]> git.proxmox.com Git - mirror_qemu.git/blame - hw/e1000.c
Allow devices be notified of link status change (Mark McLoughlin)
[mirror_qemu.git] / hw / e1000.c
CommitLineData
7c23b892
AZ
1/*
2 * QEMU e1000 emulation
3 *
4 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
5 * Copyright (c) 2008 Qumranet
6 * Based on work done by:
7 * Copyright (c) 2007 Dan Aloni
8 * Copyright (c) 2004 Antony T Curtis
9 *
10 * This library is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU Lesser General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
14 *
15 * This library is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * Lesser General Public License for more details.
19 *
20 * You should have received a copy of the GNU Lesser General Public
21 * License along with this library; if not, write to the Free Software
fad6cb1a 22 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
7c23b892
AZ
23 */
24
25
26#include "hw.h"
27#include "pci.h"
28#include "net.h"
29
7c23b892
AZ
30#include "e1000_hw.h"
31
32#define DEBUG
33
34#ifdef DEBUG
35enum {
36 DEBUG_GENERAL, DEBUG_IO, DEBUG_MMIO, DEBUG_INTERRUPT,
37 DEBUG_RX, DEBUG_TX, DEBUG_MDIC, DEBUG_EEPROM,
38 DEBUG_UNKNOWN, DEBUG_TXSUM, DEBUG_TXERR, DEBUG_RXERR,
39 DEBUG_RXFILTER, DEBUG_NOTYET,
40};
41#define DBGBIT(x) (1<<DEBUG_##x)
42static int debugflags = DBGBIT(TXERR) | DBGBIT(GENERAL);
43
44#define DBGOUT(what, fmt, params...) do { \
45 if (debugflags & DBGBIT(what)) \
46 fprintf(stderr, "e1000: " fmt, ##params); \
47 } while (0)
48#else
49#define DBGOUT(what, fmt, params...) do {} while (0)
50#endif
51
52#define IOPORT_SIZE 0x40
e94bbefe 53#define PNPMMIO_SIZE 0x20000
7c23b892
AZ
54
55/*
56 * HW models:
57 * E1000_DEV_ID_82540EM works with Windows and Linux
58 * E1000_DEV_ID_82573L OK with windoze and Linux 2.6.22,
59 * appears to perform better than 82540EM, but breaks with Linux 2.6.18
60 * E1000_DEV_ID_82544GC_COPPER appears to work; not well tested
61 * Others never tested
62 */
63enum { E1000_DEVID = E1000_DEV_ID_82540EM };
64
65/*
66 * May need to specify additional MAC-to-PHY entries --
67 * Intel's Windows driver refuses to initialize unless they match
68 */
69enum {
70 PHY_ID2_INIT = E1000_DEVID == E1000_DEV_ID_82573L ? 0xcc2 :
71 E1000_DEVID == E1000_DEV_ID_82544GC_COPPER ? 0xc30 :
72 /* default to E1000_DEV_ID_82540EM */ 0xc20
73};
74
75typedef struct E1000State_st {
76 PCIDevice dev;
77 VLANClientState *vc;
78 NICInfo *nd;
7c23b892
AZ
79 int mmio_index;
80
81 uint32_t mac_reg[0x8000];
82 uint16_t phy_reg[0x20];
83 uint16_t eeprom_data[64];
84
85 uint32_t rxbuf_size;
86 uint32_t rxbuf_min_shift;
87 int check_rxov;
88 struct e1000_tx {
89 unsigned char header[256];
8f2e8d1f
AL
90 unsigned char vlan_header[4];
91 unsigned char vlan[4];
7c23b892
AZ
92 unsigned char data[0x10000];
93 uint16_t size;
94 unsigned char sum_needed;
8f2e8d1f 95 unsigned char vlan_needed;
7c23b892
AZ
96 uint8_t ipcss;
97 uint8_t ipcso;
98 uint16_t ipcse;
99 uint8_t tucss;
100 uint8_t tucso;
101 uint16_t tucse;
102 uint8_t hdr_len;
103 uint16_t mss;
104 uint32_t paylen;
105 uint16_t tso_frames;
106 char tse;
b6c4f71f
BS
107 int8_t ip;
108 int8_t tcp;
1b0009db 109 char cptse; // current packet tse bit
7c23b892
AZ
110 } tx;
111
112 struct {
113 uint32_t val_in; // shifted in from guest driver
114 uint16_t bitnum_in;
115 uint16_t bitnum_out;
116 uint16_t reading;
117 uint32_t old_eecd;
118 } eecd_state;
119} E1000State;
120
121#define defreg(x) x = (E1000_##x>>2)
122enum {
123 defreg(CTRL), defreg(EECD), defreg(EERD), defreg(GPRC),
124 defreg(GPTC), defreg(ICR), defreg(ICS), defreg(IMC),
125 defreg(IMS), defreg(LEDCTL), defreg(MANC), defreg(MDIC),
126 defreg(MPC), defreg(PBA), defreg(RCTL), defreg(RDBAH),
127 defreg(RDBAL), defreg(RDH), defreg(RDLEN), defreg(RDT),
128 defreg(STATUS), defreg(SWSM), defreg(TCTL), defreg(TDBAH),
129 defreg(TDBAL), defreg(TDH), defreg(TDLEN), defreg(TDT),
130 defreg(TORH), defreg(TORL), defreg(TOTH), defreg(TOTL),
131 defreg(TPR), defreg(TPT), defreg(TXDCTL), defreg(WUFC),
8f2e8d1f
AL
132 defreg(RA), defreg(MTA), defreg(CRCERRS),defreg(VFTA),
133 defreg(VET),
7c23b892
AZ
134};
135
136enum { PHY_R = 1, PHY_W = 2, PHY_RW = PHY_R | PHY_W };
88b4e9db 137static const char phy_regcap[0x20] = {
7c23b892
AZ
138 [PHY_STATUS] = PHY_R, [M88E1000_EXT_PHY_SPEC_CTRL] = PHY_RW,
139 [PHY_ID1] = PHY_R, [M88E1000_PHY_SPEC_CTRL] = PHY_RW,
140 [PHY_CTRL] = PHY_RW, [PHY_1000T_CTRL] = PHY_RW,
141 [PHY_LP_ABILITY] = PHY_R, [PHY_1000T_STATUS] = PHY_R,
