]> git.proxmox.com Git - mirror_qemu.git/blame - hw/etraxfs_dma.c
Compile with debug.
[mirror_qemu.git] / hw / etraxfs_dma.c
CommitLineData
1ba13a5d
EI
1/*
2 * QEMU ETRAX DMA Controller.
3 *
4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24#include <stdio.h>
25#include <sys/time.h>
26#include "hw.h"
27
28#include "etraxfs_dma.h"
29
30#define D(x)
31
32#define RW_DATA 0x0
33#define RW_SAVED_DATA 0x58
34#define RW_SAVED_DATA_BUF 0x5c
35#define RW_GROUP 0x60
36#define RW_GROUP_DOWN 0x7c
37#define RW_CMD 0x80
38#define RW_CFG 0x84
39#define RW_STAT 0x88
40#define RW_INTR_MASK 0x8c
41#define RW_ACK_INTR 0x90
42#define R_INTR 0x94
43#define R_MASKED_INTR 0x98
44#define RW_STREAM_CMD 0x9c
45
46#define DMA_REG_MAX 0x100
47
48/* descriptors */
49
50// ------------------------------------------------------------ dma_descr_group
51typedef struct dma_descr_group {
52 struct dma_descr_group *next;
53 unsigned eol : 1;
54 unsigned tol : 1;
55 unsigned bol : 1;
56 unsigned : 1;
57 unsigned intr : 1;
58 unsigned : 2;
59 unsigned en : 1;
60 unsigned : 7;
61 unsigned dis : 1;
62 unsigned md : 16;
63 struct dma_descr_group *up;
64 union {
65 struct dma_descr_context *context;
66 struct dma_descr_group *group;
67 } down;
68} dma_descr_group;
69
70// ---------------------------------------------------------- dma_descr_context
71typedef struct dma_descr_context {
72 struct dma_descr_context *next;
73 unsigned eol : 1;
74 unsigned : 3;
75 unsigned intr : 1;
76 unsigned : 1;
77 unsigned store_mode : 1;
78 unsigned en : 1;
79 unsigned : 7;
80 unsigned dis : 1;
81 unsigned md0 : 16;
82 unsigned md1;
83 unsigned md2;
84 unsigned md3;
85 unsigned md4;
86 struct dma_descr_data *saved_data;
87 char *saved_data_buf;
88} dma_descr_context;
89
90// ------------------------------------------------------------- dma_descr_data
91typedef struct dma_descr_data {
92 struct dma_descr_data *next;
93 char *buf;
94 unsigned eol : 1;
95 unsigned : 2;
96 unsigned out_eop : 1;
97 unsigned intr : 1;
98 unsigned wait : 1;
99 unsigned : 2;
100 unsigned : 3;
101 unsigned in_eop : 1;
102 unsigned : 4;
103 unsigned md : 16;
104 char *after;
105} dma_descr_data;
106
107/* Constants */
108enum {
109 regk_dma_ack_pkt = 0x00000100,
110 regk_dma_anytime = 0x00000001,
111 regk_dma_array = 0x00000008,
112 regk_dma_burst = 0x00000020,
113 regk_dma_client = 0x00000002,
114 regk_dma_copy_next = 0x00000010,
115 regk_dma_copy_up = 0x00000020,
116 regk_dma_data_at_eol = 0x00000001,
117 regk_dma_dis_c = 0x00000010,
118 regk_dma_dis_g = 0x00000020,
119 regk_dma_idle = 0x00000001,
120 regk_dma_intern = 0x00000004,
121 regk_dma_load_c = 0x00000200,
122 regk_dma_load_c_n = 0x00000280,
123 regk_dma_load_c_next = 0x00000240,
124 regk_dma_load_d = 0x00000140,
125 regk_dma_load_g = 0x00000300,
126 regk_dma_load_g_down = 0x000003c0,
127 regk_dma_load_g_next = 0x00000340,
128 regk_dma_load_g_up = 0x00000380,
129 regk_dma_next_en = 0x00000010,
130 regk_dma_next_pkt = 0x00000010,
131 regk_dma_no = 0x00000000,
132 regk_dma_only_at_wait = 0x00000000,
133 regk_dma_restore = 0x00000020,
134 regk_dma_rst = 0x00000001,
135 regk_dma_running = 0x00000004,
136 regk_dma_rw_cfg_default = 0x00000000,
