]> git.proxmox.com Git - mirror_qemu.git/blame - hw/audio/fmopl.c
Merge remote-tracking branch 'elmarco/tags/chr-tests-pull-request' into staging
[mirror_qemu.git] / hw / audio / fmopl.c
CommitLineData
85571bc7
FB
1/*
2**
3** File: fmopl.c -- software implementation of FM sound generator
4**
5** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
6**
7** Version 0.37a
8**
9*/
10
11/*
12 preliminary :
13 Problem :
14 note:
15*/
16
17/* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
18 *
19 * This library is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU Lesser General Public
21 * License as published by the Free Software Foundation; either
22 * version 2.1 of the License, or (at your option) any later version.
23 *
24 * This library is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 * Lesser General Public License for more details.
28 *
29 * You should have received a copy of the GNU Lesser General Public
8167ee88 30 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
85571bc7
FB
31 */
32
6086a565 33#include "qemu/osdep.h"
85571bc7
FB
34#include <math.h>
35//#include "driver.h" /* use M.A.M.E. */
47b43a1f 36#include "fmopl.h"
9ea5ada7 37#include "qemu/osdep.h"
85571bc7
FB
38#ifndef PI
39#define PI 3.14159265358979323846
40#endif
41
42/* -------------------- for debug --------------------- */
43/* #define OPL_OUTPUT_LOG */
44#ifdef OPL_OUTPUT_LOG
45static FILE *opl_dbg_fp = NULL;
46static FM_OPL *opl_dbg_opl[16];
47static int opl_dbg_maxchip,opl_dbg_chip;
48#endif
49
50/* -------------------- preliminary define section --------------------- */
51/* attack/decay rate time rate */
52#define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */
53#define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */
54
55#define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
56
57#define FREQ_BITS 24 /* frequency turn */
58
59/* counter bits = 20 , octerve 7 */
60#define FREQ_RATE (1<<(FREQ_BITS-20))
61#define TL_BITS (FREQ_BITS+2)
62
63/* final output shift , limit minimum and maximum */
64#define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */
65#define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
66#define OPL_MINOUT (-0x8000<<OPL_OUTSB)
67
68/* -------------------- quality selection --------------------- */
69
70/* sinwave entries */
71/* used static memory = SIN_ENT * 4 (byte) */
72#define SIN_ENT 2048
73
74/* output level entries (envelope,sinwave) */
75/* envelope counter lower bits */
76#define ENV_BITS 16
77/* envelope output entries */
78#define EG_ENT 4096
79/* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
80/* used static memory = EG_ENT*4 (byte) */
81
82#define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */
83#define EG_DED EG_OFF
84#define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */
85#define EG_AED EG_DST
86#define EG_AST 0 /* ATTACK START */
87
88#define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */
89
90/* LFO table entries */
91#define VIB_ENT 512
92#define VIB_SHIFT (32-9)
93#define AMS_ENT 512
94#define AMS_SHIFT (32-9)
95
96#define VIB_RATE 256
97
98/* -------------------- local defines , macros --------------------- */
99
100/* register number to channel number , slot offset */
101#define SLOT1 0
102#define SLOT2 1
103
104/* envelope phase */
105#define ENV_MOD_RR 0x00
106#define ENV_MOD_DR 0x01
107#define ENV_MOD_AR 0x02
108
109/* -------------------- tables --------------------- */
110static const int slot_array[32]=
111{
112 0, 2, 4, 1, 3, 5,-1,-1,
113 6, 8,10, 7, 9,11,-1,-1,
114 12,14,16,13,15,17,-1,-1,
115 -1,-1,-1,-1,-1,-1,-1,-1
116};
117
118/* key scale level */
119/* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
120#define DV (EG_STEP/2)
3795f180 121static const uint32_t KSL_TABLE[8*16]=
85571bc7
FB
122{
123 /* OCT 0 */
124 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
125 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
126 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
127 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
128 /* OCT 1 */
129 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
130 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
131 0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
132 1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
133 /* OCT 2 */
134 0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
135 0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
136 3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
