]> git.proxmox.com Git - mirror_qemu.git/blame - hw/eepro100.c
Fix xen build after sys-queue renaming
[mirror_qemu.git] / hw / eepro100.c
CommitLineData
663e8e51
TS
1/*
2 * QEMU i8255x (PRO100) emulation
3 *
4 * Copyright (c) 2006-2007 Stefan Weil
5 *
6 * Portions of the code are copies from grub / etherboot eepro100.c
7 * and linux e100.c.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
8167ee88 20 * along with this program; if not, see <http://www.gnu.org/licenses/>.
663e8e51
TS
21 *
22 * Tested features (i82559):
23 * PXE boot (i386) no valid link
24 * Linux networking (i386) ok
25 *
26 * Untested:
27 * non-i386 platforms
28 * Windows networking
29 *
30 * References:
31 *
32 * Intel 8255x 10/100 Mbps Ethernet Controller Family
33 * Open Source Software Developer Manual
34 */
35
36#if defined(TARGET_I386)
37# warning "PXE boot still not working!"
38#endif
39
663e8e51 40#include <stddef.h> /* offsetof */
b84a5c6f 41#include <stdbool.h>
87ecb68b
PB
42#include "hw.h"
43#include "pci.h"
44#include "net.h"
663e8e51
TS
45#include "eeprom93xx.h"
46
47/* Common declarations for all PCI devices. */
48
663e8e51
TS
49#define PCI_CONFIG_8(offset, value) \
50 (pci_conf[offset] = (value))
51#define PCI_CONFIG_16(offset, value) \
52 (*(uint16_t *)&pci_conf[offset] = cpu_to_le16(value))
53#define PCI_CONFIG_32(offset, value) \
54 (*(uint32_t *)&pci_conf[offset] = cpu_to_le32(value))
55
56#define KiB 1024
57
58/* debug EEPRO100 card */
59//~ #define DEBUG_EEPRO100
60
61#ifdef DEBUG_EEPRO100
001faf32 62#define logout(fmt, ...) fprintf(stderr, "EE100\t%-24s" fmt, __func__, ## __VA_ARGS__)
663e8e51 63#else
001faf32 64#define logout(fmt, ...) ((void)0)
663e8e51
TS
65#endif
66
67/* Set flags to 0 to disable debug output. */
68#define MDI 0
69
70#define TRACE(flag, command) ((flag) ? (command) : (void)0)
71
72#define missing(text) assert(!"feature is missing in this emulation: " text)
73
74#define MAX_ETH_FRAME_SIZE 1514
75
76/* This driver supports several different devices which are declared here. */
77#define i82551 0x82551
78#define i82557B 0x82557b
79#define i82557C 0x82557c
80#define i82558B 0x82558b
81#define i82559C 0x82559c
82#define i82559ER 0x82559e
83#define i82562 0x82562
84
85#define EEPROM_SIZE 64
86
87#define PCI_MEM_SIZE (4 * KiB)
88#define PCI_IO_SIZE 64
89#define PCI_FLASH_SIZE (128 * KiB)
90
91#define BIT(n) (1 << (n))
92#define BITS(n, m) (((0xffffffffU << (31 - n)) >> (31 - n + m)) << m)
93
94/* The SCB accepts the following controls for the Tx and Rx units: */
95#define CU_NOP 0x0000 /* No operation. */
96#define CU_START 0x0010 /* CU start. */
97#define CU_RESUME 0x0020 /* CU resume. */
98#define CU_STATSADDR 0x0040 /* Load dump counters address. */
99#define CU_SHOWSTATS 0x0050 /* Dump statistical counters. */
100#define CU_CMD_BASE 0x0060 /* Load CU base address. */
101#define CU_DUMPSTATS 0x0070 /* Dump and reset statistical counters. */
102#define CU_SRESUME 0x00a0 /* CU static resume. */
103
104#define RU_NOP 0x0000
105#define RX_START 0x0001
106#define RX_RESUME 0x0002
107#define RX_ABORT 0x0004
108#define RX_ADDR_LOAD 0x0006
109#define RX_RESUMENR 0x0007
110#define INT_MASK 0x0100
111#define DRVR_INT 0x0200 /* Driver generated interrupt. */
112
663e8e51
TS
113/* Offsets to the various registers.
114 All accesses need not be longword aligned. */
115enum speedo_offsets {
116 SCBStatus = 0,
117 SCBAck = 1,
118 SCBCmd = 2, /* Rx/Command Unit command and status. */
119 SCBIntmask = 3,
120 SCBPointer = 4, /* General purpose pointer. */
121 SCBPort = 8, /* Misc. commands and operands. */
122 SCBflash = 12, SCBeeprom = 14, /* EEPROM and flash memory control. */
123 SCBCtrlMDI = 16, /* MDI interface control. */
124 SCBEarlyRx = 20, /* Early receive byte count. */
3257d2b6 125 SCBFlow = 24,
663e8e51
TS
126};
127
128/* A speedo3 transmit buffer descriptor with two buffers... */
129typedef struct {
130 uint16_t status;
131 uint16_t command;
132 uint32_t link; /* void * */
133 uint32_t tx_desc_addr; /* transmit buffer decsriptor array address. */
134 uint16_t tcb_bytes; /* transmit command block byte count (in lower 14 bits */
135 uint8_t tx_threshold; /* transmit threshold */
136 uint8_t tbd_count; /* TBD number */
137 //~ /* This constitutes two "TBD" entries: hdr and data */
138 //~ uint32_t tx_buf_addr0; /* void *, header of frame to be transmitted. */
139 //~ int32_t tx_buf_size0; /* Length of Tx hdr. */
140 //~ uint32_t tx_buf_addr1; /* void *, data to be transmitted. */
141 //~ int32_t tx_buf_size1; /* Length of Tx data. */
142} eepro100_tx_t;
143
144/* Receive frame descriptor. */
145typedef struct {
146 int16_t status;
147 uint16_t command;
148 uint32_t link; /* struct RxFD * */
149 uint32_t rx_buf_addr; /* void * */
150 uint16_t count;
151 uint16_t size;
152 char packet[MAX_ETH_FRAME_SIZE + 4];
153} eepro100_rx_t;
154
155typedef struct {
156 uint32_t tx_good_frames, tx_max_collisions, tx_late_collisions,
157 tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
158 tx_multiple_collisions, tx_total_collisions;
159 uint32_t rx_good_frames, rx_crc_errors, rx_alignment_errors,
160 rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
161 rx_short_frame_errors;
162 uint32_t fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
163 uint16_t xmt_tco_frames, rcv_tco_frames;
164 uint32_t complete;
165} eepro100_stats_t;
166
167typedef enum {
168 cu_idle = 0,
169 cu_suspended = 1,
170 cu_active = 2,
171 cu_lpq_active = 2,
172 cu_hqp_active = 3
173} cu_state_t;
174
175typedef enum {
176 ru_idle = 0,
177 ru_suspended = 1,
178 ru_no_resources = 2,
179 ru_ready = 4
180} ru_state_t;
181
663e8e51 182typedef struct {
273a2142 183 PCIDevice dev;
663e8e51
TS
184#if 1
185 uint8_t cmd;
186 uint32_t start;
187 uint32_t stop;
188 uint8_t boundary;
189 uint8_t tsr;
190 uint8_t tpsr;
191 uint16_t tcnt;
192 uint16_t rcnt;
193 uint32_t rsar;
194 uint8_t rsr;
195 uint8_t rxcr;
196 uint8_t isr;
197 uint8_t dcfg;
198 uint8_t imr;
199 uint8_t phys[6]; /* mac address */
200 uint8_t curpag;
201 uint8_t mult[8]; /* multicast mask array */
202 int mmio_index;
663e8e51
TS
203 VLANClientState *vc;
204#endif
205 uint8_t scb_stat; /* SCB stat/ack byte */
206 uint8_t int_stat; /* PCI interrupt status */
207 uint32_t region[3]; /* PCI region addresses */
208 uint8_t macaddr[6];
209 uint32_t statcounter[19];
210 uint16_t mdimem[32];
211 eeprom_t *eeprom;
212 uint32_t device; /* device variant */
213 uint32_t pointer;
214 /* (cu_base + cu_offset) address the next command block in the command block list. */
215 uint32_t cu_base; /* CU base address */
216 uint32_t cu_offset; /* CU address offset */
217 /* (ru_base + ru_offset) address the RFD in the Receive Frame Area. */
218 uint32_t ru_base; /* RU base address */
219 uint32_t ru_offset; /* RU address offset */
220 uint32_t statsaddr; /* pointer to eepro100_stats_t */
221 eepro100_stats_t statistics; /* statistical counters */
222#if 0
223 uint16_t status;
224#endif
225
226 /* Configuration bytes. */
227 uint8_t configuration[22];
228
229 /* Data in mem is always in the byte order of the controller (le). */
230 uint8_t mem[PCI_MEM_SIZE];
231} EEPRO100State;
232
233/* Default values for MDI (PHY) registers */
234static const uint16_t eepro100_mdi_default[] = {
235 /* MDI Registers 0 - 6, 7 */
236 0x3000, 0x780d, 0x02a8, 0x0154, 0x05e1, 0x0000, 0x0000, 0x0000,
237 /* MDI Registers 8 - 15 */
238 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
239 /* MDI Registers 16 - 31 */
240 0x0003, 0x0000, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
241 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
242};
243
244/* Readonly mask for MDI (PHY) registers */
245static const uint16_t eepro100_mdi_mask[] = {
246 0x0000, 0xffff, 0xffff, 0xffff, 0xc01f, 0xffff, 0xffff, 0x0000,
247 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
248 0x0fff, 0x0000, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
249 0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
250};
251
252#define POLYNOMIAL 0x04c11db6
253
254/* From FreeBSD */
255/* XXX: optimize */
256static int compute_mcast_idx(const uint8_t * ep)
257{
258 uint32_t crc;
259 int carry, i, j;
260 uint8_t b;
261
262 crc = 0xffffffff;
263 for (i = 0; i < 6; i++) {
264 b = *ep++;
265 for (j = 0; j < 8; j++) {
266 carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
