]> git.proxmox.com Git - mirror_qemu.git/blame - hw/arm/virt.c
target-arm: Enable EL2 feature bit on A53 and A57
[mirror_qemu.git] / hw / arm / virt.c
CommitLineData
f5fdcd6e
PM
1/*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
12b16722 31#include "qemu/osdep.h"
da34e65c 32#include "qapi/error.h"
f5fdcd6e
PM
33#include "hw/sysbus.h"
34#include "hw/arm/arm.h"
35#include "hw/arm/primecell.h"
afe0b380 36#include "hw/arm/virt.h"
f5fdcd6e
PM
37#include "hw/devices.h"
38#include "net/net.h"
fa1d36df 39#include "sysemu/block-backend.h"
f5fdcd6e 40#include "sysemu/device_tree.h"
9695200a 41#include "sysemu/numa.h"
f5fdcd6e
PM
42#include "sysemu/sysemu.h"
43#include "sysemu/kvm.h"
1287f2b3 44#include "hw/compat.h"
acf82361 45#include "hw/loader.h"
f5fdcd6e
PM
46#include "exec/address-spaces.h"
47#include "qemu/bitops.h"
48#include "qemu/error-report.h"
4ab29b82 49#include "hw/pci-host/gpex.h"
5f7a5a0e
EA
50#include "hw/arm/sysbus-fdt.h"
51#include "hw/platform-bus.h"
decf4f80 52#include "hw/arm/fdt.h"
95eb49c8
AJ
53#include "hw/intc/arm_gic.h"
54#include "hw/intc/arm_gicv3_common.h"
e6fbcbc4 55#include "kvm_arm.h"
c30e1565 56#include "hw/smbios/smbios.h"
b92ad394 57#include "qapi/visitor.h"
3e6ebb64 58#include "standard-headers/linux/input.h"
f5fdcd6e 59
3356ebce 60#define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
ab093c3c
AJ
61 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
62 void *data) \
63 { \
64 MachineClass *mc = MACHINE_CLASS(oc); \
65 virt_machine_##major##_##minor##_options(mc); \
66 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
3356ebce
AJ
67 if (latest) { \
68 mc->alias = "virt"; \
69 } \
ab093c3c
AJ
70 } \
71 static const TypeInfo machvirt_##major##_##minor##_info = { \
72 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
73 .parent = TYPE_VIRT_MACHINE, \
74 .instance_init = virt_##major##_##minor##_instance_init, \
75 .class_init = virt_##major##_##minor##_class_init, \
76 }; \
77 static void machvirt_machine_##major##_##minor##_init(void) \
78 { \
79 type_register_static(&machvirt_##major##_##minor##_info); \
80 } \
81 type_init(machvirt_machine_##major##_##minor##_init);
82
3356ebce
AJ
83#define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
84 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
85#define DEFINE_VIRT_MACHINE(major, minor) \
86 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
87
ab093c3c 88
a72d4363
AJ
89/* Number of external interrupt lines to configure the GIC with */
90#define NUM_IRQS 256
91
92#define PLATFORM_BUS_NUM_IRQS 64
93
94static ARMPlatformBusSystemParams platform_bus_params;
95
71c27684
PM
96/* RAM limit in GB. Since VIRT_MEM starts at the 1GB mark, this means
97 * RAM can go up to the 256GB mark, leaving 256GB of the physical
98 * address space unallocated and free for future use between 256G and 512G.
99 * If we need to provide more RAM to VMs in the future then we need to:
100 * * allocate a second bank of RAM starting at 2TB and working up
101 * * fix the DT and ACPI table generation code in QEMU to correctly
102 * report two split lumps of RAM to the guest
103 * * fix KVM in the host kernel to allow guests with >40 bit address spaces
104 * (We don't want to fill all the way up to 512GB with RAM because
105 * we might want it for non-RAM purposes later. Conversely it seems
106 * reasonable to assume that anybody configuring a VM with a quarter
107 * of a terabyte of RAM will be doing it on a host with more than a
108 * terabyte of physical address space.)
109 */
110#define RAMLIMIT_GB 255
111#define RAMLIMIT_BYTES (RAMLIMIT_GB * 1024ULL * 1024 * 1024)
112
f5fdcd6e
PM
113/* Addresses and sizes of our components.
114 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
115 * 128MB..256MB is used for miscellaneous device I/O.
116 * 256MB..1GB is reserved for possible future PCI support (ie where the
117 * PCI memory window will go if we add a PCI host controller).
118 * 1GB and up is RAM (which may happily spill over into the
119 * high memory region beyond 4GB).
120 * This represents a compromise between how much RAM can be given to
121 * a 32 bit VM and leaving space for expansion and in particular for PCI.
6e411af9
PM
122 * Note that devices should generally be placed at multiples of 0x10000,
123 * to accommodate guests using 64K pages.
f5fdcd6e
PM
124 */
125static const MemMapEntry a15memmap[] = {
126 /* Space up to 0x8000000 is reserved for a boot ROM */
94edf02c
EA
127 [VIRT_FLASH] = { 0, 0x08000000 },
128 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
f5fdcd6e 129 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
94edf02c
EA
130 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
131 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
132 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
b92ad394
PF
133 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
134 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
135 /* This redistributor space allows up to 2*64kB*123 CPUs */
136 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
94edf02c
EA
137 [VIRT_UART] = { 0x09000000, 0x00001000 },
138 [VIRT_RTC] = { 0x09010000, 0x00001000 },
0b341a85 139 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
b0a3721e 140 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
3df708eb 141 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
94edf02c 142 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
f5fdcd6e 143 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
94edf02c 144 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
83ec1923 145 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
94edf02c
EA
146 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
147 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
148 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
71c27684 149 [VIRT_MEM] = { 0x40000000, RAMLIMIT_BYTES },
5125f9cd
PF
150 /* Second PCIe window, 512GB wide at the 512GB boundary */
151 [VIRT_PCIE_MMIO_HIGH] = { 0x8000000000ULL, 0x8000000000ULL },
f5fdcd6e
PM
152};
153
154static const int a15irqmap[] = {
155 [VIRT_UART] = 1,
6e411af9 156 [VIRT_RTC] = 2,
4ab29b82 157 [VIRT_PCIE] = 3, /* ... to 6 */
b0a3721e 158 [VIRT_GPIO] = 7,
3df708eb 159 [VIRT_SECURE_UART] = 8,
f5fdcd6e 160 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
bd204e63 161 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
5f7a5a0e 162 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
f5fdcd6e
PM
163};
164
9ac4ef77
PM
165static const char *valid_cpus[] = {
166 "cortex-a15",
167 "cortex-a53",
168 "cortex-a57",
169 "host",
f5fdcd6e
PM
170};
171
9ac4ef77 172static bool cpuname_valid(const char *cpu)
f5fdcd6e
PM
173{
174 int i;
175
9ac4ef77
PM
176 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
177 if (strcmp(cpu, valid_cpus[i]) == 0) {
178 return true;
f5fdcd6e
PM
179 }
180 }
9ac4ef77 181 return false;
f5fdcd6e
PM
182}
183
c8ef2bda 184static void create_fdt(VirtMachineState *vms)
f5fdcd6e 185{
c8ef2bda 186 void *fdt = create_device_tree(&vms->fdt_size);
f5fdcd6e
PM
187
188 if (!fdt) {
189 error_report("create_device_tree() failed");
190 exit(1);
191 }
192
c8ef2bda 193 vms->fdt = fdt;
f5fdcd6e
PM
194
195 /* Header */
5a4348d1
PC
196 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
197 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
198 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
f5fdcd6e
PM
199
200 /*
201 * /chosen and /memory nodes must exist for load_dtb
202 * to fill in necessary properties later
203 */
5a4348d1
PC
204 qemu_fdt_add_subnode(fdt, "/chosen");
205 qemu_fdt_add_subnode(fdt, "/memory");
206 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
f5fdcd6e
PM
207
208 /* Clock node, for the benefit of the UART. The kernel device tree
209 * binding documentation claims the PL011 node clock properties are
210 * optional but in practice if you omit them the kernel refuses to
211 * probe for the device.