137 4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
138 /* OCT 3 */
139 0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
140 3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
141 6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
142 7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
143 /* OCT 4 */
144 0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
145 6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
146 9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
147 10.875/DV,11.250/DV,11.625/DV,12.000/DV,
148 /* OCT 5 */
149 0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
150 9.000/DV,10.125/DV,10.875/DV,11.625/DV,
151 12.000/DV,12.750/DV,13.125/DV,13.500/DV,
152 13.875/DV,14.250/DV,14.625/DV,15.000/DV,
153 /* OCT 6 */
154 0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
155 12.000/DV,13.125/DV,13.875/DV,14.625/DV,
156 15.000/DV,15.750/DV,16.125/DV,16.500/DV,
157 16.875/DV,17.250/DV,17.625/DV,18.000/DV,
158 /* OCT 7 */
159 0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
160 15.000/DV,16.125/DV,16.875/DV,17.625/DV,
161 18.000/DV,18.750/DV,19.125/DV,19.500/DV,
162 19.875/DV,20.250/DV,20.625/DV,21.000/DV
163};
164#undef DV
165
166/* sustain lebel table (3db per step) */
167/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
168#define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
7f643fb5 169static const int32_t SL_TABLE[16]={
85571bc7
FB
170 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
171 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
172};
173#undef SC
174
175#define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
176/* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */
177/* TL_TABLE[ 0 to TL_MAX ] : plus section */
178/* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
7f643fb5 179static int32_t *TL_TABLE;
85571bc7
FB
180
181/* pointers to TL_TABLE with sinwave output offset */
7f643fb5 182static int32_t **SIN_TABLE;
85571bc7
FB
183
184/* LFO table */
7f643fb5
JQ
185static int32_t *AMS_TABLE;
186static int32_t *VIB_TABLE;
85571bc7
FB
187
188/* envelope output curve table */
189/* attack + decay + OFF */
7f643fb5 190static int32_t ENV_CURVE[2*EG_ENT+1];
85571bc7
FB
191
192/* multiple table */
193#define ML 2
3795f180 194static const uint32_t MUL_TABLE[16]= {
85571bc7
FB
195/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
196 0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
197 8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
198};
199#undef ML
200
201/* dummy attack / decay rate ( when rate == 0 ) */
7f643fb5 202static int32_t RATE_0[16]=
85571bc7
FB
203{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
204
205/* -------------------- static state --------------------- */
206
207/* lock level of common table */
208static int num_lock = 0;
209
210/* work table */
211static void *cur_chip = NULL; /* current chip point */
212/* currenct chip state */
213/* static OPLSAMPLE *bufL,*bufR; */
214static OPL_CH *S_CH;
215static OPL_CH *E_CH;
69df1c3c 216static OPL_SLOT *SLOT7_1, *SLOT7_2, *SLOT8_1, *SLOT8_2;
85571bc7 217
7f643fb5
JQ
218static int32_t outd[1];
219static int32_t ams;
220static int32_t vib;
221static int32_t *ams_table;
222static int32_t *vib_table;
223static int32_t amsIncr;
224static int32_t vibIncr;
225static int32_t feedback2; /* connect for SLOT 2 */
85571bc7
FB
226
227/* log output level */
228#define LOG_ERR 3 /* ERROR */
229#define LOG_WAR 2 /* WARNING */
230#define LOG_INF 1 /* INFORMATION */
231
232//#define LOG_LEVEL LOG_INF
233#define LOG_LEVEL LOG_ERR
234
235//#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
236#define LOG(n,x)
237
238/* --------------------- subroutines --------------------- */
239
37f6be97 240static inline int Limit( int val, int max, int min ) {
85571bc7
FB
241 if ( val > max )
242 val = max;
243 else if ( val < min )
244 val = min;
245
246 return val;
247}
248
249/* status set and IRQ handling */
37f6be97 250static inline void OPL_STATUS_SET(FM_OPL *OPL,int flag)
85571bc7
FB
251{
252 /* set status flag */
253 OPL->status |= flag;
254 if(!(OPL->status & 0x80))
255 {
256 if(OPL->status & OPL->statusmask)
257 { /* IRQ on */
258 OPL->status |= 0x80;
85571bc7
FB
259 }
260 }
261}
262
263/* status reset and IRQ handling */
37f6be97 264static inline void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
85571bc7
FB
265{
266 /* reset status flag */
267 OPL->status &=~flag;
268 if((OPL->status & 0x80))