137 regk_dma_rw_cmd_default = 0x00000000,
138 regk_dma_rw_intr_mask_default = 0x00000000,
139 regk_dma_rw_stat_default = 0x00000101,
140 regk_dma_rw_stream_cmd_default = 0x00000000,
141 regk_dma_save_down = 0x00000020,
142 regk_dma_save_up = 0x00000020,
143 regk_dma_set_reg = 0x00000050,
144 regk_dma_set_w_size1 = 0x00000190,
145 regk_dma_set_w_size2 = 0x000001a0,
146 regk_dma_set_w_size4 = 0x000001c0,
147 regk_dma_stopped = 0x00000002,
148 regk_dma_store_c = 0x00000002,
149 regk_dma_store_descr = 0x00000000,
150 regk_dma_store_g = 0x00000004,
151 regk_dma_store_md = 0x00000001,
152 regk_dma_sw = 0x00000008,
153 regk_dma_update_down = 0x00000020,
154 regk_dma_yes = 0x00000001
155};
156
157enum dma_ch_state
158{
159 RST = 0,
160 STOPPED = 2,
161 RUNNING = 4
162};
163
164struct fs_dma_channel
165{
166 int regmap;
167 qemu_irq *irq;
168 struct etraxfs_dma_client *client;
169
170
171 /* Internal status. */
172 int stream_cmd_src;
173 enum dma_ch_state state;
174
175 unsigned int input : 1;
176 unsigned int eol : 1;
177
178 struct dma_descr_group current_g;
179 struct dma_descr_context current_c;
180 struct dma_descr_data current_d;
181
182 /* Controll registers. */
183 uint32_t regs[DMA_REG_MAX];
184};
185
186struct fs_dma_ctrl
187{
188 CPUState *env;
189 target_phys_addr_t base;
190
191 int nr_channels;
192 struct fs_dma_channel *channels;
193};
194
195static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg)
196{
197 return ctrl->channels[c].regs[reg];
198}
199
200static inline int channel_stopped(struct fs_dma_ctrl *ctrl, int c)
201{
202 return channel_reg(ctrl, c, RW_CFG) & 2;
203}
204
205static inline int channel_en(struct fs_dma_ctrl *ctrl, int c)
206{
207 return (channel_reg(ctrl, c, RW_CFG) & 1)
208 && ctrl->channels[c].client;
209}
210
211static inline int fs_channel(target_phys_addr_t base, target_phys_addr_t addr)
212{
213 /* Every channel has a 0x2000 ctrl register map. */
214 return (addr - base) >> 13;
215}
216
217static void channel_load_g(struct fs_dma_ctrl *ctrl, int c)
218{
219 target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP);
220
221 /* Load and decode. FIXME: handle endianness. */
222 cpu_physical_memory_read (addr,
223 (void *) &ctrl->channels[c].current_g,
224 sizeof ctrl->channels[c].current_g);
225}
226
227static void dump_c(int ch, struct dma_descr_context *c)
228{
229 printf("%s ch=%d\n", __func__, ch);
230 printf("next=%x\n", (uint32_t) c->next);
231 printf("saved_data=%x\n", (uint32_t) c->saved_data);
232 printf("saved_data_buf=%x\n", (uint32_t) c->saved_data_buf);
233 printf("eol=%x\n", (uint32_t) c->eol);
234}
235
236static void dump_d(int ch, struct dma_descr_data *d)
237{
238 printf("%s ch=%d\n", __func__, ch);
239 printf("next=%x\n", (uint32_t) d->next);
240 printf("buf=%x\n", (uint32_t) d->buf);
241 printf("after=%x\n", (uint32_t) d->after);
242 printf("intr=%x\n", (uint32_t) d->intr);
243 printf("out_eop=%x\n", (uint32_t) d->out_eop);
244 printf("in_eop=%x\n", (uint32_t) d->in_eop);
245 printf("eol=%x\n", (uint32_t) d->eol);
246}
247
248static void channel_load_c(struct fs_dma_ctrl *ctrl, int c)
249{
250 target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