142 [PHY_AUTONEG_ADV] = PHY_RW, [M88E1000_RX_ERR_CNTR] = PHY_R,
700f6e2c 143 [PHY_ID2] = PHY_R, [M88E1000_PHY_SPEC_STATUS] = PHY_R
7c23b892
AZ
144};
145
146static void
147ioport_map(PCIDevice *pci_dev, int region_num, uint32_t addr,
148 uint32_t size, int type)
149{
150 DBGOUT(IO, "e1000_ioport_map addr=0x%04x size=0x%08x\n", addr, size);
151}
152
153static void
154set_interrupt_cause(E1000State *s, int index, uint32_t val)
155{
156 if (val)
157 val |= E1000_ICR_INT_ASSERTED;
158 s->mac_reg[ICR] = val;
159 qemu_set_irq(s->dev.irq[0], (s->mac_reg[IMS] & s->mac_reg[ICR]) != 0);
160}
161
162static void
163set_ics(E1000State *s, int index, uint32_t val)
164{
165 DBGOUT(INTERRUPT, "set_ics %x, ICR %x, IMR %x\n", val, s->mac_reg[ICR],
166 s->mac_reg[IMS]);
167 set_interrupt_cause(s, 0, val | s->mac_reg[ICR]);
168}
169
170static int
171rxbufsize(uint32_t v)
172{
173 v &= E1000_RCTL_BSEX | E1000_RCTL_SZ_16384 | E1000_RCTL_SZ_8192 |
174 E1000_RCTL_SZ_4096 | E1000_RCTL_SZ_2048 | E1000_RCTL_SZ_1024 |
175 E1000_RCTL_SZ_512 | E1000_RCTL_SZ_256;
176 switch (v) {
177 case E1000_RCTL_BSEX | E1000_RCTL_SZ_16384:
178 return 16384;
179 case E1000_RCTL_BSEX | E1000_RCTL_SZ_8192:
180 return 8192;
181 case E1000_RCTL_BSEX | E1000_RCTL_SZ_4096:
182 return 4096;
183 case E1000_RCTL_SZ_1024:
184 return 1024;
185 case E1000_RCTL_SZ_512:
186 return 512;
187 case E1000_RCTL_SZ_256:
188 return 256;
189 }
190 return 2048;
191}
192
193static void
194set_rx_control(E1000State *s, int index, uint32_t val)
195{
196 s->mac_reg[RCTL] = val;
197 s->rxbuf_size = rxbufsize(val);
198 s->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1;
199 DBGOUT(RX, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s->mac_reg[RDT],
200 s->mac_reg[RCTL]);
201}
202
203static void
204set_mdic(E1000State *s, int index, uint32_t val)
205{
206 uint32_t data = val & E1000_MDIC_DATA_MASK;
207 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
208
209 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) // phy #
210 val = s->mac_reg[MDIC] | E1000_MDIC_ERROR;
211 else if (val & E1000_MDIC_OP_READ) {
212 DBGOUT(MDIC, "MDIC read reg 0x%x\n", addr);
213 if (!(phy_regcap[addr] & PHY_R)) {
214 DBGOUT(MDIC, "MDIC read reg %x unhandled\n", addr);
215 val |= E1000_MDIC_ERROR;
216 } else
217 val = (val ^ data) | s->phy_reg[addr];
218 } else if (val & E1000_MDIC_OP_WRITE) {
219 DBGOUT(MDIC, "MDIC write reg 0x%x, value 0x%x\n", addr, data);
220 if (!(phy_regcap[addr] & PHY_W)) {
221 DBGOUT(MDIC, "MDIC write reg %x unhandled\n", addr);
222 val |= E1000_MDIC_ERROR;
223 } else
224 s->phy_reg[addr] = data;
225 }
226 s->mac_reg[MDIC] = val | E1000_MDIC_READY;
227 set_ics(s, 0, E1000_ICR_MDAC);
228}
229
230static uint32_t
231get_eecd(E1000State *s, int index)
232{
233 uint32_t ret = E1000_EECD_PRES|E1000_EECD_GNT | s->eecd_state.old_eecd;
234
235 DBGOUT(EEPROM, "reading eeprom bit %d (reading %d)\n",
236 s->eecd_state.bitnum_out, s->eecd_state.reading);
237 if (!s->eecd_state.reading ||
238 ((s->eeprom_data[(s->eecd_state.bitnum_out >> 4) & 0x3f] >>
239 ((s->eecd_state.bitnum_out & 0xf) ^ 0xf))) & 1)
240 ret |= E1000_EECD_DO;
241 return ret;
242}
243
244static void
245set_eecd(E1000State *s, int index, uint32_t val)
246{
247 uint32_t oldval = s->eecd_state.old_eecd;
248
249 s->eecd_state.old_eecd = val & (E1000_EECD_SK | E1000_EECD_CS |
250 E1000_EECD_DI|E1000_EECD_FWE_MASK|E1000_EECD_REQ);
251 if (!(E1000_EECD_SK & (val ^ oldval))) // no clock edge
252 return;
253 if (!(E1000_EECD_SK & val)) { // falling edge
254 s->eecd_state.bitnum_out++;
255 return;
256 }
257 if (!(val & E1000_EECD_CS)) { // rising, no CS (EEPROM reset)
258 memset(&s->eecd_state, 0, sizeof s->eecd_state);
259 return;
260 }
261 s->eecd_state.val_in <<= 1;
262 if (val & E1000_EECD_DI)
263 s->eecd_state.val_in |= 1;
264 if (++s->eecd_state.bitnum_in == 9 && !s->eecd_state.reading) {
265 s->eecd_state.bitnum_out = ((s->eecd_state.val_in & 0x3f)<<4)-1;
266 s->eecd_state.reading = (((s->eecd_state.val_in >> 6) & 7) ==
267 EEPROM_READ_OPCODE_MICROWIRE);
268 }
269 DBGOUT(EEPROM, "eeprom bitnum in %d out %d, reading %d\n",
270 s->eecd_state.bitnum_in, s->eecd_state.bitnum_out,
271 s->eecd_state.reading);
272}
273
274static uint32_t
275flash_eerd_read(E1000State *s, int x)
276{
277 unsigned int index, r = s->mac_reg[EERD] & ~E1000_EEPROM_RW_REG_START;
278
279 if ((index = r >> E1000_EEPROM_RW_ADDR_SHIFT) > EEPROM_CHECKSUM_REG)
280 return 0;