269 {
270 if (!(OPL->status & OPL->statusmask) )
271 {
272 OPL->status &= 0x7f;
85571bc7
FB
273 }
274 }
275}
276
277/* IRQ mask set */
37f6be97 278static inline void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
85571bc7
FB
279{
280 OPL->statusmask = flag;
281 /* IRQ handling check */
282 OPL_STATUS_SET(OPL,0);
283 OPL_STATUS_RESET(OPL,0);
284}
285
286/* ----- key on ----- */
37f6be97 287static inline void OPL_KEYON(OPL_SLOT *SLOT)
85571bc7
FB
288{
289 /* sin wave restart */
290 SLOT->Cnt = 0;
291 /* set attack */
292 SLOT->evm = ENV_MOD_AR;
293 SLOT->evs = SLOT->evsa;
294 SLOT->evc = EG_AST;
295 SLOT->eve = EG_AED;
296}
297/* ----- key off ----- */
37f6be97 298static inline void OPL_KEYOFF(OPL_SLOT *SLOT)
85571bc7
FB
299{
300 if( SLOT->evm > ENV_MOD_RR)
301 {
302 /* set envelope counter from envleope output */
303 SLOT->evm = ENV_MOD_RR;
304 if( !(SLOT->evc&EG_DST) )
305 //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
306 SLOT->evc = EG_DST;
307 SLOT->eve = EG_DED;
308 SLOT->evs = SLOT->evsr;
309 }
310}
311
312/* ---------- calcrate Envelope Generator & Phase Generator ---------- */
313/* return : envelope output */
3795f180 314static inline uint32_t OPL_CALC_SLOT( OPL_SLOT *SLOT )
85571bc7
FB
315{
316 /* calcrate envelope generator */
317 if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
318 {
319 switch( SLOT->evm ){
320 case ENV_MOD_AR: /* ATTACK -> DECAY1 */
321 /* next DR */
322 SLOT->evm = ENV_MOD_DR;
323 SLOT->evc = EG_DST;
324 SLOT->eve = SLOT->SL;
325 SLOT->evs = SLOT->evsd;
326 break;
327 case ENV_MOD_DR: /* DECAY -> SL or RR */
328 SLOT->evc = SLOT->SL;
329 SLOT->eve = EG_DED;
330 if(SLOT->eg_typ)
331 {
332 SLOT->evs = 0;
333 }
334 else
335 {
336 SLOT->evm = ENV_MOD_RR;
337 SLOT->evs = SLOT->evsr;
338 }
339 break;
340 case ENV_MOD_RR: /* RR -> OFF */
341 SLOT->evc = EG_OFF;
342 SLOT->eve = EG_OFF+1;
343 SLOT->evs = 0;
344 break;
345 }
346 }
347 /* calcrate envelope */
348 return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
349}
350
c11e80e2
SW
351/* set algorithm connection */
352static void set_algorithm( OPL_CH *CH)
85571bc7 353{
7f643fb5 354 int32_t *carrier = &outd[0];
85571bc7
FB
355 CH->connect1 = CH->CON ? carrier : &feedback2;
356 CH->connect2 = carrier;
357}
358
359/* ---------- frequency counter for operater update ---------- */
37f6be97 360static inline void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
85571bc7
FB
361{
362 int ksr;
363
364 /* frequency step counter */
365 SLOT->Incr = CH->fc * SLOT->mul;
366 ksr = CH->kcode >> SLOT->KSR;
367
368 if( SLOT->ksr != ksr )
369 {
370 SLOT->ksr = ksr;
371 /* attack , decay rate recalcration */
372 SLOT->evsa = SLOT->AR[ksr];
373 SLOT->evsd = SLOT->DR[ksr];
374 SLOT->evsr = SLOT->RR[ksr];
375 }
376 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
377}
378
379/* set multi,am,vib,EG-TYP,KSR,mul */
37f6be97 380static inline void set_mul(FM_OPL *OPL,int slot,int v)
85571bc7
FB
381{
382 OPL_CH *CH = &OPL->P_CH[slot/2];
383 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
384
385 SLOT->mul = MUL_TABLE[v&0x0f];
386 SLOT->KSR = (v&0x10) ? 0 : 2;
387 SLOT->eg_typ = (v&0x20)>>5;
388 SLOT->vib = (v&0x40);
389 SLOT->ams = (v&0x80);
390 CALC_FCSLOT(CH,SLOT);
391}
392
393/* set ksl & tl */
37f6be97 394static inline void set_ksl_tl(FM_OPL *OPL,int slot,int v)
85571bc7
FB
395{
396 OPL_CH *CH = &OPL->P_CH[slot/2];
397 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
398 int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
399
400 SLOT->ksl = ksl ? 3-ksl : 31;
401 SLOT->TL = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
402
403 if( !(OPL->mode&0x80) )
404 { /* not CSM latch total level */
405 SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
406 }
407}
408
409/* set attack rate & decay rate */
37f6be97 410static inline void set_ar_dr(FM_OPL *OPL,int slot,int v)
85571bc7
FB
411{
412 OPL_CH *CH = &OPL->P_CH[slot/2];
413 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
414 int ar = v>>4;
415 int dr = v&0x0f;
416
417 SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
418 SLOT->evsa = SLOT->AR[SLOT->ksr];
419 if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
420
421 SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
422 SLOT->evsd = SLOT->DR[SLOT->ksr];
423 if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
424}
425
426/* set sustain level & release rate */
37f6be97 427static inline void set_sl_rr(FM_OPL *OPL,int slot,int v)
