]> git.proxmox.com Git - mirror_qemu.git/blame - hw/char/cadence_uart.c
Merge remote-tracking branch 'remotes/armbru/tags/pull-qapi-2015-12-17' into staging
[mirror_qemu.git] / hw / char / cadence_uart.c
CommitLineData
35548b06
PC
1/*
2 * Device model for Cadence UART
3 *
4 * Copyright (c) 2010 Xilinx Inc.
5 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6 * Copyright (c) 2012 PetaLogix Pty Ltd.
7 * Written by Haibing Ma
8 * M.Habib
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 *
15 * You should have received a copy of the GNU General Public License along
16 * with this program; if not, see <http://www.gnu.org/licenses/>.
17 */
18
8ae57b2f 19#include "hw/char/cadence_uart.h"
35548b06
PC
20
21#ifdef CADENCE_UART_ERR_DEBUG
22#define DB_PRINT(...) do { \
23 fprintf(stderr, ": %s: ", __func__); \
24 fprintf(stderr, ## __VA_ARGS__); \
25 } while (0);
26#else
27 #define DB_PRINT(...)
28#endif
29
30#define UART_SR_INTR_RTRIG 0x00000001
31#define UART_SR_INTR_REMPTY 0x00000002
32#define UART_SR_INTR_RFUL 0x00000004
33#define UART_SR_INTR_TEMPTY 0x00000008
34#define UART_SR_INTR_TFUL 0x00000010
11a239a5
PC
35/* somewhat awkwardly, TTRIG is misaligned between SR and ISR */
36#define UART_SR_TTRIG 0x00002000
37#define UART_INTR_TTRIG 0x00000400
35548b06
PC
38/* bits fields in CSR that correlate to CISR. If any of these bits are set in
39 * SR, then the same bit in CISR is set high too */
40#define UART_SR_TO_CISR_MASK 0x0000001F
41
42#define UART_INTR_ROVR 0x00000020
43#define UART_INTR_FRAME 0x00000040
44#define UART_INTR_PARE 0x00000080
45#define UART_INTR_TIMEOUT 0x00000100
46#define UART_INTR_DMSI 0x00000200
11a239a5 47#define UART_INTR_TOVR 0x00001000
35548b06
PC
48
49#define UART_SR_RACTIVE 0x00000400
50#define UART_SR_TACTIVE 0x00000800
51#define UART_SR_FDELT 0x00001000
52
53#define UART_CR_RXRST 0x00000001
54#define UART_CR_TXRST 0x00000002
55#define UART_CR_RX_EN 0x00000004
56#define UART_CR_RX_DIS 0x00000008
57#define UART_CR_TX_EN 0x00000010
58#define UART_CR_TX_DIS 0x00000020
59#define UART_CR_RST_TO 0x00000040
60#define UART_CR_STARTBRK 0x00000080
61#define UART_CR_STOPBRK 0x00000100
62
63#define UART_MR_CLKS 0x00000001
64#define UART_MR_CHRL 0x00000006
65#define UART_MR_CHRL_SH 1
66#define UART_MR_PAR 0x00000038
67#define UART_MR_PAR_SH 3
68#define UART_MR_NBSTOP 0x000000C0
69#define UART_MR_NBSTOP_SH 6
70#define UART_MR_CHMODE 0x00000300
71#define UART_MR_CHMODE_SH 8
72#define UART_MR_UCLKEN 0x00000400
73#define UART_MR_IRMODE 0x00000800
74
75#define UART_DATA_BITS_6 (0x3 << UART_MR_CHRL_SH)
76#define UART_DATA_BITS_7 (0x2 << UART_MR_CHRL_SH)
77#define UART_PARITY_ODD (0x1 << UART_MR_PAR_SH)
78#define UART_PARITY_EVEN (0x0 << UART_MR_PAR_SH)
79#define UART_STOP_BITS_1 (0x3 << UART_MR_NBSTOP_SH)
80#define UART_STOP_BITS_2 (0x2 << UART_MR_NBSTOP_SH)
81#define NORMAL_MODE (0x0 << UART_MR_CHMODE_SH)
82#define ECHO_MODE (0x1 << UART_MR_CHMODE_SH)
83#define LOCAL_LOOPBACK (0x2 << UART_MR_CHMODE_SH)
84#define REMOTE_LOOPBACK (0x3 << UART_MR_CHMODE_SH)
85
35548b06
PC
86#define UART_INPUT_CLK 50000000
87
88#define R_CR (0x00/4)
89#define R_MR (0x04/4)