212 */
c8ef2bda 213 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
5a4348d1
PC
214 qemu_fdt_add_subnode(fdt, "/apb-pclk");
215 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
216 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
217 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
218 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
f5fdcd6e 219 "clk24mhz");
c8ef2bda 220 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
f5fdcd6e 221
06955739
PS
222}
223
c8ef2bda 224static void fdt_add_psci_node(const VirtMachineState *vms)
06955739 225{
211b0169
RH
226 uint32_t cpu_suspend_fn;
227 uint32_t cpu_off_fn;
228 uint32_t cpu_on_fn;
229 uint32_t migrate_fn;
c8ef2bda 230 void *fdt = vms->fdt;
06955739 231 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
2013c566 232 const char *psci_method;
06955739 233
2013c566
PM
234 switch (vms->psci_conduit) {
235 case QEMU_PSCI_CONDUIT_DISABLED:
4824a61a 236 return;
2013c566
PM
237 case QEMU_PSCI_CONDUIT_HVC:
238 psci_method = "hvc";
239 break;
240 case QEMU_PSCI_CONDUIT_SMC:
241 psci_method = "smc";
242 break;
243 default:
244 g_assert_not_reached();
4824a61a
PM
245 }
246
211b0169
RH
247 qemu_fdt_add_subnode(fdt, "/psci");
248 if (armcpu->psci_version == 2) {
249 const char comp[] = "arm,psci-0.2\0arm,psci";
250 qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
863714ba 251
211b0169
RH
252 cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
253 if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
254 cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
255 cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
256 migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
257 } else {
258 cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
259 cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
260 migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
06955739 261 }
211b0169
RH
262 } else {
263 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
06955739 264
211b0169
RH
265 cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
266 cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
267 cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
268 migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
f5fdcd6e 269 }
211b0169
RH
270
271 /* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
272 * to the instruction that should be used to invoke PSCI functions.
273 * However, the device tree binding uses 'method' instead, so that is
274 * what we should use here.
275 */
2013c566 276 qemu_fdt_setprop_string(fdt, "/psci", "method", psci_method);
211b0169
RH
277
278 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
279 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
280 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
281 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
f5fdcd6e
PM
282}
283
055a7f2b 284static void fdt_add_timer_nodes(const VirtMachineState *vms)
f5fdcd6e 285{
156bc9a5
PM
286 /* On real hardware these interrupts are level-triggered.
287 * On KVM they were edge-triggered before host kernel version 4.4,
288 * and level-triggered afterwards.
289 * On emulated QEMU they are level-triggered.
290 *
291 * Getting the DTB info about them wrong is awkward for some
292 * guest kernels:
293 * pre-4.8 ignore the DT and leave the interrupt configured
294 * with whatever the GIC reset value (or the bootloader) left it at
295 * 4.8 before rc6 honour the incorrect data by programming it back
296 * into the GIC, causing problems
297 * 4.8rc6 and later ignore the DT and always write "level triggered"
298 * into the GIC
299 *
300 * For backwards-compatibility, virt-2.8 and earlier will continue
301 * to say these are edge-triggered, but later machines will report
302 * the correct information.
f5fdcd6e 303 */
b32a9509 304 ARMCPU *armcpu;
156bc9a5
PM
305 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
306 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
307
308 if (vmc->claim_edge_triggered_timers) {
309 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
310 }
f5fdcd6e 311
055a7f2b 312 if (vms->gic_version == 2) {
b92ad394
PF
313 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
314 GIC_FDT_IRQ_PPI_CPU_WIDTH,
c8ef2bda 315 (1 << vms->smp_cpus) - 1);
b92ad394 316 }
f5fdcd6e 317
c8ef2bda 318 qemu_fdt_add_subnode(vms->fdt, "/timer");
b32a9509
CF
319
320 armcpu = ARM_CPU(qemu_get_cpu(0));
321 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
322 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
c8ef2bda 323 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
b32a9509
CF
324 compat, sizeof(compat));
325 } else {
c8ef2bda 326 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
b32a9509
CF
327 "arm,armv7-timer");
328 }
c8ef2bda
PM
329 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
330 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
ee246400
SZ
331 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
332 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
333 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
334 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
f5fdcd6e
PM
335}
336
c8ef2bda 337static void fdt_add_cpu_nodes(const VirtMachineState *vms)
f5fdcd6e
PM
338{
339 int cpu;
8d45c54d 340 int addr_cells = 1;
9695200a 341 unsigned int i;
8d45c54d
PF
342
343 /*
344 * From Documentation/devicetree/bindings/arm/cpus.txt
345 * On ARM v8 64-bit systems value should be set to 2,
346 * that corresponds to the MPIDR_EL1 register size.
347 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
348 * in the system, #address-cells can be set to 1, since
349 * MPIDR_EL1[63:32] bits are not used for CPUs
350 * identification.
351 *
352 * Here we actually don't know whether our system is 32- or 64-bit one.
353 * The simplest way to go is to examine affinity IDs of all our CPUs. If
354 * at least one of them has Aff3 populated, we set #address-cells to 2.
355 */
c8ef2bda 356 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
8d45c54d
PF
357 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
358
359 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
360 addr_cells = 2;
361 break;
362 }
363 }
f5fdcd6e 364
c8ef2bda
PM
365 qemu_fdt_add_subnode(vms->fdt, "/cpus");
366 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
367 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
f5fdcd6e 368
c8ef2bda 369 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
f5fdcd6e
PM
370 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
371 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
372
c8ef2bda
PM
373 qemu_fdt_add_subnode(vms->fdt, nodename);
374 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
375 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
f5fdcd6e
PM
376 armcpu->dtb_compatible);
377
2013c566
PM
378 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
379 && vms->smp_cpus > 1) {
c8ef2bda 380 qemu_fdt_setprop_string(vms->fdt, nodename,
f5fdcd6e
PM
381 "enable-method", "psci");
382 }
383
8d45c54d 384 if (addr_cells == 2) {
c8ef2bda 385 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
8d45c54d
PF
386 armcpu->mp_affinity);
387 } else {
c8ef2bda 388 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