281 return (s->eeprom_data[index] << E1000_EEPROM_RW_REG_DATA) |
282 E1000_EEPROM_RW_REG_DONE | r;
283}
284
7c23b892
AZ
285static void
286putsum(uint8_t *data, uint32_t n, uint32_t sloc, uint32_t css, uint32_t cse)
287{
c6a6a5e3
AL
288 uint32_t sum;
289
7c23b892
AZ
290 if (cse && cse < n)
291 n = cse + 1;
c6a6a5e3
AL
292 if (sloc < n-1) {
293 sum = net_checksum_add(n-css, data+css);
7c23b892 294 cpu_to_be16wu((uint16_t *)(data + sloc),
c6a6a5e3
AL
295 net_checksum_finish(sum));
296 }
7c23b892
AZ
297}
298
8f2e8d1f
AL
299static inline int
300vlan_enabled(E1000State *s)
301{
302 return ((s->mac_reg[CTRL] & E1000_CTRL_VME) != 0);
303}
304
305static inline int
306vlan_rx_filter_enabled(E1000State *s)
307{
308 return ((s->mac_reg[RCTL] & E1000_RCTL_VFE) != 0);
309}
310
311static inline int
312is_vlan_packet(E1000State *s, const uint8_t *buf)
313{
314 return (be16_to_cpup((uint16_t *)(buf + 12)) ==
315 le16_to_cpup((uint16_t *)(s->mac_reg + VET)));
316}
317
318static inline int
319is_vlan_txd(uint32_t txd_lower)
320{
321 return ((txd_lower & E1000_TXD_CMD_VLE) != 0);
322}
323
7c23b892
AZ
324static void
325xmit_seg(E1000State *s)
326{
327 uint16_t len, *sp;
328 unsigned int frames = s->tx.tso_frames, css, sofar, n;
329 struct e1000_tx *tp = &s->tx;
330
1b0009db 331 if (tp->tse && tp->cptse) {
7c23b892
AZ
332 css = tp->ipcss;
333 DBGOUT(TXSUM, "frames %d size %d ipcss %d\n",
334 frames, tp->size, css);
335 if (tp->ip) { // IPv4
336 cpu_to_be16wu((uint16_t *)(tp->data+css+2),
337 tp->size - css);
338 cpu_to_be16wu((uint16_t *)(tp->data+css+4),
339 be16_to_cpup((uint16_t *)(tp->data+css+4))+frames);
340 } else // IPv6
341 cpu_to_be16wu((uint16_t *)(tp->data+css+4),
342 tp->size - css);
343 css = tp->tucss;
344 len = tp->size - css;
345 DBGOUT(TXSUM, "tcp %d tucss %d len %d\n", tp->tcp, css, len);
346 if (tp->tcp) {
347 sofar = frames * tp->mss;
348 cpu_to_be32wu((uint32_t *)(tp->data+css+4), // seq
88738c09 349 be32_to_cpupu((uint32_t *)(tp->data+css+4))+sofar);
7c23b892
AZ
350 if (tp->paylen - sofar > tp->mss)
351 tp->data[css + 13] &= ~9; // PSH, FIN
352 } else // UDP
353 cpu_to_be16wu((uint16_t *)(tp->data+css+4), len);
354 if (tp->sum_needed & E1000_TXD_POPTS_TXSM) {
355 // add pseudo-header length before checksum calculation
356 sp = (uint16_t *)(tp->data + tp->tucso);
357 cpu_to_be16wu(sp, be16_to_cpup(sp) + len);
358 }
359 tp->tso_frames++;
360 }
361
362 if (tp->sum_needed & E1000_TXD_POPTS_TXSM)
363 putsum(tp->data, tp->size, tp->tucso, tp->tucss, tp->tucse);
364 if (tp->sum_needed & E1000_TXD_POPTS_IXSM)
365 putsum(tp->data, tp->size, tp->ipcso, tp->ipcss, tp->ipcse);
8f2e8d1f
AL
366 if (tp->vlan_needed) {
367 memmove(tp->vlan, tp->data, 12);
368 memcpy(tp->data + 8, tp->vlan_header, 4);
369 qemu_send_packet(s->vc, tp->vlan, tp->size + 4);
370 } else
371 qemu_send_packet(s->vc, tp->data, tp->size);
7c23b892
AZ
372 s->mac_reg[TPT]++;
373 s->mac_reg[GPTC]++;
374 n = s->mac_reg[TOTL];
375 if ((s->mac_reg[TOTL] += s->tx.size) < n)
376 s->mac_reg[TOTH]++;
377}
378
379static void
380process_tx_desc(E1000State *s, struct e1000_tx_desc *dp)
381{
382 uint32_t txd_lower = le32_to_cpu(dp->lower.data);
383 uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
384 unsigned int split_size = txd_lower & 0xffff, bytes, sz, op;
385 unsigned int msh = 0xfffff, hdr = 0;
386 uint64_t addr;
387 struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
388 struct e1000_tx *tp = &s->tx;
389
390 if (dtype == E1000_TXD_CMD_DEXT) { // context descriptor
391 op = le32_to_cpu(xp->cmd_and_length);
392 tp->ipcss = xp->lower_setup.ip_fields.ipcss;
393 tp->ipcso = xp->lower_setup.ip_fields.ipcso;
394 tp->ipcse = le16_to_cpu(xp->lower_setup.ip_fields.ipcse);
395 tp->tucss = xp->upper_setup.tcp_fields.tucss;
396 tp->tucso = xp->upper_setup.tcp_fields.tucso;
397 tp->tucse = le16_to_cpu(xp->upper_setup.tcp_fields.tucse);
398 tp->paylen = op & 0xfffff;
399 tp->hdr_len = xp->tcp_seg_setup.fields.hdr_len;
400 tp->mss = le16_to_cpu(xp->tcp_seg_setup.fields.mss);
401 tp->ip = (op & E1000_TXD_CMD_IP) ? 1 : 0;
402 tp->tcp = (op & E1000_TXD_CMD_TCP) ? 1 : 0;
403 tp->tse = (op & E1000_TXD_CMD_TSE) ? 1 : 0;
404 tp->tso_frames = 0;
405 if (tp->tucso == 0) { // this is probably wrong
406 DBGOUT(TXSUM, "TCP/UDP: cso 0!\n");
407 tp->tucso = tp->tucss + (tp->tcp ? 16 : 6);
408 }
409 return;
1b0009db
AZ
410 } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
411 // data descriptor
7c23b892 412 tp->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