267 crc <<= 1;
268 b >>= 1;
269 if (carry)
270 crc = ((crc ^ POLYNOMIAL) | carry);
271 }
272 }
273 return (crc >> 26);
274}
275
276#if defined(DEBUG_EEPRO100)
277static const char *nic_dump(const uint8_t * buf, unsigned size)
278{
279 static char dump[3 * 16 + 1];
280 char *p = &dump[0];
281 if (size > 16)
282 size = 16;
283 while (size-- > 0) {
284 p += sprintf(p, " %02x", *buf++);
285 }
286 return dump;
287}
288#endif /* DEBUG_EEPRO100 */
289
290enum scb_stat_ack {
291 stat_ack_not_ours = 0x00,
292 stat_ack_sw_gen = 0x04,
293 stat_ack_rnr = 0x10,
294 stat_ack_cu_idle = 0x20,
295 stat_ack_frame_rx = 0x40,
296 stat_ack_cu_cmd_done = 0x80,
297 stat_ack_not_present = 0xFF,
298 stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
299 stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
300};
301
302static void disable_interrupt(EEPRO100State * s)
303{
304 if (s->int_stat) {
305 logout("interrupt disabled\n");
273a2142 306 qemu_irq_lower(s->dev.irq[0]);
663e8e51
TS
307 s->int_stat = 0;
308 }
309}
310
311static void enable_interrupt(EEPRO100State * s)
312{
313 if (!s->int_stat) {
314 logout("interrupt enabled\n");
273a2142 315 qemu_irq_raise(s->dev.irq[0]);
663e8e51
TS
316 s->int_stat = 1;
317 }
318}
319
320static void eepro100_acknowledge(EEPRO100State * s)
321{
322 s->scb_stat &= ~s->mem[SCBAck];
323 s->mem[SCBAck] = s->scb_stat;
324 if (s->scb_stat == 0) {
325 disable_interrupt(s);
326 }
327}
328
329static void eepro100_interrupt(EEPRO100State * s, uint8_t stat)
330{
331 uint8_t mask = ~s->mem[SCBIntmask];
332 s->mem[SCBAck] |= stat;
333 stat = s->scb_stat = s->mem[SCBAck];
334 stat &= (mask | 0x0f);
335 //~ stat &= (~s->mem[SCBIntmask] | 0x0xf);
336 if (stat && (mask & 0x01)) {
337 /* SCB mask and SCB Bit M do not disable interrupt. */
338 enable_interrupt(s);
339 } else if (s->int_stat) {
340 disable_interrupt(s);
341 }
342}
343
344static void eepro100_cx_interrupt(EEPRO100State * s)
345{
346 /* CU completed action command. */
347 /* Transmit not ok (82557 only, not in emulation). */
348 eepro100_interrupt(s, 0x80);
349}
350
351static void eepro100_cna_interrupt(EEPRO100State * s)
352{
353 /* CU left the active state. */
354 eepro100_interrupt(s, 0x20);
355}
356
357static void eepro100_fr_interrupt(EEPRO100State * s)
358{
359 /* RU received a complete frame. */
360 eepro100_interrupt(s, 0x40);
361}
362
363#if 0
364static void eepro100_rnr_interrupt(EEPRO100State * s)
365{
366 /* RU is not ready. */
367 eepro100_interrupt(s, 0x10);
368}
369#endif
370
371static void eepro100_mdi_interrupt(EEPRO100State * s)
372{
373 /* MDI completed read or write cycle. */
374 eepro100_interrupt(s, 0x08);
375}
376
377static void eepro100_swi_interrupt(EEPRO100State * s)
378{
379 /* Software has requested an interrupt. */
380 eepro100_interrupt(s, 0x04);
381}
382
383#if 0
384static void eepro100_fcp_interrupt(EEPRO100State * s)
385{
386 /* Flow control pause interrupt (82558 and later). */
387 eepro100_interrupt(s, 0x01);
388}
389#endif
390
391static void pci_reset(EEPRO100State * s)
392{
393 uint32_t device = s->device;
273a2142 394 uint8_t *pci_conf = s->dev.config;
663e8e51
TS
395
396 logout("%p\n", s);
397
398 /* PCI Vendor ID */
deb54399 399 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
d6fd1e66 400 /* PCI Device ID depends on device and is set below. */
663e8e51
TS
401 /* PCI Command */
402 PCI_CONFIG_16(PCI_COMMAND, 0x0000);
403 /* PCI Status */
404 PCI_CONFIG_16(PCI_STATUS, 0x2800);
405 /* PCI Revision ID */
406 PCI_CONFIG_8(PCI_REVISION_ID, 0x08);
407 /* PCI Class Code */
408 PCI_CONFIG_8(0x09, 0x00);
173a543b 409 pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
663e8e51
TS
410 /* PCI Cache Line Size */
411 /* check cache line size!!! */
412 //~ PCI_CONFIG_8(0x0c, 0x00);
413 /* PCI Latency Timer */
414 PCI_CONFIG_8(0x0d, 0x20); // latency timer = 32 clocks
415 /* PCI Header Type */
416 /* BIST (built-in self test) */
417#if defined(TARGET_I386)
418// !!! workaround for buggy bios
419//~ #define PCI_ADDRESS_SPACE_MEM_PREFETCH 0
420#endif
421#if 0
422 /* PCI Base Address Registers */
423 /* CSR Memory Mapped Base Address */
424 PCI_CONFIG_32(PCI_BASE_ADDRESS_0,
425 PCI_ADDRESS_SPACE_MEM | PCI_ADDRESS_SPACE_MEM_PREFETCH);
426 /* CSR I/O Mapped Base Address */
427 PCI_CONFIG_32(PCI_BASE_ADDRESS_1, PCI_ADDRESS_SPACE_IO);
428#if 0
429 /* Flash Memory Mapped Base Address */
430 PCI_CONFIG_32(PCI_BASE_ADDRESS_2, 0xfffe0000 | PCI_ADDRESS_SPACE_MEM);
431#endif
432#endif
433 /* Expansion ROM Base Address (depends on boot disable!!!) */
434 PCI_CONFIG_32(0x30, 0x00000000);
435 /* Capability Pointer */
436 PCI_CONFIG_8(0x34, 0xdc);
437 /* Interrupt Pin */
438 PCI_CONFIG_8(0x3d, 1); // interrupt pin 0
439 /* Minimum Grant */
440 PCI_CONFIG_8(0x3e, 0x08);
441 /* Maximum Latency */
442 PCI_CONFIG_8(0x3f, 0x18);
443 /* Power Management Capabilities / Next Item Pointer / Capability ID */
444 PCI_CONFIG_32(0xdc, 0x7e210001);
445
446 switch (device) {
447 case i82551:
d6fd1e66 448 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82551IT);
663e8e51
TS
449 PCI_CONFIG_8(PCI_REVISION_ID, 0x0f);
450 break;
451 case i82557B:
d6fd1e66 452 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
663e8e51
TS
453 PCI_CONFIG_8(PCI_REVISION_ID, 0x02);
454 break;
455 case i82557C:
d6fd1e66 456 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
663e8e51
TS
457 PCI_CONFIG_8(PCI_REVISION_ID, 0x03);
458 break;
459 case i82558B:
d6fd1e66 460 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
663e8e51
TS
461 PCI_CONFIG_16(PCI_STATUS, 0x2810);
462 PCI_CONFIG_8(PCI_REVISION_ID, 0x05);
463 break;
464 case i82559C:
d6fd1e66 465 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82557);
663e8e51
TS
466 PCI_CONFIG_16(PCI_STATUS, 0x2810);
467 //~ PCI_CONFIG_8(PCI_REVISION_ID, 0x08);
468 break;
469 case i82559ER:
d6fd1e66 470 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82551IT);
663e8e51
TS
471 PCI_CONFIG_16(PCI_STATUS, 0x2810);
472 PCI_CONFIG_8(PCI_REVISION_ID, 0x09);
473 break;
474 //~ PCI_CONFIG_16(PCI_DEVICE_ID, 0x1029);
475 //~ PCI_CONFIG_16(PCI_DEVICE_ID, 0x1030); /* 82559 InBusiness 10/100 */
476 default:
477 logout("Device %X is undefined!\n", device);
478 }
479
480 if (device == i82557C || device == i82558B || device == i82559C) {
481 logout("Get device id and revision from EEPROM!!!\n");
482 }
483}
484
485static void nic_selective_reset(EEPRO100State * s)
486{
487 size_t i;
488 uint16_t *eeprom_contents = eeprom93xx_data(s->eeprom);
489 //~ eeprom93xx_reset(s->eeprom);
490 memcpy(eeprom_contents, s->macaddr, 6);
491 eeprom_contents[0xa] = 0x4000;
492 uint16_t sum = 0;
493 for (i = 0; i < EEPROM_SIZE - 1; i++) {
494 sum += eeprom_contents[i];
495 }
496 eeprom_contents[EEPROM_SIZE - 1] = 0xbaba - sum;
497
498 memset(s->mem, 0, sizeof(s->mem));
499 uint32_t val = BIT(21);
500 memcpy(&s->mem[SCBCtrlMDI], &val, sizeof(val));
501
502 assert(sizeof(s->mdimem) == sizeof(eepro100_mdi_default));
503 memcpy(&s->mdimem[0], &eepro100_mdi_default[0], sizeof(s->mdimem));
504}
505
506static void nic_reset(void *opaque)
507{
769cf7a5 508 EEPRO100State *s = opaque;
663e8e51
TS
509 logout("%p\n", s);
510 static int first;
511 if (!first) {
512 first = 1;
513 }
514 nic_selective_reset(s);
515}
516
517#if defined(DEBUG_EEPRO100)
518static const char *reg[PCI_IO_SIZE / 4] = {
519 "Command/Status",
520 "General Pointer",
521 "Port",
522 "EEPROM/Flash Control",
523 "MDI Control",
524 "Receive DMA Byte Count",
525 "Flow control register",
526 "General Status/Control"
527};
528
529static char *regname(uint32_t addr)
530{
531 static char buf[16];
532 if (addr < PCI_IO_SIZE) {
533 const char *r = reg[addr / 4];
534 if (r != 0) {
535 sprintf(buf, "%s+%u", r, addr % 4);
536 } else {
537 sprintf(buf, "0x%02x", addr);
538 }
539 } else {
540 sprintf(buf, "??? 0x%08x", addr);
541 }
542 return buf;
543}
544#endif /* DEBUG_EEPRO100 */
545
546#if 0
547static uint16_t eepro100_read_status(EEPRO100State * s)
548{
549 uint16_t val = s->status;
550 logout("val=0x%04x\n", val);
551 return val;
552}
553
554static void eepro100_write_status(EEPRO100State * s, uint16_t val)
555{
556 logout("val=0x%04x\n", val);
557 s->status = val;
558}
559#endif
560
561/*****************************************************************************
562 *
563 * Command emulation.
