]> git.proxmox.com Git - mirror_qemu.git/blame - hw/arm/virt.c
target/arm/kvm: Implement virtual time adjustment
[mirror_qemu.git] / hw / arm / virt.c
CommitLineData
f5fdcd6e
PM
1/*
2 * ARM mach-virt emulation
3 *
4 * Copyright (c) 2013 Linaro Limited
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
17 *
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
29 */
30
12b16722 31#include "qemu/osdep.h"
a8d25326 32#include "qemu-common.h"
350a9c9e 33#include "qemu/units.h"
e0561e60 34#include "qemu/option.h"
da34e65c 35#include "qapi/error.h"
f5fdcd6e 36#include "hw/sysbus.h"
12e9493d 37#include "hw/boards.h"
12ec8bd5 38#include "hw/arm/boot.h"
f5fdcd6e 39#include "hw/arm/primecell.h"
afe0b380 40#include "hw/arm/virt.h"
81c7db72 41#include "hw/block/flash.h"
6f2062b9
EH
42#include "hw/vfio/vfio-calxeda-xgmac.h"
43#include "hw/vfio/vfio-amd-xgbe.h"
94692dcd 44#include "hw/display/ramfb.h"
f5fdcd6e
PM
45#include "net/net.h"
46#include "sysemu/device_tree.h"
9695200a 47#include "sysemu/numa.h"
54d31236 48#include "sysemu/runstate.h"
f5fdcd6e
PM
49#include "sysemu/sysemu.h"
50#include "sysemu/kvm.h"
acf82361 51#include "hw/loader.h"
f5fdcd6e
PM
52#include "exec/address-spaces.h"
53#include "qemu/bitops.h"
54#include "qemu/error-report.h"
0b8fa32f 55#include "qemu/module.h"
4ab29b82 56#include "hw/pci-host/gpex.h"
5f7a5a0e
EA
57#include "hw/arm/sysbus-fdt.h"
58#include "hw/platform-bus.h"
a27bd6c7 59#include "hw/qdev-properties.h"
decf4f80 60#include "hw/arm/fdt.h"
95eb49c8
AJ
61#include "hw/intc/arm_gic.h"
62#include "hw/intc/arm_gicv3_common.h"
64552b6b 63#include "hw/irq.h"
e6fbcbc4 64#include "kvm_arm.h"
a2eb5c0c 65#include "hw/firmware/smbios.h"
b92ad394 66#include "qapi/visitor.h"
3e6ebb64 67#include "standard-headers/linux/input.h"
584105ea 68#include "hw/arm/smmuv3.h"
957e32cf 69#include "hw/acpi/acpi.h"
2ba956cc 70#include "target/arm/internals.h"
1f283ae1
EA
71#include "hw/mem/pc-dimm.h"
72#include "hw/mem/nvdimm.h"
cff51ac9 73#include "hw/acpi/generic_event_device.h"
f5fdcd6e 74
3356ebce 75#define DEFINE_VIRT_MACHINE_LATEST(major, minor, latest) \
ab093c3c
AJ
76 static void virt_##major##_##minor##_class_init(ObjectClass *oc, \
77 void *data) \
78 { \
79 MachineClass *mc = MACHINE_CLASS(oc); \
80 virt_machine_##major##_##minor##_options(mc); \
81 mc->desc = "QEMU " # major "." # minor " ARM Virtual Machine"; \
3356ebce
AJ
82 if (latest) { \
83 mc->alias = "virt"; \
84 } \
ab093c3c
AJ
85 } \
86 static const TypeInfo machvirt_##major##_##minor##_info = { \
87 .name = MACHINE_TYPE_NAME("virt-" # major "." # minor), \
88 .parent = TYPE_VIRT_MACHINE, \
ab093c3c
AJ
89 .class_init = virt_##major##_##minor##_class_init, \
90 }; \
91 static void machvirt_machine_##major##_##minor##_init(void) \
92 { \
93 type_register_static(&machvirt_##major##_##minor##_info); \
94 } \
95 type_init(machvirt_machine_##major##_##minor##_init);
96
3356ebce
AJ
97#define DEFINE_VIRT_MACHINE_AS_LATEST(major, minor) \
98 DEFINE_VIRT_MACHINE_LATEST(major, minor, true)
99#define DEFINE_VIRT_MACHINE(major, minor) \
100 DEFINE_VIRT_MACHINE_LATEST(major, minor, false)
101
ab093c3c 102
a72d4363
AJ
103/* Number of external interrupt lines to configure the GIC with */
104#define NUM_IRQS 256
105
106#define PLATFORM_BUS_NUM_IRQS 64
107
50a17297 108/* Legacy RAM limit in GB (< version 4.0) */
957e32cf
EA
109#define LEGACY_RAMLIMIT_GB 255
110#define LEGACY_RAMLIMIT_BYTES (LEGACY_RAMLIMIT_GB * GiB)
71c27684 111
f5fdcd6e
PM
112/* Addresses and sizes of our components.
113 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
114 * 128MB..256MB is used for miscellaneous device I/O.
115 * 256MB..1GB is reserved for possible future PCI support (ie where the
116 * PCI memory window will go if we add a PCI host controller).
117 * 1GB and up is RAM (which may happily spill over into the
118 * high memory region beyond 4GB).
119 * This represents a compromise between how much RAM can be given to
120 * a 32 bit VM and leaving space for expansion and in particular for PCI.
6e411af9
PM
121 * Note that devices should generally be placed at multiples of 0x10000,
122 * to accommodate guests using 64K pages.
f5fdcd6e 123 */
350a9c9e 124static const MemMapEntry base_memmap[] = {
f5fdcd6e 125 /* Space up to 0x8000000 is reserved for a boot ROM */
94edf02c
EA
126 [VIRT_FLASH] = { 0, 0x08000000 },
127 [VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
f5fdcd6e 128 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
94edf02c
EA
129 [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
130 [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
131 [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
55ef3233
LM
132 [VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
133 [VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
b92ad394
PF
134 /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
135 [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
136 /* This redistributor space allows up to 2*64kB*123 CPUs */
137 [VIRT_GIC_REDIST] = { 0x080A0000, 0x00F60000 },
94edf02c
EA
138 [VIRT_UART] = { 0x09000000, 0x00001000 },
139 [VIRT_RTC] = { 0x09010000, 0x00001000 },
0b341a85 140 [VIRT_FW_CFG] = { 0x09020000, 0x00000018 },
b0a3721e 141 [VIRT_GPIO] = { 0x09030000, 0x00001000 },
3df708eb 142 [VIRT_SECURE_UART] = { 0x09040000, 0x00001000 },
584105ea 143 [VIRT_SMMU] = { 0x09050000, 0x00020000 },
cff51ac9
SK
144 [VIRT_PCDIMM_ACPI] = { 0x09070000, MEMORY_HOTPLUG_IO_LEN },
145 [VIRT_ACPI_GED] = { 0x09080000, ACPI_GED_EVT_SEL_LEN },
94edf02c 146 [VIRT_MMIO] = { 0x0a000000, 0x00000200 },
f5fdcd6e 147 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
94edf02c 148 [VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
83ec1923 149 [VIRT_SECURE_MEM] = { 0x0e000000, 0x01000000 },
94edf02c
EA
150 [VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
151 [VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
152 [VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
957e32cf
EA
153 /* Actual RAM size depends on initial RAM and device memory settings */
154 [VIRT_MEM] = { GiB, LEGACY_RAMLIMIT_BYTES },
350a9c9e
EA
155};
156
157/*
158 * Highmem IO Regions: This memory map is floating, located after the RAM.
159 * Each MemMapEntry base (GPA) will be dynamically computed, depending on the
160 * top of the RAM, so that its base get the same alignment as the size,
161 * ie. a 512GiB entry will be aligned on a 512GiB boundary. If there is
162 * less than 256GiB of RAM, the floating area starts at the 256GiB mark.
163 * Note the extended_memmap is sized so that it eventually also includes the
164 * base_memmap entries (VIRT_HIGH_GIC_REDIST2 index is greater than the last
165 * index of base_memmap).
166 */
167static MemMapEntry extended_memmap[] = {
f90747c4 168 /* Additional 64 MB redist region (can contain up to 512 redistributors) */
350a9c9e
EA
169 [VIRT_HIGH_GIC_REDIST2] = { 0x0, 64 * MiB },
170 [VIRT_HIGH_PCIE_ECAM] = { 0x0, 256 * MiB },
171 /* Second PCIe window */
172 [VIRT_HIGH_PCIE_MMIO] = { 0x0, 512 * GiB },
f5fdcd6e
PM
173};
174
175static const int a15irqmap[] = {
176 [VIRT_UART] = 1,
6e411af9 177 [VIRT_RTC] = 2,
4ab29b82 178 [VIRT_PCIE] = 3, /* ... to 6 */
b0a3721e 179 [VIRT_GPIO] = 7,
3df708eb 180 [VIRT_SECURE_UART] = 8,
cff51ac9 181 [VIRT_ACPI_GED] = 9,
f5fdcd6e 182 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
bd204e63 183 [VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
584105ea 184 [VIRT_SMMU] = 74, /* ...to 74 + NUM_SMMU_IRQS - 1 */
5f7a5a0e 185 [VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
f5fdcd6e
PM
186};
187
9ac4ef77 188static const char *valid_cpus[] = {
4414942e 189 ARM_CPU_TYPE_NAME("cortex-a7"),
ba1ba5cc
IM
190 ARM_CPU_TYPE_NAME("cortex-a15"),
191 ARM_CPU_TYPE_NAME("cortex-a53"),
192 ARM_CPU_TYPE_NAME("cortex-a57"),
2264faa5 193 ARM_CPU_TYPE_NAME("cortex-a72"),
ba1ba5cc 194 ARM_CPU_TYPE_NAME("host"),
9076ddb3 195 ARM_CPU_TYPE_NAME("max"),
f5fdcd6e
PM
196};
197
ba1ba5cc 198static bool cpu_type_valid(const char *cpu)
f5fdcd6e
PM
199{
200 int i;
201
9ac4ef77
PM
202 for (i = 0; i < ARRAY_SIZE(valid_cpus); i++) {
203 if (strcmp(cpu, valid_cpus[i]) == 0) {
204 return true;
f5fdcd6e
PM
205 }
206 }
9ac4ef77 207 return false;
f5fdcd6e
PM
208}
209
c8ef2bda 210static void create_fdt(VirtMachineState *vms)
f5fdcd6e 211{
aa570207
TX
212 MachineState *ms = MACHINE(vms);
213 int nb_numa_nodes = ms->numa_state->num_nodes;
c8ef2bda 214 void *fdt = create_device_tree(&vms->fdt_size);
f5fdcd6e
PM
215
216 if (!fdt) {
217 error_report("create_device_tree() failed");
218 exit(1);
219 }
220
c8ef2bda 221 vms->fdt = fdt;
f5fdcd6e
PM
222
223 /* Header */
5a4348d1
PC
224 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
225 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
226 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
f5fdcd6e 227
e2eb3d29 228 /* /chosen must exist for load_dtb to fill in necessary properties later */
5a4348d1 229 qemu_fdt_add_subnode(fdt, "/chosen");
f5fdcd6e
PM
230
231 /* Clock node, for the benefit of the UART. The kernel device tree
232 * binding documentation claims the PL011 node clock properties are
233 * optional but in practice if you omit them the kernel refuses to
234 * probe for the device.
235 */
c8ef2bda 236 vms->clock_phandle = qemu_fdt_alloc_phandle(fdt);
5a4348d1
PC
237 qemu_fdt_add_subnode(fdt, "/apb-pclk");
238 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
239 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
240 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
241 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
f5fdcd6e 242 "clk24mhz");
c8ef2bda 243 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vms->clock_phandle);
f5fdcd6e 244
118154b7 245 if (nb_numa_nodes > 0 && ms->numa_state->have_numa_distance) {
c7637c04
AJ
246 int size = nb_numa_nodes * nb_numa_nodes * 3 * sizeof(uint32_t);
247 uint32_t *matrix = g_malloc0(size);
248 int idx, i, j;
249
250 for (i = 0; i < nb_numa_nodes; i++) {
251 for (j = 0; j < nb_numa_nodes; j++) {
252 idx = (i * nb_numa_nodes + j) * 3;
253 matrix[idx + 0] = cpu_to_be32(i);
254 matrix[idx + 1] = cpu_to_be32(j);
7e721e7b
TX
255 matrix[idx + 2] =
256 cpu_to_be32(ms->numa_state->nodes[i].distance[j]);
c7637c04
AJ
257 }
258 }
259
260 qemu_fdt_add_subnode(fdt, "/distance-map");
261 qemu_fdt_setprop_string(fdt, "/distance-map", "compatible",
262 "numa-distance-map-v1");
263 qemu_fdt_setprop(fdt, "/distance-map", "distance-matrix",
264 matrix, size);
265 g_free(matrix);
266 }
06955739
PS
267}
268
055a7f2b 269static void fdt_add_timer_nodes(const VirtMachineState *vms)
f5fdcd6e 270{
156bc9a5
PM
271 /* On real hardware these interrupts are level-triggered.
272 * On KVM they were edge-triggered before host kernel version 4.4,
273 * and level-triggered afterwards.
274 * On emulated QEMU they are level-triggered.