251
252 /* Load and decode. FIXME: handle endianness. */
253 cpu_physical_memory_read (addr,
254 (void *) &ctrl->channels[c].current_c,
255 sizeof ctrl->channels[c].current_c);
256
257 D(dump_c(c, &ctrl->channels[c].current_c));
258 /* I guess this should update the current pos. */
259 ctrl->channels[c].regs[RW_SAVED_DATA] =
260 (uint32_t)ctrl->channels[c].current_c.saved_data;
261 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
262 (uint32_t)ctrl->channels[c].current_c.saved_data_buf;
263}
264
265static void channel_load_d(struct fs_dma_ctrl *ctrl, int c)
266{
267 target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
268
269 /* Load and decode. FIXME: handle endianness. */
270 D(printf("%s addr=%x\n", __func__, addr));
271 cpu_physical_memory_read (addr,
272 (void *) &ctrl->channels[c].current_d,
273 sizeof ctrl->channels[c].current_d);
274
275 D(dump_d(c, &ctrl->channels[c].current_d));
276 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
277 (uint32_t)ctrl->channels[c].current_d.buf;
278}
279
280static void channel_store_d(struct fs_dma_ctrl *ctrl, int c)
281{
282 target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
283
284 /* Load and decode. FIXME: handle endianness. */
285 D(printf("%s addr=%x\n", __func__, addr));
286 cpu_physical_memory_write (addr,
287 (void *) &ctrl->channels[c].current_d,
288 sizeof ctrl->channels[c].current_d);
289}
290
291static inline void channel_stop(struct fs_dma_ctrl *ctrl, int c)
292{
293 /* FIXME: */
294}
295
296static inline void channel_start(struct fs_dma_ctrl *ctrl, int c)
297{
298 if (ctrl->channels[c].client)
299 {
300 ctrl->channels[c].eol = 0;
301 ctrl->channels[c].state = RUNNING;
302 } else
303 printf("WARNING: starting DMA ch %d with no client\n", c);
304}
305
306static void channel_continue(struct fs_dma_ctrl *ctrl, int c)
307{
308 if (!channel_en(ctrl, c)
309 || channel_stopped(ctrl, c)
310 || ctrl->channels[c].state != RUNNING
311 /* Only reload the current data descriptor if it has eol set. */
312 || !ctrl->channels[c].current_d.eol) {
313 D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n",
314 c, ctrl->channels[c].state,
315 channel_stopped(ctrl, c),
316 channel_en(ctrl,c),
317 ctrl->channels[c].eol));
318 D(dump_d(c, &ctrl->channels[c].current_d));
319 return;
320 }
321
322 /* Reload the current descriptor. */
323 channel_load_d(ctrl, c);
324
325 /* If the current descriptor cleared the eol flag and we had already
326 reached eol state, do the continue. */
327 if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) {
328 D(printf("continue %d ok %x\n", c,
329 ctrl->channels[c].current_d.next));
330 ctrl->channels[c].regs[RW_SAVED_DATA] =
331 (uint32_t) ctrl->channels[c].current_d.next;
332 channel_load_d(ctrl, c);
333 channel_start(ctrl, c);
334 }
335}
336
337static void channel_stream_cmd(struct fs_dma_ctrl *ctrl, int c, uint32_t v)
338{
339 unsigned int cmd = v & ((1 << 10) - 1);
340
341 D(printf("%s cmd=%x\n", __func__, cmd));
342 if (cmd & regk_dma_load_d) {
343 channel_load_d(ctrl, c);
344 if (cmd & regk_dma_burst)
345 channel_start(ctrl, c);
346 }
347
348 if (cmd & regk_dma_load_c) {