564 *
565 ****************************************************************************/
566
567#if 0
568static uint16_t eepro100_read_command(EEPRO100State * s)
569{
570 uint16_t val = 0xffff;
571 //~ logout("val=0x%04x\n", val);
572 return val;
573}
574#endif
575
0859df68
NS
576static bool device_supports_eTxCB(EEPRO100State * s)
577{
578 return (s->device != i82557B && s->device != i82557C);
579}
580
663e8e51
TS
581/* Commands that can be put in a command list entry. */
582enum commands {
583 CmdNOp = 0,
584 CmdIASetup = 1,
585 CmdConfigure = 2,
586 CmdMulticastList = 3,
587 CmdTx = 4,
588 CmdTDR = 5, /* load microcode */
589 CmdDump = 6,
590 CmdDiagnose = 7,
591
592 /* And some extra flags: */
593 CmdSuspend = 0x4000, /* Suspend after completion. */
594 CmdIntr = 0x2000, /* Interrupt after completion. */
595 CmdTxFlex = 0x0008, /* Use "Flexible mode" for CmdTx command. */
596};
597
598static cu_state_t get_cu_state(EEPRO100State * s)
599{
600 return ((s->mem[SCBStatus] >> 6) & 0x03);
601}
602
603static void set_cu_state(EEPRO100State * s, cu_state_t state)
604{
605 s->mem[SCBStatus] = (s->mem[SCBStatus] & 0x3f) + (state << 6);
606}
607
608static ru_state_t get_ru_state(EEPRO100State * s)
609{
610 return ((s->mem[SCBStatus] >> 2) & 0x0f);
611}
612
613static void set_ru_state(EEPRO100State * s, ru_state_t state)
614{
615 s->mem[SCBStatus] = (s->mem[SCBStatus] & 0xc3) + (state << 2);
616}
617
618static void dump_statistics(EEPRO100State * s)
619{
620 /* Dump statistical data. Most data is never changed by the emulation
621 * and always 0, so we first just copy the whole block and then those
622 * values which really matter.
623 * Number of data should check configuration!!!
624 */
625 cpu_physical_memory_write(s->statsaddr, (uint8_t *) & s->statistics, 64);
626 stl_phys(s->statsaddr + 0, s->statistics.tx_good_frames);
627 stl_phys(s->statsaddr + 36, s->statistics.rx_good_frames);
628 stl_phys(s->statsaddr + 48, s->statistics.rx_resource_errors);
629 stl_phys(s->statsaddr + 60, s->statistics.rx_short_frame_errors);
630 //~ stw_phys(s->statsaddr + 76, s->statistics.xmt_tco_frames);
631 //~ stw_phys(s->statsaddr + 78, s->statistics.rcv_tco_frames);
632 //~ missing("CU dump statistical counters");
633}
634
635static void eepro100_cu_command(EEPRO100State * s, uint8_t val)
636{
637 eepro100_tx_t tx;
638 uint32_t cb_address;
639 switch (val) {
640 case CU_NOP:
641 /* No operation. */
642 break;
643 case CU_START:
644 if (get_cu_state(s) != cu_idle) {
645 /* Intel documentation says that CU must be idle for the CU
646 * start command. Intel driver for Linux also starts the CU
647 * from suspended state. */
648 logout("CU state is %u, should be %u\n", get_cu_state(s), cu_idle);
649 //~ assert(!"wrong CU state");
650 }
651 set_cu_state(s, cu_active);
652 s->cu_offset = s->pointer;
653 next_command:
654 cb_address = s->cu_base + s->cu_offset;
655 cpu_physical_memory_read(cb_address, (uint8_t *) & tx, sizeof(tx));
656 uint16_t status = le16_to_cpu(tx.status);
657 uint16_t command = le16_to_cpu(tx.command);
658 logout
659 ("val=0x%02x (cu start), status=0x%04x, command=0x%04x, link=0x%08x\n",
660 val, status, command, tx.link);
661 bool bit_el = ((command & 0x8000) != 0);
662 bool bit_s = ((command & 0x4000) != 0);
663 bool bit_i = ((command & 0x2000) != 0);
664 bool bit_nc = ((command & 0x0010) != 0);
665 //~ bool bit_sf = ((command & 0x0008) != 0);
666 uint16_t cmd = command & 0x0007;
667 s->cu_offset = le32_to_cpu(tx.link);
668 switch (cmd) {
669 case CmdNOp:
670 /* Do nothing. */
671 break;
672 case CmdIASetup:
673 cpu_physical_memory_read(cb_address + 8, &s->macaddr[0], 6);
674 logout("macaddr: %s\n", nic_dump(&s->macaddr[0], 6));
675 break;
676 case CmdConfigure:
677 cpu_physical_memory_read(cb_address + 8, &s->configuration[0],
678 sizeof(s->configuration));
679 logout("configuration: %s\n", nic_dump(&s->configuration[0], 16));
680 break;
681 case CmdMulticastList:
682 //~ missing("multicast list");
683 break;
684 case CmdTx:
685 (void)0;
686 uint32_t tbd_array = le32_to_cpu(tx.tx_desc_addr);
687 uint16_t tcb_bytes = (le16_to_cpu(tx.tcb_bytes) & 0x3fff);
688 logout
689 ("transmit, TBD array address 0x%08x, TCB byte count 0x%04x, TBD count %u\n",
690 tbd_array, tcb_bytes, tx.tbd_count);
691 assert(!bit_nc);
692 //~ assert(!bit_sf);
693 assert(tcb_bytes <= 2600);
694 /* Next assertion fails for local configuration. */
695 //~ assert((tcb_bytes > 0) || (tbd_array != 0xffffffff));
696 if (!((tcb_bytes > 0) || (tbd_array != 0xffffffff))) {
697 logout
698 ("illegal values of TBD array address and TCB byte count!\n");
699 }
24e6f355
RD
700 // sends larger than MAX_ETH_FRAME_SIZE are allowed, up to 2600 bytes
701 uint8_t buf[2600];
663e8e51
TS
702 uint16_t size = 0;
703 uint32_t tbd_address = cb_address + 0x10;
704 assert(tcb_bytes <= sizeof(buf));
705 while (size < tcb_bytes) {
706 uint32_t tx_buffer_address = ldl_phys(tbd_address);
707 uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
708 //~ uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
709 tbd_address += 8;
710 logout
711 ("TBD (simplified mode): buffer address 0x%08x, size 0x%04x\n",
712 tx_buffer_address, tx_buffer_size);
24e6f355 713 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
663e8e51
TS
714 cpu_physical_memory_read(tx_buffer_address, &buf[size],
715 tx_buffer_size);
716 size += tx_buffer_size;
717 }
718 if (tbd_array == 0xffffffff) {
719 /* Simplified mode. Was already handled by code above. */
720 } else {
721 /* Flexible mode. */
722 uint8_t tbd_count = 0;
0859df68 723 if (device_supports_eTxCB(s) && !(s->configuration[6] & BIT(4))) {
3f9cb1c1 724 /* Extended Flexible TCB. */
663e8e51
TS
725 assert(tcb_bytes == 0);
726 for (; tbd_count < 2; tbd_count++) {
727 uint32_t tx_buffer_address = ldl_phys(tbd_address);
728 uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
729 uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
730 tbd_address += 8;
731 logout
3f9cb1c1 732 ("TBD (extended flexible mode): buffer address 0x%08x, size 0x%04x\n",
663e8e51 733 tx_buffer_address, tx_buffer_size);
24e6f355 734 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
663e8e51
TS
735 cpu_physical_memory_read(tx_buffer_address, &buf[size],
736 tx_buffer_size);
737 size += tx_buffer_size;
738 if (tx_buffer_el & 1) {
739 break;
740 }
741 }
742 }
743 tbd_address = tbd_array;
744 for (; tbd_count < tx.tbd_count; tbd_count++) {
745 uint32_t tx_buffer_address = ldl_phys(tbd_address);
746 uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
747 uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
748 tbd_address += 8;
749 logout
750 ("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n",
751 tx_buffer_address, tx_buffer_size);
24e6f355 752 tx_buffer_size = MIN(tx_buffer_size, sizeof(buf) - size);
663e8e51
TS
753 cpu_physical_memory_read(tx_buffer_address, &buf[size],
754 tx_buffer_size);
755 size += tx_buffer_size;
756 if (tx_buffer_el & 1) {
757 break;
758 }
759 }
760 }
761 qemu_send_packet(s->vc, buf, size);
762 s->statistics.tx_good_frames++;
763 /* Transmit with bad status would raise an CX/TNO interrupt.