8d45c54d
PF
389 armcpu->mp_affinity);
390 }
391
6bea1ddf
IM
392 i = numa_get_node_for_cpu(cpu);
393 if (i < nb_numa_nodes) {
c8ef2bda 394 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id", i);
9695200a
SZ
395 }
396
f5fdcd6e
PM
397 g_free(nodename);
398 }
399}
400
c8ef2bda 401static void fdt_add_its_gic_node(VirtMachineState *vms)
02f98731 402{
c8ef2bda
PM
403 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
404 qemu_fdt_add_subnode(vms->fdt, "/intc/its");
405 qemu_fdt_setprop_string(vms->fdt, "/intc/its", "compatible",
02f98731 406 "arm,gic-v3-its");
c8ef2bda
PM
407 qemu_fdt_setprop(vms->fdt, "/intc/its", "msi-controller", NULL, 0);
408 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/its", "reg",
409 2, vms->memmap[VIRT_GIC_ITS].base,
410 2, vms->memmap[VIRT_GIC_ITS].size);
411 qemu_fdt_setprop_cell(vms->fdt, "/intc/its", "phandle", vms->msi_phandle);
02f98731
PF
412}
413
c8ef2bda 414static void fdt_add_v2m_gic_node(VirtMachineState *vms)
f5fdcd6e 415{
c8ef2bda
PM
416 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
417 qemu_fdt_add_subnode(vms->fdt, "/intc/v2m");
418 qemu_fdt_setprop_string(vms->fdt, "/intc/v2m", "compatible",
bd204e63 419 "arm,gic-v2m-frame");
c8ef2bda
PM
420 qemu_fdt_setprop(vms->fdt, "/intc/v2m", "msi-controller", NULL, 0);
421 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc/v2m", "reg",
422 2, vms->memmap[VIRT_GIC_V2M].base,
423 2, vms->memmap[VIRT_GIC_V2M].size);
424 qemu_fdt_setprop_cell(vms->fdt, "/intc/v2m", "phandle", vms->msi_phandle);
bd204e63 425}
f5fdcd6e 426
055a7f2b 427static void fdt_add_gic_node(VirtMachineState *vms)
bd204e63 428{
c8ef2bda
PM
429 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
430 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
431
432 qemu_fdt_add_subnode(vms->fdt, "/intc");
433 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#interrupt-cells", 3);
434 qemu_fdt_setprop(vms->fdt, "/intc", "interrupt-controller", NULL, 0);
435 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#address-cells", 0x2);
436 qemu_fdt_setprop_cell(vms->fdt, "/intc", "#size-cells", 0x2);
437 qemu_fdt_setprop(vms->fdt, "/intc", "ranges", NULL, 0);
055a7f2b 438 if (vms->gic_version == 3) {
c8ef2bda 439 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
b92ad394 440 "arm,gic-v3");
c8ef2bda
PM
441 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
442 2, vms->memmap[VIRT_GIC_DIST].base,
443 2, vms->memmap[VIRT_GIC_DIST].size,
444 2, vms->memmap[VIRT_GIC_REDIST].base,
445 2, vms->memmap[VIRT_GIC_REDIST].size);
b92ad394
PF
446 } else {
447 /* 'cortex-a15-gic' means 'GIC v2' */
c8ef2bda 448 qemu_fdt_setprop_string(vms->fdt, "/intc", "compatible",
b92ad394 449 "arm,cortex-a15-gic");
c8ef2bda
PM
450 qemu_fdt_setprop_sized_cells(vms->fdt, "/intc", "reg",
451 2, vms->memmap[VIRT_GIC_DIST].base,
452 2, vms->memmap[VIRT_GIC_DIST].size,
453 2, vms->memmap[VIRT_GIC_CPU].base,
454 2, vms->memmap[VIRT_GIC_CPU].size);
b92ad394
PF
455 }
456
c8ef2bda 457 qemu_fdt_setprop_cell(vms->fdt, "/intc", "phandle", vms->gic_phandle);
f5fdcd6e
PM
458}
459
055a7f2b 460static void fdt_add_pmu_nodes(const VirtMachineState *vms)
01fe6b60
SZ
461{
462 CPUState *cpu;
463 ARMCPU *armcpu;
464 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
465
466 CPU_FOREACH(cpu) {
467 armcpu = ARM_CPU(cpu);
929e754d 468 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU) ||
01fe6b60
SZ
469 !kvm_arm_pmu_create(cpu, PPI(VIRTUAL_PMU_IRQ))) {
470 return;
471 }
472 }
473
055a7f2b 474 if (vms->gic_version == 2) {
01fe6b60
SZ
475 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
476 GIC_FDT_IRQ_PPI_CPU_WIDTH,
c8ef2bda 477 (1 << vms->smp_cpus) - 1);
01fe6b60
SZ
478 }
479
480 armcpu = ARM_CPU(qemu_get_cpu(0));
c8ef2bda 481 qemu_fdt_add_subnode(vms->fdt, "/pmu");
01fe6b60
SZ
482 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
483 const char compat[] = "arm,armv8-pmuv3";
c8ef2bda 484 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
01fe6b60 485 compat, sizeof(compat));
c8ef2bda 486 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
01fe6b60
SZ
487 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
488 }
489}
490
c8ef2bda 491static void create_its(VirtMachineState *vms, DeviceState *gicdev)
02f98731
PF
492{
493 const char *itsclass = its_class_name();
494 DeviceState *dev;
495
496 if (!itsclass) {
497 /* Do nothing if not supported */
498 return;
499 }
500
501 dev = qdev_create(NULL, itsclass);
502
503 object_property_set_link(OBJECT(dev), OBJECT(gicdev), "parent-gicv3",
504 &error_abort);
505 qdev_init_nofail(dev);
c8ef2bda 506 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
02f98731 507
c8ef2bda 508 fdt_add_its_gic_node(vms);
02f98731
PF
509}
510
c8ef2bda 511static void create_v2m(VirtMachineState *vms, qemu_irq *pic)
bd204e63
CD
512{
513 int i;
c8ef2bda 514 int irq = vms->irqmap[VIRT_GIC_V2M];
bd204e63
CD
515 DeviceState *dev;
516
517 dev = qdev_create(NULL, "arm-gicv2m");
c8ef2bda 518 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
bd204e63
CD
519 qdev_prop_set_uint32(dev, "base-spi", irq);
520 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
521 qdev_init_nofail(dev);
522
523 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
524 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
525 }
526
c8ef2bda 527 fdt_add_v2m_gic_node(vms);
bd204e63
CD
528}
529
055a7f2b 530static void create_gic(VirtMachineState *vms, qemu_irq *pic)
64204743 531{
b92ad394 532 /* We create a standalone GIC */
0127937b 533 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
64204743
PM
534 DeviceState *gicdev;
535 SysBusDevice *gicbusdev;
e6fbcbc4 536 const char *gictype;
055a7f2b 537 int type = vms->gic_version, i;
64204743 538
b92ad394 539 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
64204743
PM
540
541 gicdev = qdev_create(NULL, gictype);
b92ad394 542 qdev_prop_set_uint32(gicdev, "revision", type);
64204743
PM
543 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
544 /* Note that the num-irq property counts both internal and external
545 * interrupts; there are always 32 of the former (mandated by GIC spec).
546 */
547 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
0e21f183 548 if (!kvm_irqchip_in_kernel()) {
0127937b 549 qdev_prop_set_bit(gicdev, "has-security-extensions", vms->secure);
0e21f183 550 }
64204743
PM
551 qdev_init_nofail(gicdev);
552 gicbusdev = SYS_BUS_DEVICE(gicdev);
c8ef2bda 553 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
b92ad394 554 if (type == 3) {
c8ef2bda 555 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
b92ad394 556 } else {
c8ef2bda 557 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
b92ad394 558 }
64204743 559
5454006a
PM
560 /* Wire the outputs from each CPU's generic timer and the GICv3
561 * maintenance interrupt signal to the appropriate GIC PPI inputs,
562 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
64204743
PM
563 */
564 for (i = 0; i < smp_cpus; i++) {
565 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
0e3e858f 566 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
a007b1f8
PM
567 int irq;
568 /* Mapping from the output timer irq lines from the CPU to the
569 * GIC PPI inputs we use for the virt board.
