]> git.proxmox.com Git - mirror_qemu.git/blame - hw/block/m25p80.c
Include qemu/module.h where needed, drop it from qemu-common.h
[mirror_qemu.git] / hw / block / m25p80.c
CommitLineData
82a24990
PC
1/*
2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
5 *
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 */
23
80c71a24 24#include "qemu/osdep.h"
e8400cf3 25#include "qemu/units.h"
83c9f4ca 26#include "hw/hw.h"
fa1d36df 27#include "sysemu/block-backend.h"
8fd06719 28#include "hw/ssi/ssi.h"
cb475951 29#include "qemu/bitops.h"
03dd024f 30#include "qemu/log.h"
0b8fa32f 31#include "qemu/module.h"
24cb2e0d 32#include "qemu/error-report.h"
7673bb4c 33#include "qapi/error.h"
82a24990 34
28097d02
PC
35#ifndef M25P80_ERR_DEBUG
36#define M25P80_ERR_DEBUG 0
82a24990
PC
37#endif
38
28097d02
PC
39#define DB_PRINT_L(level, ...) do { \
40 if (M25P80_ERR_DEBUG > (level)) { \
41 fprintf(stderr, ": %s: ", __func__); \
42 fprintf(stderr, ## __VA_ARGS__); \
43 } \
2562755e 44} while (0)
28097d02 45
82a24990
PC
46/* Fields for FlashPartInfo->flags */
47
48/* erase capabilities */
49#define ER_4K 1
50#define ER_32K 2
51/* set to allow the page program command to write 0s back to 1. Useful for
52 * modelling EEPROM with SPI flash command set
53 */
1435bcd6 54#define EEPROM 0x100
82a24990 55
d8a29a7a
MK
56/* 16 MiB max in 3 byte address mode */
57#define MAX_3BYTES_SIZE 0x1000000
58
e3ba6cd6
MK
59#define SPI_NOR_MAX_ID_LEN 6
60
82a24990
PC
61typedef struct FlashPartInfo {
62 const char *part_name;
e3ba6cd6
MK
63 /*
64 * This array stores the ID bytes.
65 * The first three bytes are the JEDIC ID.
66 * JEDEC ID zero means "no ID" (mostly older chips).
67 */
68 uint8_t id[SPI_NOR_MAX_ID_LEN];
69 uint8_t id_len;
82a24990
PC
70 /* there is confusion between manufacturers as to what a sector is. In this
71 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
72 * command (opcode 0xd8).
73 */
74 uint32_t sector_size;
75 uint32_t n_sectors;
76 uint32_t page_size;
76e87269 77 uint16_t flags;
f509dfee
MK
78 /*
79 * Big sized spi nor are often stacked devices, thus sometime
80 * replace chip erase with die erase.
81 * This field inform how many die is in the chip.
82 */
83 uint8_t die_cnt;
82a24990
PC
84} FlashPartInfo;
85
86/* adapted from linux */
e3ba6cd6
MK
87/* Used when the "_ext_id" is two bytes at most */
88#define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
89 .part_name = _part_name,\
90 .id = {\
91 ((_jedec_id) >> 16) & 0xff,\
92 ((_jedec_id) >> 8) & 0xff,\
93 (_jedec_id) & 0xff,\
94 ((_ext_id) >> 8) & 0xff,\
95 (_ext_id) & 0xff,\
96 },\
97 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
98 .sector_size = (_sector_size),\
99 .n_sectors = (_n_sectors),\
100 .page_size = 256,\
f509dfee
MK
101 .flags = (_flags),\
102 .die_cnt = 0
e3ba6cd6
MK
103
104#define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
105 .part_name = _part_name,\
106 .id = {\
107 ((_jedec_id) >> 16) & 0xff,\
108 ((_jedec_id) >> 8) & 0xff,\
109 (_jedec_id) & 0xff,\
110 ((_ext_id) >> 16) & 0xff,\
111 ((_ext_id) >> 8) & 0xff,\
112 (_ext_id) & 0xff,\
113 },\
114 .id_len = 6,\
82a24990
PC
115 .sector_size = (_sector_size),\
116 .n_sectors = (_n_sectors),\
117 .page_size = 256,\
118 .flags = (_flags),\
f509dfee
MK
119 .die_cnt = 0
120
121#define INFO_STACKED(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors,\
122 _flags, _die_cnt)\
123 .part_name = _part_name,\
124 .id = {\
125 ((_jedec_id) >> 16) & 0xff,\
126 ((_jedec_id) >> 8) & 0xff,\
127 (_jedec_id) & 0xff,\
128 ((_ext_id) >> 8) & 0xff,\
129 (_ext_id) & 0xff,\
130 },\
131 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
132 .sector_size = (_sector_size),\
133 .n_sectors = (_n_sectors),\
134 .page_size = 256,\
135 .flags = (_flags),\
136 .die_cnt = _die_cnt
82a24990 137
419336a9
PC
138#define JEDEC_NUMONYX 0x20
139#define JEDEC_WINBOND 0xEF
140#define JEDEC_SPANSION 0x01
141
cb475951
MK
142/* Numonyx (Micron) Configuration register macros */
143#define VCFG_DUMMY 0x1
144#define VCFG_WRAP_SEQUENTIAL 0x2
145#define NVCFG_XIP_MODE_DISABLED (7 << 9)
146#define NVCFG_XIP_MODE_MASK (7 << 9)
147#define VCFG_XIP_MODE_ENABLED (1 << 3)
148#define CFG_DUMMY_CLK_LEN 4
149#define NVCFG_DUMMY_CLK_POS 12
150#define VCFG_DUMMY_CLK_POS 4
5c765e7a 151#define EVCFG_OUT_DRIVER_STRENGTH_DEF 7
cb475951
MK
152#define EVCFG_VPP_ACCELERATOR (1 << 3)
153#define EVCFG_RESET_HOLD_ENABLED (1 << 4)
154#define NVCFG_DUAL_IO_MASK (1 << 2)
155#define EVCFG_DUAL_IO_ENABLED (1 << 6)
156#define NVCFG_QUAD_IO_MASK (1 << 3)
157#define EVCFG_QUAD_IO_ENABLED (1 << 7)
158#define NVCFG_4BYTE_ADDR_MASK (1 << 0)
159#define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
cb475951 160
9fbaa364
MK
161/* Numonyx (Micron) Flag Status Register macros */
162#define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
163#define FSR_FLASH_READY (1 << 7)
164
d9cc8701
MK
165/* Spansion configuration registers macros. */
166#define SPANSION_QUAD_CFG_POS 0
167#define SPANSION_QUAD_CFG_LEN 1
168#define SPANSION_DUMMY_CLK_POS 0
169#define SPANSION_DUMMY_CLK_LEN 4
170#define SPANSION_ADDR_LEN_POS 7
171#define SPANSION_ADDR_LEN_LEN 1
172
cf6f1efe
MK
173/*
174 * Spansion read mode command length in bytes,
175 * the mode is currently not supported.