764 * (82557 only). Emulation never has bad status. */
765 //~ eepro100_cx_interrupt(s);
766 break;
767 case CmdTDR:
768 logout("load microcode\n");
769 /* Starting with offset 8, the command contains
770 * 64 dwords microcode which we just ignore here. */
771 break;
772 default:
773 missing("undefined command");
774 }
775 /* Write new status (success). */
776 stw_phys(cb_address, status | 0x8000 | 0x2000);
777 if (bit_i) {
778 /* CU completed action. */
779 eepro100_cx_interrupt(s);
780 }
781 if (bit_el) {
782 /* CU becomes idle. */
783 set_cu_state(s, cu_idle);
784 eepro100_cna_interrupt(s);
785 } else if (bit_s) {
786 /* CU becomes suspended. */
787 set_cu_state(s, cu_suspended);
788 eepro100_cna_interrupt(s);
789 } else {
790 /* More entries in list. */
791 logout("CU list with at least one more entry\n");
792 goto next_command;
793 }
794 logout("CU list empty\n");
795 /* List is empty. Now CU is idle or suspended. */
796 break;
797 case CU_RESUME:
798 if (get_cu_state(s) != cu_suspended) {
799 logout("bad CU resume from CU state %u\n", get_cu_state(s));
800 /* Workaround for bad Linux eepro100 driver which resumes
801 * from idle state. */
802 //~ missing("cu resume");
803 set_cu_state(s, cu_suspended);
804 }
805 if (get_cu_state(s) == cu_suspended) {
806 logout("CU resuming\n");
807 set_cu_state(s, cu_active);
808 goto next_command;
809 }
810 break;
811 case CU_STATSADDR:
812 /* Load dump counters address. */
813 s->statsaddr = s->pointer;
814 logout("val=0x%02x (status address)\n", val);
815 break;
816 case CU_SHOWSTATS:
817 /* Dump statistical counters. */
818 dump_statistics(s);
819 break;
820 case CU_CMD_BASE:
821 /* Load CU base. */
822 logout("val=0x%02x (CU base address)\n", val);
823 s->cu_base = s->pointer;
824 break;
825 case CU_DUMPSTATS:
826 /* Dump and reset statistical counters. */
827 dump_statistics(s);
828 memset(&s->statistics, 0, sizeof(s->statistics));
829 break;
830 case CU_SRESUME:
831 /* CU static resume. */
832 missing("CU static resume");
833 break;
834 default:
835 missing("Undefined CU command");
836 }
837}
838
839static void eepro100_ru_command(EEPRO100State * s, uint8_t val)
840{
841 switch (val) {
842 case RU_NOP:
843 /* No operation. */
844 break;
845 case RX_START:
846 /* RU start. */
847 if (get_ru_state(s) != ru_idle) {
848 logout("RU state is %u, should be %u\n", get_ru_state(s), ru_idle);
849 //~ assert(!"wrong RU state");
850 }
851 set_ru_state(s, ru_ready);
852 s->ru_offset = s->pointer;
853 logout("val=0x%02x (rx start)\n", val);
854 break;
855 case RX_RESUME:
856 /* Restart RU. */
857 if (get_ru_state(s) != ru_suspended) {
858 logout("RU state is %u, should be %u\n", get_ru_state(s),
859 ru_suspended);
860 //~ assert(!"wrong RU state");
861 }
862 set_ru_state(s, ru_ready);
863 break;
864 case RX_ADDR_LOAD:
865 /* Load RU base. */
866 logout("val=0x%02x (RU base address)\n", val);
867 s->ru_base = s->pointer;
868 break;
869 default:
870 logout("val=0x%02x (undefined RU command)\n", val);
871 missing("Undefined SU command");
872 }
873}
874
875static void eepro100_write_command(EEPRO100State * s, uint8_t val)
876{
877 eepro100_ru_command(s, val & 0x0f);
878 eepro100_cu_command(s, val & 0xf0);
879 if ((val) == 0) {
880 logout("val=0x%02x\n", val);
881 }
882 /* Clear command byte after command was accepted. */
883 s->mem[SCBCmd] = 0;
884}
885
886/*****************************************************************************
887 *
888 * EEPROM emulation.
889 *
890 ****************************************************************************/
891
892#define EEPROM_CS 0x02
893#define EEPROM_SK 0x01
894#define EEPROM_DI 0x04
895#define EEPROM_DO 0x08
896
897static uint16_t eepro100_read_eeprom(EEPRO100State * s)
898{
899 uint16_t val;
900 memcpy(&val, &s->mem[SCBeeprom], sizeof(val));
901 if (eeprom93xx_read(s->eeprom)) {
902 val |= EEPROM_DO;
903 } else {
904 val &= ~EEPROM_DO;
905 }
906 return val;
907}
908
909static void eepro100_write_eeprom(eeprom_t * eeprom, uint8_t val)
910{
911 logout("write val=0x%02x\n", val);
912
913 /* mask unwriteable bits */
914 //~ val = SET_MASKED(val, 0x31, eeprom->value);
915
916 int eecs = ((val & EEPROM_CS) != 0);
917 int eesk = ((val & EEPROM_SK) != 0);
918 int eedi = ((val & EEPROM_DI) != 0);
919 eeprom93xx_write(eeprom, eecs, eesk, eedi);
920}
921
922static void eepro100_write_pointer(EEPRO100State * s, uint32_t val)
923{
924 s->pointer = le32_to_cpu(val);
925 logout("val=0x%08x\n", val);
926}
927
928/*****************************************************************************
929 *
930 * MDI emulation.
931 *
932 ****************************************************************************/
933
934#if defined(DEBUG_EEPRO100)
935static const char *mdi_op_name[] = {
936 "opcode 0",
937 "write",
938 "read",
939 "opcode 3"
940};
941
942static const char *mdi_reg_name[] = {
943 "Control",
944 "Status",
945 "PHY Identification (Word 1)",
946 "PHY Identification (Word 2)",
947 "Auto-Negotiation Advertisement",
948 "Auto-Negotiation Link Partner Ability",
949 "Auto-Negotiation Expansion"
950};
951#endif /* DEBUG_EEPRO100 */
952
953static uint32_t eepro100_read_mdi(EEPRO100State * s)
954{
955 uint32_t val;
956 memcpy(&val, &s->mem[0x10], sizeof(val));
957
958#ifdef DEBUG_EEPRO100
959 uint8_t raiseint = (val & BIT(29)) >> 29;
960 uint8_t opcode = (val & BITS(27, 26)) >> 26;
961 uint8_t phy = (val & BITS(25, 21)) >> 21;
962 uint8_t reg = (val & BITS(20, 16)) >> 16;
963 uint16_t data = (val & BITS(15, 0));
964#endif
965 /* Emulation takes no time to finish MDI transaction. */
966 val |= BIT(28);
967 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
968 val, raiseint, mdi_op_name[opcode], phy,
969 mdi_reg_name[reg], data));
970 return val;
971}
972
973//~ #define BITS(val, upper, lower) (val & ???)