85571bc7
FB
428{
429 OPL_CH *CH = &OPL->P_CH[slot/2];
430 OPL_SLOT *SLOT = &CH->SLOT[slot&1];
431 int sl = v>>4;
432 int rr = v & 0x0f;
433
434 SLOT->SL = SL_TABLE[sl];
435 if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
436 SLOT->RR = &OPL->DR_TABLE[rr<<2];
437 SLOT->evsr = SLOT->RR[SLOT->ksr];
438 if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
439}
440
441/* operator output calcrator */
442#define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
443/* ---------- calcrate one of channel ---------- */
37f6be97 444static inline void OPL_CALC_CH( OPL_CH *CH )
85571bc7 445{
3795f180 446 uint32_t env_out;
85571bc7
FB
447 OPL_SLOT *SLOT;
448
449 feedback2 = 0;
450 /* SLOT 1 */
451 SLOT = &CH->SLOT[SLOT1];
452 env_out=OPL_CALC_SLOT(SLOT);
453 if( env_out < EG_ENT-1 )
454 {
455 /* PG */
456 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
457 else SLOT->Cnt += SLOT->Incr;
458 /* connectoion */
459 if(CH->FB)
460 {
461 int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
462 CH->op1_out[1] = CH->op1_out[0];
463 *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
464 }
465 else
466 {
467 *CH->connect1 += OP_OUT(SLOT,env_out,0);
468 }
469 }else
470 {
471 CH->op1_out[1] = CH->op1_out[0];
472 CH->op1_out[0] = 0;
473 }
474 /* SLOT 2 */
475 SLOT = &CH->SLOT[SLOT2];
476 env_out=OPL_CALC_SLOT(SLOT);
477 if( env_out < EG_ENT-1 )
478 {
479 /* PG */
480 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
481 else SLOT->Cnt += SLOT->Incr;
482 /* connectoion */
483 outd[0] += OP_OUT(SLOT,env_out, feedback2);
484 }
485}
486
c11e80e2 487/* ---------- calcrate rhythm block ---------- */
85571bc7 488#define WHITE_NOISE_db 6.0
37f6be97 489static inline void OPL_CALC_RH( OPL_CH *CH )
85571bc7 490{
3795f180 491 uint32_t env_tam,env_sd,env_top,env_hh;
85571bc7 492 int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
7f643fb5 493 int32_t tone8;
85571bc7
FB
494
495 OPL_SLOT *SLOT;
496 int env_out;
497
498 /* BD : same as FM serial mode and output level is large */
499 feedback2 = 0;
500 /* SLOT 1 */
501 SLOT = &CH[6].SLOT[SLOT1];
502 env_out=OPL_CALC_SLOT(SLOT);
503 if( env_out < EG_ENT-1 )
504 {
505 /* PG */
506 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
507 else SLOT->Cnt += SLOT->Incr;
508 /* connectoion */
509 if(CH[6].FB)
510 {
511 int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
512 CH[6].op1_out[1] = CH[6].op1_out[0];
513 feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
514 }
515 else
516 {
517 feedback2 = OP_OUT(SLOT,env_out,0);
518 }
519 }else
520 {
521 feedback2 = 0;
522 CH[6].op1_out[1] = CH[6].op1_out[0];
523 CH[6].op1_out[0] = 0;
524 }
525 /* SLOT 2 */
526 SLOT = &CH[6].SLOT[SLOT2];
527 env_out=OPL_CALC_SLOT(SLOT);
528 if( env_out < EG_ENT-1 )
529 {
530 /* PG */
531 if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
532 else SLOT->Cnt += SLOT->Incr;
533 /* connectoion */
534 outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
535 }
536
537 // SD (17) = mul14[fnum7] + white noise
538 // TAM (15) = mul15[fnum8]
539 // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
540 // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
541 env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
542 env_tam=OPL_CALC_SLOT(SLOT8_1);
543 env_top=OPL_CALC_SLOT(SLOT8_2);
544 env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
545
546 /* PG */
547 if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
548 else SLOT7_1->Cnt += 2*SLOT7_1->Incr;
549 if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
550 else SLOT7_2->Cnt += (CH[7].fc*8);
551 if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
552 else SLOT8_1->Cnt += SLOT8_1->Incr;
553 if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
554 else SLOT8_2->Cnt += (CH[8].fc*48);
555
556 tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
557
558 /* SD */
559 if( env_sd < EG_ENT-1 )
560 outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
561 /* TAM */
562 if( env_tam < EG_ENT-1 )
563 outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
564 /* TOP-CY */
565 if( env_top < EG_ENT-1 )
566 outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
567 /* HH */
568 if( env_hh < EG_ENT-1 )
569 outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
570}
571
572/* ----------- initialize time tabls ----------- */
573static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
574{
575 int i;
576 double rate;
577
578 /* make attack rate & decay rate tables */