64204743 570 */
a007b1f8
PM
571 const int timer_irq[] = {
572 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
573 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
574 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
575 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
576 };
577
578 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
579 qdev_connect_gpio_out(cpudev, irq,
580 qdev_get_gpio_in(gicdev,
581 ppibase + timer_irq[irq]));
582 }
64204743 583
5454006a
PM
584 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0,
585 qdev_get_gpio_in(gicdev, ppibase
586 + ARCH_GICV3_MAINT_IRQ));
587
64204743 588 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
8e7b4ca0
GB
589 sysbus_connect_irq(gicbusdev, i + smp_cpus,
590 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
5454006a
PM
591 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
592 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
593 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
594 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
64204743
PM
595 }
596
597 for (i = 0; i < NUM_IRQS; i++) {
598 pic[i] = qdev_get_gpio_in(gicdev, i);
599 }
600
055a7f2b 601 fdt_add_gic_node(vms);
bd204e63 602
0127937b 603 if (type == 3 && !vmc->no_its) {
c8ef2bda 604 create_its(vms, gicdev);
2231f69b 605 } else if (type == 2) {
c8ef2bda 606 create_v2m(vms, pic);
b92ad394 607 }
64204743
PM
608}
609
c8ef2bda 610static void create_uart(const VirtMachineState *vms, qemu_irq *pic, int uart,
9bbbf649 611 MemoryRegion *mem, CharDriverState *chr)
f5fdcd6e
PM
612{
613 char *nodename;
c8ef2bda
PM
614 hwaddr base = vms->memmap[uart].base;
615 hwaddr size = vms->memmap[uart].size;
616 int irq = vms->irqmap[uart];
f5fdcd6e
PM
617 const char compat[] = "arm,pl011\0arm,primecell";
618 const char clocknames[] = "uartclk\0apb_pclk";
3df708eb
PM
619 DeviceState *dev = qdev_create(NULL, "pl011");
620 SysBusDevice *s = SYS_BUS_DEVICE(dev);
f5fdcd6e 621
9bbbf649 622 qdev_prop_set_chr(dev, "chardev", chr);
3df708eb
PM
623 qdev_init_nofail(dev);
624 memory_region_add_subregion(mem, base,
625 sysbus_mmio_get_region(s, 0));
626 sysbus_connect_irq(s, 0, pic[irq]);
f5fdcd6e
PM
627
628 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
c8ef2bda 629 qemu_fdt_add_subnode(vms->fdt, nodename);
f5fdcd6e 630 /* Note that we can't use setprop_string because of the embedded NUL */
c8ef2bda 631 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
f5fdcd6e 632 compat, sizeof(compat));
c8ef2bda 633 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
f5fdcd6e 634 2, base, 2, size);
c8ef2bda 635 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
f5fdcd6e 636 GIC_FDT_IRQ_TYPE_SPI, irq,
0be969a2 637 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
c8ef2bda
PM
638 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
639 vms->clock_phandle, vms->clock_phandle);
640 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
f5fdcd6e 641 clocknames, sizeof(clocknames));
f022b8e9 642
3df708eb 643 if (uart == VIRT_UART) {
c8ef2bda 644 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
3df708eb
PM
645 } else {
646 /* Mark as not usable by the normal world */
c8ef2bda
PM
647 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
648 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
3df708eb
PM
649 }
650
f5fdcd6e
PM
651 g_free(nodename);
652}
653
c8ef2bda 654static void create_rtc(const VirtMachineState *vms, qemu_irq *pic)
6e411af9
PM
655{
656 char *nodename;
c8ef2bda
PM
657 hwaddr base = vms->memmap[VIRT_RTC].base;
658 hwaddr size = vms->memmap[VIRT_RTC].size;
659 int irq = vms->irqmap[VIRT_RTC];
6e411af9
PM
660 const char compat[] = "arm,pl031\0arm,primecell";
661
662 sysbus_create_simple("pl031", base, pic[irq]);
663
664 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
c8ef2bda
PM
665 qemu_fdt_add_subnode(vms->fdt, nodename);
666 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
667 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
6e411af9 668 2, base, 2, size);
c8ef2bda 669 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
6e411af9 670 GIC_FDT_IRQ_TYPE_SPI, irq,
0be969a2 671 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
c8ef2bda
PM
672 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
673 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
6e411af9
PM
674 g_free(nodename);
675}
676
94f02c5e 677static DeviceState *gpio_key_dev;
4bedd849
SZ
678static void virt_powerdown_req(Notifier *n, void *opaque)
679{
680 /* use gpio Pin 3 for power button event */
94f02c5e 681 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
4bedd849
SZ
682}
683
684static Notifier virt_system_powerdown_notifier = {
685 .notify = virt_powerdown_req
686};
687
c8ef2bda 688static void create_gpio(const VirtMachineState *vms, qemu_irq *pic)
b0a3721e
SZ
689{
690 char *nodename;
94f02c5e 691 DeviceState *pl061_dev;
c8ef2bda
PM
692 hwaddr base = vms->memmap[VIRT_GPIO].base;
693 hwaddr size = vms->memmap[VIRT_GPIO].size;
694 int irq = vms->irqmap[VIRT_GPIO];
b0a3721e
SZ
695 const char compat[] = "arm,pl061\0arm,primecell";
696
4bedd849 697 pl061_dev = sysbus_create_simple("pl061", base, pic[irq]);
b0a3721e 698
c8ef2bda 699 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
b0a3721e 700 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
c8ef2bda
PM
701 qemu_fdt_add_subnode(vms->fdt, nodename);
702 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
b0a3721e 703 2, base, 2, size);
c8ef2bda
PM
704 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
705 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
706 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
707 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
b0a3721e
SZ
708 GIC_FDT_IRQ_TYPE_SPI, irq,
709 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
c8ef2bda
PM
710 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
711 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
712 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
3e6ebb64 713
94f02c5e
SZ
714 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
715 qdev_get_gpio_in(pl061_dev, 3));
c8ef2bda
PM
716 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
717 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
718 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
719 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
3e6ebb64 720
c8ef2bda
PM
721 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
722 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
3e6ebb64 723 "label", "GPIO Key Poweroff");
c8ef2bda 724 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
3e6ebb64 725 KEY_POWER);
c8ef2bda 726 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
3e6ebb64 727 "gpios", phandle, 3, 0);
b0a3721e 728
4bedd849
SZ
729 /* connect powerdown request */
730 qemu_register_powerdown_notifier(&virt_system_powerdown_notifier);
731
b0a3721e
SZ
732 g_free(nodename);
733}
734
c8ef2bda 735static void create_virtio_devices(const VirtMachineState *vms, qemu_irq *pic)
f5fdcd6e
PM
736{
737 int i;
c8ef2bda 738 hwaddr size = vms->memmap[VIRT_MMIO].size;
f5fdcd6e 739
587078f0
LE
740 /* We create the transports in forwards order. Since qbus_realize()
741 * prepends (not appends) new child buses, the incrementing loop below will
742 * create a list of virtio-mmio buses with decreasing base addresses.
743 *
744 * When a -device option is processed from the command line,
745 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
746 * order. The upshot is that -device options in increasing command line
747 * order are mapped to virtio-mmio buses with decreasing base addresses.
748 *
749 * When this code was originally written, that arrangement ensured that the
750 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
751 * the first -device on the command line. (The end-to-end order is a
752 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
753 * guest kernel's name-to-address assignment strategy.)
754 *
755 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
756 * the message, if not necessarily the code, of commit 70161ff336.
757 * Therefore the loop now establishes the inverse of the original intent.
758 *
759 * Unfortunately, we can't counteract the kernel change by reversing the
760 * loop; it would break existing command lines.
761 *
762 * In any case, the kernel makes no guarantee about the stability of
763 * enumeration order of virtio devices (as demonstrated by it changing
764 * between kernel versions). For reliable and stable identification
765 * of disks users must use UUIDs or similar mechanisms.
f5fdcd6e
PM
766 */
767 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
c8ef2bda
PM
768 int irq = vms->irqmap[VIRT_MMIO] + i;
769 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
f5fdcd6e
PM
770
771 sysbus_create_simple("virtio-mmio", base, pic[irq]);
772 }
773
587078f0
LE
774 /* We add dtb nodes in reverse order so that they appear in the finished
775 * device tree lowest address first.
776 *
777 * Note that this mapping is independent of the loop above. The previous
778 * loop influences virtio device to virtio transport assignment, whereas
779 * this loop controls how virtio transports are laid out in the dtb.
780 */
f5fdcd6e
PM
781 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
782 char *nodename;
c8ef2bda
PM
783 int irq = vms->irqmap[VIRT_MMIO] + i;
784 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
f5fdcd6e
PM
785
786 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
c8ef2bda
PM
787 qemu_fdt_add_subnode(vms->fdt, nodename);
788 qemu_fdt_setprop_string(vms->fdt, nodename,
5a4348d1 789 "compatible", "virtio,mmio");
c8ef2bda 790 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
5a4348d1 791 2, base, 2, size);
c8ef2bda 792 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
5a4348d1
PC
793 GIC_FDT_IRQ_TYPE_SPI, irq,
794 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
f5fdcd6e
PM
795 g_free(nodename);
796 }
797}
798
acf82361 799static void create_one_flash(const char *name, hwaddr flashbase,
738a5d9f
PM
800 hwaddr flashsize, const char *file,
801 MemoryRegion *sysmem)
acf82361
PM
802{
803 /* Create and map a single flash device. We use the same
804 * parameters as the flash devices on the Versatile Express board.