974static void eepro100_write_mdi(EEPRO100State * s, uint32_t val)
975{
976 uint8_t raiseint = (val & BIT(29)) >> 29;
977 uint8_t opcode = (val & BITS(27, 26)) >> 26;
978 uint8_t phy = (val & BITS(25, 21)) >> 21;
979 uint8_t reg = (val & BITS(20, 16)) >> 16;
980 uint16_t data = (val & BITS(15, 0));
981 if (phy != 1) {
982 /* Unsupported PHY address. */
983 //~ logout("phy must be 1 but is %u\n", phy);
984 data = 0;
985 } else if (opcode != 1 && opcode != 2) {
986 /* Unsupported opcode. */
987 logout("opcode must be 1 or 2 but is %u\n", opcode);
988 data = 0;
989 } else if (reg > 6) {
990 /* Unsupported register. */
991 logout("register must be 0...6 but is %u\n", reg);
992 data = 0;
993 } else {
994 TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
995 val, raiseint, mdi_op_name[opcode], phy,
996 mdi_reg_name[reg], data));
997 if (opcode == 1) {
998 /* MDI write */
999 switch (reg) {
1000 case 0: /* Control Register */
1001 if (data & 0x8000) {
1002 /* Reset status and control registers to default. */
1003 s->mdimem[0] = eepro100_mdi_default[0];
1004 s->mdimem[1] = eepro100_mdi_default[1];
1005 data = s->mdimem[reg];
1006 } else {
1007 /* Restart Auto Configuration = Normal Operation */
1008 data &= ~0x0200;
1009 }
1010 break;
1011 case 1: /* Status Register */
1012 missing("not writable");
1013 data = s->mdimem[reg];
1014 break;
1015 case 2: /* PHY Identification Register (Word 1) */
1016 case 3: /* PHY Identification Register (Word 2) */
1017 missing("not implemented");
1018 break;
1019 case 4: /* Auto-Negotiation Advertisement Register */
1020 case 5: /* Auto-Negotiation Link Partner Ability Register */
1021 break;
1022 case 6: /* Auto-Negotiation Expansion Register */
1023 default:
1024 missing("not implemented");
1025 }
1026 s->mdimem[reg] = data;
1027 } else if (opcode == 2) {
1028 /* MDI read */
1029 switch (reg) {
1030 case 0: /* Control Register */
1031 if (data & 0x8000) {
1032 /* Reset status and control registers to default. */
1033 s->mdimem[0] = eepro100_mdi_default[0];
1034 s->mdimem[1] = eepro100_mdi_default[1];
1035 }
1036 break;
1037 case 1: /* Status Register */
1038 s->mdimem[reg] |= 0x0020;
1039 break;
1040 case 2: /* PHY Identification Register (Word 1) */
1041 case 3: /* PHY Identification Register (Word 2) */
1042 case 4: /* Auto-Negotiation Advertisement Register */
1043 break;
1044 case 5: /* Auto-Negotiation Link Partner Ability Register */
1045 s->mdimem[reg] = 0x41fe;
1046 break;
1047 case 6: /* Auto-Negotiation Expansion Register */
1048 s->mdimem[reg] = 0x0001;
1049 break;
1050 }
1051 data = s->mdimem[reg];
1052 }
1053 /* Emulation takes no time to finish MDI transaction.
1054 * Set MDI bit in SCB status register. */
1055 s->mem[SCBAck] |= 0x08;
1056 val |= BIT(28);
1057 if (raiseint) {
1058 eepro100_mdi_interrupt(s);
1059 }
1060 }
1061 val = (val & 0xffff0000) + data;
1062 memcpy(&s->mem[0x10], &val, sizeof(val));
1063}
1064
1065/*****************************************************************************
1066 *
1067 * Port emulation.
1068 *
1069 ****************************************************************************/
1070
1071#define PORT_SOFTWARE_RESET 0
1072#define PORT_SELFTEST 1
1073#define PORT_SELECTIVE_RESET 2
1074#define PORT_DUMP 3
1075#define PORT_SELECTION_MASK 3
1076
1077typedef struct {
1078 uint32_t st_sign; /* Self Test Signature */
1079 uint32_t st_result; /* Self Test Results */
1080} eepro100_selftest_t;
1081
1082static uint32_t eepro100_read_port(EEPRO100State * s)
1083{
1084 return 0;
1085}
1086
1087static void eepro100_write_port(EEPRO100State * s, uint32_t val)
1088{
1089 val = le32_to_cpu(val);
1090 uint32_t address = (val & ~PORT_SELECTION_MASK);
1091 uint8_t selection = (val & PORT_SELECTION_MASK);
1092 switch (selection) {
1093 case PORT_SOFTWARE_RESET:
1094 nic_reset(s);
1095 break;
1096 case PORT_SELFTEST:
1097 logout("selftest address=0x%08x\n", address);
1098 eepro100_selftest_t data;
1099 cpu_physical_memory_read(address, (uint8_t *) & data, sizeof(data));
1100 data.st_sign = 0xffffffff;
1101 data.st_result = 0;
1102 cpu_physical_memory_write(address, (uint8_t *) & data, sizeof(data));
1103 break;
1104 case PORT_SELECTIVE_RESET:
1105 logout("selective reset, selftest address=0x%08x\n", address);
1106 nic_selective_reset(s);
1107 break;
1108 default:
1109 logout("val=0x%08x\n", val);
1110 missing("unknown port selection");
1111 }
1112}
1113
1114/*****************************************************************************
1115 *
1116 * General hardware emulation.
1117 *
1118 ****************************************************************************/
1119
1120static uint8_t eepro100_read1(EEPRO100State * s, uint32_t addr)
1121{
1122 uint8_t val;
1123 if (addr <= sizeof(s->mem) - sizeof(val)) {
1124 memcpy(&val, &s->mem[addr], sizeof(val));
1125 }
1126
1127 switch (addr) {
1128 case SCBStatus:
1129 //~ val = eepro100_read_status(s);
1130 logout("addr=%s val=0x%02x\n", regname(addr), val);
1131 break;
1132 case SCBAck:
1133 //~ val = eepro100_read_status(s);
1134 logout("addr=%s val=0x%02x\n", regname(addr), val);
1135 break;
1136 case SCBCmd:
1137 logout("addr=%s val=0x%02x\n", regname(addr), val);
1138 //~ val = eepro100_read_command(s);
1139 break;
1140 case SCBIntmask:
1141 logout("addr=%s val=0x%02x\n", regname(addr), val);
1142 break;
1143 case SCBPort + 3:
1144 logout("addr=%s val=0x%02x\n", regname(addr), val);
1145 break;
1146 case SCBeeprom:
1147 val = eepro100_read_eeprom(s);
1148 break;
1149 case 0x1b: /* PMDR (power management driver register) */
1150 val = 0;
1151 logout("addr=%s val=0x%02x\n", regname(addr), val);
1152 break;
1153 case 0x1d: /* general status register */
1154 /* 100 Mbps full duplex, valid link */
1155 val = 0x07;
1156 logout("addr=General Status val=%02x\n", val);
1157 break;
1158 default:
1159 logout("addr=%s val=0x%02x\n", regname(addr), val);
1160 missing("unknown byte read");
1161 }
1162 return val;
1163}
1164
1165static uint16_t eepro100_read2(EEPRO100State * s, uint32_t addr)
1166{
1167 uint16_t val;
1168 if (addr <= sizeof(s->mem) - sizeof(val)) {
1169 memcpy(&val, &s->mem[addr], sizeof(val));
1170 }
1171
1172 logout("addr=%s val=0x%04x\n", regname(addr), val);
1173
1174 switch (addr) {
1175 case SCBStatus:
1176 //~ val = eepro100_read_status(s);
1177 break;
1178 case SCBeeprom:
1179 val = eepro100_read_eeprom(s);
1180 break;
1181 default:
1182 logout("addr=%s val=0x%04x\n", regname(addr), val);
1183 missing("unknown word read");
1184 }
1185 return val;
1186}
1187
1188static uint32_t eepro100_read4(EEPRO100State * s, uint32_t addr)
1189{
1190 uint32_t val;
1191 if (addr <= sizeof(s->mem) - sizeof(val)) {
1192 memcpy(&val, &s->mem[addr], sizeof(val));
1193 }
1194
1195 switch (addr) {
1196 case SCBStatus:
1197 //~ val = eepro100_read_status(s);
1198 logout("addr=%s val=0x%08x\n", regname(addr), val);
1199 break;
1200 case SCBPointer:
1201 //~ val = eepro100_read_pointer(s);
1202 logout("addr=%s val=0x%08x\n", regname(addr), val);
1203 break;
1204 case SCBPort:
1205 val = eepro100_read_port(s);
1206 logout("addr=%s val=0x%08x\n", regname(addr), val);
1207 break;
1208 case SCBCtrlMDI:
1209 val = eepro100_read_mdi(s);
1210 break;
1211 default:
1212 logout("addr=%s val=0x%08x\n", regname(addr), val);
1213 missing("unknown longword read");
1214 }
1215 return val;
1216}
1217
1218static void eepro100_write1(EEPRO100State * s, uint32_t addr, uint8_t val)
1219{
1220 if (addr <= sizeof(s->mem) - sizeof(val)) {
1221 memcpy(&s->mem[addr], &val, sizeof(val));
1222 }
1223
1224 logout("addr=%s val=0x%02x\n", regname(addr), val);
1225
1226 switch (addr) {
1227 case SCBStatus:
1228 //~ eepro100_write_status(s, val);
1229 break;
1230 case SCBAck:
1231 eepro100_acknowledge(s);
1232 break;