275 *
276 * Getting the DTB info about them wrong is awkward for some
277 * guest kernels:
278 * pre-4.8 ignore the DT and leave the interrupt configured
279 * with whatever the GIC reset value (or the bootloader) left it at
280 * 4.8 before rc6 honour the incorrect data by programming it back
281 * into the GIC, causing problems
282 * 4.8rc6 and later ignore the DT and always write "level triggered"
283 * into the GIC
284 *
285 * For backwards-compatibility, virt-2.8 and earlier will continue
286 * to say these are edge-triggered, but later machines will report
287 * the correct information.
f5fdcd6e 288 */
b32a9509 289 ARMCPU *armcpu;
156bc9a5
PM
290 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
291 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
292
293 if (vmc->claim_edge_triggered_timers) {
294 irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
295 }
f5fdcd6e 296
055a7f2b 297 if (vms->gic_version == 2) {
b92ad394
PF
298 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
299 GIC_FDT_IRQ_PPI_CPU_WIDTH,
c8ef2bda 300 (1 << vms->smp_cpus) - 1);
b92ad394 301 }
f5fdcd6e 302
c8ef2bda 303 qemu_fdt_add_subnode(vms->fdt, "/timer");
b32a9509
CF
304
305 armcpu = ARM_CPU(qemu_get_cpu(0));
306 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
307 const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
c8ef2bda 308 qemu_fdt_setprop(vms->fdt, "/timer", "compatible",
b32a9509
CF
309 compat, sizeof(compat));
310 } else {
c8ef2bda 311 qemu_fdt_setprop_string(vms->fdt, "/timer", "compatible",
b32a9509
CF
312 "arm,armv7-timer");
313 }
c8ef2bda
PM
314 qemu_fdt_setprop(vms->fdt, "/timer", "always-on", NULL, 0);
315 qemu_fdt_setprop_cells(vms->fdt, "/timer", "interrupts",
ee246400
SZ
316 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
317 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
318 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
319 GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
f5fdcd6e
PM
320}
321
c8ef2bda 322static void fdt_add_cpu_nodes(const VirtMachineState *vms)
f5fdcd6e
PM
323{
324 int cpu;
8d45c54d 325 int addr_cells = 1;
4ccf5826 326 const MachineState *ms = MACHINE(vms);
8d45c54d
PF
327
328 /*
329 * From Documentation/devicetree/bindings/arm/cpus.txt
330 * On ARM v8 64-bit systems value should be set to 2,
331 * that corresponds to the MPIDR_EL1 register size.
332 * If MPIDR_EL1[63:32] value is equal to 0 on all CPUs
333 * in the system, #address-cells can be set to 1, since
334 * MPIDR_EL1[63:32] bits are not used for CPUs
335 * identification.
336 *
337 * Here we actually don't know whether our system is 32- or 64-bit one.
338 * The simplest way to go is to examine affinity IDs of all our CPUs. If
339 * at least one of them has Aff3 populated, we set #address-cells to 2.
340 */
c8ef2bda 341 for (cpu = 0; cpu < vms->smp_cpus; cpu++) {
8d45c54d
PF
342 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
343
344 if (armcpu->mp_affinity & ARM_AFF3_MASK) {
345 addr_cells = 2;
346 break;
347 }
348 }
f5fdcd6e 349
c8ef2bda
PM
350 qemu_fdt_add_subnode(vms->fdt, "/cpus");
351 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#address-cells", addr_cells);
352 qemu_fdt_setprop_cell(vms->fdt, "/cpus", "#size-cells", 0x0);
f5fdcd6e 353
c8ef2bda 354 for (cpu = vms->smp_cpus - 1; cpu >= 0; cpu--) {
f5fdcd6e
PM
355 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
356 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
4ccf5826 357 CPUState *cs = CPU(armcpu);
f5fdcd6e 358
c8ef2bda
PM
359 qemu_fdt_add_subnode(vms->fdt, nodename);
360 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "cpu");
361 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
f5fdcd6e
PM
362 armcpu->dtb_compatible);
363
2013c566
PM
364 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED
365 && vms->smp_cpus > 1) {
c8ef2bda 366 qemu_fdt_setprop_string(vms->fdt, nodename,
f5fdcd6e
PM
367 "enable-method", "psci");
368 }
369
8d45c54d 370 if (addr_cells == 2) {
c8ef2bda 371 qemu_fdt_setprop_u64(vms->fdt, nodename, "reg",
8d45c54d
PF
372 armcpu->mp_affinity);
373 } else {
c8ef2bda 374 qemu_fdt_setprop_cell(vms->fdt, nodename, "reg",
8d45c54d
PF
375 armcpu->mp_affinity);
376 }
377
4ccf5826
IM
378 if (ms->possible_cpus->cpus[cs->cpu_index].props.has_node_id) {
379 qemu_fdt_setprop_cell(vms->fdt, nodename, "numa-node-id",
380 ms->possible_cpus->cpus[cs->cpu_index].props.node_id);
9695200a
SZ
381 }
382
f5fdcd6e
PM
383 g_free(nodename);
384 }
385}
386
c8ef2bda 387static void fdt_add_its_gic_node(VirtMachineState *vms)
02f98731 388{
bb2a3348
EA
389 char *nodename;
390
c8ef2bda 391 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
bb2a3348
EA
392 nodename = g_strdup_printf("/intc/its@%" PRIx64,
393 vms->memmap[VIRT_GIC_ITS].base);
394 qemu_fdt_add_subnode(vms->fdt, nodename);
395 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
02f98731 396 "arm,gic-v3-its");
bb2a3348
EA
397 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
398 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
c8ef2bda
PM
399 2, vms->memmap[VIRT_GIC_ITS].base,
400 2, vms->memmap[VIRT_GIC_ITS].size);
bb2a3348
EA
401 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
402 g_free(nodename);
02f98731
PF
403}
404
c8ef2bda 405static void fdt_add_v2m_gic_node(VirtMachineState *vms)
f5fdcd6e 406{
bb2a3348
EA
407 char *nodename;
408
409 nodename = g_strdup_printf("/intc/v2m@%" PRIx64,
410 vms->memmap[VIRT_GIC_V2M].base);
c8ef2bda 411 vms->msi_phandle = qemu_fdt_alloc_phandle(vms->fdt);
bb2a3348
EA
412 qemu_fdt_add_subnode(vms->fdt, nodename);
413 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
bd204e63 414 "arm,gic-v2m-frame");
bb2a3348
EA
415 qemu_fdt_setprop(vms->fdt, nodename, "msi-controller", NULL, 0);
416 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
c8ef2bda
PM
417 2, vms->memmap[VIRT_GIC_V2M].base,
418 2, vms->memmap[VIRT_GIC_V2M].size);
bb2a3348
EA
419 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->msi_phandle);
420 g_free(nodename);
bd204e63 421}
f5fdcd6e 422
055a7f2b 423static void fdt_add_gic_node(VirtMachineState *vms)
bd204e63 424{
bb2a3348
EA
425 char *nodename;
426
c8ef2bda
PM
427 vms->gic_phandle = qemu_fdt_alloc_phandle(vms->fdt);
428 qemu_fdt_setprop_cell(vms->fdt, "/", "interrupt-parent", vms->gic_phandle);
429
bb2a3348
EA
430 nodename = g_strdup_printf("/intc@%" PRIx64,
431 vms->memmap[VIRT_GIC_DIST].base);
432 qemu_fdt_add_subnode(vms->fdt, nodename);
433 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 3);
434 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-controller", NULL, 0);
435 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 0x2);
436 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 0x2);
437 qemu_fdt_setprop(vms->fdt, nodename, "ranges", NULL, 0);
055a7f2b 438 if (vms->gic_version == 3) {
f90747c4
EA
439 int nb_redist_regions = virt_gicv3_redist_region_count(vms);
440
bb2a3348 441 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
b92ad394 442 "arm,gic-v3");
f90747c4 443
bb2a3348 444 qemu_fdt_setprop_cell(vms->fdt, nodename,
f90747c4
EA
445 "#redistributor-regions", nb_redist_regions);
446
447 if (nb_redist_regions == 1) {
bb2a3348 448 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
f90747c4
EA
449 2, vms->memmap[VIRT_GIC_DIST].base,
450 2, vms->memmap[VIRT_GIC_DIST].size,
451 2, vms->memmap[VIRT_GIC_REDIST].base,
452 2, vms->memmap[VIRT_GIC_REDIST].size);
453 } else {
bb2a3348 454 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
bf424a12
EA
455 2, vms->memmap[VIRT_GIC_DIST].base,
456 2, vms->memmap[VIRT_GIC_DIST].size,
457 2, vms->memmap[VIRT_GIC_REDIST].base,
458 2, vms->memmap[VIRT_GIC_REDIST].size,
459 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].base,
460 2, vms->memmap[VIRT_HIGH_GIC_REDIST2].size);
f90747c4
EA
461 }
462
f29cacfb 463 if (vms->virt) {
bb2a3348 464 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
55ef3233 465 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
f29cacfb
PM
466 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
467 }
b92ad394
PF
468 } else {
469 /* 'cortex-a15-gic' means 'GIC v2' */
bb2a3348 470 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
b92ad394 471 "arm,cortex-a15-gic");
55ef3233
LM
472 if (!vms->virt) {
473 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
474 2, vms->memmap[VIRT_GIC_DIST].base,
475 2, vms->memmap[VIRT_GIC_DIST].size,
476 2, vms->memmap[VIRT_GIC_CPU].base,
477 2, vms->memmap[VIRT_GIC_CPU].size);
478 } else {
479 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
480 2, vms->memmap[VIRT_GIC_DIST].base,
481 2, vms->memmap[VIRT_GIC_DIST].size,
482 2, vms->memmap[VIRT_GIC_CPU].base,
483 2, vms->memmap[VIRT_GIC_CPU].size,
484 2, vms->memmap[VIRT_GIC_HYP].base,
485 2, vms->memmap[VIRT_GIC_HYP].size,
486 2, vms->memmap[VIRT_GIC_VCPU].base,
487 2, vms->memmap[VIRT_GIC_VCPU].size);
488 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
489 GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
490 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
491 }
b92ad394
PF
492 }
493
bb2a3348
EA
494 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
495 g_free(nodename);
f5fdcd6e
PM
496}
497
055a7f2b 498static void fdt_add_pmu_nodes(const VirtMachineState *vms)
01fe6b60
SZ
499{
500 CPUState *cpu;
501 ARMCPU *armcpu;
502 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
503
504 CPU_FOREACH(cpu) {
505 armcpu = ARM_CPU(cpu);
3f07cb2a 506 if (!arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
01fe6b60
SZ
507 return;
508 }
3f07cb2a 509 if (kvm_enabled()) {
b2bfe9f7
AJ
510 if (kvm_irqchip_in_kernel()) {
511 kvm_arm_pmu_set_irq(cpu, PPI(VIRTUAL_PMU_IRQ));
3f07cb2a 512 }
b2bfe9f7 513 kvm_arm_pmu_init(cpu);
3f07cb2a 514 }
01fe6b60
SZ
515 }
516
055a7f2b 517 if (vms->gic_version == 2) {
01fe6b60
SZ
518 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
519 GIC_FDT_IRQ_PPI_CPU_WIDTH,
c8ef2bda 520 (1 << vms->smp_cpus) - 1);
01fe6b60
SZ
521 }
522
523 armcpu = ARM_CPU(qemu_get_cpu(0));
c8ef2bda 524 qemu_fdt_add_subnode(vms->fdt, "/pmu");
01fe6b60
SZ
525 if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
526 const char compat[] = "arm,armv8-pmuv3";
c8ef2bda 527 qemu_fdt_setprop(vms->fdt, "/pmu", "compatible",
01fe6b60 528 compat, sizeof(compat));
c8ef2bda 529 qemu_fdt_setprop_cells(vms->fdt, "/pmu", "interrupts",
01fe6b60
SZ
530 GIC_FDT_IRQ_TYPE_PPI, VIRTUAL_PMU_IRQ, irqflags);
531 }
532}
533
b8b69f4c 534static inline DeviceState *create_acpi_ged(VirtMachineState *vms)
cff51ac9
SK
535{
536 DeviceState *dev;
537 MachineState *ms = MACHINE(vms);
538 int irq = vms->irqmap[VIRT_ACPI_GED];
1962f31b 539 uint32_t event = ACPI_GED_PWR_DOWN_EVT;
cff51ac9
SK
540
541 if (ms->ram_slots) {
1962f31b 542 event |= ACPI_GED_MEM_HOTPLUG_EVT;
cff51ac9
SK
543 }
544
545 dev = qdev_create(NULL, TYPE_ACPI_GED);
546 qdev_prop_set_uint32(dev, "ged-event", event);
547
548 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_ACPI_GED].base);
549 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 1, vms->memmap[VIRT_PCDIMM_ACPI].base);
b8b69f4c 550 sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0, qdev_get_gpio_in(vms->gic, irq));
cff51ac9
SK
551
552 qdev_init_nofail(dev);
553
554 return dev;
555}
556
b8b69f4c 557static void create_its(VirtMachineState *vms)
02f98731
PF
558{
559 const char *itsclass = its_class_name();
560 DeviceState *dev;
561
562 if (!itsclass) {
563 /* Do nothing if not supported */
564 return;
565 }
566
567 dev = qdev_create(NULL, itsclass);
568
b8b69f4c 569 object_property_set_link(OBJECT(dev), OBJECT(vms->gic), "parent-gicv3",
02f98731
PF
570 &error_abort);
571 qdev_init_nofail(dev);
c8ef2bda 572 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_ITS].base);
02f98731 573
c8ef2bda 574 fdt_add_its_gic_node(vms);
02f98731
PF
575}
576
b8b69f4c 577static void create_v2m(VirtMachineState *vms)
bd204e63
CD
578{
579 int i;
c8ef2bda 580 int irq = vms->irqmap[VIRT_GIC_V2M];
bd204e63
CD
581 DeviceState *dev;
582
583 dev = qdev_create(NULL, "arm-gicv2m");
c8ef2bda 584 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vms->memmap[VIRT_GIC_V2M].base);
bd204e63
CD
585 qdev_prop_set_uint32(dev, "base-spi", irq);
586 qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
587 qdev_init_nofail(dev);
588
589 for (i = 0; i < NUM_GICV2M_SPIS; i++) {
b8b69f4c
PMD
590 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
591 qdev_get_gpio_in(vms->gic, irq + i));
bd204e63
CD
592 }
593
c8ef2bda 594 fdt_add_v2m_gic_node(vms);
bd204e63
CD
595}
596
b8b69f4c 597static void create_gic(VirtMachineState *vms)
64204743 598{
cc7d44c2 599 MachineState *ms = MACHINE(vms);
b92ad394 600 /* We create a standalone GIC */
64204743 601 SysBusDevice *gicbusdev;
e6fbcbc4 602 const char *gictype;
055a7f2b 603 int type = vms->gic_version, i;
cc7d44c2 604 unsigned int smp_cpus = ms->smp.cpus;
03d72fa1 605 uint32_t nb_redist_regions = 0;
64204743 606
b92ad394 607 gictype = (type == 3) ? gicv3_class_name() : gic_class_name();
64204743 608
b8b69f4c
PMD
609 vms->gic = qdev_create(NULL, gictype);
610 qdev_prop_set_uint32(vms->gic, "revision", type);
611 qdev_prop_set_uint32(vms->gic, "num-cpu", smp_cpus);
64204743
PM
612 /* Note that the num-irq property counts both internal and external
613 * interrupts; there are always 32 of the former (mandated by GIC spec).
