
1920static void virt_2_10_instance_init(Object *obj)
1921{
1922 virt_2_11_instance_init(obj);
1923}
1924
f22ab6cb
EA
1925static void virt_machine_2_10_options(MachineClass *mc)
1926{
79283dda
EA
1927 virt_machine_2_11_options(mc);
1928 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_10);
846690de
PM
1929 /* before 2.11 we never faulted accesses to bad addresses */
1930 mc->ignore_memory_transaction_failures = true;
f22ab6cb 1931}
79283dda 1932DEFINE_VIRT_MACHINE(2, 10)
f22ab6cb
EA
1933
1934#define VIRT_COMPAT_2_9 \
1935 HW_COMPAT_2_9
1936
1937static void virt_2_9_instance_init(Object *obj)
1938{
1939 virt_2_10_instance_init(obj);
1940}
1941
e353aac5
PM
1942static void virt_machine_2_9_options(MachineClass *mc)
1943{
f22ab6cb
EA
1944 virt_machine_2_10_options(mc);
1945 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_9);
e353aac5 1946}
f22ab6cb 1947DEFINE_VIRT_MACHINE(2, 9)
e353aac5
PM
1948
1949#define VIRT_COMPAT_2_8 \
1950 HW_COMPAT_2_8
1951
1952static void virt_2_8_instance_init(Object *obj)
1953{
1954 virt_2_9_instance_init(obj);
1955}
1956
96b0439b
AJ
1957static void virt_machine_2_8_options(MachineClass *mc)
1958{
156bc9a5
PM
1959 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1960
e353aac5
PM
1961 virt_machine_2_9_options(mc);
1962 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
156bc9a5
PM
1963 /* For 2.8 and earlier we falsely claimed in the DT that
1964 * our timers were edge-triggered, not level-triggered.
1965 */
1966 vmc->claim_edge_triggered_timers = true;
96b0439b 1967}
e353aac5 1968DEFINE_VIRT_MACHINE(2, 8)
96b0439b
AJ
1969
1970#define VIRT_COMPAT_2_7 \
1971 HW_COMPAT_2_7
1972
1973static void virt_2_7_instance_init(Object *obj)
1974{
1975 virt_2_8_instance_init(obj);
1976}
1977
1287f2b3
AJ
1978static void virt_machine_2_7_options(MachineClass *mc)
1979{
2231f69b
AJ
1980 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1981
96b0439b
AJ
1982 virt_machine_2_8_options(mc);
1983 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
2231f69b
AJ
1984 /* ITS was introduced with 2.8 */
1985 vmc->no_its = true;
a2519ad1
PM
1986 /* Stick with 1K pages for migration compatibility */
1987 mc->minimum_page_bits = 0;
1287f2b3 1988}
96b0439b 1989DEFINE_VIRT_MACHINE(2, 7)
1287f2b3
AJ
1990
1991#define VIRT_COMPAT_2_6 \
1992 HW_COMPAT_2_6
1993
1994static void virt_2_6_instance_init(Object *obj)
1995{
1996 virt_2_7_instance_init(obj);
1997}
1998
ab093c3c 1999static void virt_machine_2_6_options(MachineClass *mc)
c2919690 2000{
95eb49c8
AJ
2001 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2002
1287f2b3
AJ
2003 virt_machine_2_7_options(mc);
2004 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
95eb49c8 2005 vmc->disallow_affinity_adjustment = true;
1141d1eb
WH
2006 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2007 vmc->no_pmu = true;
c2919690 2008}
1287f2b3 2009DEFINE_VIRT_MACHINE(2, 6)