579 for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
580 for (i = 4;i <= 60;i++){
581 rate = OPL->freqbase; /* frequency rate */
582 if( i < 60 ) rate *= 1.0+(i&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
583 rate *= 1<<((i>>2)-1); /* b2-5 : shift bit */
584 rate *= (double)(EG_ENT<<ENV_BITS);
585 OPL->AR_TABLE[i] = rate / ARRATE;
586 OPL->DR_TABLE[i] = rate / DRRATE;
587 }
913895ab 588 for (i = 60; i < ARRAY_SIZE(OPL->AR_TABLE); i++)
85571bc7
FB
589 {
590 OPL->AR_TABLE[i] = EG_AED-1;
591 OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
592 }
593#if 0
594 for (i = 0;i < 64 ;i++){ /* make for overflow area */
b2bedb21 595 LOG(LOG_WAR, ("rate %2d , ar %f ms , dr %f ms\n", i,
85571bc7
FB
596 ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
597 ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
598 }
599#endif
600}
601
602/* ---------- generic table initialize ---------- */
603static int OPLOpenTable( void )
604{
605 int s,t;
606 double rate;
607 int i,j;
608 double pom;
609
610 /* allocate dynamic tables */
7f643fb5 611 if( (TL_TABLE = malloc(TL_MAX*2*sizeof(int32_t))) == NULL)
809c130c 612 return 0;
7f643fb5 613 if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(int32_t *))) == NULL)
809c130c
AL
614 {
615 free(TL_TABLE);
616 return 0;
617 }
7f643fb5 618 if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(int32_t))) == NULL)
809c130c
AL
619 {
620 free(TL_TABLE);
621 free(SIN_TABLE);
622 return 0;
623 }
7f643fb5 624 if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(int32_t))) == NULL)
809c130c
AL
625 {
626 free(TL_TABLE);
627 free(SIN_TABLE);
628 free(AMS_TABLE);
629 return 0;
630 }
85571bc7
FB
631 /* make total level table */
632 for (t = 0;t < EG_ENT-1 ;t++){
633 rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20); /* dB -> voltage */
634 TL_TABLE[ t] = (int)rate;
635 TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
636/* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
637 }
638 /* fill volume off area */
639 for ( t = EG_ENT-1; t < TL_MAX ;t++){
640 TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
641 }
642
643 /* make sinwave table (total level offet) */
644 /* degree 0 = degree 180 = off */
645 SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2] = &TL_TABLE[EG_ENT-1];
646 for (s = 1;s <= SIN_ENT/4;s++){
647 pom = sin(2*PI*s/SIN_ENT); /* sin */
648 pom = 20*log10(1/pom); /* decibel */
649 j = pom / EG_STEP; /* TL_TABLE steps */
650
651 /* degree 0 - 90 , degree 180 - 90 : plus section */
652 SIN_TABLE[ s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
653 /* degree 180 - 270 , degree 360 - 270 : minus section */
654 SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT -s] = &TL_TABLE[TL_MAX+j];
655/* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
656 }
657 for (s = 0;s < SIN_ENT;s++)
658 {
659 SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
660 SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
661 SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
662 }
663
664 /* envelope counter -> envelope output table */
665 for (i=0; i<EG_ENT; i++)
666 {
667 /* ATTACK curve */
668 pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
669 /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
670 ENV_CURVE[i] = (int)pom;
671 /* DECAY ,RELEASE curve */
672 ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
673 }
674 /* off */
675 ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
676 /* make LFO ams table */
677 for (i=0; i<AMS_ENT; i++)
678 {
679 pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
680 AMS_TABLE[i] = (1.0/EG_STEP)*pom; /* 1dB */
681 AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
682 }
683 /* make LFO vibrate table */
684 for (i=0; i<VIB_ENT; i++)
685 {
686 /* 100cent = 1seminote = 6% ?? */
687 pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
688 VIB_TABLE[i] = VIB_RATE + (pom*0.07); /* +- 7cent */
689 VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
690 /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
691 }
692 return 1;
693}
694
695
696static void OPLCloseTable( void )
697{
698 free(TL_TABLE);
699 free(SIN_TABLE);
700 free(AMS_TABLE);
701 free(VIB_TABLE);
702}
703
66a0a2cb 704/* CSM Key Control */
37f6be97 705static inline void CSMKeyControll(OPL_CH *CH)
85571bc7
FB
706{
707 OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
708 OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
709 /* all key off */