614 */
b8b69f4c 615 qdev_prop_set_uint32(vms->gic, "num-irq", NUM_IRQS + 32);
0e21f183 616 if (!kvm_irqchip_in_kernel()) {
b8b69f4c 617 qdev_prop_set_bit(vms->gic, "has-security-extensions", vms->secure);
0e21f183 618 }
1e575b66
EA
619
620 if (type == 3) {
621 uint32_t redist0_capacity =
622 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
623 uint32_t redist0_count = MIN(smp_cpus, redist0_capacity);
624
03d72fa1
EA
625 nb_redist_regions = virt_gicv3_redist_region_count(vms);
626
b8b69f4c 627 qdev_prop_set_uint32(vms->gic, "len-redist-region-count",
03d72fa1 628 nb_redist_regions);
b8b69f4c 629 qdev_prop_set_uint32(vms->gic, "redist-region-count[0]", redist0_count);
03d72fa1
EA
630
631 if (nb_redist_regions == 2) {
632 uint32_t redist1_capacity =
bf424a12 633 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
03d72fa1 634
b8b69f4c 635 qdev_prop_set_uint32(vms->gic, "redist-region-count[1]",
03d72fa1
EA
636 MIN(smp_cpus - redist0_count, redist1_capacity));
637 }
55ef3233
LM
638 } else {
639 if (!kvm_irqchip_in_kernel()) {
b8b69f4c 640 qdev_prop_set_bit(vms->gic, "has-virtualization-extensions",
55ef3233
LM
641 vms->virt);
642 }
1e575b66 643 }
b8b69f4c
PMD
644 qdev_init_nofail(vms->gic);
645 gicbusdev = SYS_BUS_DEVICE(vms->gic);
c8ef2bda 646 sysbus_mmio_map(gicbusdev, 0, vms->memmap[VIRT_GIC_DIST].base);
b92ad394 647 if (type == 3) {
c8ef2bda 648 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_REDIST].base);
03d72fa1 649 if (nb_redist_regions == 2) {
bf424a12
EA
650 sysbus_mmio_map(gicbusdev, 2,
651 vms->memmap[VIRT_HIGH_GIC_REDIST2].base);
03d72fa1 652 }
b92ad394 653 } else {
c8ef2bda 654 sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
55ef3233
LM
655 if (vms->virt) {
656 sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
657 sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
658 }
b92ad394 659 }
64204743 660
5454006a
PM
661 /* Wire the outputs from each CPU's generic timer and the GICv3
662 * maintenance interrupt signal to the appropriate GIC PPI inputs,
663 * and the GIC's IRQ/FIQ/VIRQ/VFIQ interrupt outputs to the CPU's inputs.
64204743
PM
664 */
665 for (i = 0; i < smp_cpus; i++) {
666 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
0e3e858f 667 int ppibase = NUM_IRQS + i * GIC_INTERNAL + GIC_NR_SGIS;
a007b1f8
PM
668 int irq;
669 /* Mapping from the output timer irq lines from the CPU to the
670 * GIC PPI inputs we use for the virt board.
64204743 671 */
a007b1f8
PM
672 const int timer_irq[] = {
673 [GTIMER_PHYS] = ARCH_TIMER_NS_EL1_IRQ,
674 [GTIMER_VIRT] = ARCH_TIMER_VIRT_IRQ,
675 [GTIMER_HYP] = ARCH_TIMER_NS_EL2_IRQ,
676 [GTIMER_SEC] = ARCH_TIMER_S_EL1_IRQ,
677 };
678
679 for (irq = 0; irq < ARRAY_SIZE(timer_irq); irq++) {
680 qdev_connect_gpio_out(cpudev, irq,
b8b69f4c 681 qdev_get_gpio_in(vms->gic,
a007b1f8
PM
682 ppibase + timer_irq[irq]));
683 }
64204743 684
55ef3233 685 if (type == 3) {
b8b69f4c 686 qemu_irq irq = qdev_get_gpio_in(vms->gic,
55ef3233
LM
687 ppibase + ARCH_GIC_MAINT_IRQ);
688 qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
689 0, irq);
690 } else if (vms->virt) {
b8b69f4c 691 qemu_irq irq = qdev_get_gpio_in(vms->gic,
55ef3233
LM
692 ppibase + ARCH_GIC_MAINT_IRQ);
693 sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
694 }
695
07f48730 696 qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
b8b69f4c 697 qdev_get_gpio_in(vms->gic, ppibase
07f48730 698 + VIRTUAL_PMU_IRQ));
5454006a 699
64204743 700 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
8e7b4ca0
GB
701 sysbus_connect_irq(gicbusdev, i + smp_cpus,
702 qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
5454006a
PM
703 sysbus_connect_irq(gicbusdev, i + 2 * smp_cpus,
704 qdev_get_gpio_in(cpudev, ARM_CPU_VIRQ));
705 sysbus_connect_irq(gicbusdev, i + 3 * smp_cpus,
706 qdev_get_gpio_in(cpudev, ARM_CPU_VFIQ));
64204743
PM
707 }
708
055a7f2b 709 fdt_add_gic_node(vms);
bd204e63 710
ccc11b02 711 if (type == 3 && vms->its) {
b8b69f4c 712 create_its(vms);
2231f69b 713 } else if (type == 2) {
b8b69f4c 714 create_v2m(vms);
b92ad394 715 }
64204743
PM
716}
717
b8b69f4c 718static void create_uart(const VirtMachineState *vms, int uart,
0ec7b3e7 719 MemoryRegion *mem, Chardev *chr)
f5fdcd6e
PM
720{
721 char *nodename;
c8ef2bda
PM
722 hwaddr base = vms->memmap[uart].base;
723 hwaddr size = vms->memmap[uart].size;
724 int irq = vms->irqmap[uart];
f5fdcd6e
PM
725 const char compat[] = "arm,pl011\0arm,primecell";
726 const char clocknames[] = "uartclk\0apb_pclk";
3df708eb
PM
727 DeviceState *dev = qdev_create(NULL, "pl011");
728 SysBusDevice *s = SYS_BUS_DEVICE(dev);
f5fdcd6e 729
9bbbf649 730 qdev_prop_set_chr(dev, "chardev", chr);
3df708eb
PM
731 qdev_init_nofail(dev);
732 memory_region_add_subregion(mem, base,
733 sysbus_mmio_get_region(s, 0));
b8b69f4c 734 sysbus_connect_irq(s, 0, qdev_get_gpio_in(vms->gic, irq));
f5fdcd6e
PM
735
736 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
c8ef2bda 737 qemu_fdt_add_subnode(vms->fdt, nodename);
f5fdcd6e 738 /* Note that we can't use setprop_string because of the embedded NUL */
c8ef2bda 739 qemu_fdt_setprop(vms->fdt, nodename, "compatible",
f5fdcd6e 740 compat, sizeof(compat));
c8ef2bda 741 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
f5fdcd6e 742 2, base, 2, size);
c8ef2bda 743 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
f5fdcd6e 744 GIC_FDT_IRQ_TYPE_SPI, irq,
0be969a2 745 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
c8ef2bda
PM
746 qemu_fdt_setprop_cells(vms->fdt, nodename, "clocks",
747 vms->clock_phandle, vms->clock_phandle);
748 qemu_fdt_setprop(vms->fdt, nodename, "clock-names",
f5fdcd6e 749 clocknames, sizeof(clocknames));
f022b8e9 750
3df708eb 751 if (uart == VIRT_UART) {
c8ef2bda 752 qemu_fdt_setprop_string(vms->fdt, "/chosen", "stdout-path", nodename);
3df708eb
PM
753 } else {
754 /* Mark as not usable by the normal world */
c8ef2bda
PM
755 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
756 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
fb23d693
JF
757
758 qemu_fdt_add_subnode(vms->fdt, "/secure-chosen");
759 qemu_fdt_setprop_string(vms->fdt, "/secure-chosen", "stdout-path",
760 nodename);
3df708eb
PM
761 }
762
f5fdcd6e
PM
763 g_free(nodename);
764}
765
b8b69f4c 766static void create_rtc(const VirtMachineState *vms)
6e411af9
PM
767{
768 char *nodename;
c8ef2bda
PM
769 hwaddr base = vms->memmap[VIRT_RTC].base;
770 hwaddr size = vms->memmap[VIRT_RTC].size;
771 int irq = vms->irqmap[VIRT_RTC];
6e411af9
PM
772 const char compat[] = "arm,pl031\0arm,primecell";
773
b8b69f4c 774 sysbus_create_simple("pl031", base, qdev_get_gpio_in(vms->gic, irq));
6e411af9
PM
775
776 nodename = g_strdup_printf("/pl031@%" PRIx64, base);
c8ef2bda
PM
777 qemu_fdt_add_subnode(vms->fdt, nodename);
778 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
779 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
6e411af9 780 2, base, 2, size);
c8ef2bda 781 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
6e411af9 782 GIC_FDT_IRQ_TYPE_SPI, irq,
0be969a2 783 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
c8ef2bda
PM
784 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
785 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
6e411af9
PM
786 g_free(nodename);
787}
788
94f02c5e 789static DeviceState *gpio_key_dev;
4bedd849
SZ
790static void virt_powerdown_req(Notifier *n, void *opaque)
791{
1962f31b
SK
792 VirtMachineState *s = container_of(n, VirtMachineState, powerdown_notifier);
793
794 if (s->acpi_dev) {
795 acpi_send_event(s->acpi_dev, ACPI_POWER_DOWN_STATUS);
796 } else {
797 /* use gpio Pin 3 for power button event */
798 qemu_set_irq(qdev_get_gpio_in(gpio_key_dev, 0), 1);
799 }
4bedd849
SZ
800}
801
b8b69f4c 802static void create_gpio(const VirtMachineState *vms)
b0a3721e
SZ
803{
804 char *nodename;
94f02c5e 805 DeviceState *pl061_dev;
c8ef2bda
PM
806 hwaddr base = vms->memmap[VIRT_GPIO].base;
807 hwaddr size = vms->memmap[VIRT_GPIO].size;
808 int irq = vms->irqmap[VIRT_GPIO];
b0a3721e
SZ
809 const char compat[] = "arm,pl061\0arm,primecell";
810
b8b69f4c
PMD
811 pl061_dev = sysbus_create_simple("pl061", base,
812 qdev_get_gpio_in(vms->gic, irq));
b0a3721e 813
c8ef2bda 814 uint32_t phandle = qemu_fdt_alloc_phandle(vms->fdt);
b0a3721e 815 nodename = g_strdup_printf("/pl061@%" PRIx64, base);
c8ef2bda
PM
816 qemu_fdt_add_subnode(vms->fdt, nodename);
817 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
b0a3721e 818 2, base, 2, size);
c8ef2bda
PM
819 qemu_fdt_setprop(vms->fdt, nodename, "compatible", compat, sizeof(compat));
820 qemu_fdt_setprop_cell(vms->fdt, nodename, "#gpio-cells", 2);
821 qemu_fdt_setprop(vms->fdt, nodename, "gpio-controller", NULL, 0);
822 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
b0a3721e
SZ
823 GIC_FDT_IRQ_TYPE_SPI, irq,
824 GIC_FDT_IRQ_FLAGS_LEVEL_HI);
c8ef2bda
PM
825 qemu_fdt_setprop_cell(vms->fdt, nodename, "clocks", vms->clock_phandle);
826 qemu_fdt_setprop_string(vms->fdt, nodename, "clock-names", "apb_pclk");
827 qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", phandle);
3e6ebb64 828
94f02c5e
SZ
829 gpio_key_dev = sysbus_create_simple("gpio-key", -1,
830 qdev_get_gpio_in(pl061_dev, 3));
c8ef2bda
PM
831 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys");
832 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys", "compatible", "gpio-keys");
833 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#size-cells", 0);
834 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys", "#address-cells", 1);
3e6ebb64 835
c8ef2bda
PM
836 qemu_fdt_add_subnode(vms->fdt, "/gpio-keys/poweroff");
837 qemu_fdt_setprop_string(vms->fdt, "/gpio-keys/poweroff",
3e6ebb64 838 "label", "GPIO Key Poweroff");
c8ef2bda 839 qemu_fdt_setprop_cell(vms->fdt, "/gpio-keys/poweroff", "linux,code",
3e6ebb64 840 KEY_POWER);
c8ef2bda 841 qemu_fdt_setprop_cells(vms->fdt, "/gpio-keys/poweroff",
3e6ebb64 842 "gpios", phandle, 3, 0);
b0a3721e
SZ
843 g_free(nodename);
844}
845
b8b69f4c 846static void create_virtio_devices(const VirtMachineState *vms)
f5fdcd6e
PM
847{
848 int i;
c8ef2bda 849 hwaddr size = vms->memmap[VIRT_MMIO].size;
f5fdcd6e 850
587078f0
LE
851 /* We create the transports in forwards order. Since qbus_realize()
852 * prepends (not appends) new child buses, the incrementing loop below will
853 * create a list of virtio-mmio buses with decreasing base addresses.