1233 case SCBCmd:
1234 eepro100_write_command(s, val);
1235 break;
1236 case SCBIntmask:
1237 if (val & BIT(1)) {
1238 eepro100_swi_interrupt(s);
1239 }
1240 eepro100_interrupt(s, 0);
1241 break;
1242 case SCBPort + 3:
3257d2b6
TS
1243 case SCBFlow:
1244 case SCBFlow + 1:
1245 case SCBFlow + 2:
1246 case SCBFlow + 3:
663e8e51
TS
1247 logout("addr=%s val=0x%02x\n", regname(addr), val);
1248 break;
1249 case SCBeeprom:
1250 eepro100_write_eeprom(s->eeprom, val);
1251 break;
1252 default:
1253 logout("addr=%s val=0x%02x\n", regname(addr), val);
1254 missing("unknown byte write");
1255 }
1256}
1257
1258static void eepro100_write2(EEPRO100State * s, uint32_t addr, uint16_t val)
1259{
1260 if (addr <= sizeof(s->mem) - sizeof(val)) {
1261 memcpy(&s->mem[addr], &val, sizeof(val));
1262 }
1263
1264 logout("addr=%s val=0x%04x\n", regname(addr), val);
1265
1266 switch (addr) {
1267 case SCBStatus:
1268 //~ eepro100_write_status(s, val);
1269 eepro100_acknowledge(s);
1270 break;
1271 case SCBCmd:
1272 eepro100_write_command(s, val);
1273 eepro100_write1(s, SCBIntmask, val >> 8);
1274 break;
1275 case SCBeeprom:
1276 eepro100_write_eeprom(s->eeprom, val);
1277 break;
1278 default:
1279 logout("addr=%s val=0x%04x\n", regname(addr), val);
1280 missing("unknown word write");
1281 }
1282}
1283
1284static void eepro100_write4(EEPRO100State * s, uint32_t addr, uint32_t val)
1285{
1286 if (addr <= sizeof(s->mem) - sizeof(val)) {
1287 memcpy(&s->mem[addr], &val, sizeof(val));
1288 }
1289
1290 switch (addr) {
1291 case SCBPointer:
1292 eepro100_write_pointer(s, val);
1293 break;
1294 case SCBPort:
1295 logout("addr=%s val=0x%08x\n", regname(addr), val);
1296 eepro100_write_port(s, val);
1297 break;
1298 case SCBCtrlMDI:
1299 eepro100_write_mdi(s, val);
1300 break;
1301 default:
1302 logout("addr=%s val=0x%08x\n", regname(addr), val);
1303 missing("unknown longword write");
1304 }
1305}
1306
1307static uint32_t ioport_read1(void *opaque, uint32_t addr)
1308{
1309 EEPRO100State *s = opaque;
1310 //~ logout("addr=%s\n", regname(addr));
1311 return eepro100_read1(s, addr - s->region[1]);
1312}
1313
1314static uint32_t ioport_read2(void *opaque, uint32_t addr)
1315{
1316 EEPRO100State *s = opaque;
1317 return eepro100_read2(s, addr - s->region[1]);
1318}
1319
1320static uint32_t ioport_read4(void *opaque, uint32_t addr)
1321{
1322 EEPRO100State *s = opaque;
1323 return eepro100_read4(s, addr - s->region[1]);
1324}
1325
1326static void ioport_write1(void *opaque, uint32_t addr, uint32_t val)
1327{
1328 EEPRO100State *s = opaque;
1329 //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1330 eepro100_write1(s, addr - s->region[1], val);
1331}
1332
1333static void ioport_write2(void *opaque, uint32_t addr, uint32_t val)
1334{
1335 EEPRO100State *s = opaque;
1336 eepro100_write2(s, addr - s->region[1], val);
1337}
1338
1339static void ioport_write4(void *opaque, uint32_t addr, uint32_t val)
1340{
1341 EEPRO100State *s = opaque;
1342 eepro100_write4(s, addr - s->region[1], val);
1343}
1344
1345/***********************************************************/
1346/* PCI EEPRO100 definitions */
1347
663e8e51
TS
1348static void pci_map(PCIDevice * pci_dev, int region_num,
1349 uint32_t addr, uint32_t size, int type)
1350{
273a2142 1351 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
663e8e51
TS
1352
1353 logout("region %d, addr=0x%08x, size=0x%08x, type=%d\n",
1354 region_num, addr, size, type);
1355
1356 assert(region_num == 1);
1357 register_ioport_write(addr, size, 1, ioport_write1, s);
1358 register_ioport_read(addr, size, 1, ioport_read1, s);
1359 register_ioport_write(addr, size, 2, ioport_write2, s);
1360 register_ioport_read(addr, size, 2, ioport_read2, s);
1361 register_ioport_write(addr, size, 4, ioport_write4, s);
1362 register_ioport_read(addr, size, 4, ioport_read4, s);
1363
1364 s->region[region_num] = addr;
1365}
1366
1367static void pci_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1368{
1369 EEPRO100State *s = opaque;
663e8e51
TS
1370 //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1371 eepro100_write1(s, addr, val);
1372}
1373
1374static void pci_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1375{
1376 EEPRO100State *s = opaque;
663e8e51
TS
1377 //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1378 eepro100_write2(s, addr, val);
1379}
1380
1381static void pci_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1382{
1383 EEPRO100State *s = opaque;
663e8e51
TS
1384 //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1385 eepro100_write4(s, addr, val);
1386}
1387
1388static uint32_t pci_mmio_readb(void *opaque, target_phys_addr_t addr)
1389{
1390 EEPRO100State *s = opaque;
663e8e51
TS
1391 //~ logout("addr=%s\n", regname(addr));
1392 return eepro100_read1(s, addr);
1393}
1394
1395static uint32_t pci_mmio_readw(void *opaque, target_phys_addr_t addr)
1396{
1397 EEPRO100State *s = opaque;
663e8e51
TS
1398 //~ logout("addr=%s\n", regname(addr));
1399 return eepro100_read2(s, addr);
1400}
1401
1402static uint32_t pci_mmio_readl(void *opaque, target_phys_addr_t addr)
1403{
1404 EEPRO100State *s = opaque;
663e8e51
TS
1405 //~ logout("addr=%s\n", regname(addr));
1406 return eepro100_read4(s, addr);
1407}
1408
d60efc6b 1409static CPUWriteMemoryFunc * const pci_mmio_write[] = {
663e8e51
TS
1410 pci_mmio_writeb,
1411 pci_mmio_writew,
1412 pci_mmio_writel
1413};
1414
d60efc6b 1415static CPUReadMemoryFunc * const pci_mmio_read[] = {
663e8e51
TS
1416 pci_mmio_readb,
1417 pci_mmio_readw,
1418 pci_mmio_readl
1419};
1420
1421static void pci_mmio_map(PCIDevice * pci_dev, int region_num,
1422 uint32_t addr, uint32_t size, int type)
1423{
273a2142 1424 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
663e8e51
TS
1425
1426 logout("region %d, addr=0x%08x, size=0x%08x, type=%d\n",
1427 region_num, addr, size, type);
1428
1429 if (region_num == 0) {
1430 /* Map control / status registers. */
273a2142
JQ
1431 cpu_register_physical_memory(addr, size, s->mmio_index);
1432 s->region[region_num] = addr;
663e8e51
TS
1433 }
1434}
1435
e3f5ec2b 1436static int nic_can_receive(VLANClientState *vc)
663e8e51 1437{
e3f5ec2b 1438 EEPRO100State *s = vc->opaque;
663e8e51
TS
1439 logout("%p\n", s);
1440 return get_ru_state(s) == ru_ready;
1441 //~ return !eepro100_buffer_full(s);
1442}
1443
4f1c942b 1444static ssize_t nic_receive(VLANClientState *vc, const uint8_t * buf, size_t size)
663e8e51
TS
1445{
1446 /* TODO:
1447 * - Magic packets should set bit 30 in power management driver register.
1448 * - Interesting packets should set bit 29 in power management driver register.
1449 */
e3f5ec2b 1450 EEPRO100State *s = vc->opaque;
663e8e51
TS
1451 uint16_t rfd_status = 0xa000;
1452 static const uint8_t broadcast_macaddr[6] =
1453 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1454
1455 /* TODO: check multiple IA bit. */
1456 assert(!(s->configuration[20] & BIT(6)));
1457
1458 if (s->configuration[8] & 0x80) {
1459 /* CSMA is disabled. */
1460 logout("%p received while CSMA is disabled\n", s);
4f1c942b 1461 return -1;
663e8e51
TS
1462 } else if (size < 64 && (s->configuration[7] & 1)) {
1463 /* Short frame and configuration byte 7/0 (discard short receive) set:
1464 * Short frame is discarded */
1465 logout("%p received short frame (%d byte)\n", s, size);
1466 s->statistics.rx_short_frame_errors++;
4f1c942b 1467 //~ return -1;
663e8e51
TS
1468 } else if ((size > MAX_ETH_FRAME_SIZE + 4) && !(s->configuration[18] & 8)) {
1469 /* Long frame and configuration byte 18/3 (long receive ok) not set:
1470 * Long frames are discarded. */
1471 logout("%p received long frame (%d byte), ignored\n", s, size);
4f1c942b 1472 return -1;
663e8e51
TS
1473 } else if (memcmp(buf, s->macaddr, 6) == 0) { // !!!