90#define R_IER (0x08/4)
91#define R_IDR (0x0C/4)
92#define R_IMR (0x10/4)
93#define R_CISR (0x14/4)
94#define R_BRGR (0x18/4)
95#define R_RTOR (0x1C/4)
96#define R_RTRIG (0x20/4)
97#define R_MCR (0x24/4)
98#define R_MSR (0x28/4)
99#define R_SR (0x2C/4)
100#define R_TX_RX (0x30/4)
101#define R_BDIV (0x34/4)
102#define R_FDEL (0x38/4)
103#define R_PMIN (0x3C/4)
104#define R_PWID (0x40/4)
105#define R_TTRIG (0x44/4)
106
35548b06 107
e86da3cb 108static void uart_update_status(CadenceUARTState *s)
35548b06 109{
676f4c09
PC
110 s->r[R_SR] = 0;
111
e86da3cb
PC
112 s->r[R_SR] |= s->rx_count == CADENCE_UART_RX_FIFO_SIZE ? UART_SR_INTR_RFUL
113 : 0;
676f4c09
PC
114 s->r[R_SR] |= !s->rx_count ? UART_SR_INTR_REMPTY : 0;
115 s->r[R_SR] |= s->rx_count >= s->r[R_RTRIG] ? UART_SR_INTR_RTRIG : 0;
116
e86da3cb
PC
117 s->r[R_SR] |= s->tx_count == CADENCE_UART_TX_FIFO_SIZE ? UART_SR_INTR_TFUL
118 : 0;
2152e08a
PC
119 s->r[R_SR] |= !s->tx_count ? UART_SR_INTR_TEMPTY : 0;
120 s->r[R_SR] |= s->tx_count >= s->r[R_TTRIG] ? UART_SR_TTRIG : 0;
121
35548b06 122 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
2152e08a 123 s->r[R_CISR] |= s->r[R_SR] & UART_SR_TTRIG ? UART_INTR_TTRIG : 0;
35548b06
PC
124 qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
125}
126
127static void fifo_trigger_update(void *opaque)
128{
e86da3cb 129 CadenceUARTState *s = opaque;
35548b06
PC
130
131 s->r[R_CISR] |= UART_INTR_TIMEOUT;
132
133 uart_update_status(s);
134}
135
e86da3cb 136static void uart_rx_reset(CadenceUARTState *s)
35548b06
PC
137{
138 s->rx_wpos = 0;
139 s->rx_count = 0;
9121d02c
PC
140 if (s->chr) {
141 qemu_chr_accept_input(s->chr);
142 }
35548b06
PC
143}
144
e86da3cb 145static void uart_tx_reset(CadenceUARTState *s)
35548b06 146{
2152e08a 147 s->tx_count = 0;
35548b06
PC
148}
149
e86da3cb 150static void uart_send_breaks(CadenceUARTState *s)
35548b06
PC
151{
152 int break_enabled = 1;
153
af52fe86
FK
154 if (s->chr) {
155 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
156 &break_enabled);
157 }
35548b06
PC
158}
159
e86da3cb 160static void uart_parameters_setup(CadenceUARTState *s)
35548b06
PC
161{
162 QEMUSerialSetParams ssp;
163 unsigned int baud_rate, packet_size;
164
165 baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
166 UART_INPUT_CLK / 8 : UART_INPUT_CLK;
167
168 ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
169 packet_size = 1;
170
171 switch (s->r[R_MR] & UART_MR_PAR) {
172 case UART_PARITY_EVEN:
173 ssp.parity = 'E';
174 packet_size++;
175 break;
176 case UART_PARITY_ODD:
177 ssp.parity = 'O';
178 packet_size++;
179 break;
180 default:
181 ssp.parity = 'N';
182 break;
183 }
184
185 switch (s->r[R_MR] & UART_MR_CHRL) {
186 case UART_DATA_BITS_6:
187 ssp.data_bits = 6;
188 break;
189 case UART_DATA_BITS_7:
190 ssp.data_bits = 7;
191 break;
192 default:
193 ssp.data_bits = 8;
194 break;
195 }
196
197 switch (s->r[R_MR] & UART_MR_NBSTOP) {
198 case UART_STOP_BITS_1:
199 ssp.stop_bits = 1;
200 break;
201 default:
202 ssp.stop_bits = 2;
203 break;
204 }
205
206 packet_size += ssp.data_bits + ssp.stop_bits;
207 s->char_tx_time = (get_ticks_per_sec() / ssp.speed) * packet_size;