854 *
855 * When a -device option is processed from the command line,
856 * qbus_find_recursive() picks the next free virtio-mmio bus in forwards
857 * order. The upshot is that -device options in increasing command line
858 * order are mapped to virtio-mmio buses with decreasing base addresses.
859 *
860 * When this code was originally written, that arrangement ensured that the
861 * guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
862 * the first -device on the command line. (The end-to-end order is a
863 * function of this loop, qbus_realize(), qbus_find_recursive(), and the
864 * guest kernel's name-to-address assignment strategy.)
865 *
866 * Meanwhile, the kernel's traversal seems to have been reversed; see eg.
867 * the message, if not necessarily the code, of commit 70161ff336.
868 * Therefore the loop now establishes the inverse of the original intent.
869 *
870 * Unfortunately, we can't counteract the kernel change by reversing the
871 * loop; it would break existing command lines.
872 *
873 * In any case, the kernel makes no guarantee about the stability of
874 * enumeration order of virtio devices (as demonstrated by it changing
875 * between kernel versions). For reliable and stable identification
876 * of disks users must use UUIDs or similar mechanisms.
f5fdcd6e
PM
877 */
878 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
c8ef2bda
PM
879 int irq = vms->irqmap[VIRT_MMIO] + i;
880 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
f5fdcd6e 881
b8b69f4c
PMD
882 sysbus_create_simple("virtio-mmio", base,
883 qdev_get_gpio_in(vms->gic, irq));
f5fdcd6e
PM
884 }
885
587078f0
LE
886 /* We add dtb nodes in reverse order so that they appear in the finished
887 * device tree lowest address first.
888 *
889 * Note that this mapping is independent of the loop above. The previous
890 * loop influences virtio device to virtio transport assignment, whereas
891 * this loop controls how virtio transports are laid out in the dtb.
892 */
f5fdcd6e
PM
893 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
894 char *nodename;
c8ef2bda
PM
895 int irq = vms->irqmap[VIRT_MMIO] + i;
896 hwaddr base = vms->memmap[VIRT_MMIO].base + i * size;
f5fdcd6e
PM
897
898 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
c8ef2bda
PM
899 qemu_fdt_add_subnode(vms->fdt, nodename);
900 qemu_fdt_setprop_string(vms->fdt, nodename,
5a4348d1 901 "compatible", "virtio,mmio");
c8ef2bda 902 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
5a4348d1 903 2, base, 2, size);
c8ef2bda 904 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
5a4348d1
PC
905 GIC_FDT_IRQ_TYPE_SPI, irq,
906 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
054bb7b2 907 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
f5fdcd6e
PM
908 g_free(nodename);
909 }
910}
911
e0561e60
MA
912#define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
913
914static PFlashCFI01 *virt_flash_create1(VirtMachineState *vms,
915 const char *name,
916 const char *alias_prop_name)
acf82361 917{
e0561e60
MA
918 /*
919 * Create a single flash device. We use the same parameters as
920 * the flash devices on the Versatile Express board.
acf82361 921 */
81c7db72 922 DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
acf82361 923
e0561e60 924 qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
acf82361
PM
925 qdev_prop_set_uint8(dev, "width", 4);
926 qdev_prop_set_uint8(dev, "device-width", 2);
e9809422 927 qdev_prop_set_bit(dev, "big-endian", false);
acf82361
PM
928 qdev_prop_set_uint16(dev, "id0", 0x89);
929 qdev_prop_set_uint16(dev, "id1", 0x18);
930 qdev_prop_set_uint16(dev, "id2", 0x00);
931 qdev_prop_set_uint16(dev, "id3", 0x00);
932 qdev_prop_set_string(dev, "name", name);
e0561e60
MA
933 object_property_add_child(OBJECT(vms), name, OBJECT(dev),
934 &error_abort);
935 object_property_add_alias(OBJECT(vms), alias_prop_name,
936 OBJECT(dev), "drive", &error_abort);
937 return PFLASH_CFI01(dev);
938}
acf82361 939
e0561e60
MA
940static void virt_flash_create(VirtMachineState *vms)
941{
942 vms->flash[0] = virt_flash_create1(vms, "virt.flash0", "pflash0");
943 vms->flash[1] = virt_flash_create1(vms, "virt.flash1", "pflash1");
944}
acf82361 945
e0561e60
MA
946static void virt_flash_map1(PFlashCFI01 *flash,
947 hwaddr base, hwaddr size,
948 MemoryRegion *sysmem)
949{
950 DeviceState *dev = DEVICE(flash);
acf82361 951
e0561e60
MA
952 assert(size % VIRT_FLASH_SECTOR_SIZE == 0);
953 assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
954 qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
955 qdev_init_nofail(dev);
956
957 memory_region_add_subregion(sysmem, base,
958 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
959 0));
16f4a8dc
PM
960}
961
e0561e60
MA
962static void virt_flash_map(VirtMachineState *vms,
963 MemoryRegion *sysmem,
964 MemoryRegion *secure_sysmem)
16f4a8dc 965{
e0561e60
MA
966 /*
967 * Map two flash devices to fill the VIRT_FLASH space in the memmap.
738a5d9f
PM
968 * sysmem is the system memory space. secure_sysmem is the secure view
969 * of the system, and the first flash device should be made visible only
970 * there. The second flash device is visible to both secure and nonsecure.
971 * If sysmem == secure_sysmem this means there is no separate Secure
972 * address space and both flash devices are generally visible.
16f4a8dc 973 */
c8ef2bda
PM
974 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
975 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
acf82361 976
e0561e60
MA
977 virt_flash_map1(vms->flash[0], flashbase, flashsize,
978 secure_sysmem);
979 virt_flash_map1(vms->flash[1], flashbase + flashsize, flashsize,
980 sysmem);
981}
982
983static void virt_flash_fdt(VirtMachineState *vms,
984 MemoryRegion *sysmem,
985 MemoryRegion *secure_sysmem)
986{
987 hwaddr flashsize = vms->memmap[VIRT_FLASH].size / 2;
988 hwaddr flashbase = vms->memmap[VIRT_FLASH].base;
989 char *nodename;
acf82361 990
738a5d9f
PM
991 if (sysmem == secure_sysmem) {
992 /* Report both flash devices as a single node in the DT */
993 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
c8ef2bda
PM
994 qemu_fdt_add_subnode(vms->fdt, nodename);
995 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
996 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
738a5d9f
PM
997 2, flashbase, 2, flashsize,
998 2, flashbase + flashsize, 2, flashsize);
c8ef2bda 999 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
738a5d9f
PM
1000 g_free(nodename);
1001 } else {
e0561e60
MA
1002 /*
1003 * Report the devices as separate nodes so we can mark one as
738a5d9f
PM
1004 * only visible to the secure world.
1005 */
1006 nodename = g_strdup_printf("/secflash@%" PRIx64, flashbase);
c8ef2bda
PM
1007 qemu_fdt_add_subnode(vms->fdt, nodename);
1008 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1009 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
738a5d9f 1010 2, flashbase, 2, flashsize);
c8ef2bda
PM
1011 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
1012 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1013 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
738a5d9f
PM
1014 g_free(nodename);
1015
1016 nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
c8ef2bda
PM
1017 qemu_fdt_add_subnode(vms->fdt, nodename);
1018 qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", "cfi-flash");
1019 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
738a5d9f 1020 2, flashbase + flashsize, 2, flashsize);
c8ef2bda 1021 qemu_fdt_setprop_cell(vms->fdt, nodename, "bank-width", 4);
738a5d9f
PM
1022 g_free(nodename);
1023 }
acf82361
PM
1024}
1025
e0561e60
MA
1026static bool virt_firmware_init(VirtMachineState *vms,
1027 MemoryRegion *sysmem,
1028 MemoryRegion *secure_sysmem)
1029{
1030 int i;
1031 BlockBackend *pflash_blk0;
1032
1033 /* Map legacy -drive if=pflash to machine properties */
1034 for (i = 0; i < ARRAY_SIZE(vms->flash); i++) {
1035 pflash_cfi01_legacy_drive(vms->flash[i],
1036 drive_get(IF_PFLASH, 0, i));
1037 }
1038
1039 virt_flash_map(vms, sysmem, secure_sysmem);
1040
1041 pflash_blk0 = pflash_cfi01_get_blk(vms->flash[0]);
1042
1043 if (bios_name) {
1044 char *fname;
1045 MemoryRegion *mr;
1046 int image_size;
1047
1048 if (pflash_blk0) {
1049 error_report("The contents of the first flash device may be "
1050 "specified with -bios or with -drive if=pflash... "
1051 "but you cannot use both options at once");
1052 exit(1);
1053 }
1054
1055 /* Fall back to -bios */
1056
1057 fname = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
1058 if (!fname) {
1059 error_report("Could not find ROM image '%s'", bios_name);
1060 exit(1);
1061 }
1062 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(vms->flash[0]), 0);
1063 image_size = load_image_mr(fname, mr);
1064 g_free(fname);
1065 if (image_size < 0) {
1066 error_report("Could not load ROM image '%s'", bios_name);
1067 exit(1);
1068 }
1069 }
1070
1071 return pflash_blk0 || bios_name;
1072}
1073
af1f60a4 1074static FWCfgState *create_fw_cfg(const VirtMachineState *vms, AddressSpace *as)
578f3c7b 1075{
cc7d44c2 1076 MachineState *ms = MACHINE(vms);
c8ef2bda
PM
1077 hwaddr base = vms->memmap[VIRT_FW_CFG].base;
1078 hwaddr size = vms->memmap[VIRT_FW_CFG].size;
5836d168 1079 FWCfgState *fw_cfg;
578f3c7b
LE
1080 char *nodename;
1081
5836d168 1082 fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16, as);
cc7d44c2 1083 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)ms->smp.cpus);
578f3c7b
LE
1084
1085 nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
c8ef2bda
PM
1086 qemu_fdt_add_subnode(vms->fdt, nodename);
1087 qemu_fdt_setprop_string(vms->fdt, nodename,
578f3c7b 1088 "compatible", "qemu,fw-cfg-mmio");
c8ef2bda 1089 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
578f3c7b 1090 2, base, 2, size);
14efdb5c 1091 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
578f3c7b 1092 g_free(nodename);
af1f60a4 1093 return fw_cfg;
578f3c7b
LE
1094}
1095
c8ef2bda 1096static void create_pcie_irq_map(const VirtMachineState *vms,
9ac4ef77 1097 uint32_t gic_phandle,
4ab29b82
AG
1098 int first_irq, const char *nodename)
1099{
1100 int devfn, pin;
dfd90a87 1101 uint32_t full_irq_map[4 * 4 * 10] = { 0 };
4ab29b82
AG
1102 uint32_t *irq_map = full_irq_map;
1103
1104 for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
1105 for (pin = 0; pin < 4; pin++) {
1106 int irq_type = GIC_FDT_IRQ_TYPE_SPI;
1107 int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
1108 int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
1109 int i;
1110
1111 uint32_t map[] = {
1112 devfn << 8, 0, 0, /* devfn */
1113 pin + 1, /* PCI pin */
dfd90a87 1114 gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
4ab29b82
AG
1115
1116 /* Convert map to big endian */
dfd90a87 1117 for (i = 0; i < 10; i++) {
4ab29b82
AG
1118 irq_map[i] = cpu_to_be32(map[i]);
1119 }
dfd90a87 1120 irq_map += 10;
4ab29b82
AG
1121 }
1122 }
1123
c8ef2bda 1124 qemu_fdt_setprop(vms->fdt, nodename, "interrupt-map",
4ab29b82
AG
1125 full_irq_map, sizeof(full_irq_map));
1126
c8ef2bda 1127 qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupt-map-mask",
4ab29b82
AG
1128 0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
1129 0x7 /* PCI irq */);
1130}
1131
b8b69f4c 1132static void create_smmu(const VirtMachineState *vms,
584105ea
PM
1133 PCIBus *bus)