1b0009db
AZ
413 tp->cptse = ( txd_lower & E1000_TXD_CMD_TSE ) ? 1 : 0;
414 } else
415 // legacy descriptor
416 tp->cptse = 0;
7c23b892 417
8f2e8d1f
AL
418 if (vlan_enabled(s) && is_vlan_txd(txd_lower) &&
419 (tp->cptse || txd_lower & E1000_TXD_CMD_EOP)) {
420 tp->vlan_needed = 1;
421 cpu_to_be16wu((uint16_t *)(tp->vlan_header),
422 le16_to_cpup((uint16_t *)(s->mac_reg + VET)));
423 cpu_to_be16wu((uint16_t *)(tp->vlan_header + 2),
424 le16_to_cpu(dp->upper.fields.special));
425 }
426
7c23b892 427 addr = le64_to_cpu(dp->buffer_addr);
1b0009db 428 if (tp->tse && tp->cptse) {
7c23b892
AZ
429 hdr = tp->hdr_len;
430 msh = hdr + tp->mss;
1b0009db
AZ
431 do {
432 bytes = split_size;
433 if (tp->size + bytes > msh)
434 bytes = msh - tp->size;
435 cpu_physical_memory_read(addr, tp->data + tp->size, bytes);
436 if ((sz = tp->size + bytes) >= hdr && tp->size < hdr)
437 memmove(tp->header, tp->data, hdr);
438 tp->size = sz;
439 addr += bytes;
440 if (sz == msh) {
441 xmit_seg(s);
442 memmove(tp->data, tp->header, hdr);
443 tp->size = hdr;
444 }
445 } while (split_size -= bytes);
446 } else if (!tp->tse && tp->cptse) {
447 // context descriptor TSE is not set, while data descriptor TSE is set
448 DBGOUT(TXERR, "TCP segmentaion Error\n");
449 } else {
450 cpu_physical_memory_read(addr, tp->data + tp->size, split_size);
451 tp->size += split_size;
7c23b892 452 }
7c23b892
AZ
453
454 if (!(txd_lower & E1000_TXD_CMD_EOP))
455 return;
1b0009db 456 if (!(tp->tse && tp->cptse && tp->size < hdr))
7c23b892
AZ
457 xmit_seg(s);
458 tp->tso_frames = 0;
459 tp->sum_needed = 0;
8f2e8d1f 460 tp->vlan_needed = 0;
7c23b892 461 tp->size = 0;
1b0009db 462 tp->cptse = 0;
7c23b892
AZ
463}
464
465static uint32_t
466txdesc_writeback(target_phys_addr_t base, struct e1000_tx_desc *dp)
467{
468 uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
469
470 if (!(txd_lower & (E1000_TXD_CMD_RS|E1000_TXD_CMD_RPS)))
471 return 0;
472 txd_upper = (le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD) &
473 ~(E1000_TXD_STAT_EC | E1000_TXD_STAT_LC | E1000_TXD_STAT_TU);
474 dp->upper.data = cpu_to_le32(txd_upper);
475 cpu_physical_memory_write(base + ((char *)&dp->upper - (char *)dp),
476 (void *)&dp->upper, sizeof(dp->upper));
477 return E1000_ICR_TXDW;
478}
479
480static void
481start_xmit(E1000State *s)
482{
483 target_phys_addr_t base;
484 struct e1000_tx_desc desc;
485 uint32_t tdh_start = s->mac_reg[TDH], cause = E1000_ICS_TXQE;
486
487 if (!(s->mac_reg[TCTL] & E1000_TCTL_EN)) {
488 DBGOUT(TX, "tx disabled\n");
489 return;
490 }
491
492 while (s->mac_reg[TDH] != s->mac_reg[TDT]) {
493 base = ((uint64_t)s->mac_reg[TDBAH] << 32) + s->mac_reg[TDBAL] +
494 sizeof(struct e1000_tx_desc) * s->mac_reg[TDH];
495 cpu_physical_memory_read(base, (void *)&desc, sizeof(desc));
496
497 DBGOUT(TX, "index %d: %p : %x %x\n", s->mac_reg[TDH],
6106075b 498 (void *)(intptr_t)desc.buffer_addr, desc.lower.data,
7c23b892
AZ
499 desc.upper.data);
500
501 process_tx_desc(s, &desc);
502 cause |= txdesc_writeback(base, &desc);
503
504 if (++s->mac_reg[TDH] * sizeof(desc) >= s->mac_reg[TDLEN])
505 s->mac_reg[TDH] = 0;
506 /*
507 * the following could happen only if guest sw assigns
508 * bogus values to TDT/TDLEN.
509 * there's nothing too intelligent we could do about this.
510 */
511 if (s->mac_reg[TDH] == tdh_start) {
512 DBGOUT(TXERR, "TDH wraparound @%x, TDT %x, TDLEN %x\n",
513 tdh_start, s->mac_reg[TDT], s->mac_reg[TDLEN]);
514 break;
515 }
516 }
517 set_ics(s, 0, cause);
518}
519
520static int
521receive_filter(E1000State *s, const uint8_t *buf, int size)
522{
523 static uint8_t bcast[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
524 static int mta_shift[] = {4, 3, 2, 0};
525 uint32_t f, rctl = s->mac_reg[RCTL], ra[2], *rp;
526
8f2e8d1f
AL
527 if (is_vlan_packet(s, buf) && vlan_rx_filter_enabled(s)) {
528 uint16_t vid = be16_to_cpup((uint16_t *)(buf + 14));
529 uint32_t vfta = le32_to_cpup((uint32_t *)(s->mac_reg + VFTA) +
530 ((vid >> 5) & 0x7f));
531 if ((vfta & (1 << (vid & 0x1f))) == 0)
532 return 0;
533 }
534
7c23b892
AZ
535 if (rctl & E1000_RCTL_UPE) // promiscuous
536 return 1;
537
538 if ((buf[0] & 1) && (rctl & E1000_RCTL_MPE)) // promiscuous mcast
539 return 1;
540
541 if ((rctl & E1000_RCTL_BAM) && !memcmp(buf, bcast, sizeof bcast))
542 return 1;
543
544 for (rp = s->mac_reg + RA; rp < s->mac_reg + RA + 32; rp += 2) {
545 if (!(rp[1] & E1000_RAH_AV))
546 continue;
547 ra[0] = cpu_to_le32(rp[0]);