176*/
177
178#define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
fe847705 179#define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
cf6f1efe 180
82a24990
PC
181static const FlashPartInfo known_devices[] = {
182 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
183 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
184 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
185
186 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
187 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
188 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
189
190 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
191 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
192 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
193 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
194
3e758c1d
EM
195 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) },
196
1435bcd6
MK
197 /* Atmel EEPROMS - it is assumed, that don't care bit in command
198 * is set to 0. Block protection is not supported.
199 */
200 { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM) },
201 { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM) },
202
82a24990
PC
203 /* EON -- en25xxx */
204 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
205 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
206 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
207 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
3e758c1d
EM
208 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) },
209
210 /* GigaDevice */
211 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) },
212 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) },
82a24990
PC
213
214 /* Intel/Numonyx -- xxxs33b */
215 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
216 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
217 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
3e758c1d 218 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
82a24990
PC
219
220 /* Macronix */
3e758c1d 221 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) },
82a24990
PC
222 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
223 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
224 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
225 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
226 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
227 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
228 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
229 { INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) },
230 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
dadb2f90
MK
231 { INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K | ER_32K) },
232 { INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
e03192fd 233 { INFO("mx66l1g45g", 0xc2201b, 0, 64 << 10, 2048, ER_4K | ER_32K) },
82a24990 234
3e758c1d 235 /* Micron */
f5aac8e0
EM
236 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K) },
237 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K) },
238 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K) },
239 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K) },
240 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K) },
241 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K) },
242 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K) },
243 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
53dc9c79
FI
244 { INFO("n25q512a11", 0x20bb20, 0, 64 << 10, 1024, ER_4K) },
245 { INFO("n25q512a13", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
dadb2f90
MK
246 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
247 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
248 { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
eca27213
MK
249 { INFO_STACKED("n25q00", 0x20ba21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
250 { INFO_STACKED("n25q00a", 0x20bb21, 0x1000, 64 << 10, 2048, ER_4K, 4) },
251 { INFO_STACKED("mt25ql01g", 0x20ba21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
252 { INFO_STACKED("mt25qu01g", 0x20bb21, 0x1040, 64 << 10, 2048, ER_4K, 2) },
3e758c1d 253
82a24990
PC
254 /* Spansion -- single (large) sector size only, at least
255 * for the chips listed here (without boot sectors).
256 */
82a24990 257 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
3e758c1d 258 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) },
82a24990
PC
259 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
260 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
dadb2f90
MK
261 { INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) },
262 { INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) },
82a24990
PC
263 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
264 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
265 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
266 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
3e758c1d
EM
267 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
268 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
269 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
270 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
271 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
82a24990
PC
272 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
273 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
274
dadb2f90
MK
275 /* Spansion -- boot sectors support */