710 OPL_KEYOFF(slot1);
711 OPL_KEYOFF(slot2);
712 /* total level latch */
713 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
714 slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
715 /* key on */
716 CH->op1_out[0] = CH->op1_out[1] = 0;
717 OPL_KEYON(slot1);
718 OPL_KEYON(slot2);
719}
720
721/* ---------- opl initialize ---------- */
31de8314 722static void OPL_initialize(FM_OPL *OPL)
85571bc7
FB
723{
724 int fn;
725
726 /* frequency base */
727 OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72 : 0;
728 /* Timer base time */
729 OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
730 /* make time tables */
731 init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
732 /* make fnumber -> increment counter table */
733 for( fn=0 ; fn < 1024 ; fn++ )
734 {
735 OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
736 }
737 /* LFO freq.table */
738 OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
739 OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
740}
741
742/* ---------- write a OPL registers ---------- */
743static void OPLWriteReg(FM_OPL *OPL, int r, int v)
744{
745 OPL_CH *CH;
746 int slot;
747 int block_fnum;
748
749 switch(r&0xe0)
750 {
66a0a2cb 751 case 0x00: /* 00-1f:control */
85571bc7
FB
752 switch(r&0x1f)
753 {
754 case 0x01:
755 /* wave selector enable */
8f7e2c2c
JQ
756 OPL->wavesel = v&0x20;
757 if(!OPL->wavesel)
85571bc7 758 {
8f7e2c2c
JQ
759 /* preset compatible mode */
760 int c;
761 for(c=0;c<OPL->max_ch;c++)
85571bc7 762 {
8f7e2c2c
JQ
763 OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
764 OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
85571bc7
FB
765 }
766 }
767 return;
768 case 0x02: /* Timer 1 */
769 OPL->T[0] = (256-v)*4;
770 break;
771 case 0x03: /* Timer 2 */
772 OPL->T[1] = (256-v)*16;
773 return;
774 case 0x04: /* IRQ clear / mask and Timer enable */
775 if(v&0x80)
776 { /* IRQ flag clear */
777 OPL_STATUS_RESET(OPL,0x7f);
778 }
779 else
780 { /* set IRQ mask ,timer enable*/
4a796e97
JQ
781 uint8_t st1 = v&1;
782 uint8_t st2 = (v>>1)&1;
85571bc7
FB
783 /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
784 OPL_STATUS_RESET(OPL,v&0x78);
785 OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
786 /* timer 2 */
787 if(OPL->st[1] != st2)
788 {
789 double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
790 OPL->st[1] = st2;
791 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
792 }
793 /* timer 1 */
794 if(OPL->st[0] != st1)
795 {
796 double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
797 OPL->st[0] = st1;
798 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
799 }
800 }
801 return;
85571bc7
FB
802 }
803 break;
804 case 0x20: /* am,vib,ksr,eg type,mul */
805 slot = slot_array[r&0x1f];
806 if(slot == -1) return;
807 set_mul(OPL,slot,v);
808 return;
809 case 0x40:
810 slot = slot_array[r&0x1f];
811 if(slot == -1) return;
812 set_ksl_tl(OPL,slot,v);
813 return;
814 case 0x60:
815 slot = slot_array[r&0x1f];
816 if(slot == -1) return;
817 set_ar_dr(OPL,slot,v);
818 return;
819 case 0x80:
820 slot = slot_array[r&0x1f];
821 if(slot == -1) return;
822 set_sl_rr(OPL,slot,v);
823 return;
824 case 0xa0:
825 switch(r)
826 {
827 case 0xbd:
828 /* amsep,vibdep,r,bd,sd,tom,tc,hh */
829 {
4a796e97 830 uint8_t rkey = OPL->rhythm^v;
85571bc7
FB
831 OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
832 OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
c11e80e2
SW
833 OPL->rhythm = v&0x3f;
834 if(OPL->rhythm&0x20)
85571bc7
FB
835 {
836#if 0
c11e80e2 837 usrintf_showmessage("OPL Rhythm mode select");
85571bc7
FB
838#endif
839 /* BD key on/off */
840 if(rkey&0x10)
841 {
842 if(v&0x10)
843 {
844 OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
845 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
846 OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
847 }
848 else
849 {
850 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
851 OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
852 }
853 }
854 /* SD key on/off */
855 if(rkey&0x08)
856 {
857 if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
858 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
859 }/* TAM key on/off */
860 if(rkey&0x04)
861 {
862 if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
863 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
864 }
865 /* TOP-CY key on/off */
866 if(rkey&0x02)
867 {
868 if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