1134{
1135 char *node;
1136 const char compat[] = "arm,smmu-v3";
1137 int irq = vms->irqmap[VIRT_SMMU];
1138 int i;
1139 hwaddr base = vms->memmap[VIRT_SMMU].base;
1140 hwaddr size = vms->memmap[VIRT_SMMU].size;
1141 const char irq_names[] = "eventq\0priq\0cmdq-sync\0gerror";
1142 DeviceState *dev;
1143
1144 if (vms->iommu != VIRT_IOMMU_SMMUV3 || !vms->iommu_phandle) {
1145 return;
1146 }
1147
1148 dev = qdev_create(NULL, "arm-smmuv3");
1149
1150 object_property_set_link(OBJECT(dev), OBJECT(bus), "primary-bus",
1151 &error_abort);
1152 qdev_init_nofail(dev);
1153 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
1154 for (i = 0; i < NUM_SMMU_IRQS; i++) {
b8b69f4c
PMD
1155 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1156 qdev_get_gpio_in(vms->gic, irq + i));
584105ea
PM
1157 }
1158
1159 node = g_strdup_printf("/smmuv3@%" PRIx64, base);
1160 qemu_fdt_add_subnode(vms->fdt, node);
1161 qemu_fdt_setprop(vms->fdt, node, "compatible", compat, sizeof(compat));
1162 qemu_fdt_setprop_sized_cells(vms->fdt, node, "reg", 2, base, 2, size);
1163
1164 qemu_fdt_setprop_cells(vms->fdt, node, "interrupts",
1165 GIC_FDT_IRQ_TYPE_SPI, irq , GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1166 GIC_FDT_IRQ_TYPE_SPI, irq + 1, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1167 GIC_FDT_IRQ_TYPE_SPI, irq + 2, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI,
1168 GIC_FDT_IRQ_TYPE_SPI, irq + 3, GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
1169
1170 qemu_fdt_setprop(vms->fdt, node, "interrupt-names", irq_names,
1171 sizeof(irq_names));
1172
1173 qemu_fdt_setprop_cell(vms->fdt, node, "clocks", vms->clock_phandle);
1174 qemu_fdt_setprop_string(vms->fdt, node, "clock-names", "apb_pclk");
1175 qemu_fdt_setprop(vms->fdt, node, "dma-coherent", NULL, 0);
1176
1177 qemu_fdt_setprop_cell(vms->fdt, node, "#iommu-cells", 1);
1178
1179 qemu_fdt_setprop_cell(vms->fdt, node, "phandle", vms->iommu_phandle);
1180 g_free(node);
1181}
1182
b8b69f4c 1183static void create_pcie(VirtMachineState *vms)
4ab29b82 1184{
c8ef2bda
PM
1185 hwaddr base_mmio = vms->memmap[VIRT_PCIE_MMIO].base;
1186 hwaddr size_mmio = vms->memmap[VIRT_PCIE_MMIO].size;
bf424a12
EA
1187 hwaddr base_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].base;
1188 hwaddr size_mmio_high = vms->memmap[VIRT_HIGH_PCIE_MMIO].size;
c8ef2bda
PM
1189 hwaddr base_pio = vms->memmap[VIRT_PCIE_PIO].base;
1190 hwaddr size_pio = vms->memmap[VIRT_PCIE_PIO].size;
601d626d 1191 hwaddr base_ecam, size_ecam;
6a1f001b 1192 hwaddr base = base_mmio;
601d626d 1193 int nr_pcie_buses;
c8ef2bda 1194 int irq = vms->irqmap[VIRT_PCIE];
4ab29b82
AG
1195 MemoryRegion *mmio_alias;
1196 MemoryRegion *mmio_reg;
1197 MemoryRegion *ecam_alias;
1198 MemoryRegion *ecam_reg;
1199 DeviceState *dev;
1200 char *nodename;
601d626d 1201 int i, ecam_id;
fea9b3ca 1202 PCIHostState *pci;
4ab29b82 1203
4ab29b82
AG
1204 dev = qdev_create(NULL, TYPE_GPEX_HOST);
1205 qdev_init_nofail(dev);
1206
601d626d
EA
1207 ecam_id = VIRT_ECAM_ID(vms->highmem_ecam);
1208 base_ecam = vms->memmap[ecam_id].base;
1209 size_ecam = vms->memmap[ecam_id].size;
1210 nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
4ab29b82
AG
1211 /* Map only the first size_ecam bytes of ECAM space */
1212 ecam_alias = g_new0(MemoryRegion, 1);
1213 ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
1214 memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
1215 ecam_reg, 0, size_ecam);
1216 memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
1217
1218 /* Map the MMIO window into system address space so as to expose
1219 * the section of PCI MMIO space which starts at the same base address
1220 * (ie 1:1 mapping for that part of PCI MMIO space visible through
1221 * the window).
1222 */
1223 mmio_alias = g_new0(MemoryRegion, 1);
1224 mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
1225 memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
1226 mmio_reg, base_mmio, size_mmio);
1227 memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
1228
0127937b 1229 if (vms->highmem) {
5125f9cd
PF
1230 /* Map high MMIO space */
1231 MemoryRegion *high_mmio_alias = g_new0(MemoryRegion, 1);
1232
1233 memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
1234 mmio_reg, base_mmio_high, size_mmio_high);
1235 memory_region_add_subregion(get_system_memory(), base_mmio_high,
1236 high_mmio_alias);
1237 }
1238
4ab29b82 1239 /* Map IO port space */
6a1f001b 1240 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
4ab29b82
AG
1241
1242 for (i = 0; i < GPEX_NUM_IRQS; i++) {
b8b69f4c
PMD
1243 sysbus_connect_irq(SYS_BUS_DEVICE(dev), i,
1244 qdev_get_gpio_in(vms->gic, irq + i));
c9bb8e16 1245 gpex_set_irq_num(GPEX_HOST(dev), i, irq + i);
4ab29b82
AG
1246 }
1247
fea9b3ca
AK
1248 pci = PCI_HOST_BRIDGE(dev);
1249 if (pci->bus) {
1250 for (i = 0; i < nb_nics; i++) {
1251 NICInfo *nd = &nd_table[i];
1252
1253 if (!nd->model) {
1254 nd->model = g_strdup("virtio");
1255 }
1256
1257 pci_nic_init_nofail(nd, pci->bus, nd->model, NULL);
1258 }
1259 }
1260
4ab29b82 1261 nodename = g_strdup_printf("/pcie@%" PRIx64, base);
c8ef2bda
PM
1262 qemu_fdt_add_subnode(vms->fdt, nodename);
1263 qemu_fdt_setprop_string(vms->fdt, nodename,
4ab29b82 1264 "compatible", "pci-host-ecam-generic");
c8ef2bda
PM
1265 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "pci");
1266 qemu_fdt_setprop_cell(vms->fdt, nodename, "#address-cells", 3);
1267 qemu_fdt_setprop_cell(vms->fdt, nodename, "#size-cells", 2);
6d9c1b8d 1268 qemu_fdt_setprop_cell(vms->fdt, nodename, "linux,pci-domain", 0);
c8ef2bda 1269 qemu_fdt_setprop_cells(vms->fdt, nodename, "bus-range", 0,
4ab29b82 1270 nr_pcie_buses - 1);
c8ef2bda 1271 qemu_fdt_setprop(vms->fdt, nodename, "dma-coherent", NULL, 0);
4ab29b82 1272
c8ef2bda
PM
1273 if (vms->msi_phandle) {
1274 qemu_fdt_setprop_cells(vms->fdt, nodename, "msi-parent",
1275 vms->msi_phandle);
b92ad394 1276 }
bd204e63 1277
c8ef2bda 1278 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
4ab29b82 1279 2, base_ecam, 2, size_ecam);
5125f9cd 1280
0127937b 1281 if (vms->highmem) {
c8ef2bda 1282 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
5125f9cd
PF
1283 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1284 2, base_pio, 2, size_pio,
1285 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1286 2, base_mmio, 2, size_mmio,
1287 1, FDT_PCI_RANGE_MMIO_64BIT,
1288 2, base_mmio_high,
1289 2, base_mmio_high, 2, size_mmio_high);
1290 } else {
c8ef2bda 1291 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "ranges",
5125f9cd
PF
1292 1, FDT_PCI_RANGE_IOPORT, 2, 0,
1293 2, base_pio, 2, size_pio,
1294 1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
1295 2, base_mmio, 2, size_mmio);
1296 }
4ab29b82 1297
c8ef2bda
PM
1298 qemu_fdt_setprop_cell(vms->fdt, nodename, "#interrupt-cells", 1);
1299 create_pcie_irq_map(vms, vms->gic_phandle, irq, nodename);
4ab29b82 1300
584105ea
PM
1301 if (vms->iommu) {
1302 vms->iommu_phandle = qemu_fdt_alloc_phandle(vms->fdt);
1303
b8b69f4c 1304 create_smmu(vms, pci->bus);
584105ea
PM
1305
1306 qemu_fdt_setprop_cells(vms->fdt, nodename, "iommu-map",
1307 0x0, vms->iommu_phandle, 0x0, 0x10000);
1308 }
1309
4ab29b82
AG
1310 g_free(nodename);
1311}
1312
b8b69f4c 1313static void create_platform_bus(VirtMachineState *vms)
5f7a5a0e
EA
1314{
1315 DeviceState *dev;
1316 SysBusDevice *s;
1317 int i;
5f7a5a0e
EA
1318 MemoryRegion *sysmem = get_system_memory();
1319
5f7a5a0e
EA
1320 dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
1321 dev->id = TYPE_PLATFORM_BUS_DEVICE;
3b77f6c3
IM
1322 qdev_prop_set_uint32(dev, "num_irqs", PLATFORM_BUS_NUM_IRQS);
1323 qdev_prop_set_uint32(dev, "mmio_size", vms->memmap[VIRT_PLATFORM_BUS].size);
5f7a5a0e 1324 qdev_init_nofail(dev);
a3fc8396 1325 vms->platform_bus_dev = dev;
5f7a5a0e 1326
3b77f6c3
IM
1327 s = SYS_BUS_DEVICE(dev);
1328 for (i = 0; i < PLATFORM_BUS_NUM_IRQS; i++) {
b8b69f4c
PMD
1329 int irq = vms->irqmap[VIRT_PLATFORM_BUS] + i;
1330 sysbus_connect_irq(s, i, qdev_get_gpio_in(vms->gic, irq));
5f7a5a0e
EA
1331 }
1332
1333 memory_region_add_subregion(sysmem,
3b77f6c3 1334 vms->memmap[VIRT_PLATFORM_BUS].base,
5f7a5a0e
EA
1335 sysbus_mmio_get_region(s, 0));
1336}
1337
c8ef2bda 1338static void create_secure_ram(VirtMachineState *vms,
9ac4ef77 1339 MemoryRegion *secure_sysmem)
83ec1923
PM
1340{
1341 MemoryRegion *secram = g_new(MemoryRegion, 1);
1342 char *nodename;
c8ef2bda
PM
1343 hwaddr base = vms->memmap[VIRT_SECURE_MEM].base;
1344 hwaddr size = vms->memmap[VIRT_SECURE_MEM].size;
83ec1923 1345
98a99ce0
PM
1346 memory_region_init_ram(secram, NULL, "virt.secure-ram", size,
1347 &error_fatal);
83ec1923
PM
1348 memory_region_add_subregion(secure_sysmem, base, secram);
1349
1350 nodename = g_strdup_printf("/secram@%" PRIx64, base);
c8ef2bda
PM
1351 qemu_fdt_add_subnode(vms->fdt, nodename);
1352 qemu_fdt_setprop_string(vms->fdt, nodename, "device_type", "memory");
1353 qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", 2, base, 2, size);
1354 qemu_fdt_setprop_string(vms->fdt, nodename, "status", "disabled");
1355 qemu_fdt_setprop_string(vms->fdt, nodename, "secure-status", "okay");
83ec1923
PM
1356
1357 g_free(nodename);
1358}
1359
f5fdcd6e
PM
1360static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
1361{
9ac4ef77
PM
1362 const VirtMachineState *board = container_of(binfo, VirtMachineState,
1363 bootinfo);
f5fdcd6e
PM
1364
1365 *fdt_size = board->fdt_size;
1366 return board->fdt;
1367}
1368
e9a8e474 1369static void virt_build_smbios(VirtMachineState *vms)
c30e1565 1370{
dfadc3bf
WH
1371 MachineClass *mc = MACHINE_GET_CLASS(vms);
1372 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
c30e1565
WH
1373 uint8_t *smbios_tables, *smbios_anchor;
1374 size_t smbios_tables_len, smbios_anchor_len;
bab27ea2 1375 const char *product = "QEMU Virtual Machine";
c30e1565 1376
bab27ea2
AJ
1377 if (kvm_enabled()) {
1378 product = "KVM Virtual Machine";
1379 }
1380
1381 smbios_set_defaults("QEMU", product,
dfadc3bf
WH
1382 vmc->smbios_old_sys_ver ? "1.0" : mc->name, false,
1383 true, SMBIOS_ENTRY_POINT_30);
c30e1565 1384
a0628599 1385 smbios_get_tables(MACHINE(vms), NULL, 0, &smbios_tables, &smbios_tables_len,
c30e1565
WH
1386 &smbios_anchor, &smbios_anchor_len);
1387
1388 if (smbios_anchor) {
af1f60a4 1389 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-tables",
c30e1565 1390 smbios_tables, smbios_tables_len);
af1f60a4 1391 fw_cfg_add_file(vms->fw_cfg, "etc/smbios/smbios-anchor",
c30e1565
WH
1392 smbios_anchor, smbios_anchor_len);
1393 }
1394}
1395
d7c2e2db 1396static
054f4dc9 1397void virt_machine_done(Notifier *notifier, void *data)
d7c2e2db 1398{
054f4dc9
AJ
1399 VirtMachineState *vms = container_of(notifier, VirtMachineState,
1400 machine_done);
2744ece8 1401 MachineState *ms = MACHINE(vms);
3b77f6c3
IM
1402 ARMCPU *cpu = ARM_CPU(first_cpu);
1403 struct arm_boot_info *info = &vms->bootinfo;
1404 AddressSpace *as = arm_boot_address_space(cpu, info);
1405
1406 /*
1407 * If the user provided a dtb, we assume the dynamic sysbus nodes
1408 * already are integrated there. This corresponds to a use case where
1409 * the dynamic sysbus nodes are complex and their generation is not yet
1410 * supported. In that case the user can take charge of the guest dt
1411 * while qemu takes charge of the qom stuff.