276 { INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) },
277 { INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) },
278
82a24990
PC
279 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
280 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
281 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
282 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
283 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
284 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
285 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
286 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
287 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
d857c4c0 288 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K) },
82a24990
PC
289
290 /* ST Microelectronics -- newer production may have feature updates */
291 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
292 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
293 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
294 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
295 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
296 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
297 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
298 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
299 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
3e758c1d 300 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
82a24990
PC
301
302 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
303 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
304 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
305
3e758c1d 306 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
82a24990
PC
307 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
308 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
309
310 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
311 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
312 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
313 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
314
315 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
316 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
317 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
318 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
319 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
320 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
321 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
322 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
3e758c1d 323 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) },
82a24990
PC
324 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
325 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
3e758c1d
EM
326 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) },
327 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) },
328 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K) },
82a24990
PC
329};
330
331typedef enum {
332 NOP = 0,
03ec2f83 333 WRSR = 0x1,
82a24990
PC
334 WRDI = 0x4,
335 RDSR = 0x5,
336 WREN = 0x6,
0f589782
FI
337 BRRD = 0x16,
338 BRWR = 0x17,
419336a9 339 JEDEC_READ = 0x9f,
0f589782 340 BULK_ERASE_60 = 0x60,
419336a9 341 BULK_ERASE = 0xc7,
9fbaa364 342 READ_FSR = 0x70,
7a69c100 343 RDCR = 0x15,
419336a9 344
63e47f6f
MK
345 READ = 0x03,
346 READ4 = 0x13,
347 FAST_READ = 0x0b,
348 FAST_READ4 = 0x0c,
419336a9 349 DOR = 0x3b,
63e47f6f 350 DOR4 = 0x3c,
419336a9 351 QOR = 0x6b,
63e47f6f 352 QOR4 = 0x6c,
419336a9 353 DIOR = 0xbb,
63e47f6f 354 DIOR4 = 0xbc,
419336a9 355 QIOR = 0xeb,
63e47f6f 356 QIOR4 = 0xec,
419336a9 357
63e47f6f
MK
358 PP = 0x02,
359 PP4 = 0x12,
30467afe 360 PP4_4 = 0x3e,
419336a9
PC
361 DPP = 0xa2,
362 QPP = 0x32,
597c15f0 363 QPP_4 = 0x34,
a87fc364
FI
364 RDID_90 = 0x90,
365 RDID_AB = 0xab,
419336a9 366
82a24990 367 ERASE_4K = 0x20,
63e47f6f 368 ERASE4_4K = 0x21,
82a24990 369 ERASE_32K = 0x52,
30467afe 370 ERASE4_32K = 0x5c,
82a24990 371 ERASE_SECTOR = 0xd8,
63e47f6f 372 ERASE4_SECTOR = 0xdc,
187c2636 373
c0f3f675
MK
374 EN_4BYTE_ADDR = 0xB7,
375 EX_4BYTE_ADDR = 0xE9,
376
d8a29a7a
MK
377 EXTEND_ADDR_READ = 0xC8,
378 EXTEND_ADDR_WRITE = 0xC5,
379
187c2636
MK
380 RESET_ENABLE = 0x66,
381 RESET_MEMORY = 0x99,
cb475951 382
7a69c100
MK
383 /*
384 * Micron: 0x35 - enable QPI
385 * Spansion: 0x35 - read control register
386 */
387 RDCR_EQIO = 0x35,
388 RSTQIO = 0xf5,
389
cb475951
MK
390 RNVCR = 0xB5,
391 WNVCR = 0xB1,
392
393 RVCR = 0x85,
394 WVCR = 0x81,
395
396 REVCR = 0x65,
397 WEVCR = 0x61,
f509dfee
MK
398
399 DIE_ERASE = 0xC4,
82a24990
PC
400} FlashCMD;
401
402typedef enum {
403 STATE_IDLE,
404 STATE_PAGE_PROGRAM,
405 STATE_READ,
406 STATE_COLLECTING_DATA,
9964674e 407 STATE_COLLECTING_VAR_LEN_DATA,
82a24990
PC
408 STATE_READING_DATA,
409} CMDState;
410
c7cd0a6c
MK
411typedef enum {
412 MAN_SPANSION,
413 MAN_MACRONIX,
414 MAN_NUMONYX,
415 MAN_WINBOND,
a87fc364 416 MAN_SST,
c7cd0a6c
MK
417 MAN_GENERIC,
418} Manufacturer;
419
24cb2e0d
JCD
420#define M25P80_INTERNAL_DATA_BUFFER_SZ 16
421
82a24990 422typedef struct Flash {
cdccf7d7
PC
423 SSISlave parent_obj;
424
4be74634 425 BlockBackend *blk;
82a24990
PC
426
427 uint8_t *storage;
428 uint32_t size;
429 int page_size;
430
431 uint8_t state;
24cb2e0d 432 uint8_t data[M25P80_INTERNAL_DATA_BUFFER_SZ];
82a24990
PC
433 uint32_t len;
434 uint32_t pos;
0add925f 435 bool data_read_loop;
82a24990
PC
436 uint8_t needed_bytes;
437 uint8_t cmd_in_progress;