af52fe86
FK
208 if (s->chr) {
209 qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
210 }
35548b06
PC
211}
212
213static int uart_can_receive(void *opaque)
214{
e86da3cb
PC
215 CadenceUARTState *s = opaque;
216 int ret = MAX(CADENCE_UART_RX_FIFO_SIZE, CADENCE_UART_TX_FIFO_SIZE);
d0ac820f 217 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
35548b06 218
d0ac820f 219 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
e86da3cb 220 ret = MIN(ret, CADENCE_UART_RX_FIFO_SIZE - s->rx_count);
d0ac820f
PC
221 }
222 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
e86da3cb 223 ret = MIN(ret, CADENCE_UART_TX_FIFO_SIZE - s->tx_count);
d0ac820f
PC
224 }
225 return ret;
35548b06
PC
226}
227
e86da3cb 228static void uart_ctrl_update(CadenceUARTState *s)
35548b06
PC
229{
230 if (s->r[R_CR] & UART_CR_TXRST) {
231 uart_tx_reset(s);
232 }
233
234 if (s->r[R_CR] & UART_CR_RXRST) {
235 uart_rx_reset(s);
236 }
237
238 s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
239
35548b06
PC
240 if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
241 uart_send_breaks(s);
242 }
243}
244
245static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
246{
e86da3cb 247 CadenceUARTState *s = opaque;
bc72ad67 248 uint64_t new_rx_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
35548b06
PC
249 int i;
250
251 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
252 return;
253 }
254
e86da3cb 255 if (s->rx_count == CADENCE_UART_RX_FIFO_SIZE) {
35548b06
PC
256 s->r[R_CISR] |= UART_INTR_ROVR;
257 } else {
258 for (i = 0; i < size; i++) {
1e77c91e 259 s->rx_fifo[s->rx_wpos] = buf[i];
e86da3cb 260 s->rx_wpos = (s->rx_wpos + 1) % CADENCE_UART_RX_FIFO_SIZE;
35548b06 261 s->rx_count++;
35548b06 262 }
bc72ad67 263 timer_mod(s->fifo_trigger_handle, new_rx_time +
35548b06
PC
264 (s->char_tx_time * 4));
265 }
266 uart_update_status(s);
267}
268
38acd64b
PC
269static gboolean cadence_uart_xmit(GIOChannel *chan, GIOCondition cond,
270 void *opaque)
271{
e86da3cb 272 CadenceUARTState *s = opaque;
38acd64b
PC
273 int ret;
274
275 /* instant drain the fifo when there's no back-end */
276 if (!s->chr) {
277 s->tx_count = 0;
af52fe86 278 return FALSE;
38acd64b
PC
279 }
280
281 if (!s->tx_count) {
282 return FALSE;
283 }
284
285 ret = qemu_chr_fe_write(s->chr, s->tx_fifo, s->tx_count);
286 s->tx_count -= ret;
287 memmove(s->tx_fifo, s->tx_fifo + ret, s->tx_count);
288
289 if (s->tx_count) {
e02bc6de
RPM
290 int r = qemu_chr_fe_add_watch(s->chr, G_IO_OUT|G_IO_HUP,
291 cadence_uart_xmit, s);
38acd64b
PC
292 assert(r);
293 }
294
295 uart_update_status(s);
296 return FALSE;
297}
298
e86da3cb
PC
299static void uart_write_tx_fifo(CadenceUARTState *s, const uint8_t *buf,
300 int size)
35548b06
PC
301{
302 if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
303 return;
304 }
305
e86da3cb
PC
306 if (size > CADENCE_UART_TX_FIFO_SIZE - s->tx_count) {
307 size = CADENCE_UART_TX_FIFO_SIZE - s->tx_count;
86baecc3
PC
308 /*
309 * This can only be a guest error via a bad tx fifo register push,
310 * as can_receive() should stop remote loop and echo modes ever getting
311 * us to here.