1412 */
1413 if (info->dtb_filename == NULL) {
1414 platform_bus_add_all_fdt_nodes(vms->fdt, "/intc",
1415 vms->memmap[VIRT_PLATFORM_BUS].base,
1416 vms->memmap[VIRT_PLATFORM_BUS].size,
1417 vms->irqmap[VIRT_PLATFORM_BUS]);
1418 }
2744ece8 1419 if (arm_load_dtb(info->dtb_start, info, info->dtb_limit, as, ms) < 0) {
3b77f6c3
IM
1420 exit(1);
1421 }
054f4dc9 1422
e9a8e474
AJ
1423 virt_acpi_setup(vms);
1424 virt_build_smbios(vms);
d7c2e2db
SZ
1425}
1426
46de5913
IM
1427static uint64_t virt_cpu_mp_affinity(VirtMachineState *vms, int idx)
1428{
1429 uint8_t clustersz = ARM_DEFAULT_CPUS_PER_CLUSTER;
1430 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
1431
1432 if (!vmc->disallow_affinity_adjustment) {
1433 /* Adjust MPIDR like 64-bit KVM hosts, which incorporate the
1434 * GIC's target-list limitations. 32-bit KVM hosts currently
1435 * always create clusters of 4 CPUs, but that is expected to
1436 * change when they gain support for gicv3. When KVM is enabled
1437 * it will override the changes we make here, therefore our
1438 * purposes are to make TCG consistent (with 64-bit KVM hosts)
1439 * and to improve SGI efficiency.
1440 */
1441 if (vms->gic_version == 3) {
1442 clustersz = GICV3_TARGETLIST_BITS;
1443 } else {
1444 clustersz = GIC_TARGETLIST_BITS;
1445 }
1446 }
1447 return arm_cpu_mp_affinity(idx, clustersz);
1448}
1449
350a9c9e
EA
1450static void virt_set_memmap(VirtMachineState *vms)
1451{
957e32cf
EA
1452 MachineState *ms = MACHINE(vms);
1453 hwaddr base, device_memory_base, device_memory_size;
350a9c9e
EA
1454 int i;
1455
1456 vms->memmap = extended_memmap;
1457
1458 for (i = 0; i < ARRAY_SIZE(base_memmap); i++) {
1459 vms->memmap[i] = base_memmap[i];
1460 }
1461
957e32cf
EA
1462 if (ms->ram_slots > ACPI_MAX_RAM_SLOTS) {
1463 error_report("unsupported number of memory slots: %"PRIu64,
1464 ms->ram_slots);
1465 exit(EXIT_FAILURE);
1466 }
1467
1468 /*
1469 * We compute the base of the high IO region depending on the
1470 * amount of initial and device memory. The device memory start/size
1471 * is aligned on 1GiB. We never put the high IO region below 256GiB
1472 * so that if maxram_size is < 255GiB we keep the legacy memory map.
1473 * The device region size assumes 1GiB page max alignment per slot.
1474 */
1475 device_memory_base =
1476 ROUND_UP(vms->memmap[VIRT_MEM].base + ms->ram_size, GiB);
1477 device_memory_size = ms->maxram_size - ms->ram_size + ms->ram_slots * GiB;
1478
1479 /* Base address of the high IO region */
1480 base = device_memory_base + ROUND_UP(device_memory_size, GiB);
1481 if (base < device_memory_base) {
1482 error_report("maxmem/slots too huge");
1483 exit(EXIT_FAILURE);
1484 }
1485 if (base < vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES) {
1486 base = vms->memmap[VIRT_MEM].base + LEGACY_RAMLIMIT_BYTES;
1487 }
350a9c9e
EA
1488
1489 for (i = VIRT_LOWMEMMAP_LAST; i < ARRAY_SIZE(extended_memmap); i++) {
1490 hwaddr size = extended_memmap[i].size;
1491
1492 base = ROUND_UP(base, size);
1493 vms->memmap[i].base = base;
1494 vms->memmap[i].size = size;
1495 base += size;
1496 }
957e32cf
EA
1497 vms->highest_gpa = base - 1;
1498 if (device_memory_size > 0) {
1499 ms->device_memory = g_malloc0(sizeof(*ms->device_memory));
1500 ms->device_memory->base = device_memory_base;
1501 memory_region_init(&ms->device_memory->mr, OBJECT(vms),
1502 "device-memory", device_memory_size);
1503 }
350a9c9e
EA
1504}
1505
3ef96221 1506static void machvirt_init(MachineState *machine)
f5fdcd6e 1507{
e5a5604f 1508 VirtMachineState *vms = VIRT_MACHINE(machine);
95eb49c8 1509 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(machine);
17d3d0e2
IM
1510 MachineClass *mc = MACHINE_GET_CLASS(machine);
1511 const CPUArchIdList *possible_cpus;
f5fdcd6e 1512 MemoryRegion *sysmem = get_system_memory();
3df708eb 1513 MemoryRegion *secure_sysmem = NULL;
7ea686f5 1514 int n, virt_max_cpus;
f5fdcd6e 1515 MemoryRegion *ram = g_new(MemoryRegion, 1);
e0561e60 1516 bool firmware_loaded;
17ec075a 1517 bool aarch64 = true;
cff51ac9 1518 bool has_ged = !vmc->no_ged;
cc7d44c2
LX
1519 unsigned int smp_cpus = machine->smp.cpus;
1520 unsigned int max_cpus = machine->smp.max_cpus;
f5fdcd6e 1521
c9650222
EA
1522 /*
1523 * In accelerated mode, the memory map is computed earlier in kvm_type()
1524 * to create a VM with the right number of IPA bits.
1525 */
1526 if (!vms->memmap) {
1527 virt_set_memmap(vms);
1528 }
350a9c9e 1529
b92ad394
PF
1530 /* We can probe only here because during property set
1531 * KVM is not available yet
1532 */
dc16538a
PM
1533 if (vms->gic_version <= 0) {
1534 /* "host" or "max" */
0bf8039d 1535 if (!kvm_enabled()) {
dc16538a
PM
1536 if (vms->gic_version == 0) {
1537 error_report("gic-version=host requires KVM");
1538 exit(1);
1539 } else {
1540 /* "max": currently means 3 for TCG */
1541 vms->gic_version = 3;
1542 }
1543 } else {
1544 vms->gic_version = kvm_arm_vgic_probe();
1545 if (!vms->gic_version) {
1546 error_report(
1547 "Unable to determine GIC version supported by host");
1548 exit(1);
1549 }
b92ad394
PF
1550 }
1551 }
1552
ba1ba5cc
IM
1553 if (!cpu_type_valid(machine->cpu_type)) {
1554 error_report("mach-virt: CPU type %s not supported", machine->cpu_type);
f5fdcd6e
PM
1555 exit(1);
1556 }
1557
e0561e60
MA
1558 if (vms->secure) {
1559 if (kvm_enabled()) {
1560 error_report("mach-virt: KVM does not support Security extensions");
1561 exit(1);
1562 }
1563
1564 /*
1565 * The Secure view of the world is the same as the NonSecure,
1566 * but with a few extra devices. Create it as a container region
1567 * containing the system memory at low priority; any secure-only
1568 * devices go in at higher priority and take precedence.
1569 */
1570 secure_sysmem = g_new(MemoryRegion, 1);
1571 memory_region_init(secure_sysmem, OBJECT(machine), "secure-memory",
1572 UINT64_MAX);
1573 memory_region_add_subregion_overlap(secure_sysmem, 0, sysmem, -1);
1574 }
1575
1576 firmware_loaded = virt_firmware_init(vms, sysmem,
1577 secure_sysmem ?: sysmem);
1578
4824a61a
PM
1579 /* If we have an EL3 boot ROM then the assumption is that it will
1580 * implement PSCI itself, so disable QEMU's internal implementation
1581 * so it doesn't get in the way. Instead of starting secondary
1582 * CPUs in PSCI powerdown state we will start them all running and
1583 * let the boot ROM sort them out.
f29cacfb
PM
1584 * The usual case is that we do use QEMU's PSCI implementation;
1585 * if the guest has EL2 then we will use SMC as the conduit,
1586 * and otherwise we will use HVC (for backwards compatibility and
1587 * because if we're using KVM then we must use HVC).
4824a61a 1588 */
2013c566
PM
1589 if (vms->secure && firmware_loaded) {
1590 vms->psci_conduit = QEMU_PSCI_CONDUIT_DISABLED;
f29cacfb
PM
1591 } else if (vms->virt) {
1592 vms->psci_conduit = QEMU_PSCI_CONDUIT_SMC;
2013c566
PM
1593 } else {
1594 vms->psci_conduit = QEMU_PSCI_CONDUIT_HVC;
1595 }
4824a61a 1596
4b280b72
AJ
1597 /* The maximum number of CPUs depends on the GIC version, or on how
1598 * many redistributors we can fit into the memory map.