b7f480c3 438 uint32_t cur_addr;
cb475951 439 uint32_t nonvolatile_cfg;
d9cc8701 440 /* Configuration register for Macronix */
cb475951
MK
441 uint32_t volatile_cfg;
442 uint32_t enh_volatile_cfg;
d9cc8701
MK
443 /* Spansion cfg registers. */
444 uint8_t spansion_cr1nv;
445 uint8_t spansion_cr2nv;
446 uint8_t spansion_cr3nv;
447 uint8_t spansion_cr4nv;
448 uint8_t spansion_cr1v;
449 uint8_t spansion_cr2v;
450 uint8_t spansion_cr3v;
451 uint8_t spansion_cr4v;
82a24990 452 bool write_enable;
c0f3f675 453 bool four_bytes_address_mode;
187c2636 454 bool reset_enable;
7a69c100 455 bool quad_enable;
d8a29a7a 456 uint8_t ear;
82a24990
PC
457
458 int64_t dirty_page;
459
82a24990
PC
460 const FlashPartInfo *pi;
461
462} Flash;
463
a7fd6915
PC
464typedef struct M25P80Class {
465 SSISlaveClass parent_class;
466 FlashPartInfo *pi;
467} M25P80Class;
468
469#define TYPE_M25P80 "m25p80-generic"
470#define M25P80(obj) \
471 OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
472#define M25P80_CLASS(klass) \
473 OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
474#define M25P80_GET_CLASS(obj) \
475 OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
476
c7cd0a6c
MK
477static inline Manufacturer get_man(Flash *s)
478{
e3ba6cd6 479 switch (s->pi->id[0]) {
c7cd0a6c
MK
480 case 0x20:
481 return MAN_NUMONYX;
482 case 0xEF:
483 return MAN_WINBOND;
484 case 0x01:
485 return MAN_SPANSION;
486 case 0xC2:
487 return MAN_MACRONIX;
a87fc364
FI
488 case 0xBF:
489 return MAN_SST;
c7cd0a6c
MK
490 default:
491 return MAN_GENERIC;
492 }
493}
494
4be74634 495static void blk_sync_complete(void *opaque, int ret)
82a24990 496{
cace7b80
PB
497 QEMUIOVector *iov = opaque;
498
499 qemu_iovec_destroy(iov);
500 g_free(iov);
501
82a24990
PC
502 /* do nothing. Masters do not directly interact with the backing store,
503 * only the working copy so no mutexing required.
504 */
505}
506
507static void flash_sync_page(Flash *s, int page)
508{
eef9f19e 509 QEMUIOVector *iov;
fc1084aa 510
4be74634 511 if (!s->blk || blk_is_read_only(s->blk)) {
fc1084aa 512 return;
82a24990 513 }
fc1084aa 514
eef9f19e 515 iov = g_new(QEMUIOVector, 1);
cace7b80
PB
516 qemu_iovec_init(iov, 1);
517 qemu_iovec_add(iov, s->storage + page * s->pi->page_size,
243e6f69 518 s->pi->page_size);
cace7b80
PB
519 blk_aio_pwritev(s->blk, page * s->pi->page_size, iov, 0,
520 blk_sync_complete, iov);
82a24990
PC
521}
522
523static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
524{
eef9f19e 525 QEMUIOVector *iov;
82a24990 526
4be74634 527 if (!s->blk || blk_is_read_only(s->blk)) {
82a24990
PC
528 return;
529 }
530
531 assert(!(len % BDRV_SECTOR_SIZE));
eef9f19e 532 iov = g_new(QEMUIOVector, 1);
cace7b80
PB
533 qemu_iovec_init(iov, 1);
534 qemu_iovec_add(iov, s->storage + off, len);
535 blk_aio_pwritev(s->blk, off, iov, 0, blk_sync_complete, iov);
82a24990
PC
536}
537
538static void flash_erase(Flash *s, int offset, FlashCMD cmd)
539{
540 uint32_t len;
541 uint8_t capa_to_assert = 0;
542
543 switch (cmd) {
544 case ERASE_4K:
63e47f6f 545 case ERASE4_4K:
e8400cf3 546 len = 4 * KiB;
82a24990
PC
547 capa_to_assert = ER_4K;
548 break;
549 case ERASE_32K:
30467afe 550 case ERASE4_32K:
e8400cf3 551 len = 32 * KiB;
82a24990
PC
552 capa_to_assert = ER_32K;
553 break;
554 case ERASE_SECTOR:
63e47f6f 555 case ERASE4_SECTOR:
82a24990
PC
556 len = s->pi->sector_size;
557 break;
558 case BULK_ERASE:
559 len = s->size;
560 break;
f509dfee
MK
561 case DIE_ERASE:
562 if (s->pi->die_cnt) {
563 len = s->size / s->pi->die_cnt;
564 offset = offset & (~(len - 1));
565 } else {
566 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: die erase is not supported"
567 " by device\n");
568 return;
569 }
570 break;
82a24990
PC
571 default:
572 abort();
573 }
574
28097d02 575 DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
82a24990 576 if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
e9711b4d
PC
577 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
578 " device\n", len);
82a24990
PC
579 }
580
581 if (!s->write_enable) {
e9711b4d 582 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
82a24990
PC
583 return;
584 }
585 memset(s->storage + offset, 0xff, len);
586 flash_sync_area(s, offset, len);
587}
588
589static inline void flash_sync_dirty(Flash *s, int64_t newpage)
590{
591 if (s->dirty_page >= 0 && s->dirty_page != newpage) {
592 flash_sync_page(s, s->dirty_page);
593 s->dirty_page = newpage;
594 }
595}
596
597static inline
b7f480c3 598void flash_write8(Flash *s, uint32_t addr, uint8_t data)
82a24990 599{
b7f480c3 600 uint32_t page = addr / s->pi->page_size;
82a24990
PC
601 uint8_t prev = s->storage[s->cur_addr];
602
603 if (!s->write_enable) {
e9711b4d 604 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
82a24990
PC
605 }
606
607 if ((prev ^ data) & data) {
b7f480c3 608 DB_PRINT_L(1, "programming zero to one! addr=%" PRIx32 " %" PRIx8
28097d02 609 " -> %" PRIx8 "\n", addr, prev, data);
82a24990
PC
610 }
611
1435bcd6 612 if (s->pi->flags & EEPROM) {
82a24990
PC
613 s->storage[s->cur_addr] = data;
614 } else {
615 s->storage[s->cur_addr] &= data;
616 }
617
618 flash_sync_dirty(s, page);
619 s->dirty_page = page;
620}
621
c0f3f675
MK
622static inline int get_addr_length(Flash *s)
623{
1435bcd6
MK
624 /* check if eeprom is in use */
625 if (s->pi->flags == EEPROM) {
626 return 2;
627 }
628
63e47f6f
MK
629 switch (s->cmd_in_progress) {
630 case PP4:
30467afe 631 case PP4_4:
597c15f0 632 case QPP_4:
63e47f6f
MK
633 case READ4:
634 case QIOR4:
635 case ERASE4_4K:
30467afe 636 case ERASE4_32K:
63e47f6f
MK
637 case ERASE4_SECTOR:
638 case FAST_READ4:
639 case DOR4:
640 case QOR4:
641 case DIOR4:
642 return 4;
643 default:
644 return s->four_bytes_address_mode ? 4 : 3;
645 }
c0f3f675
MK
646}
647
82a24990
PC
648static void complete_collecting_data(Flash *s)
649{
b68cb060 650 int i, n;
c0f3f675 651
b68cb060
PB
652 n = get_addr_length(s);
653 s->cur_addr = (n == 3 ? s->ear : 0);
654 for (i = 0; i < n; ++i) {
c0f3f675
MK
655 s->cur_addr <<= 8;
656 s->cur_addr |= s->data[i];
657 }
658
b68cb060 659 s->cur_addr &= s->size - 1;
82a24990 660
a56d305a
PC
661 s->state = STATE_IDLE;
662
82a24990 663 switch (s->cmd_in_progress) {
419336a9
PC
664 case DPP:
665 case QPP:
597c15f0 666 case QPP_4:
82a24990 667 case PP:
63e47f6f 668 case PP4:
30467afe 669 case PP4_4:
82a24990
PC
670 s->state = STATE_PAGE_PROGRAM;
671 break;
672 case READ:
63e47f6f 673 case READ4:
82a24990 674 case FAST_READ:
63e47f6f 675 case FAST_READ4:
419336a9 676 case DOR:
63e47f6f 677 case DOR4:
419336a9 678 case QOR:
63e47f6f 679 case QOR4:
419336a9 680 case DIOR:
63e47f6f 681 case DIOR4:
419336a9 682 case QIOR:
63e47f6f 683 case QIOR4:
82a24990
PC
684 s->state = STATE_READ;
685 break;
686 case ERASE_4K:
63e47f6f 687 case ERASE4_4K:
82a24990 688 case ERASE_32K:
30467afe 689 case ERASE4_32K:
82a24990 690 case ERASE_SECTOR:
63e47f6f 691 case ERASE4_SECTOR:
f509dfee 692 case DIE_ERASE:
82a24990
PC
693 flash_erase(s, s->cur_addr, s->cmd_in_progress);
694 break;
03ec2f83 695 case WRSR:
7a69c100
MK
696 switch (get_man(s)) {
697 case MAN_SPANSION:
698 s->quad_enable = !!(s->data[1] & 0x02);
699 break;
700 case MAN_MACRONIX:
701 s->quad_enable = extract32(s->data[0], 6, 1);
d9cc8701 702 if (s->len > 1) {
2151b044 703 s->volatile_cfg = s->data[1];
d9cc8701
MK
704 s->four_bytes_address_mode = extract32(s->data[1], 5, 1);
705 }
7a69c100
MK
706 break;
707 default:
708 break;
709 }
03ec2f83
KJS
710 if (s->write_enable) {
711 s->write_enable = false;
712 }
713 break;
0f589782 714 case BRWR:
d8a29a7a
MK
715 case EXTEND_ADDR_WRITE:
716 s->ear = s->data[0];
717 break;
cb475951
MK
718 case WNVCR:
719 s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
720 break;
721 case WVCR:
722 s->volatile_cfg = s->data[0];
723 break;
724 case WEVCR:
725 s->enh_volatile_cfg = s->data[0];
726 break;
a87fc364
FI
727 case RDID_90:
728 case RDID_AB:
729 if (get_man(s) == MAN_SST) {
730 if (s->cur_addr <= 1) {
731 if (s->cur_addr) {
732 s->data[0] = s->pi->id[2];
733 s->data[1] = s->pi->id[0];
734 } else {
735 s->data[0] = s->pi->id[0];
736 s->data[1] = s->pi->id[2];
737 }
738 s->pos = 0;
739 s->len = 2;
740 s->data_read_loop = true;
741 s->state = STATE_READING_DATA;
742 } else {
743 qemu_log_mask(LOG_GUEST_ERROR,
744 "M25P80: Invalid read id address\n");
745 }
746 } else {
747 qemu_log_mask(LOG_GUEST_ERROR,
748 "M25P80: Read id (command 0x90/0xAB) is not supported"
749 " by device\n");
750 }
751 break;
82a24990
PC
752 default:
753 break;
754 }
755}
756
187c2636
MK
757static void reset_memory(Flash *s)
758{
759 s->cmd_in_progress = NOP;
760 s->cur_addr = 0;
d8a29a7a 761 s->ear = 0;
c0f3f675 762 s->four_bytes_address_mode = false;
187c2636
MK
763 s->len = 0;
764 s->needed_bytes = 0;
765 s->pos = 0;
766 s->state = STATE_IDLE;
767 s->write_enable = false;
768 s->reset_enable = false;
7a69c100 769 s->quad_enable = false;
187c2636 770
c7cd0a6c
MK
771 switch (get_man(s)) {
772 case MAN_NUMONYX:
cb475951
MK
773 s->volatile_cfg = 0;
774 s->volatile_cfg |= VCFG_DUMMY;
775 s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
776 if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
777 != NVCFG_XIP_MODE_DISABLED) {
778 s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
779 }
780 s->volatile_cfg |= deposit32(s->volatile_cfg,
781 VCFG_DUMMY_CLK_POS,
782 CFG_DUMMY_CLK_LEN,
783 extract32(s->nonvolatile_cfg,
784 NVCFG_DUMMY_CLK_POS,
785 CFG_DUMMY_CLK_LEN)
786 );
787
788 s->enh_volatile_cfg = 0;
5c765e7a 789 s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGTH_DEF;
cb475951
MK
790 s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
791 s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
792 if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
793 s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
794 }
795 if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
796 s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
797 }
798 if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
799 s->four_bytes_address_mode = true;
800 }
801 if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
e02b3bf2 802 s->ear = s->size / MAX_3BYTES_SIZE - 1;
cb475951 803 }
c7cd0a6c 804 break;
d9cc8701
MK
805 case MAN_MACRONIX:
806 s->volatile_cfg = 0x7;
807 break;
808 case MAN_SPANSION:
809 s->spansion_cr1v = s->spansion_cr1nv;
810 s->spansion_cr2v = s->spansion_cr2nv;
811 s->spansion_cr3v = s->spansion_cr3nv;
812 s->spansion_cr4v = s->spansion_cr4nv;
813 s->quad_enable = extract32(s->spansion_cr1v,
814 SPANSION_QUAD_CFG_POS,
815 SPANSION_QUAD_CFG_LEN
816 );
817 s->four_bytes_address_mode = extract32(s->spansion_cr2v,
818 SPANSION_ADDR_LEN_POS,
819 SPANSION_ADDR_LEN_LEN
820 );
821 break;
c7cd0a6c
MK
822 default:
823 break;
cb475951
MK
824 }
825
187c2636
MK
826 DB_PRINT_L(0, "Reset done.\n");
827}
828
cf6f1efe
MK