349 channel_load_c(ctrl, c);
350 }
351}
352
353static void channel_update_irq(struct fs_dma_ctrl *ctrl, int c)
354{
355 D(printf("%s %d\n", __func__, c));
356 ctrl->channels[c].regs[R_INTR] &=
357 ~(ctrl->channels[c].regs[RW_ACK_INTR]);
358
359 ctrl->channels[c].regs[R_MASKED_INTR] =
360 ctrl->channels[c].regs[R_INTR]
361 & ctrl->channels[c].regs[RW_INTR_MASK];
362
363 D(printf("%s: chan=%d masked_intr=%x\n", __func__,
364 c,
365 ctrl->channels[c].regs[R_MASKED_INTR]));
366
367 if (ctrl->channels[c].regs[R_MASKED_INTR])
368 qemu_irq_raise(ctrl->channels[c].irq[0]);
369 else
370 qemu_irq_lower(ctrl->channels[c].irq[0]);
371}
372
373static void channel_out_run(struct fs_dma_ctrl *ctrl, int c)
374{
375 uint32_t len;
376 uint32_t saved_data_buf;
377 unsigned char buf[2 * 1024];
378
379 if (ctrl->channels[c].eol == 1)
380 return;
381
382 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
383
384 D(printf("buf=%x after=%x saved_data_buf=%x\n",
385 (uint32_t)ctrl->channels[c].current_d.buf,
386 (uint32_t)ctrl->channels[c].current_d.after,
387 saved_data_buf));
388
389 if (saved_data_buf == (uint32_t)ctrl->channels[c].current_d.after) {
390 /* Done. Step to next. */
391 if (ctrl->channels[c].current_d.out_eop) {
392 /* TODO: signal eop to the client. */
393 D(printf("signal eop\n"));
394 }
395 if (ctrl->channels[c].current_d.intr) {
396 /* TODO: signal eop to the client. */
397 /* data intr. */
398 D(printf("signal intr\n"));
399 ctrl->channels[c].regs[R_INTR] |= (1 << 2);
400 channel_update_irq(ctrl, c);
401 }
402 if (ctrl->channels[c].current_d.eol) {
403 D(printf("channel %d EOL\n", c));
404 ctrl->channels[c].eol = 1;
405 channel_stop(ctrl, c);
406 } else {
407 ctrl->channels[c].regs[RW_SAVED_DATA] =
408 (uint32_t) ctrl->channels[c].current_d.next;
409 /* Load new descriptor. */
410 channel_load_d(ctrl, c);
411 }
412
413 channel_store_d(ctrl, c);
414 D(dump_d(c, &ctrl->channels[c].current_d));
415 return;
416 }
417
418 len = (uint32_t) ctrl->channels[c].current_d.after;
419 len -= saved_data_buf;
420
421 if (len > sizeof buf)
422 len = sizeof buf;
423 cpu_physical_memory_read (saved_data_buf, buf, len);
424
425 D(printf("channel %d pushes %x %u bytes\n", c,
426 saved_data_buf, len));
427 /* TODO: Push content. */
428 if (ctrl->channels[c].client->client.push)
429 ctrl->channels[c].client->client.push(
430 ctrl->channels[c].client->client.opaque, buf, len);
431 else
432 printf("WARNING: DMA ch%d dataloss, no attached client.\n", c);
433
434 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] += len;
435}
436
437static int channel_in_process(struct fs_dma_ctrl *ctrl, int c,
438 unsigned char *buf, int buflen, int eop)
439{
440 uint32_t len;
441 uint32_t saved_data_buf;
442
443 if (ctrl->channels[c].eol == 1)
444 return 0;
445
446 saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
447 len = (uint32_t) ctrl->channels[c].current_d.after;
448 len -= saved_data_buf;
449
450 if (len > buflen)
451 len = buflen;
452
453 cpu_physical_memory_write (saved_data_buf, buf, len);
454 saved_data_buf += len;
455
456 if (saved_data_buf == (uint32_t)ctrl->channels[c].current_d.after
457 || eop) {