1599 */
055a7f2b 1600 if (vms->gic_version == 3) {
bf424a12
EA
1601 virt_max_cpus =
1602 vms->memmap[VIRT_GIC_REDIST].size / GICV3_REDIST_SIZE;
1603 virt_max_cpus +=
1604 vms->memmap[VIRT_HIGH_GIC_REDIST2].size / GICV3_REDIST_SIZE;
4b280b72 1605 } else {
7ea686f5 1606 virt_max_cpus = GIC_NCPU;
4b280b72
AJ
1607 }
1608
7ea686f5 1609 if (max_cpus > virt_max_cpus) {
4b280b72
AJ
1610 error_report("Number of SMP CPUs requested (%d) exceeds max CPUs "
1611 "supported by machine 'mach-virt' (%d)",
7ea686f5 1612 max_cpus, virt_max_cpus);
4b280b72
AJ
1613 exit(1);
1614 }
1615
c8ef2bda 1616 vms->smp_cpus = smp_cpus;
f5fdcd6e 1617
f29cacfb
PM
1618 if (vms->virt && kvm_enabled()) {
1619 error_report("mach-virt: KVM does not support providing "
1620 "Virtualization extensions to the guest CPU");
1621 exit(1);
1622 }
1623
c8ef2bda 1624 create_fdt(vms);
f5fdcd6e 1625
17d3d0e2
IM
1626 possible_cpus = mc->possible_cpu_arch_ids(machine);
1627 for (n = 0; n < possible_cpus->len; n++) {
1628 Object *cpuobj;
d9c34f9c 1629 CPUState *cs;
46de5913 1630
17d3d0e2
IM
1631 if (n >= smp_cpus) {
1632 break;
1633 }
1634
d342eb76 1635 cpuobj = object_new(possible_cpus->cpus[n].type);
17d3d0e2 1636 object_property_set_int(cpuobj, possible_cpus->cpus[n].arch_id,
46de5913 1637 "mp-affinity", NULL);
f313369f 1638
d9c34f9c
IM
1639 cs = CPU(cpuobj);
1640 cs->cpu_index = n;
1641
a0ceb640
IM
1642 numa_cpu_pre_plug(&possible_cpus->cpus[cs->cpu_index], DEVICE(cpuobj),
1643 &error_fatal);
bd4c1bfe 1644
17ec075a
EA
1645 aarch64 &= object_property_get_bool(cpuobj, "aarch64", NULL);
1646
e5a5604f
GB
1647 if (!vms->secure) {
1648 object_property_set_bool(cpuobj, false, "has_el3", NULL);
1649 }
1650
f29cacfb 1651 if (!vms->virt && object_property_find(cpuobj, "has_el2", NULL)) {
c25bd18a
PM
1652 object_property_set_bool(cpuobj, false, "has_el2", NULL);
1653 }
1654
2013c566
PM
1655 if (vms->psci_conduit != QEMU_PSCI_CONDUIT_DISABLED) {
1656 object_property_set_int(cpuobj, vms->psci_conduit,
4824a61a 1657 "psci-conduit", NULL);
211b0169 1658
4824a61a
PM
1659 /* Secondary CPUs start in PSCI powered-down state */
1660 if (n > 0) {
1661 object_property_set_bool(cpuobj, true,
1662 "start-powered-off", NULL);
1663 }
f5fdcd6e 1664 }
ba750085 1665
1141d1eb
WH
1666 if (vmc->no_pmu && object_property_find(cpuobj, "pmu", NULL)) {
1667 object_property_set_bool(cpuobj, false, "pmu", NULL);
1668 }
1669
ba750085 1670 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
c8ef2bda 1671 object_property_set_int(cpuobj, vms->memmap[VIRT_CPUPERIPHS].base,
ba750085
PM
1672 "reset-cbar", &error_abort);
1673 }
1674
1d939a68
PM
1675 object_property_set_link(cpuobj, OBJECT(sysmem), "memory",
1676 &error_abort);
3df708eb
PM
1677 if (vms->secure) {
1678 object_property_set_link(cpuobj, OBJECT(secure_sysmem),
1679 "secure-memory", &error_abort);
1680 }
1d939a68 1681
c88bc3e0 1682 object_property_set_bool(cpuobj, true, "realized", &error_fatal);
dbb74759 1683 object_unref(cpuobj);
f5fdcd6e 1684 }
055a7f2b 1685 fdt_add_timer_nodes(vms);
c8ef2bda 1686 fdt_add_cpu_nodes(vms);
f5fdcd6e 1687
2ba956cc
EA
1688 if (!kvm_enabled()) {
1689 ARMCPU *cpu = ARM_CPU(first_cpu);
1690 bool aarch64 = object_property_get_bool(OBJECT(cpu), "aarch64", NULL);
1691
1692 if (aarch64 && vms->highmem) {
1693 int requested_pa_size, pamax = arm_pamax(cpu);
1694
1695 requested_pa_size = 64 - clz64(vms->highest_gpa);
1696 if (pamax < requested_pa_size) {
1697 error_report("VCPU supports less PA bits (%d) than requested "
1698 "by the memory map (%d)", pamax, requested_pa_size);
1699 exit(1);
1700 }
1701 }
1702 }
1703
c8623c02
DM
1704 memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
1705 machine->ram_size);
c8ef2bda 1706 memory_region_add_subregion(sysmem, vms->memmap[VIRT_MEM].base, ram);
957e32cf
EA
1707 if (machine->device_memory) {
1708 memory_region_add_subregion(sysmem, machine->device_memory->base,
1709 &machine->device_memory->mr);
1710 }
f5fdcd6e 1711
80734cbd 1712 virt_flash_fdt(vms, sysmem, secure_sysmem ?: sysmem);
acf82361 1713
b8b69f4c 1714 create_gic(vms);
f5fdcd6e 1715
055a7f2b 1716 fdt_add_pmu_nodes(vms);
01fe6b60 1717
b8b69f4c 1718 create_uart(vms, VIRT_UART, sysmem, serial_hd(0));
3df708eb
PM
1719
1720 if (vms->secure) {
c8ef2bda 1721 create_secure_ram(vms, secure_sysmem);
b8b69f4c 1722 create_uart(vms, VIRT_SECURE_UART, secure_sysmem, serial_hd(1));
3df708eb 1723 }
f5fdcd6e 1724
17ec075a
EA
1725 vms->highmem_ecam &= vms->highmem && (!firmware_loaded || aarch64);
1726
b8b69f4c 1727 create_rtc(vms);
6e411af9 1728
b8b69f4c 1729 create_pcie(vms);
4ab29b82 1730
cff51ac9 1731 if (has_ged && aarch64 && firmware_loaded && acpi_enabled) {
b8b69f4c 1732 vms->acpi_dev = create_acpi_ged(vms);
1962f31b 1733 } else {
b8b69f4c 1734 create_gpio(vms);
cff51ac9
SK
1735 }
1736
c345680c
SK
1737 /* connect powerdown request */
1738 vms->powerdown_notifier.notify = virt_powerdown_req;
1739 qemu_register_powerdown_notifier(&vms->powerdown_notifier);
1740
f5fdcd6e
PM
1741 /* Create mmio transports, so the user can create virtio backends
1742 * (which will be automatically plugged in to the transports). If
1743 * no backend is created the transport will just sit harmlessly idle.
1744 */
b8b69f4c 1745 create_virtio_devices(vms);
f5fdcd6e 1746
af1f60a4
AJ
1747 vms->fw_cfg = create_fw_cfg(vms, &address_space_memory);
1748 rom_set_fw(vms->fw_cfg);
d7c2e2db 1749
b8b69f4c 1750 create_platform_bus(vms);
578f3c7b 1751
c8ef2bda 1752 vms->bootinfo.ram_size = machine->ram_size;
c8ef2bda
PM
1753 vms->bootinfo.nb_cpus = smp_cpus;
1754 vms->bootinfo.board_id = -1;
1755 vms->bootinfo.loader_start = vms->memmap[VIRT_MEM].base;
1756 vms->bootinfo.get_dtb = machvirt_dtb;
3b77f6c3 1757 vms->bootinfo.skip_dtb_autoload = true;
c8ef2bda 1758 vms->bootinfo.firmware_loaded = firmware_loaded;
2744ece8 1759 arm_load_kernel(ARM_CPU(first_cpu), machine, &vms->bootinfo);
5f7a5a0e 1760
3b77f6c3
IM
1761 vms->machine_done.notify = virt_machine_done;
1762 qemu_add_machine_init_done_notifier(&vms->machine_done);
f5fdcd6e
PM
1763}
1764
083a5890
GB
1765static bool virt_get_secure(Object *obj, Error **errp)
1766{
1767 VirtMachineState *vms = VIRT_MACHINE(obj);
1768
1769 return vms->secure;
1770}
1771
1772static void virt_set_secure(Object *obj, bool value, Error **errp)
1773{
1774 VirtMachineState *vms = VIRT_MACHINE(obj);
1775
1776 vms->secure = value;
1777}
1778
f29cacfb
PM
1779static bool virt_get_virt(Object *obj, Error **errp)
1780{
1781 VirtMachineState *vms = VIRT_MACHINE(obj);
1782
1783 return vms->virt;
1784}
1785
1786static void virt_set_virt(Object *obj, bool value, Error **errp)
1787{
1788 VirtMachineState *vms = VIRT_MACHINE(obj);
1789
1790 vms->virt = value;
1791}
1792
5125f9cd
PF
1793static bool virt_get_highmem(Object *obj, Error **errp)
1794{
1795 VirtMachineState *vms = VIRT_MACHINE(obj);
1796
1797 return vms->highmem;
1798}
1799
1800static void virt_set_highmem(Object *obj, bool value, Error **errp)
1801{
1802 VirtMachineState *vms = VIRT_MACHINE(obj);
1803
1804 vms->highmem = value;
1805}
1806
ccc11b02
EA
1807static bool virt_get_its(Object *obj, Error **errp)
1808{
1809 VirtMachineState *vms = VIRT_MACHINE(obj);
1810
1811 return vms->its;
1812}
1813
1814static void virt_set_its(Object *obj, bool value, Error **errp)
1815{
1816 VirtMachineState *vms = VIRT_MACHINE(obj);
1817
1818 vms->its = value;
1819}
1820
b92ad394
PF
1821static char *virt_get_gic_version(Object *obj, Error **errp)
1822{
1823 VirtMachineState *vms = VIRT_MACHINE(obj);
1824 const char *val = vms->gic_version == 3 ? "3" : "2";
1825
1826 return g_strdup(val);
1827}
1828
1829static void virt_set_gic_version(Object *obj, const char *value, Error **errp)
1830{
1831 VirtMachineState *vms = VIRT_MACHINE(obj);
1832
1833 if (!strcmp(value, "3")) {
1834 vms->gic_version = 3;
1835 } else if (!strcmp(value, "2")) {
1836 vms->gic_version = 2;
1837 } else if (!strcmp(value, "host")) {
1838 vms->gic_version = 0; /* Will probe later */
dc16538a
PM
1839 } else if (!strcmp(value, "max")) {
1840 vms->gic_version = -1; /* Will probe later */
b92ad394 1841 } else {
7b55044f 1842 error_setg(errp, "Invalid gic-version value");
dc16538a 1843 error_append_hint(errp, "Valid values are 3, 2, host, max.\n");
b92ad394
PF
1844 }
1845}
1846
e24e3454
EA
1847static char *virt_get_iommu(Object *obj, Error **errp)
1848{
1849 VirtMachineState *vms = VIRT_MACHINE(obj);
1850
1851 switch (vms->iommu) {
1852 case VIRT_IOMMU_NONE:
1853 return g_strdup("none");
1854 case VIRT_IOMMU_SMMUV3:
1855 return g_strdup("smmuv3");
1856 default:
1857 g_assert_not_reached();
1858 }
1859}
1860
1861static void virt_set_iommu(Object *obj, const char *value, Error **errp)
1862{
1863 VirtMachineState *vms = VIRT_MACHINE(obj);
1864
1865 if (!strcmp(value, "smmuv3")) {
1866 vms->iommu = VIRT_IOMMU_SMMUV3;
1867 } else if (!strcmp(value, "none")) {
1868 vms->iommu = VIRT_IOMMU_NONE;
1869 } else {
1870 error_setg(errp, "Invalid iommu value");
1871 error_append_hint(errp, "Valid values are none, smmuv3.\n");
1872 }
1873}
1874
ea089eeb
IM
1875static CpuInstanceProperties
1876virt_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
1877{
1878 MachineClass *mc = MACHINE_GET_CLASS(ms);
1879 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
1880
1881 assert(cpu_index < possible_cpus->len);
1882 return possible_cpus->cpus[cpu_index].props;
1883}
1884
79e07936
IM
1885static int64_t virt_get_default_cpu_node_id(const MachineState *ms, int idx)
1886{
aa570207 1887 return idx % ms->numa_state->num_nodes;
79e07936
IM
1888}
1889
17d3d0e2
IM
1890static const CPUArchIdList *virt_possible_cpu_arch_ids(MachineState *ms)
1891{
1892 int n;
cc7d44c2 1893 unsigned int max_cpus = ms->smp.max_cpus;
17d3d0e2
IM
1894 VirtMachineState *vms = VIRT_MACHINE(ms);
1895
1896 if (ms->possible_cpus) {
1897 assert(ms->possible_cpus->len == max_cpus);
1898 return ms->possible_cpus;
1899 }
1900
1901 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1902 sizeof(CPUArchId) * max_cpus);
1903 ms->possible_cpus->len = max_cpus;
1904 for (n = 0; n < ms->possible_cpus->len; n++) {
d342eb76 1905 ms->possible_cpus->cpus[n].type = ms->cpu_type;
17d3d0e2
IM
1906 ms->possible_cpus->cpus[n].arch_id =
1907 virt_cpu_mp_affinity(vms, n);
1908 ms->possible_cpus->cpus[n].props.has_thread_id = true;
1909 ms->possible_cpus->cpus[n].props.thread_id = n;
17d3d0e2
IM
1910 }
1911 return ms->possible_cpus;
1912}
1913
1f283ae1
EA
1914static void virt_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
1915 Error **errp)
1916{
cff51ac9
SK
1917 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1918 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
1f283ae1 1919
cff51ac9
SK
1920 if (is_nvdimm) {
1921 error_setg(errp, "nvdimm is not yet supported");
1922 return;
1923 }
1924
1925 if (!vms->acpi_dev) {
1926 error_setg(errp,
1927 "memory hotplug is not enabled: missing acpi-ged device");
1f283ae1
EA
1928 return;
1929 }
1930
1931 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev), NULL, errp);
1932}
1933
1934static void virt_memory_plug(HotplugHandler *hotplug_dev,
1935 DeviceState *dev, Error **errp)
1936{
1937 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1938 Error *local_err = NULL;
1939
1940 pc_dimm_plug(PC_DIMM(dev), MACHINE(vms), &local_err);
cff51ac9
SK
1941 if (local_err) {
1942 goto out;
1943 }
1f283ae1 1944
53eccc70
KZ
1945 hotplug_handler_plug(HOTPLUG_HANDLER(vms->acpi_dev),
1946 dev, &error_abort);
1947
cff51ac9 1948out:
1f283ae1
EA
1949 error_propagate(errp, local_err);
1950}
1951
1952static void virt_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
1953 DeviceState *dev, Error **errp)
1954{
1955 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1956 virt_memory_pre_plug(hotplug_dev, dev, errp);
1957 }
1958}
1959
a3fc8396
IM
1960static void virt_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1961 DeviceState *dev, Error **errp)
1962{
1963 VirtMachineState *vms = VIRT_MACHINE(hotplug_dev);
1964
1965 if (vms->platform_bus_dev) {
1966 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE)) {
1967 platform_bus_link_device(PLATFORM_BUS_DEVICE(vms->platform_bus_dev),
1968 SYS_BUS_DEVICE(dev));
1969 }
1970 }
1f283ae1
EA
1971 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1972 virt_memory_plug(hotplug_dev, dev, errp);
1973 }
1974}
1975
1976static void virt_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
1977 DeviceState *dev, Error **errp)
1978{
1979 error_setg(errp, "device unplug request for unsupported device"
1980 " type: %s", object_get_typename(OBJECT(dev)));
a3fc8396
IM
1981}
1982
1983static HotplugHandler *virt_machine_get_hotplug_handler(MachineState *machine,
1984 DeviceState *dev)
1985{
1f283ae1
EA
1986 if (object_dynamic_cast(OBJECT(dev), TYPE_SYS_BUS_DEVICE) ||
1987 (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM))) {
a3fc8396
IM
1988 return HOTPLUG_HANDLER(machine);
1989 }
1990
1991 return NULL;
1992}
1993
c9650222
EA
1994/*
1995 * for arm64 kvm_type [7-0] encodes the requested number of bits
1996 * in the IPA address space
1997 */
1998static int virt_kvm_type(MachineState *ms, const char *type_str)
1999{
2000 VirtMachineState *vms = VIRT_MACHINE(ms);
2001 int max_vm_pa_size = kvm_arm_get_max_vm_ipa_size(ms);
2002 int requested_pa_size;
2003
2004 /* we freeze the memory map to compute the highest gpa */
2005 virt_set_memmap(vms);
2006
2007 requested_pa_size = 64 - clz64(vms->highest_gpa);
2008
2009 if (requested_pa_size > max_vm_pa_size) {
2010 error_report("-m and ,maxmem option values "
2011 "require an IPA range (%d bits) larger than "
2012 "the one supported by the host (%d bits)",
2013 requested_pa_size, max_vm_pa_size);
2014 exit(1);
2015 }
2016 /*
2017 * By default we return 0 which corresponds to an implicit legacy
2018 * 40b IPA setting. Otherwise we return the actual requested PA
2019 * logsize
2020 */
2021 return requested_pa_size > 40 ? requested_pa_size : 0;
2022}
2023
ed796373
WH
2024static void virt_machine_class_init(ObjectClass *oc, void *data)
2025{
9c94d8e6 2026 MachineClass *mc = MACHINE_CLASS(oc);
a3fc8396 2027 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
9c94d8e6
WH
2028
2029 mc->init = machvirt_init;
b10fbd53
EA
2030 /* Start with max_cpus set to 512, which is the maximum supported by KVM.