548 ra[1] = cpu_to_le32(rp[1]);
549 if (!memcmp(buf, (uint8_t *)ra, 6)) {
550 DBGOUT(RXFILTER,
551 "unicast match[%d]: %02x:%02x:%02x:%02x:%02x:%02x\n",
552 (int)(rp - s->mac_reg - RA)/2,
553 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
554 return 1;
555 }
556 }
557 DBGOUT(RXFILTER, "unicast mismatch: %02x:%02x:%02x:%02x:%02x:%02x\n",
558 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
559
560 f = mta_shift[(rctl >> E1000_RCTL_MO_SHIFT) & 3];
561 f = (((buf[5] << 8) | buf[4]) >> f) & 0xfff;
562 if (s->mac_reg[MTA + (f >> 5)] & (1 << (f & 0x1f)))
563 return 1;
564 DBGOUT(RXFILTER,
565 "dropping, inexact filter mismatch: %02x:%02x:%02x:%02x:%02x:%02x MO %d MTA[%d] %x\n",
566 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
567 (rctl >> E1000_RCTL_MO_SHIFT) & 3, f >> 5,
568 s->mac_reg[MTA + (f >> 5)]);
569
570 return 0;
571}
572
573static int
574e1000_can_receive(void *opaque)
575{
576 E1000State *s = opaque;
577
4105de67 578 return (s->mac_reg[RCTL] & E1000_RCTL_EN);
7c23b892
AZ
579}
580
581static void
582e1000_receive(void *opaque, const uint8_t *buf, int size)
583{
584 E1000State *s = opaque;
585 struct e1000_rx_desc desc;
586 target_phys_addr_t base;
587 unsigned int n, rdt;
588 uint32_t rdh_start;
8f2e8d1f
AL
589 uint16_t vlan_special = 0;
590 uint8_t vlan_status = 0, vlan_offset = 0;
7c23b892
AZ
591
592 if (!(s->mac_reg[RCTL] & E1000_RCTL_EN))
593 return;
594
595 if (size > s->rxbuf_size) {
596 DBGOUT(RX, "packet too large for buffers (%d > %d)\n", size,
597 s->rxbuf_size);
598 return;
599 }
600
601 if (!receive_filter(s, buf, size))
602 return;
603
8f2e8d1f
AL
604 if (vlan_enabled(s) && is_vlan_packet(s, buf)) {
605 vlan_special = cpu_to_le16(be16_to_cpup((uint16_t *)(buf + 14)));
606 memmove((void *)(buf + 4), buf, 12);
607 vlan_status = E1000_RXD_STAT_VP;
608 vlan_offset = 4;
609 size -= 4;
610 }
611
7c23b892
AZ
612 rdh_start = s->mac_reg[RDH];
613 size += 4; // for the header
614 do {
615 if (s->mac_reg[RDH] == s->mac_reg[RDT] && s->check_rxov) {
616 set_ics(s, 0, E1000_ICS_RXO);
617 return;
618 }
619 base = ((uint64_t)s->mac_reg[RDBAH] << 32) + s->mac_reg[RDBAL] +
620 sizeof(desc) * s->mac_reg[RDH];
621 cpu_physical_memory_read(base, (void *)&desc, sizeof(desc));
8f2e8d1f
AL
622 desc.special = vlan_special;
623 desc.status |= (vlan_status | E1000_RXD_STAT_DD);
7c23b892
AZ
624 if (desc.buffer_addr) {
625 cpu_physical_memory_write(le64_to_cpu(desc.buffer_addr),
8f2e8d1f 626 (void *)(buf + vlan_offset), size);
7c23b892
AZ
627 desc.length = cpu_to_le16(size);
628 desc.status |= E1000_RXD_STAT_EOP|E1000_RXD_STAT_IXSM;
629 } else // as per intel docs; skip descriptors with null buf addr
630 DBGOUT(RX, "Null RX descriptor!!\n");
631 cpu_physical_memory_write(base, (void *)&desc, sizeof(desc));
632
633 if (++s->mac_reg[RDH] * sizeof(desc) >= s->mac_reg[RDLEN])
634 s->mac_reg[RDH] = 0;
635 s->check_rxov = 1;
636 /* see comment in start_xmit; same here */
637 if (s->mac_reg[RDH] == rdh_start) {
638 DBGOUT(RXERR, "RDH wraparound @%x, RDT %x, RDLEN %x\n",
639 rdh_start, s->mac_reg[RDT], s->mac_reg[RDLEN]);
640 set_ics(s, 0, E1000_ICS_RXO);
641 return;
642 }
643 } while (desc.buffer_addr == 0);
644
645 s->mac_reg[GPRC]++;
646 s->mac_reg[TPR]++;
647 n = s->mac_reg[TORL];
648 if ((s->mac_reg[TORL] += size) < n)
649 s->mac_reg[TORH]++;
650
651 n = E1000_ICS_RXT0;
652 if ((rdt = s->mac_reg[RDT]) < s->mac_reg[RDH])
653 rdt += s->mac_reg[RDLEN] / sizeof(desc);
654 if (((rdt - s->mac_reg[RDH]) * sizeof(desc)) << s->rxbuf_min_shift >=
655 s->mac_reg[RDLEN])
656 n |= E1000_ICS_RXDMT0;
657
658 set_ics(s, 0, n);
659}
660
661static uint32_t
662mac_readreg(E1000State *s, int index)
663{
664 return s->mac_reg[index];
665}
666
667static uint32_t
668mac_icr_read(E1000State *s, int index)
669{
670 uint32_t ret = s->mac_reg[ICR];
671
672 DBGOUT(INTERRUPT, "ICR read: %x\n", ret);
673 set_interrupt_cause(s, 0, 0);
674 return ret;
675}
676
677static uint32_t
678mac_read_clr4(E1000State *s, int index)
679{
680 uint32_t ret = s->mac_reg[index];
681
682 s->mac_reg[index] = 0;
683 return ret;
684}
685
686static uint32_t
687mac_read_clr8(E1000State *s, int index)
688{
689 uint32_t ret = s->mac_reg[index];
690
691 s->mac_reg[index] = 0;
692 s->mac_reg[index-1] = 0;
693 return ret;
694}
695
696static void
697mac_writereg(E1000State *s, int index, uint32_t val)
698{
699 s->mac_reg[index] = val;
700}
701
702static void
703set_rdt(E1000State *s, int index, uint32_t val)
704{
705 s->check_rxov = 0;