805 */
806 DriveInfo *dinfo = drive_get_next(IF_PFLASH);
807 DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
16f4a8dc 808 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
acf82361
PM
809 const uint64_t sectorlength = 256 * 1024;
810
9b3d111a
MA
811 if (dinfo) {
812 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
813 &error_abort);
acf82361
PM
814 }
815
816 qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
817 qdev_prop_set_uint64(dev, "sector-length", sectorlength);
818 qdev_prop_set_uint8(dev, "width", 4);
819 qdev_prop_set_uint8(dev, "device-width", 2);
e9809422 820 qdev_prop_set_bit(dev, "big-endian", false);
acf82361
PM
821 qdev_prop_set_uint16(dev, "id0", 0x89);
822 qdev_prop_set_uint16(dev, "id1", 0x18);
823 qdev_prop_set_uint16(dev, "id2", 0x00);
824 qdev_prop_set_uint16(dev, "id3", 0x00);
825 qdev_prop_set_string(dev, "name", name);
826 qdev_init_nofail(dev);
827
738a5d9f
PM
828 memory_region_add_subregion(sysmem, flashbase,
829 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0));
acf82361 830
16f4a8dc 831 if (file) {
6e05a12f 832 char *fn;
4de9a883 833 int image_size;
acf82361
PM
834
835 if (drive_get(IF_PFLASH, 0, 0)) {
836 error_report("The contents of the first flash device may be "
837 "specified with -bios or with -drive if=pflash... "
838 "but you cannot use both options at once");
839 exit(1);
840 }
16f4a8dc 841 fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, file);
4de9a883 842 if (!fn) {
16f4a8dc 843 error_report("Could not find ROM image '%s'", file);
4de9a883
SW
844 exit(1);
845 }
16f4a8dc 846 image_size = load_image_mr(fn, sysbus_mmio_get_region(sbd, 0));
4de9a883
SW
847 g_free(fn);
848 if (image_size < 0) {
16f4a8dc 849 error_report("Could not load ROM image '%s'", file);
acf82361
PM
850 exit(1);
851 }
852 }
16f4a8dc
PM
853}
854
c8ef2bda 855static void create_flash(const VirtMachineState *vms,
738a5d9f
PM
856 MemoryRegion *sysmem,
857 MemoryRegion *secure_sysmem)
16f4a8dc
PM
858{
859 /* Create two flash devices to fill the VIRT_FLASH space in the memmap.
860 * Any file passed via -bios goes in the first of these.
738a5d9f
PM
861 * sysmem is the system memory space. secure_sysmem is the secure view
862 * of the system, and the first flash device should be made visible only
863 * there. The second flash device is visible to both secure and nonsecure.
864 * If sysmem == secure_sysmem this means there is no separate Secure
865 * address space and both flash devices are generally visible.
16f4a8dc 866 */
c8ef2bda
PM
867 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
868 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
16f4a8dc 869 char *nodename;
acf82361 870
738a5d9f
PM
871 create_one_flash("virt.flash0", flashbase, flashsize,
872 bios_name, secure_sysmem);
873 create_one_flash("virt.flash1", flashbase + flashsize, flashsize,
874 NULL, sysmem);
acf82361 875
738a5d9f
PM
876 if (sysmem == secure_sysmem) {
877 /* Report both flash devices as a single node in the DT */
878 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
c8ef2bda
PM
879 qemu_fdt_add_subnode(vms->fdt, nodename);
880 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
881 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
738a5d9f
PM
882 2, flashbase, 2, flashsize,
883 2, flashbase + flashsize, 2, flashsize);
c8ef2bda 884 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
738a5d9f
PM
885 g_free(nodename);
886 } else {
887 /* Report the devices as separate nodes so we can mark one as
888 * only visible to the secure world.
889 */
890 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
c8ef2bda
PM
891 qemu_fdt_add_subnode(vms->fdt, nodename);
892 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
893 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
738a5d9f 894 2, flashbase, 2, flashsize);
c8ef2bda
PM
895 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
896 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
897 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
738a5d9f
PM
898 g_free(nodename);
899
900 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
c8ef2bda
PM
901 qemu_fdt_add_subnode(vms->fdt, nodename);
902 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
903 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
738a5d9f 904 2, flashbase + flashsize, 2, flashsize);
c8ef2bda 905 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
738a5d9f
PM
906 g_free(nodename);
907 }
acf82361
PM
908}
909
af1f60a4 910static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
578f3c7b 911{
c8ef2bda
PM
912 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
913 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
5836d168 914 FWCfgState *fw_cfg;
578f3c7b
LE
915 char *nodename;
916
5836d168
IM
917 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
918 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)smp_cpus);
578f3c7b
LE
919
920 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
c8ef2bda
PM
921 qemu_fdt_add_subnode(vms->fdt, nodename);
922 qemu_fdt_setprop_string(vms->fdt, nodename,
578f3c7b 923 "compatible", "qemu,fw-cfg-mmio");
c8ef2bda 924 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
578f3c7b
LE
925 2, base, 2, size);
926 g_free(nodename);
af1f60a4 927 return fw_cfg;
578f3c7b
LE
928}
929
c8ef2bda 930static void create_pcie_irq_map(const VirtMachineState *vms,
9ac4ef77 931 uint32_t gic_phandle,
4ab29b82
AG
932 int first_irq, const char *nodename)
933{
934 int devfn, pin;
dfd90a87 935 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
4ab29b82
AG
936 uint32_t *irq_map = full_irq_map;
937
938 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
939 for (pin = 0; pin < 4; pin++) {
940 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
941 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
942 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
943 int i;
944
945 uint32_t map[] = {
946 devfn << 8, 0, 0, /* devfn */
947 pin + 1, /* PCI pin */
dfd90a87 948 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
4ab29b82
AG
949
950 /* Convert map to big endian */
dfd90a87 951 for (i = 0; i < 10; i++) {
4ab29b82
AG
952 irq_map[i] = cpu_to_be32(map[i]);
953 }
dfd90a87 954 irq_map += 10;
4ab29b82
AG
955 }
956 }
957
c8ef2bda 958 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
4ab29b82
AG
959 full_irq_map, sizeof(full_irq_map));
960
c8ef2bda 961 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
4ab29b82
AG
962 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
963 0x7 /* PCI irq */);
964}
965
0127937b 966static void create_pcie(const VirtMachineState *vms, qemu_irq *pic)
4ab29b82 967{
c8ef2bda
PM
968 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
969 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
970 hwaddr base_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].base;
971 hwaddr size_mmio_high = vms->memmap[VIRT_PCIE_MMIO_HIGH].size;
972 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
973 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
974 hwaddr base_ecam = vms->memmap[VIRT_PCIE_ECAM].base;
975 hwaddr size_ecam = vms->memmap[VIRT_PCIE_ECAM].size;
6a1f001b
SZ
976 hwaddr base = base_mmio;
977 int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
c8ef2bda 978 int irq = vms->irqmap[VIRT_PCIE];
4ab29b82
AG
979 MemoryRegion *mmio_alias;
980 MemoryRegion *mmio_reg;
981 MemoryRegion *ecam_alias;
982 MemoryRegion *ecam_reg;
983 DeviceState *dev;
984 char *nodename;
985 int i;
fea9b3ca 986 PCIHostState *pci;
4ab29b82 987
4ab29b82
AG
988 dev = qdev_create(NULL, TYPE_GPEX_HOST);
989 qdev_init_nofail(dev);
990
991 /* Map only the first size_ecam bytes of ECAM space */
992 ecam_alias = g_new0(MemoryRegion, 1);
993 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
994 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
995 ecam_reg, 0, size_ecam);
996 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
997
998 /* Map the MMIO window into system address space so as to expose
999 * the section of PCI MMIO space which starts at the same base address
1000 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1001 * the window).