312 */
313 qemu_log_mask(LOG_GUEST_ERROR, "cadence_uart: TxFIFO overflow");
314 s->r[R_CISR] |= UART_INTR_ROVR;
315 }
316
317 memcpy(s->tx_fifo + s->tx_count, buf, size);
318 s->tx_count += size;
319
38acd64b 320 cadence_uart_xmit(NULL, G_IO_OUT, s);
35548b06
PC
321}
322
323static void uart_receive(void *opaque, const uint8_t *buf, int size)
324{
e86da3cb 325 CadenceUARTState *s = opaque;
35548b06
PC
326 uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
327
328 if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
329 uart_write_rx_fifo(opaque, buf, size);
330 }
331 if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
332 uart_write_tx_fifo(s, buf, size);
333 }
334}
335
336static void uart_event(void *opaque, int event)
337{
e86da3cb 338 CadenceUARTState *s = opaque;
35548b06
PC
339 uint8_t buf = '\0';
340
341 if (event == CHR_EVENT_BREAK) {
342 uart_write_rx_fifo(opaque, &buf, 1);
343 }
344
345 uart_update_status(s);
346}
347
e86da3cb 348static void uart_read_rx_fifo(CadenceUARTState *s, uint32_t *c)
35548b06
PC
349{
350 if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
351 return;
352 }
353
35548b06 354 if (s->rx_count) {
e86da3cb
PC
355 uint32_t rx_rpos = (CADENCE_UART_RX_FIFO_SIZE + s->rx_wpos -
356 s->rx_count) % CADENCE_UART_RX_FIFO_SIZE;
1e77c91e 357 *c = s->rx_fifo[rx_rpos];
35548b06
PC
358 s->rx_count--;
359
af52fe86
FK
360 if (s->chr) {
361 qemu_chr_accept_input(s->chr);
362 }
35548b06
PC
363 } else {
364 *c = 0;
35548b06
PC
365 }
366
35548b06
PC
367 uart_update_status(s);
368}
369
a8170e5e 370static void uart_write(void *opaque, hwaddr offset,
35548b06
PC
371 uint64_t value, unsigned size)
372{
e86da3cb 373 CadenceUARTState *s = opaque;
35548b06 374
2ddef11b 375 DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
35548b06
PC
376 offset >>= 2;
377 switch (offset) {
378 case R_IER: /* ier (wts imr) */
379 s->r[R_IMR] |= value;
380 break;
381 case R_IDR: /* idr (wtc imr) */
382 s->r[R_IMR] &= ~value;
383 break;
384 case R_IMR: /* imr (read only) */
385 break;
386 case R_CISR: /* cisr (wtc) */
387 s->r[R_CISR] &= ~value;
388 break;
389 case R_TX_RX: /* UARTDR */
390 switch (s->r[R_MR] & UART_MR_CHMODE) {
391 case NORMAL_MODE:
392 uart_write_tx_fifo(s, (uint8_t *) &value, 1);
393 break;
394 case LOCAL_LOOPBACK:
395 uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
396 break;
397 }
398 break;
399 default:
400 s->r[offset] = value;
401 }
402
403 switch (offset) {
404 case R_CR:
405 uart_ctrl_update(s);
406 break;
407 case R_MR:
408 uart_parameters_setup(s);
409 break;
410 }
589bfb68 411 uart_update_status(s);
35548b06
PC
412}
413
a8170e5e 414static uint64_t uart_read(void *opaque, hwaddr offset,
35548b06
PC
415 unsigned size)
416{
e86da3cb 417 CadenceUARTState *s = opaque;
35548b06
PC
418 uint32_t c = 0;
419
420 offset >>= 2;
e86da3cb 421 if (offset >= CADENCE_UART_R_MAX) {
2ddef11b 422 c = 0;
35548b06
PC
423 } else if (offset == R_TX_RX) {
424 uart_read_rx_fifo(s, &c);
2ddef11b
PC
425 } else {
426 c = s->r[offset];
35548b06 427 }
2ddef11b
PC
428
429 DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
430 return c;
35548b06
PC
431}
432
433static const MemoryRegionOps uart_ops = {
434 .read = uart_read,
435 .write = uart_write,
436 .endianness = DEVICE_NATIVE_ENDIAN,
437};
438