829static void decode_fast_read_cmd(Flash *s)
830{
831 s->needed_bytes = get_addr_length(s);
832 switch (get_man(s)) {
833 /* Dummy cycles - modeled with bytes writes instead of bits */
3830c7a4
MK
834 case MAN_WINBOND:
835 s->needed_bytes += 8;
836 break;
cf6f1efe
MK
837 case MAN_NUMONYX:
838 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
839 break;
840 case MAN_MACRONIX:
841 if (extract32(s->volatile_cfg, 6, 2) == 1) {
842 s->needed_bytes += 6;
843 } else {
844 s->needed_bytes += 8;
845 }
846 break;
847 case MAN_SPANSION:
848 s->needed_bytes += extract32(s->spansion_cr2v,
849 SPANSION_DUMMY_CLK_POS,
850 SPANSION_DUMMY_CLK_LEN
851 );
852 break;
853 default:
854 break;
855 }
856 s->pos = 0;
857 s->len = 0;
858 s->state = STATE_COLLECTING_DATA;
859}
860
861static void decode_dio_read_cmd(Flash *s)
862{
863 s->needed_bytes = get_addr_length(s);
864 /* Dummy cycles modeled with bytes writes instead of bits */
865 switch (get_man(s)) {
866 case MAN_WINBOND:
fe847705 867 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
cf6f1efe
MK
868 break;
869 case MAN_SPANSION:
870 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
871 s->needed_bytes += extract32(s->spansion_cr2v,
872 SPANSION_DUMMY_CLK_POS,
873 SPANSION_DUMMY_CLK_LEN
874 );
875 break;
876 case MAN_NUMONYX:
877 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
878 break;
879 case MAN_MACRONIX:
880 switch (extract32(s->volatile_cfg, 6, 2)) {
881 case 1:
882 s->needed_bytes += 6;
883 break;
884 case 2:
885 s->needed_bytes += 8;
886 break;
887 default:
888 s->needed_bytes += 4;
889 break;
890 }
891 break;
892 default:
893 break;
894 }
895 s->pos = 0;
896 s->len = 0;
897 s->state = STATE_COLLECTING_DATA;
898}
899
900static void decode_qio_read_cmd(Flash *s)
901{
902 s->needed_bytes = get_addr_length(s);
903 /* Dummy cycles modeled with bytes writes instead of bits */
904 switch (get_man(s)) {
905 case MAN_WINBOND:
fe847705
MK
906 s->needed_bytes += WINBOND_CONTINUOUS_READ_MODE_CMD_LEN;
907 s->needed_bytes += 4;
cf6f1efe
MK
908 break;
909 case MAN_SPANSION:
910 s->needed_bytes += SPANSION_CONTINUOUS_READ_MODE_CMD_LEN;
911 s->needed_bytes += extract32(s->spansion_cr2v,
912 SPANSION_DUMMY_CLK_POS,
913 SPANSION_DUMMY_CLK_LEN
914 );
915 break;
916 case MAN_NUMONYX:
917 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
918 break;
919 case MAN_MACRONIX:
920 switch (extract32(s->volatile_cfg, 6, 2)) {
921 case 1:
922 s->needed_bytes += 4;
923 break;
924 case 2:
925 s->needed_bytes += 8;
926 break;
927 default:
928 s->needed_bytes += 6;
929 break;
930 }
931 break;
932 default:
933 break;
934 }
935 s->pos = 0;
936 s->len = 0;
937 s->state = STATE_COLLECTING_DATA;
938}
939
82a24990
PC
940static void decode_new_cmd(Flash *s, uint32_t value)
941{
942 s->cmd_in_progress = value;
e3ba6cd6 943 int i;
28097d02 944 DB_PRINT_L(0, "decoded new command:%x\n", value);
82a24990 945
187c2636
MK
946 if (value != RESET_MEMORY) {
947 s->reset_enable = false;
948 }
949
82a24990
PC
950 switch (value) {
951
952 case ERASE_4K:
63e47f6f 953 case ERASE4_4K:
82a24990 954 case ERASE_32K:
30467afe 955 case ERASE4_32K:
82a24990 956 case ERASE_SECTOR:
63e47f6f 957 case ERASE4_SECTOR:
82a24990 958 case READ:
63e47f6f 959 case READ4:
419336a9
PC
960 case DPP:
961 case QPP:
597c15f0 962 case QPP_4:
82a24990 963 case PP:
63e47f6f 964 case PP4:
30467afe 965 case PP4_4:
f509dfee 966 case DIE_ERASE:
a87fc364
FI
967 case RDID_90:
968 case RDID_AB:
c0f3f675 969 s->needed_bytes = get_addr_length(s);
82a24990
PC
970 s->pos = 0;
971 s->len = 0;
972 s->state = STATE_COLLECTING_DATA;
973 break;
974
975 case FAST_READ:
63e47f6f 976 case FAST_READ4:
419336a9 977 case DOR:
63e47f6f 978 case DOR4:
419336a9 979 case QOR:
63e47f6f 980 case QOR4:
cf6f1efe 981 decode_fast_read_cmd(s);
82a24990
PC
982 break;
983
419336a9 984 case DIOR:
63e47f6f 985 case DIOR4:
cf6f1efe 986 decode_dio_read_cmd(s);
419336a9
PC
987 break;
988
989 case QIOR:
63e47f6f 990 case QIOR4:
cf6f1efe 991 decode_qio_read_cmd(s);
419336a9
PC
992 break;
993
03ec2f83
KJS
994 case WRSR:
995 if (s->write_enable) {
7a69c100
MK
996 switch (get_man(s)) {
997 case MAN_SPANSION:
998 s->needed_bytes = 2;
999 s->state = STATE_COLLECTING_DATA;
1000 break;
1001 case MAN_MACRONIX:
1002 s->needed_bytes = 2;
1003 s->state = STATE_COLLECTING_VAR_LEN_DATA;
1004 break;
1005 default:
1006 s->needed_bytes = 1;
1007 s->state = STATE_COLLECTING_DATA;
1008 }
03ec2f83 1009 s->pos = 0;
03ec2f83
KJS
1010 }
1011 break;
1012
82a24990
PC
1013 case WRDI:
1014 s->write_enable = false;
1015 break;
1016 case WREN:
1017 s->write_enable = true;
1018 break;
1019
1020 case RDSR:
1021 s->data[0] = (!!s->write_enable) << 1;
7a69c100
MK
1022 if (get_man(s) == MAN_MACRONIX) {
1023 s->data[0] |= (!!s->quad_enable) << 6;
1024 }
82a24990
PC
1025 s->pos = 0;
1026 s->len = 1;
0add925f 1027 s->data_read_loop = true;
82a24990
PC
1028 s->state = STATE_READING_DATA;
1029 break;
1030
9fbaa364
MK
1031 case READ_FSR:
1032 s->data[0] = FSR_FLASH_READY;
1033 if (s->four_bytes_address_mode) {
1034 s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
1035 }
1036 s->pos = 0;
1037 s->len = 1;
0add925f 1038 s->data_read_loop = true;
9fbaa364
MK
1039 s->state = STATE_READING_DATA;
1040 break;
1041
82a24990 1042 case JEDEC_READ:
28097d02 1043 DB_PRINT_L(0, "populated jedec code\n");
e3ba6cd6
MK
1044 for (i = 0; i < s->pi->id_len; i++) {
1045 s->data[i] = s->pi->id[i];