1002 */
1003 mmio_alias = g_new0(MemoryRegion, 1);
1004 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1005 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1006 mmio_reg, base_mmio, size_mmio);
1007 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1008
0127937b 1009 if (vms->highmem) {
5125f9cd
PF
1010 /* Map high MMIO space */
1011 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1012
1013 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1014 mmio_reg, base_mmio_high, size_mmio_high);
1015 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1016 high_mmio_alias);
1017 }
1018
4ab29b82 1019 /* Map IO port space */
6a1f001b 1020 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
4ab29b82
AG
1021
1022 for (i = 0; i < GPEX_NUM_IRQS; i++) {
1023 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
1024 }
1025
fea9b3ca
AK
1026 pci = PCI_HOST_BRIDGE(dev);
1027 if (pci->bus) {
1028 for (i = 0; i < nb_nics; i++) {
1029 NICInfo *nd = &nd_table[i];
1030
1031 if (!nd->model) {
1032 nd->model = g_strdup("virtio");
1033 }
1034
1035 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1036 }
1037 }
1038
4ab29b82 1039 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
c8ef2bda
PM
1040 qemu_fdt_add_subnode(vms->fdt, nodename);
1041 qemu_fdt_setprop_string(vms->fdt, nodename,
4ab29b82 1042 "compatible", "pci-host-ecam-generic");
c8ef2bda
PM
1043 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1044 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1045 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
1046 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
4ab29b82 1047 nr_pcie_buses - 1);
c8ef2bda 1048 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
4ab29b82 1049
c8ef2bda
PM
1050 if (vms->msi_phandle) {
1051 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1052 vms->msi_phandle);
b92ad394 1053 }
bd204e63 1054
c8ef2bda 1055 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
4ab29b82 1056 2, base_ecam, 2, size_ecam);
5125f9cd 1057
0127937b 1058 if (vms->highmem) {
c8ef2bda 1059 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
5125f9cd
PF
1060 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1061 2, base_pio, 2, size_pio,
1062 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1063 2, base_mmio, 2, size_mmio,
1064 1, FDT_PCI_RANGE_MMIO_64BIT,
1065 2, base_mmio_high,
1066 2, base_mmio_high, 2, size_mmio_high);
1067 } else {
c8ef2bda 1068 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
5125f9cd
PF
1069 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1070 2, base_pio, 2, size_pio,
1071 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1072 2, base_mmio, 2, size_mmio);
1073 }
4ab29b82 1074
c8ef2bda
PM
1075 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1076 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
4ab29b82
AG
1077
1078 g_free(nodename);
1079}
1080
c8ef2bda 1081static void create_platform_bus(VirtMachineState *vms, qemu_irq *pic)
5f7a5a0e
EA
1082{
1083 DeviceState *dev;
1084 SysBusDevice *s;
1085 int i;
1086 ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
1087 MemoryRegion *sysmem = get_system_memory();
1088
c8ef2bda
PM
1089 platform_bus_params.platform_bus_base = vms->memmap[VIRT_PLATFORM_BUS].base;
1090 platform_bus_params.platform_bus_size = vms->memmap[VIRT_PLATFORM_BUS].size;
1091 platform_bus_params.platform_bus_first_irq = vms->irqmap[VIRT_PLATFORM_BUS];
5f7a5a0e
EA
1092 platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
1093
1094 fdt_params->system_params = &platform_bus_params;
c8ef2bda 1095 fdt_params->binfo = &vms->bootinfo;
5f7a5a0e
EA
1096 fdt_params->intc = "/intc";
1097 /*
1098 * register a machine init done notifier that creates the device tree
1099 * nodes of the platform bus and its children dynamic sysbus devices
1100 */
1101 arm_register_platform_bus_fdt_creator(fdt_params);
1102
1103 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1104 dev->id = TYPE_PLATFORM_BUS_DEVICE;
1105 qdev_prop_set_uint32(dev, "num_irqs",
1106 platform_bus_params.platform_bus_num_irqs);
1107 qdev_prop_set_uint32(dev, "mmio_size",
1108 platform_bus_params.platform_bus_size);
1109 qdev_init_nofail(dev);
1110 s = SYS_BUS_DEVICE(dev);
1111
1112 for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
1113 int irqn = platform_bus_params.platform_bus_first_irq + i;
1114 sysbus_connect_irq(s, i, pic[irqn]);
1115 }
1116
1117 memory_region_add_subregion(sysmem,
1118 platform_bus_params.platform_bus_base,
1119 sysbus_mmio_get_region(s, 0));
1120}
1121
c8ef2bda 1122static void create_secure_ram(VirtMachineState *vms,
9ac4ef77 1123 MemoryRegion *secure_sysmem)
83ec1923
PM
1124{
1125 MemoryRegion *secram = g_new(MemoryRegion, 1);
1126 char *nodename;
c8ef2bda
PM
1127 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1128 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
83ec1923
PM
1129
1130 memory_region_init_ram(secram, NULL, "virt.secure-ram", size, &error_fatal);
1131 vmstate_register_ram_global(secram);
1132 memory_region_add_subregion(secure_sysmem, base, secram);
1133
1134 nodename = g_strdup_printf("/secram@%" PRIx64, base);
c8ef2bda
PM
1135 qemu_fdt_add_subnode(vms->fdt, nodename);
1136 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1137 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1138 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1139 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
83ec1923
PM
1140
1141 g_free(nodename);
1142}
1143
f5fdcd6e
PM
1144static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1145{
9ac4ef77
PM
1146 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1147 bootinfo);
f5fdcd6e
PM
1148
1149 *fdt_size = board->fdt_size;
1150 return board->fdt;
1151}
1152
e9a8e474 1153static void virt_build_smbios(VirtMachineState *vms)
c30e1565 1154{
c30e1565
WH
1155 uint8_t *smbios_tables, *smbios_anchor;
1156 size_t smbios_tables_len, smbios_anchor_len;
bab27ea2 1157 const char *product = "QEMU Virtual Machine";
c30e1565 1158
af1f60a4 1159 if (!vms->fw_cfg) {
c30e1565
WH
1160 return;
1161 }
1162
bab27ea2
AJ
1163 if (kvm_enabled()) {
1164 product = "KVM Virtual Machine";
1165 }
1166
1167 smbios_set_defaults("QEMU", product,
c30e1565
WH
1168 "1.0", false, true, SMBIOS_ENTRY_POINT_30);
1169
1170 smbios_get_tables(NULL, 0, &smbios_tables, &smbios_tables_len,
1171 &smbios_anchor, &smbios_anchor_len);
1172
1173 if (smbios_anchor) {
af1f60a4 1174 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
c30e1565 1175 smbios_tables, smbios_tables_len);
af1f60a4 1176 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
c30e1565
WH
1177 smbios_anchor, smbios_anchor_len);
1178 }
1179}
1180
d7c2e2db 1181static
054f4dc9 1182void virt_machine_done(Notifier *notifier, void *data)
d7c2e2db 1183{
054f4dc9
AJ
1184 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1185 machine_done);
1186
e9a8e474
AJ
1187 virt_acpi_setup(vms);
1188 virt_build_smbios(vms);
d7c2e2db
SZ
1189}
1190
3ef96221 1191static void machvirt_init(MachineState *machine)
f5fdcd6e 1192{
e5a5604f 1193 VirtMachineState *vms = VIRT_MACHINE(machine);
95eb49c8 1194 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
f5fdcd6e
PM
1195 qemu_irq pic[NUM_IRQS];
1196 MemoryRegion *sysmem = get_system_memory();
3df708eb 1197 MemoryRegion *secure_sysmem = NULL;
7ea686f5 1198 int n, virt_max_cpus;
f5fdcd6e 1199 MemoryRegion *ram = g_new(MemoryRegion, 1);
3ef96221 1200 const char *cpu_model = machine->cpu_model;
f313369f 1201 char **cpustr;
09f71b05
IM
1202 ObjectClass *oc;
1203 const char *typename;
1204 CPUClass *cc;
1205 Error *err = NULL;
4824a61a 1206 bool firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
95eb49c8 1207 uint8_t clustersz;
f5fdcd6e
PM
1208
1209 if (!cpu_model) {
1210 cpu_model = "cortex-a15";
1211 }
1212
b92ad394
PF
1213 /* We can probe only here because during property set
1214 * KVM is not available yet
1215 */
055a7f2b 1216 if (!vms->gic_version) {
0bf8039d
CR
1217 if (!kvm_enabled()) {
1218 error_report("gic-version=host requires KVM");
1219 exit(1);
1220 }
1221
055a7f2b
AJ
1222 vms->gic_version = kvm_arm_vgic_probe();
1223 if (!vms->gic_version) {
faa811f6 1224 error_report("Unable to determine GIC version supported by host");
b92ad394
PF
1225 exit(1);
1226 }
1227 }
1228
f313369f
GB
1229 /* Separate the actual CPU model name from any appended features */
1230 cpustr = g_strsplit(cpu_model, ",", 2);
1231
9ac4ef77 1232 if (!cpuname_valid(cpustr[0])) {
f313369f 1233 error_report("mach-virt: CPU %s not supported", cpustr[0]);
f5fdcd6e
PM
1234 exit(1);
1235 }
1236
4824a61a
PM
1237 /* If we have an EL3 boot ROM then the assumption is that it will
1238 * implement PSCI itself, so disable QEMU's internal implementation
1239 * so it doesn't get in the way. Instead of starting secondary
1240 * CPUs in PSCI powerdown state we will start them all running and
1241 * let the boot ROM sort them out.