869 else OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
870 }
871 /* HH key on/off */
872 if(rkey&0x01)
873 {
874 if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
875 else OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
876 }
877 }
878 }
879 return;
880 }
881 /* keyon,block,fnum */
882 if( (r&0x0f) > 8) return;
883 CH = &OPL->P_CH[r&0x0f];
884 if(!(r&0x10))
885 { /* a0-a8 */
886 block_fnum = (CH->block_fnum&0x1f00) | v;
887 }
888 else
889 { /* b0-b8 */
890 int keyon = (v>>5)&1;
891 block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
892 if(CH->keyon != keyon)
893 {
894 if( (CH->keyon=keyon) )
895 {
896 CH->op1_out[0] = CH->op1_out[1] = 0;
897 OPL_KEYON(&CH->SLOT[SLOT1]);
898 OPL_KEYON(&CH->SLOT[SLOT2]);
899 }
900 else
901 {
902 OPL_KEYOFF(&CH->SLOT[SLOT1]);
903 OPL_KEYOFF(&CH->SLOT[SLOT2]);
904 }
905 }
906 }
907 /* update */
908 if(CH->block_fnum != block_fnum)
909 {
910 int blockRv = 7-(block_fnum>>10);
911 int fnum = block_fnum&0x3ff;
912 CH->block_fnum = block_fnum;
913
914 CH->ksl_base = KSL_TABLE[block_fnum>>6];
915 CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
916 CH->kcode = CH->block_fnum>>9;
917 if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
918 CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
919 CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
920 }
921 return;
922 case 0xc0:
923 /* FB,C */
924 if( (r&0x0f) > 8) return;
925 CH = &OPL->P_CH[r&0x0f];
926 {
927 int feedback = (v>>1)&7;
928 CH->FB = feedback ? (8+1) - feedback : 0;
929 CH->CON = v&1;
c11e80e2 930 set_algorithm(CH);
85571bc7
FB
931 }
932 return;
933 case 0xe0: /* wave type */
934 slot = slot_array[r&0x1f];
935 if(slot == -1) return;
936 CH = &OPL->P_CH[slot/2];
937 if(OPL->wavesel)
938 {
939 /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
940 CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
941 }
942 return;
943 }
944}
945
946/* lock/unlock for common table */
947static int OPL_LockTable(void)
948{
949 num_lock++;
950 if(num_lock>1) return 0;
951 /* first time */
952 cur_chip = NULL;
953 /* allocate total level table (128kb space) */
954 if( !OPLOpenTable() )
955 {
956 num_lock--;
957 return -1;
958 }
959 return 0;
960}
961
962static void OPL_UnLockTable(void)
963{
964 if(num_lock) num_lock--;
965 if(num_lock) return;
966 /* last time */
967 cur_chip = NULL;
968 OPLCloseTable();
969}
970
85571bc7
FB
971/*******************************************************************************/
972/* YM3812 local section */
973/*******************************************************************************/
974
975/* ---------- update one of chip ----------- */
7bf10b1d 976void YM3812UpdateOne(FM_OPL *OPL, int16_t *buffer, int length)
85571bc7
FB
977{
978 int i;
979 int data;
8ec734d0 980 int16_t *buf = buffer;
3795f180
JQ
981 uint32_t amsCnt = OPL->amsCnt;
982 uint32_t vibCnt = OPL->vibCnt;
4a796e97 983 uint8_t rhythm = OPL->rhythm&0x20;
85571bc7
FB
984 OPL_CH *CH,*R_CH;
985
986 if( (void *)OPL != cur_chip ){
987 cur_chip = (void *)OPL;
988 /* channel pointers */
989 S_CH = OPL->P_CH;
990 E_CH = &S_CH[9];
c11e80e2 991 /* rhythm slot */
85571bc7
FB
992 SLOT7_1 = &S_CH[7].SLOT[SLOT1];
993 SLOT7_2 = &S_CH[7].SLOT[SLOT2];
994 SLOT8_1 = &S_CH[8].SLOT[SLOT1];
995 SLOT8_2 = &S_CH[8].SLOT[SLOT2];
996 /* LFO state */
997 amsIncr = OPL->amsIncr;
998 vibIncr = OPL->vibIncr;
999 ams_table = OPL->ams_table;
1000 vib_table = OPL->vib_table;
1001 }
c11e80e2 1002 R_CH = rhythm ? &S_CH[6] : E_CH;
85571bc7
FB
1003 for( i=0; i < length ; i++ )
1004 {
1005 /* channel A channel B channel C */
1006 /* LFO */
1007 ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1008 vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1009 outd[0] = 0;
1010 /* FM part */
1011 for(CH=S_CH ; CH < R_CH ; CH++)
1012 OPL_CALC_CH(CH);
1013 /* Rythn part */
c11e80e2 1014 if(rhythm)
85571bc7
FB
1015 OPL_CALC_RH(S_CH);
1016 /* limit check */
1017 data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1018 /* store to sound buffer */
1019 buf[i] = data >> OPL_OUTSB;
1020 }
1021
1022 OPL->amsCnt = amsCnt;
1023 OPL->vibCnt = vibCnt;
1024#ifdef OPL_OUTPUT_LOG
1025 if(opl_dbg_fp)
1026 {
1027 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1028 if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1029 fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
1030 }
1031#endif
1032}
85571bc7 1033
85571bc7 1034/* ---------- reset one of chip ---------- */
d52ccc0e 1035static void OPLResetChip(FM_OPL *OPL)