706 s->mac_reg[index] = val & 0xffff;
707}
708
709static void
710set_16bit(E1000State *s, int index, uint32_t val)
711{
712 s->mac_reg[index] = val & 0xffff;
713}
714
715static void
716set_dlen(E1000State *s, int index, uint32_t val)
717{
718 s->mac_reg[index] = val & 0xfff80;
719}
720
721static void
722set_tctl(E1000State *s, int index, uint32_t val)
723{
724 s->mac_reg[index] = val;
725 s->mac_reg[TDT] &= 0xffff;
726 start_xmit(s);
727}
728
729static void
730set_icr(E1000State *s, int index, uint32_t val)
731{
732 DBGOUT(INTERRUPT, "set_icr %x\n", val);
733 set_interrupt_cause(s, 0, s->mac_reg[ICR] & ~val);
734}
735
736static void
737set_imc(E1000State *s, int index, uint32_t val)
738{
739 s->mac_reg[IMS] &= ~val;
740 set_ics(s, 0, 0);
741}
742
743static void
744set_ims(E1000State *s, int index, uint32_t val)
745{
746 s->mac_reg[IMS] |= val;
747 set_ics(s, 0, 0);
748}
749
750#define getreg(x) [x] = mac_readreg
751static uint32_t (*macreg_readops[])(E1000State *, int) = {
752 getreg(PBA), getreg(RCTL), getreg(TDH), getreg(TXDCTL),
753 getreg(WUFC), getreg(TDT), getreg(CTRL), getreg(LEDCTL),
754 getreg(MANC), getreg(MDIC), getreg(SWSM), getreg(STATUS),
755 getreg(TORL), getreg(TOTL), getreg(IMS), getreg(TCTL),
8f2e8d1f 756 getreg(RDH), getreg(RDT), getreg(VET),
7c23b892
AZ
757
758 [TOTH] = mac_read_clr8, [TORH] = mac_read_clr8, [GPRC] = mac_read_clr4,
759 [GPTC] = mac_read_clr4, [TPR] = mac_read_clr4, [TPT] = mac_read_clr4,
760 [ICR] = mac_icr_read, [EECD] = get_eecd, [EERD] = flash_eerd_read,
761 [CRCERRS ... MPC] = &mac_readreg,
762 [RA ... RA+31] = &mac_readreg,
763 [MTA ... MTA+127] = &mac_readreg,
8f2e8d1f 764 [VFTA ... VFTA+127] = &mac_readreg,
7c23b892 765};
b1503cda 766enum { NREADOPS = ARRAY_SIZE(macreg_readops) };
7c23b892
AZ
767
768#define putreg(x) [x] = mac_writereg
769static void (*macreg_writeops[])(E1000State *, int, uint32_t) = {
770 putreg(PBA), putreg(EERD), putreg(SWSM), putreg(WUFC),
771 putreg(TDBAL), putreg(TDBAH), putreg(TXDCTL), putreg(RDBAH),
8f2e8d1f 772 putreg(RDBAL), putreg(LEDCTL), putreg(CTRL), putreg(VET),
7c23b892
AZ
773 [TDLEN] = set_dlen, [RDLEN] = set_dlen, [TCTL] = set_tctl,
774 [TDT] = set_tctl, [MDIC] = set_mdic, [ICS] = set_ics,
775 [TDH] = set_16bit, [RDH] = set_16bit, [RDT] = set_rdt,
776 [IMC] = set_imc, [IMS] = set_ims, [ICR] = set_icr,
777 [EECD] = set_eecd, [RCTL] = set_rx_control,
778 [RA ... RA+31] = &mac_writereg,
779 [MTA ... MTA+127] = &mac_writereg,
8f2e8d1f 780 [VFTA ... VFTA+127] = &mac_writereg,
7c23b892 781};
b1503cda 782enum { NWRITEOPS = ARRAY_SIZE(macreg_writeops) };
7c23b892
AZ
783
784static void
785e1000_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
786{
787 E1000State *s = opaque;
8da3ff18 788 unsigned int index = (addr & 0x1ffff) >> 2;
7c23b892 789
6b59fc74
AJ
790#ifdef TARGET_WORDS_BIGENDIAN
791 val = bswap32(val);
792#endif
7c23b892 793 if (index < NWRITEOPS && macreg_writeops[index])
6b59fc74 794 macreg_writeops[index](s, index, val);
7c23b892
AZ
795 else if (index < NREADOPS && macreg_readops[index])
796 DBGOUT(MMIO, "e1000_mmio_writel RO %x: 0x%04x\n", index<<2, val);
797 else
798 DBGOUT(UNKNOWN, "MMIO unknown write addr=0x%08x,val=0x%08x\n",
799 index<<2, val);
800}
801
802static void
803e1000_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
804{
805 // emulate hw without byte enables: no RMW
806 e1000_mmio_writel(opaque, addr & ~3,
6b59fc74 807 (val & 0xffff) << (8*(addr & 3)));
7c23b892
AZ
808}
809
810static void
811e1000_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
812{
813 // emulate hw without byte enables: no RMW
814 e1000_mmio_writel(opaque, addr & ~3,
6b59fc74 815 (val & 0xff) << (8*(addr & 3)));
7c23b892
AZ
816}
817
818static uint32_t
819e1000_mmio_readl(void *opaque, target_phys_addr_t addr)
820{
821 E1000State *s = opaque;
8da3ff18 822 unsigned int index = (addr & 0x1ffff) >> 2;
7c23b892
AZ
823
824 if (index < NREADOPS && macreg_readops[index])
6b59fc74
AJ
825 {
826 uint32_t val = macreg_readops[index](s, index);
827#ifdef TARGET_WORDS_BIGENDIAN
828 val = bswap32(val);
829#endif
830 return val;
831 }
7c23b892
AZ
832 DBGOUT(UNKNOWN, "MMIO unknown read addr=0x%08x\n", index<<2);
833 return 0;
834}
835
836static uint32_t
837e1000_mmio_readb(void *opaque, target_phys_addr_t addr)
838{
6b59fc74 839 return ((e1000_mmio_readl(opaque, addr & ~3)) >>
7c23b892
AZ
840 (8 * (addr & 3))) & 0xff;
841}
842
843static uint32_t
844e1000_mmio_readw(void *opaque, target_phys_addr_t addr)