82a24990 1046 }
e3ba6cd6
MK
1047
1048 s->len = s->pi->id_len;
82a24990
PC
1049 s->pos = 0;
1050 s->state = STATE_READING_DATA;
1051 break;
1052
7a69c100
MK
1053 case RDCR:
1054 s->data[0] = s->volatile_cfg & 0xFF;
1055 s->data[0] |= (!!s->four_bytes_address_mode) << 5;
1056 s->pos = 0;
1057 s->len = 1;
1058 s->state = STATE_READING_DATA;
1059 break;
1060
0f589782 1061 case BULK_ERASE_60:
82a24990
PC
1062 case BULK_ERASE:
1063 if (s->write_enable) {
28097d02 1064 DB_PRINT_L(0, "chip erase\n");
82a24990
PC
1065 flash_erase(s, 0, BULK_ERASE);
1066 } else {
e9711b4d
PC
1067 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
1068 "protect!\n");
82a24990
PC
1069 }
1070 break;
1071 case NOP:
1072 break;
c0f3f675
MK
1073 case EN_4BYTE_ADDR:
1074 s->four_bytes_address_mode = true;
1075 break;
1076 case EX_4BYTE_ADDR:
1077 s->four_bytes_address_mode = false;
1078 break;
0f589782 1079 case BRRD:
d8a29a7a
MK
1080 case EXTEND_ADDR_READ:
1081 s->data[0] = s->ear;
1082 s->pos = 0;
1083 s->len = 1;
1084 s->state = STATE_READING_DATA;
1085 break;
0f589782 1086 case BRWR:
d8a29a7a
MK
1087 case EXTEND_ADDR_WRITE:
1088 if (s->write_enable) {
1089 s->needed_bytes = 1;
1090 s->pos = 0;
1091 s->len = 0;
1092 s->state = STATE_COLLECTING_DATA;
1093 }
1094 break;
cb475951
MK
1095 case RNVCR:
1096 s->data[0] = s->nonvolatile_cfg & 0xFF;
1097 s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
1098 s->pos = 0;
1099 s->len = 2;
1100 s->state = STATE_READING_DATA;
1101 break;
1102 case WNVCR:
7a69c100 1103 if (s->write_enable && get_man(s) == MAN_NUMONYX) {
cb475951
MK
1104 s->needed_bytes = 2;
1105 s->pos = 0;
1106 s->len = 0;
1107 s->state = STATE_COLLECTING_DATA;
1108 }
1109 break;
1110 case RVCR:
1111 s->data[0] = s->volatile_cfg & 0xFF;
1112 s->pos = 0;
1113 s->len = 1;
1114 s->state = STATE_READING_DATA;
1115 break;
1116 case WVCR:
1117 if (s->write_enable) {
1118 s->needed_bytes = 1;
1119 s->pos = 0;
1120 s->len = 0;
1121 s->state = STATE_COLLECTING_DATA;
1122 }
1123 break;
1124 case REVCR:
1125 s->data[0] = s->enh_volatile_cfg & 0xFF;
1126 s->pos = 0;
1127 s->len = 1;
1128 s->state = STATE_READING_DATA;
1129 break;
1130 case WEVCR:
1131 if (s->write_enable) {
1132 s->needed_bytes = 1;
1133 s->pos = 0;
1134 s->len = 0;
1135 s->state = STATE_COLLECTING_DATA;
1136 }
1137 break;
187c2636
MK
1138 case RESET_ENABLE:
1139 s->reset_enable = true;
1140 break;
1141 case RESET_MEMORY:
1142 if (s->reset_enable) {
1143 reset_memory(s);
1144 }
1145 break;
7a69c100
MK
1146 case RDCR_EQIO:
1147 switch (get_man(s)) {
1148 case MAN_SPANSION:
1149 s->data[0] = (!!s->quad_enable) << 1;
1150 s->pos = 0;
1151 s->len = 1;
1152 s->state = STATE_READING_DATA;
1153 break;
1154 case MAN_MACRONIX:
1155 s->quad_enable = true;
1156 break;
1157 default:
1158 break;
1159 }
1160 break;
1161 case RSTQIO:
1162 s->quad_enable = false;
1163 break;
82a24990 1164 default:
e9711b4d 1165 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
82a24990
PC
1166 break;
1167 }
1168}
1169
1170static int m25p80_cs(SSISlave *ss, bool select)
1171{
cdccf7d7 1172 Flash *s = M25P80(ss);
82a24990
PC
1173
1174 if (select) {
9964674e
MK
1175 if (s->state == STATE_COLLECTING_VAR_LEN_DATA) {
1176 complete_collecting_data(s);
1177 }
82a24990
PC
1178 s->len = 0;
1179 s->pos = 0;
1180 s->state = STATE_IDLE;
1181 flash_sync_dirty(s, -1);
0add925f 1182 s->data_read_loop = false;
82a24990
PC
1183 }
1184
28097d02 1185 DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
82a24990
PC
1186
1187 return 0;
1188}
1189
1190static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
1191{
cdccf7d7 1192 Flash *s = M25P80(ss);
82a24990
PC
1193 uint32_t r = 0;
1194
1195 switch (s->state) {
1196
1197 case STATE_PAGE_PROGRAM:
b7f480c3 1198 DB_PRINT_L(1, "page program cur_addr=%#" PRIx32 " data=%" PRIx8 "\n",
28097d02 1199 s->cur_addr, (uint8_t)tx);
82a24990 1200 flash_write8(s, s->cur_addr, (uint8_t)tx);
b68cb060 1201 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
82a24990
PC
1202 break;
1203
1204 case STATE_READ:
1205 r = s->storage[s->cur_addr];
b7f480c3 1206 DB_PRINT_L(1, "READ 0x%" PRIx32 "=%" PRIx8 "\n", s->cur_addr,
28097d02 1207 (uint8_t)r);
b68cb060 1208 s->cur_addr = (s->cur_addr + 1) & (s->size - 1);
82a24990
PC
1209 break;
1210
1211 case STATE_COLLECTING_DATA:
9964674e 1212 case STATE_COLLECTING_VAR_LEN_DATA:
24cb2e0d
JCD
1213
1214 if (s->len >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1215 qemu_log_mask(LOG_GUEST_ERROR,
1216 "M25P80: Write overrun internal data buffer. "
1217 "SPI controller (QEMU emulator or guest driver) "
1218 "is misbehaving\n");
1219 s->len = s->pos = 0;
1220 s->state = STATE_IDLE;
1221 break;
1222 }
1223
82a24990
PC
1224 s->data[s->len] = (uint8_t)tx;
1225 s->len++;
1226
1227 if (s->len == s->needed_bytes) {
1228 complete_collecting_data(s);
1229 }
1230 break;
1231
1232 case STATE_READING_DATA:
24cb2e0d
JCD
1233
1234 if (s->pos >= M25P80_INTERNAL_DATA_BUFFER_SZ) {
1235 qemu_log_mask(LOG_GUEST_ERROR,
1236 "M25P80: Read overrun internal data buffer. "
1237 "SPI controller (QEMU emulator or guest driver) "
1238 "is misbehaving\n");
1239 s->len = s->pos = 0;
1240 s->state = STATE_IDLE;
1241 break;
1242 }
1243
82a24990
PC
1244 r = s->data[s->pos];
1245 s->pos++;
1246 if (s->pos == s->len) {
1247 s->pos = 0;
0add925f
FI
1248 if (!s->data_read_loop) {
1249 s->state = STATE_IDLE;
1250 }
82a24990
PC
1251 }
1252 break;
1253
1254 default:
1255 case STATE_IDLE:
1256 decode_new_cmd(s, (uint8_t)tx);
1257 break;
1258 }
1259
1260 return r;
1261}
1262
7673bb4c 1263static void m25p80_realize(SSISlave *ss, Error **errp)
82a24990 1264{
cdccf7d7 1265 Flash *s = M25P80(ss);
a7fd6915 1266 M25P80Class *mc = M25P80_GET_CLASS(s);
a17c17a2 1267 int ret;
82a24990 1268
a7fd6915 1269 s->pi = mc->pi;
82a24990
PC
1270
1271 s->size = s->pi->sector_size * s->pi->n_sectors;
1272 s->dirty_page = -1;
82a24990 1273
73bce518 1274 if (s->blk) {
a17c17a2
KW
1275 uint64_t perm = BLK_PERM_CONSISTENT_READ |
1276 (blk_is_read_only(s->blk) ? 0 : BLK_PERM_WRITE);
1277 ret = blk_set_perm(s->blk, perm, BLK_PERM_ALL, errp);
1278 if (ret < 0) {
1279 return;
1280 }
1281
28097d02 1282 DB_PRINT_L(0, "Binding to IF_MTD drive\n");
c485cf9c
SH
1283 s->storage = blk_blockalign(s->blk, s->size);
1284
9e19036e 1285 if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
7673bb4c
CLG
1286 error_setg(errp, "failed to read the initial flash content");
1287 return;
82a24990
PC
1288 }
1289 } else {
095b9c48 1290 DB_PRINT_L(0, "No BDRV - binding to RAM\n");
c485cf9c 1291 s->storage = blk_blockalign(NULL, s->size);
82a24990
PC
1292 memset(s->storage, 0xFF, s->size);
1293 }
82a24990
PC
1294}
1295
187c2636
MK
1296static void m25p80_reset(DeviceState *d)
1297{
1298 Flash *s = M25P80(d);
1299
1300 reset_memory(s);
1301}
1302
44b1ff31 1303static int m25p80_pre_save(void *opaque)
82a24990
PC
1304{
1305 flash_sync_dirty((Flash *)opaque, -1);
44b1ff31
DDAG
1306
1307 return 0;
82a24990
PC
1308}
1309
cb475951 1310static Property m25p80_properties[] = {
d9cc8701 1311 /* This is default value for Micron flash */
cb475951 1312 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
d9cc8701
MK
1313 DEFINE_PROP_UINT8("spansion-cr1nv", Flash, spansion_cr1nv, 0x0),
1314 DEFINE_PROP_UINT8("spansion-cr2nv", Flash, spansion_cr2nv, 0x8),
1315 DEFINE_PROP_UINT8("spansion-cr3nv", Flash, spansion_cr3nv, 0x2),
1316 DEFINE_PROP_UINT8("spansion-cr4nv", Flash, spansion_cr4nv, 0x10),
73bce518 1317 DEFINE_PROP_DRIVE("drive", Flash, blk),
cb475951
MK
1318 DEFINE_PROP_END_OF_LIST(),
1319};
1320
0add925f
FI
1321static int m25p80_pre_load(void *opaque)
1322{
1323 Flash *s = (Flash *)opaque;
1324
1325 s->data_read_loop = false;
1326 return 0;
1327}
1328
1329static bool m25p80_data_read_loop_needed(void *opaque)
1330{
1331 Flash *s = (Flash *)opaque;
1332
1333 return s->data_read_loop;
1334}
1335
1336static const VMStateDescription vmstate_m25p80_data_read_loop = {
1337 .name = "m25p80/data_read_loop",
1338 .version_id = 1,
1339 .minimum_version_id = 1,
1340 .needed = m25p80_data_read_loop_needed,
1341 .fields = (VMStateField[]) {
1342 VMSTATE_BOOL(data_read_loop, Flash),
1343 VMSTATE_END_OF_LIST()
1344 }
1345};
1346
82a24990 1347static const VMStateDescription vmstate_m25p80 = {
c827c06a
MK
1348 .name = "m25p80",
1349 .version_id = 0,
1350 .minimum_version_id = 0,
82a24990 1351 .pre_save = m25p80_pre_save,
0add925f 1352 .pre_load = m25p80_pre_load,
82a24990
PC
1353 .fields = (VMStateField[]) {
1354 VMSTATE_UINT8(state, Flash),
24cb2e0d 1355 VMSTATE_UINT8_ARRAY(data, Flash, M25P80_INTERNAL_DATA_BUFFER_SZ),
82a24990
PC
1356 VMSTATE_UINT32(len, Flash),
1357 VMSTATE_UINT32(pos, Flash),
1358 VMSTATE_UINT8(needed_bytes, Flash),
1359 VMSTATE_UINT8(cmd_in_progress, Flash),
b7f480c3 1360 VMSTATE_UINT32(cur_addr, Flash),
82a24990 1361 VMSTATE_BOOL(write_enable, Flash),
c827c06a
MK
1362 VMSTATE_BOOL(reset_enable, Flash),
1363 VMSTATE_UINT8(ear, Flash),
1364 VMSTATE_BOOL(four_bytes_address_mode, Flash),
1365 VMSTATE_UINT32(nonvolatile_cfg, Flash),
1366 VMSTATE_UINT32(volatile_cfg, Flash),
1367 VMSTATE_UINT32(enh_volatile_cfg, Flash),
1368 VMSTATE_BOOL(quad_enable, Flash),
1369 VMSTATE_UINT8(spansion_cr1nv, Flash),
1370 VMSTATE_UINT8(spansion_cr2nv, Flash),
1371 VMSTATE_UINT8(spansion_cr3nv, Flash),
1372 VMSTATE_UINT8(spansion_cr4nv, Flash),
82a24990 1373 VMSTATE_END_OF_LIST()
0add925f
FI
1374 },
1375 .subsections = (const VMStateDescription * []) {
1376 &vmstate_m25p80_data_read_loop,
1377 NULL
82a24990
PC
1378 }
1379};
1380
82a24990
PC
1381static void m25p80_class_init(ObjectClass *klass, void *data)
1382{
1383 DeviceClass *dc = DEVICE_CLASS(klass);
1384 SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
a7fd6915 1385 M25P80Class *mc = M25P80_CLASS(klass);
82a24990 1386
7673bb4c 1387 k->realize = m25p80_realize;
82a24990
PC
1388 k->transfer = m25p80_transfer8;
1389 k->set_cs = m25p80_cs;
1390 k->cs_polarity = SSI_CS_LOW;
82a24990 1391 dc->vmsd = &vmstate_m25p80;
cb475951 1392 dc->props = m25p80_properties;
187c2636 1393 dc->reset = m25p80_reset;
a7fd6915 1394 mc->pi = data;
82a24990
PC
1395}
1396
1397static const TypeInfo m25p80_info = {
a7fd6915 1398 .name = TYPE_M25P80,
82a24990
PC
1399 .parent = TYPE_SSI_SLAVE,
1400 .instance_size = sizeof(Flash),
a7fd6915
PC
1401 .class_size = sizeof(M25P80Class),
1402 .abstract = true,
82a24990
PC
1403};
1404
1405static void m25p80_register_types(void)
1406{
a7fd6915
PC
1407 int i;
1408
82a24990 1409 type_register_static(&m25p80_info);
a7fd6915
PC
1410 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
1411 TypeInfo ti = {
1412 .name = known_devices[i].part_name,
1413 .parent = TYPE_M25P80,
1414 .class_init = m25p80_class_init,
1415 .class_data = (void *)&known_devices[i],
1416 };
1417 type_register(&ti);
1418 }
82a24990
PC
1419}
1420
1421type_init(m25p80_register_types)