1242 * The usual case is that we do use QEMU's PSCI implementation.
1243 */
2013c566
PM
1244 if (vms->secure && firmware_loaded) {
1245 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
1246 } else {
1247 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1248 }
4824a61a 1249
4b280b72
AJ
1250 /* The maximum number of CPUs depends on the GIC version, or on how
1251 * many redistributors we can fit into the memory map.
1252 */
055a7f2b 1253 if (vms->gic_version == 3) {
c8ef2bda 1254 virt_max_cpus = vms->memmap[VIRT_GIC_REDIST].size / 0x20000;
95eb49c8 1255 clustersz = GICV3_TARGETLIST_BITS;
4b280b72 1256 } else {
7ea686f5 1257 virt_max_cpus = GIC_NCPU;
95eb49c8 1258 clustersz = GIC_TARGETLIST_BITS;
4b280b72
AJ
1259 }
1260
7ea686f5 1261 if (max_cpus > virt_max_cpus) {
4b280b72
AJ
1262 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1263 "supported by machine 'mach-virt' (%d)",
7ea686f5 1264 max_cpus, virt_max_cpus);
4b280b72
AJ
1265 exit(1);
1266 }
1267
c8ef2bda 1268 vms->smp_cpus = smp_cpus;
f5fdcd6e 1269
c8ef2bda 1270 if (machine->ram_size > vms->memmap[VIRT_MEM].size) {
71c27684 1271 error_report("mach-virt: cannot model more than %dGB RAM", RAMLIMIT_GB);
f5fdcd6e
PM
1272 exit(1);
1273 }
1274
3df708eb
PM
1275 if (vms->secure) {
1276 if (kvm_enabled()) {
1277 error_report("mach-virt: KVM does not support Security extensions");
1278 exit(1);
1279 }
1280
1281 /* The Secure view of the world is the same as the NonSecure,
1282 * but with a few extra devices. Create it as a container region
1283 * containing the system memory at low priority; any secure-only
1284 * devices go in at higher priority and take precedence.
1285 */
1286 secure_sysmem = g_new(MemoryRegion, 1);
1287 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1288 UINT64_MAX);
1289 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1290 }
1291
c8ef2bda 1292 create_fdt(vms);
f5fdcd6e 1293
09f71b05
IM
1294 oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
1295 if (!oc) {
1296 error_report("Unable to find CPU definition");
1297 exit(1);
1298 }
1299 typename = object_class_get_name(oc);
f5fdcd6e 1300
09f71b05
IM
1301 /* convert -smp CPU options specified by the user into global props */
1302 cc = CPU_CLASS(oc);
1303 cc->parse_features(typename, cpustr[1], &err);
1304 g_strfreev(cpustr);
1305 if (err) {
1306 error_report_err(err);
1307 exit(1);
1308 }
1309
1310 for (n = 0; n < smp_cpus; n++) {
1311 Object *cpuobj = object_new(typename);
95eb49c8
AJ
1312 if (!vmc->disallow_affinity_adjustment) {
1313 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1314 * GIC's target-list limitations. 32-bit KVM hosts currently
1315 * always create clusters of 4 CPUs, but that is expected to
1316 * change when they gain support for gicv3. When KVM is enabled
1317 * it will override the changes we make here, therefore our
1318 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1319 * and to improve SGI efficiency.
1320 */
1321 uint8_t aff1 = n / clustersz;
1322 uint8_t aff0 = n % clustersz;
1323 object_property_set_int(cpuobj, (aff1 << ARM_AFF1_SHIFT) | aff0,
1324 "mp-affinity", NULL);
1325 }
f313369f 1326
e5a5604f
GB
1327 if (!vms->secure) {
1328 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1329 }
1330
c25bd18a
PM
1331 if (object_property_find(cpuobj, "has_el2", NULL)) {
1332 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1333 }
1334
2013c566
PM
1335 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1336 object_property_set_int(cpuobj, vms->psci_conduit,
4824a61a 1337 "psci-conduit", NULL);
211b0169 1338
4824a61a
PM
1339 /* Secondary CPUs start in PSCI powered-down state */
1340 if (n > 0) {
1341 object_property_set_bool(cpuobj, true,
1342 "start-powered-off", NULL);
1343 }
f5fdcd6e 1344 }
ba750085 1345
1141d1eb
WH
1346 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1347 object_property_set_bool(cpuobj, false, "pmu", NULL);
1348 }
1349
ba750085 1350 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
c8ef2bda 1351 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
ba750085
PM
1352 "reset-cbar", &error_abort);
1353 }
1354
1d939a68
PM
1355 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1356 &error_abort);
3df708eb
PM
1357 if (vms->secure) {
1358 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1359 "secure-memory", &error_abort);
1360 }
1d939a68 1361
f5fdcd6e
PM
1362 object_property_set_bool(cpuobj, true, "realized", NULL);
1363 }
055a7f2b 1364 fdt_add_timer_nodes(vms);
c8ef2bda
PM
1365 fdt_add_cpu_nodes(vms);
1366 fdt_add_psci_node(vms);
f5fdcd6e 1367
c8623c02
DM
1368 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1369 machine->ram_size);
c8ef2bda 1370 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
f5fdcd6e 1371
c8ef2bda 1372 create_flash(vms, sysmem, secure_sysmem ? secure_sysmem : sysmem);
acf82361 1373
055a7f2b 1374 create_gic(vms, pic);
f5fdcd6e 1375
055a7f2b 1376 fdt_add_pmu_nodes(vms);
01fe6b60 1377
c8ef2bda 1378 create_uart(vms, pic, VIRT_UART, sysmem, serial_hds[0]);
3df708eb
PM
1379
1380 if (vms->secure) {
c8ef2bda
PM
1381 create_secure_ram(vms, secure_sysmem);
1382 create_uart(vms, pic, VIRT_SECURE_UART, secure_sysmem, serial_hds[1]);
3df708eb 1383 }
f5fdcd6e 1384
c8ef2bda 1385 create_rtc(vms, pic);
6e411af9 1386
0127937b 1387 create_pcie(vms, pic);
4ab29b82 1388
c8ef2bda 1389 create_gpio(vms, pic);
b0a3721e 1390
f5fdcd6e
PM
1391 /* Create mmio transports, so the user can create virtio backends
1392 * (which will be automatically plugged in to the transports). If
1393 * no backend is created the transport will just sit harmlessly idle.
1394 */
c8ef2bda 1395 create_virtio_devices(vms, pic);
f5fdcd6e 1396
af1f60a4
AJ
1397 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1398 rom_set_fw(vms->fw_cfg);
d7c2e2db 1399
054f4dc9
AJ
1400 vms->machine_done.notify = virt_machine_done;
1401 qemu_add_machine_init_done_notifier(&vms->machine_done);
578f3c7b 1402
c8ef2bda
PM
1403 vms->bootinfo.ram_size = machine->ram_size;
1404 vms->bootinfo.kernel_filename = machine->kernel_filename;
1405 vms->bootinfo.kernel_cmdline = machine->kernel_cmdline;
1406 vms->bootinfo.initrd_filename = machine->initrd_filename;
1407 vms->bootinfo.nb_cpus = smp_cpus;
1408 vms->bootinfo.board_id = -1;
1409 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1410 vms->bootinfo.get_dtb = machvirt_dtb;
1411 vms->bootinfo.firmware_loaded = firmware_loaded;
1412 arm_load_kernel(ARM_CPU(first_cpu), &vms->bootinfo);
5f7a5a0e
EA
1413
1414 /*
1415 * arm_load_kernel machine init done notifier registration must
1416 * happen before the platform_bus_create call. In this latter,
1417 * another notifier is registered which adds platform bus nodes.