85571bc7
FB
1036{
1037 int c,s;
1038 int i;
1039
1040 /* reset chip */
1041 OPL->mode = 0; /* normal mode */
1042 OPL_STATUS_RESET(OPL,0x7f);
1043 /* reset with register write */
1044 OPLWriteReg(OPL,0x01,0); /* wabesel disable */
1045 OPLWriteReg(OPL,0x02,0); /* Timer1 */
1046 OPLWriteReg(OPL,0x03,0); /* Timer2 */
1047 OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
1048 for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
67cc32eb 1049 /* reset operator parameter */
85571bc7
FB
1050 for( c = 0 ; c < OPL->max_ch ; c++ )
1051 {
1052 OPL_CH *CH = &OPL->P_CH[c];
1053 /* OPL->P_CH[c].PAN = OPN_CENTER; */
1054 for(s = 0 ; s < 2 ; s++ )
1055 {
1056 /* wave table */
1057 CH->SLOT[s].wavetable = &SIN_TABLE[0];
1058 /* CH->SLOT[s].evm = ENV_MOD_RR; */
1059 CH->SLOT[s].evc = EG_OFF;
1060 CH->SLOT[s].eve = EG_OFF+1;
1061 CH->SLOT[s].evs = 0;
1062 }
1063 }
85571bc7
FB
1064}
1065
1066/* ---------- Create one of vietual YM3812 ---------- */
1067/* 'rate' is sampling rate and 'bufsiz' is the size of the */
8f7e2c2c 1068FM_OPL *OPLCreate(int clock, int rate)
85571bc7
FB
1069{
1070 char *ptr;
1071 FM_OPL *OPL;
1072 int state_size;
1073 int max_ch = 9; /* normaly 9 channels */
1074
1075 if( OPL_LockTable() ==-1) return NULL;
1076 /* allocate OPL state space */
1077 state_size = sizeof(FM_OPL);
1078 state_size += sizeof(OPL_CH)*max_ch;
85571bc7 1079 /* allocate memory block */
809c130c
AL
1080 ptr = malloc(state_size);
1081 if(ptr==NULL) return NULL;
85571bc7
FB
1082 /* clear */
1083 memset(ptr,0,state_size);
1084 OPL = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1085 OPL->P_CH = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
85571bc7 1086 /* set channel state pointer */
85571bc7
FB
1087 OPL->clock = clock;
1088 OPL->rate = rate;
1089 OPL->max_ch = max_ch;
1090 /* init grobal tables */
31de8314 1091 OPL_initialize(OPL);
85571bc7
FB
1092 /* reset chip */
1093 OPLResetChip(OPL);
1094#ifdef OPL_OUTPUT_LOG
1095 if(!opl_dbg_fp)
1096 {
1097 opl_dbg_fp = fopen("opllog.opl","wb");
1098 opl_dbg_maxchip = 0;
1099 }
1100 if(opl_dbg_fp)
1101 {
1102 opl_dbg_opl[opl_dbg_maxchip] = OPL;
1103 fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
1104 type,
1105 clock&0xff,
1106 (clock/0x100)&0xff,
1107 (clock/0x10000)&0xff,
1108 (clock/0x1000000)&0xff);
1109 opl_dbg_maxchip++;
1110 }
1111#endif
1112 return OPL;
1113}
1114
1115/* ---------- Destroy one of vietual YM3812 ---------- */
1116void OPLDestroy(FM_OPL *OPL)
1117{
1118#ifdef OPL_OUTPUT_LOG
1119 if(opl_dbg_fp)
1120 {
1121 fclose(opl_dbg_fp);
1122 opl_dbg_fp = NULL;
1123 }
1124#endif
1125 OPL_UnLockTable();
1126 free(OPL);
1127}
1128
1129/* ---------- Option handlers ---------- */
1130
1131void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
1132{
1133 OPL->TimerHandler = TimerHandler;
1134 OPL->TimerParam = channelOffset;
1135}
ade33989 1136
85571bc7
FB
1137/* ---------- YM3812 I/O interface ---------- */
1138int OPLWrite(FM_OPL *OPL,int a,int v)
1139{
1140 if( !(a&1) )
1141 { /* address port */
1142 OPL->address = v & 0xff;
1143 }
1144 else
1145 { /* data port */
85571bc7
FB
1146#ifdef OPL_OUTPUT_LOG
1147 if(opl_dbg_fp)
1148 {
1149 for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1150 if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1151 fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
1152 }
1153#endif
1154 OPLWriteReg(OPL,OPL->address,v);
1155 }
1156 return OPL->status>>7;
1157}
1158
1159unsigned char OPLRead(FM_OPL *OPL,int a)
1160{
1161 if( !(a&1) )
1162 { /* status port */
1163 return OPL->status & (OPL->statusmask|0x80);
1164 }
1165 /* data port */
1166 switch(OPL->address)
1167 {
1168 case 0x05: /* KeyBoard IN */
85571bc7
FB
1169 return 0;
1170#if 0
1171 case 0x0f: /* ADPCM-DATA */
1172 return 0;
1173#endif
1174 case 0x19: /* I/O DATA */
85571bc7
FB
1175 return 0;
1176 case 0x1a: /* PCM-DATA */
1177 return 0;
1178 }
1179 return 0;
1180}
1181
1182int OPLTimerOver(FM_OPL *OPL,int c)
1183{
1184 if( c )
1185 { /* Timer B */
1186 OPL_STATUS_SET(OPL,0x20);
1187 }
1188 else
1189 { /* Timer A */
1190 OPL_STATUS_SET(OPL,0x40);
66a0a2cb 1191 /* CSM mode key,TL control */
85571bc7
FB
1192 if( OPL->mode & 0x80 )
1193 { /* CSM mode total level latch and auto key on */
1194 int ch;
85571bc7
FB
1195 for(ch=0;ch<9;ch++)
1196 CSMKeyControll( &OPL->P_CH[ch] );
1197 }
1198 }
1199 /* reload timer */
1200 if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
1201 return OPL->status>>7;
1202}