823dd487 439static void cadence_uart_reset(DeviceState *dev)
35548b06 440{
e86da3cb 441 CadenceUARTState *s = CADENCE_UART(dev);
823dd487 442
35548b06
PC
443 s->r[R_CR] = 0x00000128;
444 s->r[R_IMR] = 0;
445 s->r[R_CISR] = 0;
446 s->r[R_RTRIG] = 0x00000020;
447 s->r[R_BRGR] = 0x0000000F;
448 s->r[R_TTRIG] = 0x00000020;
449
450 uart_rx_reset(s);
451 uart_tx_reset(s);
452
676f4c09 453 uart_update_status(s);
35548b06
PC
454}
455
96f20926 456static void cadence_uart_realize(DeviceState *dev, Error **errp)
35548b06 457{
e86da3cb 458 CadenceUARTState *s = CADENCE_UART(dev);
35548b06 459
bc72ad67 460 s->fifo_trigger_handle = timer_new_ns(QEMU_CLOCK_VIRTUAL,
96f20926 461 fifo_trigger_update, s);
35548b06 462
d71b22bb 463 /* FIXME use a qdev chardev prop instead of qemu_char_get_next_serial() */
35548b06
PC
464 s->chr = qemu_char_get_next_serial();
465
35548b06
PC
466 if (s->chr) {
467 qemu_chr_add_handlers(s->chr, uart_can_receive, uart_receive,
468 uart_event, s);
469 }
96f20926 470}
35548b06 471
96f20926
AF
472static void cadence_uart_init(Object *obj)
473{
474 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
e86da3cb 475 CadenceUARTState *s = CADENCE_UART(obj);
96f20926
AF
476
477 memory_region_init_io(&s->iomem, obj, &uart_ops, s, "uart", 0x1000);
478 sysbus_init_mmio(sbd, &s->iomem);
479 sysbus_init_irq(sbd, &s->irq);
480
481 s->char_tx_time = (get_ticks_per_sec() / 9600) * 10;
35548b06
PC
482}
483
484static int cadence_uart_post_load(void *opaque, int version_id)
485{
e86da3cb 486 CadenceUARTState *s = opaque;
35548b06
PC
487
488 uart_parameters_setup(s);
489 uart_update_status(s);
490 return 0;
491}
492
493static const VMStateDescription vmstate_cadence_uart = {
494 .name = "cadence_uart",
2152e08a
PC
495 .version_id = 2,
496 .minimum_version_id = 2,
35548b06
PC
497 .post_load = cadence_uart_post_load,
498 .fields = (VMStateField[]) {
e86da3cb
PC
499 VMSTATE_UINT32_ARRAY(r, CadenceUARTState, CADENCE_UART_R_MAX),
500 VMSTATE_UINT8_ARRAY(rx_fifo, CadenceUARTState,
501 CADENCE_UART_RX_FIFO_SIZE),
502 VMSTATE_UINT8_ARRAY(tx_fifo, CadenceUARTState,
503 CADENCE_UART_TX_FIFO_SIZE),
504 VMSTATE_UINT32(rx_count, CadenceUARTState),
505 VMSTATE_UINT32(tx_count, CadenceUARTState),
506 VMSTATE_UINT32(rx_wpos, CadenceUARTState),
507 VMSTATE_TIMER_PTR(fifo_trigger_handle, CadenceUARTState),
35548b06
PC
508 VMSTATE_END_OF_LIST()
509 }
510};
511
512static void cadence_uart_class_init(ObjectClass *klass, void *data)
513{
514 DeviceClass *dc = DEVICE_CLASS(klass);
35548b06 515
96f20926 516 dc->realize = cadence_uart_realize;
35548b06 517 dc->vmsd = &vmstate_cadence_uart;
823dd487 518 dc->reset = cadence_uart_reset;
9f9bdf43
MA
519 /* Reason: realize() method uses qemu_char_get_next_serial() */
520 dc->cannot_instantiate_with_device_add_yet = true;
35548b06
PC
521}
522
8c43a6f0 523static const TypeInfo cadence_uart_info = {
534f6ff9 524 .name = TYPE_CADENCE_UART,
35548b06 525 .parent = TYPE_SYS_BUS_DEVICE,
e86da3cb 526 .instance_size = sizeof(CadenceUARTState),
96f20926 527 .instance_init = cadence_uart_init,
35548b06
PC
528 .class_init = cadence_uart_class_init,
529};
530
531static void cadence_uart_register_types(void)
532{
533 type_register_static(&cadence_uart_info);
534}
535
536type_init(cadence_uart_register_types)