2031 * The value may be reduced later when we have more information about the
9c94d8e6
WH
2032 * configuration of the particular instance.
2033 */
b10fbd53 2034 mc->max_cpus = 512;
6f2062b9
EH
2035 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_CALXEDA_XGMAC);
2036 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_AMD_XGBE);
94692dcd 2037 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
4ebc0b61 2038 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_VFIO_PLATFORM);
9c94d8e6
WH
2039 mc->block_default_type = IF_VIRTIO;
2040 mc->no_cdrom = 1;
2041 mc->pci_allow_0_address = true;
a2519ad1
PM
2042 /* We know we will never create a pre-ARMv7 CPU which needs 1K pages */
2043 mc->minimum_page_bits = 12;
17d3d0e2 2044 mc->possible_cpu_arch_ids = virt_possible_cpu_arch_ids;
ea089eeb 2045 mc->cpu_index_to_instance_props = virt_cpu_index_to_props;
ba1ba5cc 2046 mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-a15");
79e07936 2047 mc->get_default_cpu_node_id = virt_get_default_cpu_node_id;
c9650222 2048 mc->kvm_type = virt_kvm_type;
debbdc00 2049 assert(!mc->get_hotplug_handler);
a3fc8396 2050 mc->get_hotplug_handler = virt_machine_get_hotplug_handler;
1f283ae1 2051 hc->pre_plug = virt_machine_device_pre_plug_cb;
a3fc8396 2052 hc->plug = virt_machine_device_plug_cb;
1f283ae1 2053 hc->unplug_request = virt_machine_device_unplug_request_cb;
cd5ff833 2054 mc->numa_mem_supported = true;
442da7dc 2055 mc->auto_enable_numa_with_memhp = true;
ed796373
WH
2056}
2057
95159760 2058static void virt_instance_init(Object *obj)
083a5890
GB
2059{
2060 VirtMachineState *vms = VIRT_MACHINE(obj);
ccc11b02 2061 VirtMachineClass *vmc = VIRT_MACHINE_GET_CLASS(vms);
083a5890 2062
2d710006
PM
2063 /* EL3 is disabled by default on virt: this makes us consistent
2064 * between KVM and TCG for this board, and it also allows us to
2065 * boot UEFI blobs which assume no TrustZone support.
2066 */
2067 vms->secure = false;
083a5890
GB
2068 object_property_add_bool(obj, "secure", virt_get_secure,
2069 virt_set_secure, NULL);
2070 object_property_set_description(obj, "secure",
2071 "Set on/off to enable/disable the ARM "
2072 "Security Extensions (TrustZone)",
2073 NULL);
5125f9cd 2074
f29cacfb
PM
2075 /* EL2 is also disabled by default, for similar reasons */
2076 vms->virt = false;
2077 object_property_add_bool(obj, "virtualization", virt_get_virt,
2078 virt_set_virt, NULL);
2079 object_property_set_description(obj, "virtualization",
2080 "Set on/off to enable/disable emulating a "
2081 "guest CPU which implements the ARM "
2082 "Virtualization Extensions",
2083 NULL);
2084
5125f9cd
PF
2085 /* High memory is enabled by default */
2086 vms->highmem = true;
2087 object_property_add_bool(obj, "highmem", virt_get_highmem,
2088 virt_set_highmem, NULL);
2089 object_property_set_description(obj, "highmem",
2090 "Set on/off to enable/disable using "
2091 "physical address space above 32 bits",
2092 NULL);
b92ad394
PF
2093 /* Default GIC type is v2 */
2094 vms->gic_version = 2;
2095 object_property_add_str(obj, "gic-version", virt_get_gic_version,
2096 virt_set_gic_version, NULL);
2097 object_property_set_description(obj, "gic-version",
2098 "Set GIC version. "
2099 "Valid values are 2, 3 and host", NULL);
9ac4ef77 2100
17ec075a
EA
2101 vms->highmem_ecam = !vmc->no_highmem_ecam;
2102
ccc11b02
EA
2103 if (vmc->no_its) {
2104 vms->its = false;
2105 } else {
2106 /* Default allows ITS instantiation */
2107 vms->its = true;
2108 object_property_add_bool(obj, "its", virt_get_its,
2109 virt_set_its, NULL);
2110 object_property_set_description(obj, "its",
2111 "Set on/off to enable/disable "
2112 "ITS instantiation",
2113 NULL);
2114 }
2115
e24e3454
EA
2116 /* Default disallows iommu instantiation */
2117 vms->iommu = VIRT_IOMMU_NONE;
2118 object_property_add_str(obj, "iommu", virt_get_iommu, virt_set_iommu, NULL);
2119 object_property_set_description(obj, "iommu",
2120 "Set the IOMMU type. "
2121 "Valid values are none and smmuv3",
2122 NULL);
2123
9ac4ef77 2124 vms->irqmap = a15irqmap;
e0561e60
MA
2125
2126 virt_flash_create(vms);
083a5890
GB
2127}
2128
95159760
EH
2129static const TypeInfo virt_machine_info = {
2130 .name = TYPE_VIRT_MACHINE,
2131 .parent = TYPE_MACHINE,
2132 .abstract = true,
2133 .instance_size = sizeof(VirtMachineState),
2134 .class_size = sizeof(VirtMachineClass),
2135 .class_init = virt_machine_class_init,
bbac02f1 2136 .instance_init = virt_instance_init,
95159760
EH
2137 .interfaces = (InterfaceInfo[]) {
2138 { TYPE_HOTPLUG_HANDLER },
2139 { }
2140 },
2141};
2142
2143static void machvirt_machine_init(void)
2144{
2145 type_register_static(&virt_machine_info);
2146}
2147type_init(machvirt_machine_init);
2148
3eb74d20
CH
2149static void virt_machine_5_0_options(MachineClass *mc)
2150{
2151}
2152DEFINE_VIRT_MACHINE_AS_LATEST(5, 0)
2153
9aec2e52
CH
2154static void virt_machine_4_2_options(MachineClass *mc)
2155{
fa7c8e92 2156 virt_machine_5_0_options(mc);
5f258577 2157 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
9aec2e52 2158}
3eb74d20 2159DEFINE_VIRT_MACHINE(4, 2)
9aec2e52 2160
9bf2650b
CH
2161static void virt_machine_4_1_options(MachineClass *mc)
2162{
cff51ac9
SK
2163 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2164
9aec2e52
CH
2165 virt_machine_4_2_options(mc);
2166 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
cff51ac9 2167 vmc->no_ged = true;
442da7dc 2168 mc->auto_enable_numa_with_memhp = false;
9bf2650b 2169}
9aec2e52 2170DEFINE_VIRT_MACHINE(4, 1)
9bf2650b 2171
84e060bf
AW
2172static void virt_machine_4_0_options(MachineClass *mc)
2173{
9bf2650b
CH
2174 virt_machine_4_1_options(mc);
2175 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
84e060bf 2176}
9bf2650b 2177DEFINE_VIRT_MACHINE(4, 0)
84e060bf 2178
22907d2b
AJ
2179static void virt_machine_3_1_options(MachineClass *mc)
2180{
84e060bf 2181 virt_machine_4_0_options(mc);
abd93cc7 2182 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
22907d2b 2183}
84e060bf 2184DEFINE_VIRT_MACHINE(3, 1)
22907d2b 2185
8ae9a1ca
EA
2186static void virt_machine_3_0_options(MachineClass *mc)
2187{
22907d2b 2188 virt_machine_3_1_options(mc);
ddb3235d 2189 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
8ae9a1ca 2190}
22907d2b
AJ
2191DEFINE_VIRT_MACHINE(3, 0)
2192
a2a05159
PM
2193static void virt_machine_2_12_options(MachineClass *mc)
2194{
17ec075a
EA
2195 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2196
8ae9a1ca 2197 virt_machine_3_0_options(mc);
0d47310b 2198 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
17ec075a 2199 vmc->no_highmem_ecam = true;
b10fbd53 2200 mc->max_cpus = 255;
a2a05159 2201}
8ae9a1ca 2202DEFINE_VIRT_MACHINE(2, 12)
a2a05159 2203
79283dda
EA
2204static void virt_machine_2_11_options(MachineClass *mc)
2205{
dfadc3bf
WH
2206 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2207
a2a05159 2208 virt_machine_2_12_options(mc);
43df70a9 2209 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
dfadc3bf 2210 vmc->smbios_old_sys_ver = true;
79283dda 2211}
a2a05159 2212DEFINE_VIRT_MACHINE(2, 11)
79283dda 2213
f22ab6cb
EA
2214static void virt_machine_2_10_options(MachineClass *mc)
2215{
79283dda 2216 virt_machine_2_11_options(mc);
503224f4 2217 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
846690de
PM
2218 /* before 2.11 we never faulted accesses to bad addresses */
2219 mc->ignore_memory_transaction_failures = true;
f22ab6cb 2220}
79283dda 2221DEFINE_VIRT_MACHINE(2, 10)
f22ab6cb 2222
e353aac5
PM
2223static void virt_machine_2_9_options(MachineClass *mc)
2224{
f22ab6cb 2225 virt_machine_2_10_options(mc);
3e803152 2226 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
e353aac5 2227}
f22ab6cb 2228DEFINE_VIRT_MACHINE(2, 9)
e353aac5 2229
96b0439b
AJ
2230static void virt_machine_2_8_options(MachineClass *mc)
2231{
156bc9a5
PM
2232 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2233
e353aac5 2234 virt_machine_2_9_options(mc);
edc24ccd 2235 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
156bc9a5
PM
2236 /* For 2.8 and earlier we falsely claimed in the DT that
2237 * our timers were edge-triggered, not level-triggered.
2238 */
2239 vmc->claim_edge_triggered_timers = true;
96b0439b 2240}
e353aac5 2241DEFINE_VIRT_MACHINE(2, 8)
96b0439b 2242
1287f2b3
AJ
2243static void virt_machine_2_7_options(MachineClass *mc)
2244{
2231f69b
AJ
2245 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2246
96b0439b 2247 virt_machine_2_8_options(mc);
5a995064 2248 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
2231f69b
AJ
2249 /* ITS was introduced with 2.8 */
2250 vmc->no_its = true;
a2519ad1
PM
2251 /* Stick with 1K pages for migration compatibility */
2252 mc->minimum_page_bits = 0;
1287f2b3 2253}
96b0439b 2254DEFINE_VIRT_MACHINE(2, 7)
1287f2b3 2255
ab093c3c 2256static void virt_machine_2_6_options(MachineClass *mc)
c2919690 2257{
95eb49c8
AJ
2258 VirtMachineClass *vmc = VIRT_MACHINE_CLASS(OBJECT_CLASS(mc));
2259
1287f2b3 2260 virt_machine_2_7_options(mc);
ff8f261f 2261 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
95eb49c8 2262 vmc->disallow_affinity_adjustment = true;
1141d1eb
WH
2263 /* Disable PMU for 2.6 as PMU support was first introduced in 2.7 */
2264 vmc->no_pmu = true;
c2919690 2265}
1287f2b3 2266DEFINE_VIRT_MACHINE(2, 6)