845{
6b59fc74
AJ
846 return ((e1000_mmio_readl(opaque, addr & ~3)) >>
847 (8 * (addr & 3))) & 0xffff;
7c23b892
AZ
848}
849
88b4e9db 850static const int mac_regtosave[] = {
7c23b892
AZ
851 CTRL, EECD, EERD, GPRC, GPTC, ICR, ICS, IMC, IMS,
852 LEDCTL, MANC, MDIC, MPC, PBA, RCTL, RDBAH, RDBAL, RDH,
853 RDLEN, RDT, STATUS, SWSM, TCTL, TDBAH, TDBAL, TDH, TDLEN,
854 TDT, TORH, TORL, TOTH, TOTL, TPR, TPT, TXDCTL, WUFC,
8f2e8d1f 855 VET,
7c23b892 856};
b1503cda 857enum { MAC_NSAVE = ARRAY_SIZE(mac_regtosave) };
7c23b892 858
88b4e9db 859static const struct {
7c23b892
AZ
860 int size;
861 int array0;
8f2e8d1f 862} mac_regarraystosave[] = { {32, RA}, {128, MTA}, {128, VFTA} };
b1503cda 863enum { MAC_NARRAYS = ARRAY_SIZE(mac_regarraystosave) };
7c23b892
AZ
864
865static void
866nic_save(QEMUFile *f, void *opaque)
867{
868 E1000State *s = (E1000State *)opaque;
869 int i, j;
870
871 pci_device_save(&s->dev, f);
8da3ff18 872 qemu_put_be32(f, 0);
7c23b892
AZ
873 qemu_put_be32s(f, &s->rxbuf_size);
874 qemu_put_be32s(f, &s->rxbuf_min_shift);
875 qemu_put_be32s(f, &s->eecd_state.val_in);
876 qemu_put_be16s(f, &s->eecd_state.bitnum_in);
877 qemu_put_be16s(f, &s->eecd_state.bitnum_out);
878 qemu_put_be16s(f, &s->eecd_state.reading);
879 qemu_put_be32s(f, &s->eecd_state.old_eecd);
880 qemu_put_8s(f, &s->tx.ipcss);
881 qemu_put_8s(f, &s->tx.ipcso);
882 qemu_put_be16s(f, &s->tx.ipcse);
883 qemu_put_8s(f, &s->tx.tucss);
884 qemu_put_8s(f, &s->tx.tucso);
885 qemu_put_be16s(f, &s->tx.tucse);
886 qemu_put_be32s(f, &s->tx.paylen);
887 qemu_put_8s(f, &s->tx.hdr_len);
888 qemu_put_be16s(f, &s->tx.mss);
889 qemu_put_be16s(f, &s->tx.size);
890 qemu_put_be16s(f, &s->tx.tso_frames);
891 qemu_put_8s(f, &s->tx.sum_needed);
b6c4f71f
BS
892 qemu_put_s8s(f, &s->tx.ip);
893 qemu_put_s8s(f, &s->tx.tcp);
7c23b892
AZ
894 qemu_put_buffer(f, s->tx.header, sizeof s->tx.header);
895 qemu_put_buffer(f, s->tx.data, sizeof s->tx.data);
896 for (i = 0; i < 64; i++)
897 qemu_put_be16s(f, s->eeprom_data + i);
898 for (i = 0; i < 0x20; i++)
899 qemu_put_be16s(f, s->phy_reg + i);
900 for (i = 0; i < MAC_NSAVE; i++)
901 qemu_put_be32s(f, s->mac_reg + mac_regtosave[i]);
902 for (i = 0; i < MAC_NARRAYS; i++)
903 for (j = 0; j < mac_regarraystosave[i].size; j++)
904 qemu_put_be32s(f,
905 s->mac_reg + mac_regarraystosave[i].array0 + j);
906}
907
908static int
909nic_load(QEMUFile *f, void *opaque, int version_id)
910{
911 E1000State *s = (E1000State *)opaque;
912 int i, j, ret;
913
914 if ((ret = pci_device_load(&s->dev, f)) < 0)
915 return ret;
18fdb1c5 916 if (version_id == 1)
b6c4f71f 917 qemu_get_sbe32s(f, &i); /* once some unused instance id */
8da3ff18 918 qemu_get_be32(f); /* Ignored. Was mmio_base. */
7c23b892
AZ
919 qemu_get_be32s(f, &s->rxbuf_size);
920 qemu_get_be32s(f, &s->rxbuf_min_shift);
921 qemu_get_be32s(f, &s->eecd_state.val_in);
922 qemu_get_be16s(f, &s->eecd_state.bitnum_in);
923 qemu_get_be16s(f, &s->eecd_state.bitnum_out);
924 qemu_get_be16s(f, &s->eecd_state.reading);
925 qemu_get_be32s(f, &s->eecd_state.old_eecd);
926 qemu_get_8s(f, &s->tx.ipcss);
927 qemu_get_8s(f, &s->tx.ipcso);
928 qemu_get_be16s(f, &s->tx.ipcse);
929 qemu_get_8s(f, &s->tx.tucss);
930 qemu_get_8s(f, &s->tx.tucso);
931 qemu_get_be16s(f, &s->tx.tucse);
932 qemu_get_be32s(f, &s->tx.paylen);
933 qemu_get_8s(f, &s->tx.hdr_len);
934 qemu_get_be16s(f, &s->tx.mss);
935 qemu_get_be16s(f, &s->tx.size);
936 qemu_get_be16s(f, &s->tx.tso_frames);
937 qemu_get_8s(f, &s->tx.sum_needed);
b6c4f71f
BS
938 qemu_get_s8s(f, &s->tx.ip);
939 qemu_get_s8s(f, &s->tx.tcp);
7c23b892
AZ
940 qemu_get_buffer(f, s->tx.header, sizeof s->tx.header);
941 qemu_get_buffer(f, s->tx.data, sizeof s->tx.data);
942 for (i = 0; i < 64; i++)
943 qemu_get_be16s(f, s->eeprom_data + i);
944 for (i = 0; i < 0x20; i++)
945 qemu_get_be16s(f, s->phy_reg + i);
946 for (i = 0; i < MAC_NSAVE; i++)
947 qemu_get_be32s(f, s->mac_reg + mac_regtosave[i]);
948 for (i = 0; i < MAC_NARRAYS; i++)
949 for (j = 0; j < mac_regarraystosave[i].size; j++)
950 qemu_get_be32s(f,
951 s->mac_reg + mac_regarraystosave[i].array0 + j);
952 return 0;
953}
954
88b4e9db 955static const uint16_t e1000_eeprom_template[64] = {
7c23b892
AZ
956 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000,
957 0x3000, 0x1000, 0x6403, E1000_DEVID, 0x8086, E1000_DEVID, 0x8086, 0x3040,
958 0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700,
959 0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706,