1474 /* Frame matches individual address. */
1475 /* TODO: check configuration byte 15/4 (ignore U/L). */
1476 logout("%p received frame for me, len=%d\n", s, size);
1477 } else if (memcmp(buf, broadcast_macaddr, 6) == 0) {
1478 /* Broadcast frame. */
1479 logout("%p received broadcast, len=%d\n", s, size);
1480 rfd_status |= 0x0002;
1481 } else if (buf[0] & 0x01) { // !!!
1482 /* Multicast frame. */
1483 logout("%p received multicast, len=%d\n", s, size);
1484 /* TODO: check multicast all bit. */
1485 assert(!(s->configuration[21] & BIT(3)));
1486 int mcast_idx = compute_mcast_idx(buf);
1487 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7)))) {
4f1c942b 1488 return size;
663e8e51
TS
1489 }
1490 rfd_status |= 0x0002;
1491 } else if (s->configuration[15] & 1) {
1492 /* Promiscuous: receive all. */
1493 logout("%p received frame in promiscuous mode, len=%d\n", s, size);
1494 rfd_status |= 0x0004;
1495 } else {
1496 logout("%p received frame, ignored, len=%d,%s\n", s, size,
1497 nic_dump(buf, size));
4f1c942b 1498 return size;
663e8e51
TS
1499 }
1500
1501 if (get_ru_state(s) != ru_ready) {
1502 /* No ressources available. */
1503 logout("no ressources, state=%u\n", get_ru_state(s));
1504 s->statistics.rx_resource_errors++;
1505 //~ assert(!"no ressources");
4f1c942b 1506 return -1;
663e8e51
TS
1507 }
1508 //~ !!!
1509//~ $3 = {status = 0x0, command = 0xc000, link = 0x2d220, rx_buf_addr = 0x207dc, count = 0x0, size = 0x5f8, packet = {0x0 <repeats 1518 times>}}
1510 eepro100_rx_t rx;
1511 cpu_physical_memory_read(s->ru_base + s->ru_offset, (uint8_t *) & rx,
1512 offsetof(eepro100_rx_t, packet));
1513 uint16_t rfd_command = le16_to_cpu(rx.command);
1514 uint16_t rfd_size = le16_to_cpu(rx.size);
1515 assert(size <= rfd_size);
1516 if (size < 64) {
1517 rfd_status |= 0x0080;
1518 }
1519 logout("command 0x%04x, link 0x%08x, addr 0x%08x, size %u\n", rfd_command,
1520 rx.link, rx.rx_buf_addr, rfd_size);
1521 stw_phys(s->ru_base + s->ru_offset + offsetof(eepro100_rx_t, status),
1522 rfd_status);
1523 stw_phys(s->ru_base + s->ru_offset + offsetof(eepro100_rx_t, count), size);
1524 /* Early receive interrupt not supported. */
1525 //~ eepro100_er_interrupt(s);
1526 /* Receive CRC Transfer not supported. */
1527 assert(!(s->configuration[18] & 4));
1528 /* TODO: check stripping enable bit. */
1529 //~ assert(!(s->configuration[17] & 1));
1530 cpu_physical_memory_write(s->ru_base + s->ru_offset +
1531 offsetof(eepro100_rx_t, packet), buf, size);
1532 s->statistics.rx_good_frames++;
1533 eepro100_fr_interrupt(s);
1534 s->ru_offset = le32_to_cpu(rx.link);
1535 if (rfd_command & 0x8000) {
1536 /* EL bit is set, so this was the last frame. */
1537 assert(0);
1538 }
1539 if (rfd_command & 0x4000) {
1540 /* S bit is set. */
1541 set_ru_state(s, ru_suspended);
1542 }
4f1c942b 1543 return size;
663e8e51
TS
1544}
1545
1546static int nic_load(QEMUFile * f, void *opaque, int version_id)
1547{
769cf7a5 1548 EEPRO100State *s = opaque;
2657c663 1549 int i;
663e8e51
TS
1550 int ret;
1551
663e8e51
TS
1552 if (version_id > 3)
1553 return -EINVAL;
1554
273a2142
JQ
1555 if (version_id >= 3) {
1556 ret = pci_device_load(&s->dev, f);
663e8e51
TS
1557 if (ret < 0)
1558 return ret;
1559 }
1560
1561 if (version_id >= 2) {
1562 qemu_get_8s(f, &s->rxcr);
1563 } else {
1564 s->rxcr = 0x0c;
1565 }
1566
1567 qemu_get_8s(f, &s->cmd);
1568 qemu_get_be32s(f, &s->start);
1569 qemu_get_be32s(f, &s->stop);
1570 qemu_get_8s(f, &s->boundary);
1571 qemu_get_8s(f, &s->tsr);
1572 qemu_get_8s(f, &s->tpsr);
1573 qemu_get_be16s(f, &s->tcnt);
1574 qemu_get_be16s(f, &s->rcnt);
1575 qemu_get_be32s(f, &s->rsar);
1576 qemu_get_8s(f, &s->rsr);
1577 qemu_get_8s(f, &s->isr);
1578 qemu_get_8s(f, &s->dcfg);
1579 qemu_get_8s(f, &s->imr);
1580 qemu_get_buffer(f, s->phys, 6);
1581 qemu_get_8s(f, &s->curpag);
1582 qemu_get_buffer(f, s->mult, 8);
1583 qemu_get_buffer(f, s->mem, sizeof(s->mem));
1584
2657c663
AZ
1585 /* Restore all members of struct between scv_stat and mem */
1586 qemu_get_8s(f, &s->scb_stat);
1587 qemu_get_8s(f, &s->int_stat);
1588 for (i = 0; i < 3; i++)
1589 qemu_get_be32s(f, &s->region[i]);
1590 qemu_get_buffer(f, s->macaddr, 6);
5fafdf24 1591 for (i = 0; i < 19; i++)
2657c663
AZ
1592 qemu_get_be32s(f, &s->statcounter[i]);
1593 for (i = 0; i < 32; i++)
1594 qemu_get_be16s(f, &s->mdimem[i]);
1595 /* The eeprom should be saved and restored by its own routines */
1596 qemu_get_be32s(f, &s->device);
1597 qemu_get_be32s(f, &s->pointer);
1598 qemu_get_be32s(f, &s->cu_base);
1599 qemu_get_be32s(f, &s->cu_offset);
1600 qemu_get_be32s(f, &s->ru_base);
1601 qemu_get_be32s(f, &s->ru_offset);
1602 qemu_get_be32s(f, &s->statsaddr);
1603 /* Restore epro100_stats_t statistics */
1604 qemu_get_be32s(f, &s->statistics.tx_good_frames);
1605 qemu_get_be32s(f, &s->statistics.tx_max_collisions);
1606 qemu_get_be32s(f, &s->statistics.tx_late_collisions);
1607 qemu_get_be32s(f, &s->statistics.tx_underruns);
1608 qemu_get_be32s(f, &s->statistics.tx_lost_crs);
1609 qemu_get_be32s(f, &s->statistics.tx_deferred);
1610 qemu_get_be32s(f, &s->statistics.tx_single_collisions);
1611 qemu_get_be32s(f, &s->statistics.tx_multiple_collisions);
1612 qemu_get_be32s(f, &s->statistics.tx_total_collisions);
1613 qemu_get_be32s(f, &s->statistics.rx_good_frames);
1614 qemu_get_be32s(f, &s->statistics.rx_crc_errors);
1615 qemu_get_be32s(f, &s->statistics.rx_alignment_errors);
1616 qemu_get_be32s(f, &s->statistics.rx_resource_errors);
1617 qemu_get_be32s(f, &s->statistics.rx_overrun_errors);
1618 qemu_get_be32s(f, &s->statistics.rx_cdt_errors);
1619 qemu_get_be32s(f, &s->statistics.rx_short_frame_errors);
1620 qemu_get_be32s(f, &s->statistics.fc_xmt_pause);
1621 qemu_get_be32s(f, &s->statistics.fc_rcv_pause);
1622 qemu_get_be32s(f, &s->statistics.fc_rcv_unsupported);
1623 qemu_get_be16s(f, &s->statistics.xmt_tco_frames);
1624 qemu_get_be16s(f, &s->statistics.rcv_tco_frames);
1625 qemu_get_be32s(f, &s->statistics.complete);
1626#if 0
1627 qemu_get_be16s(f, &s->status);
1628#endif
1629
1630 /* Configuration bytes. */
1631 qemu_get_buffer(f, s->configuration, sizeof(s->configuration));
1632
663e8e51
TS
1633 return 0;
1634}
1635
1636static void nic_save(QEMUFile * f, void *opaque)