1418 * Notifiers are executed in registration reverse order.
1419 */
c8ef2bda 1420 create_platform_bus(vms, pic);
f5fdcd6e
PM
1421}
1422
083a5890
GB
1423static bool virt_get_secure(Object *obj, Error **errp)
1424{
1425 VirtMachineState *vms = VIRT_MACHINE(obj);
1426
1427 return vms->secure;
1428}
1429
1430static void virt_set_secure(Object *obj, bool value, Error **errp)
1431{
1432 VirtMachineState *vms = VIRT_MACHINE(obj);
1433
1434 vms->secure = value;
1435}
1436
5125f9cd
PF
1437static bool virt_get_highmem(Object *obj, Error **errp)
1438{
1439 VirtMachineState *vms = VIRT_MACHINE(obj);
1440
1441 return vms->highmem;
1442}
1443
1444static void virt_set_highmem(Object *obj, bool value, Error **errp)
1445{
1446 VirtMachineState *vms = VIRT_MACHINE(obj);
1447
1448 vms->highmem = value;
1449}
1450
b92ad394
PF
1451static char *virt_get_gic_version(Object *obj, Error **errp)
1452{
1453 VirtMachineState *vms = VIRT_MACHINE(obj);
1454 const char *val = vms->gic_version == 3 ? "3" : "2";
1455
1456 return g_strdup(val);
1457}
1458
1459static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1460{
1461 VirtMachineState *vms = VIRT_MACHINE(obj);
1462
1463 if (!strcmp(value, "3")) {
1464 vms->gic_version = 3;
1465 } else if (!strcmp(value, "2")) {
1466 vms->gic_version = 2;
1467 } else if (!strcmp(value, "host")) {
1468 vms->gic_version = 0; /* Will probe later */
1469 } else {
7b55044f
MA
1470 error_setg(errp, "Invalid gic-version value");
1471 error_append_hint(errp, "Valid values are 3, 2, host.\n");
b92ad394
PF
1472 }
1473}
1474
ed796373
WH
1475static void virt_machine_class_init(ObjectClass *oc, void *data)
1476{
9c94d8e6
WH
1477 MachineClass *mc = MACHINE_CLASS(oc);
1478
1479 mc->init = machvirt_init;
1480 /* Start max_cpus at the maximum QEMU supports. We'll further restrict
1481 * it later in machvirt_init, where we have more information about the
1482 * configuration of the particular instance.
1483 */
079019f2 1484 mc->max_cpus = 255;
9c94d8e6
WH
1485 mc->has_dynamic_sysbus = true;
1486 mc->block_default_type = IF_VIRTIO;
1487 mc->no_cdrom = 1;
1488 mc->pci_allow_0_address = true;
a2519ad1
PM
1489 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
1490 mc->minimum_page_bits = 12;
ed796373
WH
1491}
1492
1493static const TypeInfo virt_machine_info = {
1494 .name = TYPE_VIRT_MACHINE,
1495 .parent = TYPE_MACHINE,
1496 .abstract = true,
1497 .instance_size = sizeof(VirtMachineState),
1498 .class_size = sizeof(VirtMachineClass),
1499 .class_init = virt_machine_class_init,
1500};
1501
7a2ecd95
AJ
1502static void machvirt_machine_init(void)
1503{
1504 type_register_static(&virt_machine_info);
1505}
1506type_init(machvirt_machine_init);
1507
e353aac5 1508static void virt_2_9_instance_init(Object *obj)
083a5890
GB
1509{
1510 VirtMachineState *vms = VIRT_MACHINE(obj);
1511
2d710006
PM
1512 /* EL3 is disabled by default on virt: this makes us consistent
1513 * between KVM and TCG for this board, and it also allows us to
1514 * boot UEFI blobs which assume no TrustZone support.
1515 */
1516 vms->secure = false;
083a5890
GB
1517 object_property_add_bool(obj, "secure", virt_get_secure,
1518 virt_set_secure, NULL);
1519 object_property_set_description(obj, "secure",
1520 "Set on/off to enable/disable the ARM "
1521 "Security Extensions (TrustZone)",
1522 NULL);
5125f9cd
PF
1523
1524 /* High memory is enabled by default */
1525 vms->highmem = true;
1526 object_property_add_bool(obj, "highmem", virt_get_highmem,
1527 virt_set_highmem, NULL);
1528 object_property_set_description(obj, "highmem",
1529 "Set on/off to enable/disable using "
1530 "physical address space above 32 bits",
1531 NULL);
b92ad394
PF
1532 /* Default GIC type is v2 */
1533 vms->gic_version = 2;
1534 object_property_add_str(obj, "gic-version", virt_get_gic_version,
1535 virt_set_gic_version, NULL);
1536 object_property_set_description(obj, "gic-version",
1537 "Set GIC version. "
1538 "Valid values are 2, 3 and host", NULL);
9ac4ef77
PM
1539
1540 vms->memmap = a15memmap;
1541 vms->irqmap = a15irqmap;
083a5890
GB
1542}
1543
e353aac5
PM
1544static void virt_machine_2_9_options(MachineClass *mc)
1545{
1546}
1547DEFINE_VIRT_MACHINE_AS_LATEST(2, 9)
1548
1549#define VIRT_COMPAT_2_8 \
1550 HW_COMPAT_2_8
1551
1552static void virt_2_8_instance_init(Object *obj)
1553{
1554 virt_2_9_instance_init(obj);
1555}
1556
96b0439b
AJ
1557static void virt_machine_2_8_options(MachineClass *mc)
1558{
156bc9a5
PM
1559 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1560
e353aac5
PM
1561 virt_machine_2_9_options(mc);
1562 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_8);
156bc9a5
PM
1563 /* For 2.8 and earlier we falsely claimed in the DT that
1564 * our timers were edge-triggered, not level-triggered.
1565 */
1566 vmc->claim_edge_triggered_timers = true;
96b0439b 1567}
e353aac5 1568DEFINE_VIRT_MACHINE(2, 8)
96b0439b
AJ
1569
1570#define VIRT_COMPAT_2_7 \
1571 HW_COMPAT_2_7
1572
1573static void virt_2_7_instance_init(Object *obj)
1574{
1575 virt_2_8_instance_init(obj);
1576}
1577
1287f2b3
AJ
1578static void virt_machine_2_7_options(MachineClass *mc)
1579{
2231f69b
AJ
1580 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1581
96b0439b
AJ
1582 virt_machine_2_8_options(mc);
1583 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_7);
2231f69b
AJ
1584 /* ITS was introduced with 2.8 */
1585 vmc->no_its = true;
a2519ad1
PM
1586 /* Stick with 1K pages for migration compatibility */
1587 mc->minimum_page_bits = 0;
1287f2b3 1588}
96b0439b 1589DEFINE_VIRT_MACHINE(2, 7)
1287f2b3
AJ
1590
1591#define VIRT_COMPAT_2_6 \
1592 HW_COMPAT_2_6
1593
1594static void virt_2_6_instance_init(Object *obj)
1595{
1596 virt_2_7_instance_init(obj);
1597}
1598
ab093c3c 1599static void virt_machine_2_6_options(MachineClass *mc)
c2919690 1600{
95eb49c8
AJ
1601 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
1602
1287f2b3
AJ
1603 virt_machine_2_7_options(mc);
1604 SET_MACHINE_COMPAT(mc, VIRT_COMPAT_2_6);
95eb49c8 1605 vmc->disallow_affinity_adjustment = true;
1141d1eb
WH
1606 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
1607 vmc->no_pmu = true;
c2919690 1608}
1287f2b3 1609DEFINE_VIRT_MACHINE(2, 6)