960 0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff,
961 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
962 0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
963 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000,
964};
965
88b4e9db 966static const uint16_t phy_reg_init[] = {
7c23b892
AZ
967 [PHY_CTRL] = 0x1140, [PHY_STATUS] = 0x796d, // link initially up
968 [PHY_ID1] = 0x141, [PHY_ID2] = PHY_ID2_INIT,
969 [PHY_1000T_CTRL] = 0x0e00, [M88E1000_PHY_SPEC_CTRL] = 0x360,
970 [M88E1000_EXT_PHY_SPEC_CTRL] = 0x0d60, [PHY_AUTONEG_ADV] = 0xde1,
971 [PHY_LP_ABILITY] = 0x1e0, [PHY_1000T_STATUS] = 0x3c00,
700f6e2c 972 [M88E1000_PHY_SPEC_STATUS] = 0xac00,
7c23b892
AZ
973};
974
88b4e9db 975static const uint32_t mac_reg_init[] = {
7c23b892
AZ
976 [PBA] = 0x00100030,
977 [LEDCTL] = 0x602,
978 [CTRL] = E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
979 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU,
980 [STATUS] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE |
981 E1000_STATUS_ASDV | E1000_STATUS_MTXCKOK |
982 E1000_STATUS_SPEED_1000 | E1000_STATUS_FD |
983 E1000_STATUS_LU,
984 [MANC] = E1000_MANC_EN_MNG2HOST | E1000_MANC_RCV_TCO_EN |
985 E1000_MANC_ARP_EN | E1000_MANC_0298_EN |
986 E1000_MANC_RMCP_EN,
987};
988
989/* PCI interface */
990
991static CPUWriteMemoryFunc *e1000_mmio_write[] = {
992 e1000_mmio_writeb, e1000_mmio_writew, e1000_mmio_writel
993};
994
995static CPUReadMemoryFunc *e1000_mmio_read[] = {
996 e1000_mmio_readb, e1000_mmio_readw, e1000_mmio_readl
997};
998
999static void
1000e1000_mmio_map(PCIDevice *pci_dev, int region_num,
1001 uint32_t addr, uint32_t size, int type)
1002{
1003 E1000State *d = (E1000State *)pci_dev;
f65ed4c1
AL
1004 int i;
1005 const uint32_t excluded_regs[] = {
1006 E1000_MDIC, E1000_ICR, E1000_ICS, E1000_IMS,
1007 E1000_IMC, E1000_TCTL, E1000_TDT, PNPMMIO_SIZE
1008 };
1009
7c23b892
AZ
1010
1011 DBGOUT(MMIO, "e1000_mmio_map addr=0x%08x 0x%08x\n", addr, size);
1012
7c23b892 1013 cpu_register_physical_memory(addr, PNPMMIO_SIZE, d->mmio_index);
f65ed4c1
AL
1014 qemu_register_coalesced_mmio(addr, excluded_regs[0]);
1015
1016 for (i = 0; excluded_regs[i] != PNPMMIO_SIZE; i++)
1017 qemu_register_coalesced_mmio(addr + excluded_regs[i] + 4,
1018 excluded_regs[i + 1] -
1019 excluded_regs[i] - 4);
7c23b892
AZ
1020}
1021
1022void
1023pci_e1000_init(PCIBus *bus, NICInfo *nd, int devfn)
1024{
1025 E1000State *d;
1026 uint8_t *pci_conf;
7c23b892 1027 uint16_t checksum = 0;
7ccfb2eb 1028 static const char info_str[] = "e1000";
7c23b892
AZ
1029 int i;
1030
1031 d = (E1000State *)pci_register_device(bus, "e1000",
1032 sizeof(E1000State), devfn, NULL, NULL);
1033
1034 pci_conf = d->dev.config;
1035 memset(pci_conf, 0, 256);
1036
1037 *(uint16_t *)(pci_conf+0x00) = cpu_to_le16(0x8086);
1038 *(uint16_t *)(pci_conf+0x02) = cpu_to_le16(E1000_DEVID);
1039 *(uint16_t *)(pci_conf+0x04) = cpu_to_le16(0x0407);
1040 *(uint16_t *)(pci_conf+0x06) = cpu_to_le16(0x0010);
1041 pci_conf[0x08] = 0x03;
1042 pci_conf[0x0a] = 0x00; // ethernet network controller
1043 pci_conf[0x0b] = 0x02;
1044 pci_conf[0x0c] = 0x10;
1045
1046 pci_conf[0x3d] = 1; // interrupt pin 0
1047
1048 d->mmio_index = cpu_register_io_memory(0, e1000_mmio_read,
1049 e1000_mmio_write, d);
1050
1051 pci_register_io_region((PCIDevice *)d, 0, PNPMMIO_SIZE,
1052 PCI_ADDRESS_SPACE_MEM, e1000_mmio_map);
1053
1054 pci_register_io_region((PCIDevice *)d, 1, IOPORT_SIZE,
1055 PCI_ADDRESS_SPACE_IO, ioport_map);
1056
7c23b892
AZ
1057 d->nd = nd;
1058 memmove(d->eeprom_data, e1000_eeprom_template,
1059 sizeof e1000_eeprom_template);
1060 for (i = 0; i < 3; i++)
1061 d->eeprom_data[i] = (nd->macaddr[2*i+1]<<8) | nd->macaddr[2*i];
1062 for (i = 0; i < EEPROM_CHECKSUM_REG; i++)
1063 checksum += d->eeprom_data[i];
1064 checksum = (uint16_t) EEPROM_SUM - checksum;
1065 d->eeprom_data[EEPROM_CHECKSUM_REG] = checksum;
1066
1067 memset(d->phy_reg, 0, sizeof d->phy_reg);
1068 memmove(d->phy_reg, phy_reg_init, sizeof phy_reg_init);
1069 memset(d->mac_reg, 0, sizeof d->mac_reg);
1070 memmove(d->mac_reg, mac_reg_init, sizeof mac_reg_init);
1071 d->rxbuf_min_shift = 1;
1072 memset(&d->tx, 0, sizeof d->tx);
1073
7a9f6e4a 1074 d->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
bf38c1a0 1075 e1000_receive, e1000_can_receive, d);
7c23b892 1076
7cb7434b 1077 qemu_format_nic_info_str(d->vc, d->nd->macaddr);
7c23b892 1078
18fdb1c5 1079 register_savevm(info_str, -1, 2, nic_save, nic_load, d);
7c23b892 1080}