1637{
769cf7a5 1638 EEPRO100State *s = opaque;
2657c663 1639 int i;
663e8e51 1640
273a2142 1641 pci_device_save(&s->dev, f);
663e8e51
TS
1642
1643 qemu_put_8s(f, &s->rxcr);
1644
1645 qemu_put_8s(f, &s->cmd);
1646 qemu_put_be32s(f, &s->start);
1647 qemu_put_be32s(f, &s->stop);
1648 qemu_put_8s(f, &s->boundary);
1649 qemu_put_8s(f, &s->tsr);
1650 qemu_put_8s(f, &s->tpsr);
1651 qemu_put_be16s(f, &s->tcnt);
1652 qemu_put_be16s(f, &s->rcnt);
1653 qemu_put_be32s(f, &s->rsar);
1654 qemu_put_8s(f, &s->rsr);
1655 qemu_put_8s(f, &s->isr);
1656 qemu_put_8s(f, &s->dcfg);
1657 qemu_put_8s(f, &s->imr);
1658 qemu_put_buffer(f, s->phys, 6);
1659 qemu_put_8s(f, &s->curpag);
1660 qemu_put_buffer(f, s->mult, 8);
1661 qemu_put_buffer(f, s->mem, sizeof(s->mem));
2657c663
AZ
1662
1663 /* Save all members of struct between scv_stat and mem */
1664 qemu_put_8s(f, &s->scb_stat);
1665 qemu_put_8s(f, &s->int_stat);
1666 for (i = 0; i < 3; i++)
1667 qemu_put_be32s(f, &s->region[i]);
1668 qemu_put_buffer(f, s->macaddr, 6);
5fafdf24 1669 for (i = 0; i < 19; i++)
2657c663
AZ
1670 qemu_put_be32s(f, &s->statcounter[i]);
1671 for (i = 0; i < 32; i++)
1672 qemu_put_be16s(f, &s->mdimem[i]);
1673 /* The eeprom should be saved and restored by its own routines */
1674 qemu_put_be32s(f, &s->device);
1675 qemu_put_be32s(f, &s->pointer);
1676 qemu_put_be32s(f, &s->cu_base);
1677 qemu_put_be32s(f, &s->cu_offset);
1678 qemu_put_be32s(f, &s->ru_base);
1679 qemu_put_be32s(f, &s->ru_offset);
1680 qemu_put_be32s(f, &s->statsaddr);
1681 /* Save epro100_stats_t statistics */
1682 qemu_put_be32s(f, &s->statistics.tx_good_frames);
1683 qemu_put_be32s(f, &s->statistics.tx_max_collisions);
1684 qemu_put_be32s(f, &s->statistics.tx_late_collisions);
1685 qemu_put_be32s(f, &s->statistics.tx_underruns);
1686 qemu_put_be32s(f, &s->statistics.tx_lost_crs);
1687 qemu_put_be32s(f, &s->statistics.tx_deferred);
1688 qemu_put_be32s(f, &s->statistics.tx_single_collisions);
1689 qemu_put_be32s(f, &s->statistics.tx_multiple_collisions);
1690 qemu_put_be32s(f, &s->statistics.tx_total_collisions);
1691 qemu_put_be32s(f, &s->statistics.rx_good_frames);
1692 qemu_put_be32s(f, &s->statistics.rx_crc_errors);
1693 qemu_put_be32s(f, &s->statistics.rx_alignment_errors);
1694 qemu_put_be32s(f, &s->statistics.rx_resource_errors);
1695 qemu_put_be32s(f, &s->statistics.rx_overrun_errors);
1696 qemu_put_be32s(f, &s->statistics.rx_cdt_errors);
1697 qemu_put_be32s(f, &s->statistics.rx_short_frame_errors);
1698 qemu_put_be32s(f, &s->statistics.fc_xmt_pause);
1699 qemu_put_be32s(f, &s->statistics.fc_rcv_pause);
1700 qemu_put_be32s(f, &s->statistics.fc_rcv_unsupported);
1701 qemu_put_be16s(f, &s->statistics.xmt_tco_frames);
1702 qemu_put_be16s(f, &s->statistics.rcv_tco_frames);
1703 qemu_put_be32s(f, &s->statistics.complete);
1704#if 0
1705 qemu_put_be16s(f, &s->status);
1706#endif
1707
1708 /* Configuration bytes. */
1709 qemu_put_buffer(f, s->configuration, sizeof(s->configuration));
663e8e51
TS
1710}
1711
b946a153
AL
1712static void nic_cleanup(VLANClientState *vc)
1713{
1714 EEPRO100State *s = vc->opaque;
1715
1716 unregister_savevm(vc->model, s);
1717
1718 eeprom93xx_free(s->eeprom);
1719}
1720
1721static int pci_nic_uninit(PCIDevice *dev)
1722{
273a2142 1723 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, dev);
b946a153
AL
1724
1725 cpu_unregister_io_memory(s->mmio_index);
1726
1727 return 0;
1728}
1729
81a322d4 1730static int nic_init(PCIDevice *pci_dev, uint32_t device)
663e8e51 1731{
273a2142 1732 EEPRO100State *s = DO_UPCAST(EEPRO100State, dev, pci_dev);
663e8e51
TS
1733
1734 logout("\n");
1735
273a2142 1736 s->dev.unregister = pci_nic_uninit;
663e8e51 1737
663e8e51 1738 s->device = device;
663e8e51
TS
1739
1740 pci_reset(s);
1741
1742 /* Add 64 * 2 EEPROM. i82557 and i82558 support a 64 word EEPROM,
1743 * i82559 and later support 64 or 256 word EEPROM. */
1744 s->eeprom = eeprom93xx_new(EEPROM_SIZE);
1745
1746 /* Handler for memory-mapped I/O */
273a2142 1747 s->mmio_index =
1eed09cb 1748 cpu_register_io_memory(pci_mmio_read, pci_mmio_write, s);
663e8e51 1749
273a2142 1750 pci_register_bar(&s->dev, 0, PCI_MEM_SIZE,
663e8e51
TS
1751 PCI_ADDRESS_SPACE_MEM |
1752 PCI_ADDRESS_SPACE_MEM_PREFETCH, pci_mmio_map);
273a2142 1753 pci_register_bar(&s->dev, 1, PCI_IO_SIZE, PCI_ADDRESS_SPACE_IO,
663e8e51 1754 pci_map);
273a2142 1755 pci_register_bar(&s->dev, 2, PCI_FLASH_SIZE, PCI_ADDRESS_SPACE_MEM,
663e8e51
TS
1756 pci_mmio_map);
1757
273a2142 1758 qdev_get_macaddr(&s->dev.qdev, s->macaddr);
663e8e51
TS
1759 logout("macaddr: %s\n", nic_dump(&s->macaddr[0], 6));
1760 assert(s->region[1] == 0);
1761
1762 nic_reset(s);
1763
273a2142 1764 s->vc = qdev_get_vlan_client(&s->dev.qdev,
463af534 1765 nic_can_receive, nic_receive, NULL,
b946a153 1766 nic_cleanup, s);
663e8e51 1767
7cb7434b 1768 qemu_format_nic_info_str(s->vc, s->macaddr);
663e8e51 1769
a08d4367 1770 qemu_register_reset(nic_reset, s);
663e8e51 1771
32a8f6ae 1772 register_savevm(s->vc->model, -1, 3, nic_save, nic_load, s);
81a322d4 1773 return 0;
663e8e51
TS
1774}
1775
81a322d4 1776static int pci_i82551_init(PCIDevice *dev)
9d07d757 1777{
81a322d4 1778 return nic_init(dev, i82551);
9d07d757
PB
1779}
1780
81a322d4 1781static int pci_i82557b_init(PCIDevice *dev)
663e8e51 1782{
81a322d4 1783 return nic_init(dev, i82557B);
663e8e51
TS
1784}
1785
81a322d4 1786static int pci_i82559er_init(PCIDevice *dev)
663e8e51 1787{
81a322d4 1788 return nic_init(dev, i82559ER);
663e8e51
TS
1789}
1790
0aab0d3a
GH
1791static PCIDeviceInfo eepro100_info[] = {
1792 {
1793 .qdev.name = "i82551",
273a2142 1794 .qdev.size = sizeof(EEPRO100State),
0aab0d3a
GH
1795 .init = pci_i82551_init,
1796 },{
1797 .qdev.name = "i82557b",
273a2142 1798 .qdev.size = sizeof(EEPRO100State),
0aab0d3a
GH
1799 .init = pci_i82557b_init,
1800 },{
1801 .qdev.name = "i82559er",
273a2142 1802 .qdev.size = sizeof(EEPRO100State),
0aab0d3a
GH
1803 .init = pci_i82559er_init,
1804 },{
1805 /* end of list */
1806 }
1807};
1808
9d07d757 1809static void eepro100_register_devices(void)
663e8e51 1810{
0aab0d3a 1811 pci_qdev_register_many(eepro100_info);
663e8e51
TS
1812}
1813
9d07d757 1814device_init(eepro100_register_devices)