458 uint32_t r_intr = ctrl->channels[c].regs[R_INTR];
459
460 D(printf("in dscr end len=%d\n",
461 ctrl->channels[c].current_d.after
462 - ctrl->channels[c].current_d.buf));
463 ctrl->channels[c].current_d.after =
464 (void *) saved_data_buf;
465
466 /* Done. Step to next. */
467 if (ctrl->channels[c].current_d.intr) {
468 /* TODO: signal eop to the client. */
469 /* data intr. */
470 ctrl->channels[c].regs[R_INTR] |= 3;
471 }
472 if (eop) {
473 ctrl->channels[c].current_d.in_eop = 1;
474 ctrl->channels[c].regs[R_INTR] |= 8;
475 }
476 if (r_intr != ctrl->channels[c].regs[R_INTR])
477 channel_update_irq(ctrl, c);
478
479 channel_store_d(ctrl, c);
480 D(dump_d(c, &ctrl->channels[c].current_d));
481
482 if (ctrl->channels[c].current_d.eol) {
483 D(printf("channel %d EOL\n", c));
484 ctrl->channels[c].eol = 1;
485 channel_stop(ctrl, c);
486 } else {
487 ctrl->channels[c].regs[RW_SAVED_DATA] =
488 (uint32_t) ctrl->channels[c].current_d.next;
489 /* Load new descriptor. */
490 channel_load_d(ctrl, c);
491 saved_data_buf =
492 ctrl->channels[c].regs[RW_SAVED_DATA_BUF];
493 }
494 }
495
496 ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
497 return len;
498}
499
500static inline void channel_in_run(struct fs_dma_ctrl *ctrl, int c)
501{
502 if (ctrl->channels[c].client->client.pull)
503 ctrl->channels[c].client->client.pull(
504 ctrl->channels[c].client->client.opaque);
505}
506
507static uint32_t dma_rinvalid (void *opaque, target_phys_addr_t addr)
508{
509 struct fs_dma_ctrl *ctrl = opaque;
510 CPUState *env = ctrl->env;
511 cpu_abort(env, "Unsupported short access. reg=%x pc=%x.\n",
512 addr, env->pc);
513 return 0;
514}
515
516static uint32_t
517dma_readl (void *opaque, target_phys_addr_t addr)
518{
519 struct fs_dma_ctrl *ctrl = opaque;
520 int c;
521 uint32_t r = 0;
522
523 /* Make addr relative to this instances base. */
524 c = fs_channel(ctrl->base, addr);
525 addr &= 0x1fff;
526 switch (addr)
527 {
528 case RW_STAT:
529 r = ctrl->channels[c].state & 7;
530 r |= ctrl->channels[c].eol << 5;
531 r |= ctrl->channels[c].stream_cmd_src << 8;
532 break;
533
534 default:
535 r = ctrl->channels[c].regs[addr];
536 D(printf ("%s c=%d addr=%x pc=%x\n",
537 __func__, c, addr, env->pc));
538 break;
539 }
540 return r;
541}
542
543static void
544dma_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
545{
546 struct fs_dma_ctrl *ctrl = opaque;
547 CPUState *env = ctrl->env;
548 cpu_abort(env, "Unsupported short access. reg=%x pc=%x.\n",
549 addr, env->pc);
550}
551
552static void
553dma_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
554{
555 struct fs_dma_ctrl *ctrl = opaque;
556 int c;
557
558 /* Make addr relative to this instances base. */
559 c = fs_channel(ctrl->base, addr);
560 addr &= 0x1fff;
561 switch (addr)
562 {
563 case RW_DATA:
564 printf("RW_DATA=%x\n", value);
565 break;
566
567 case RW_CFG:
568 ctrl->channels[c].regs[addr] = value;
569 break;
570 case RW_CMD:
571 /* continue. */
572 ctrl->channels[c].regs[addr] = value;
573 channel_continue(ctrl, c);
574 break;
575
576 case RW_SAVED_DATA:
577 case RW_SAVED_DATA_BUF:
578 case RW_GROUP:
579 case RW_GROUP_DOWN:
580 ctrl->channels[c].regs[addr] = value;
581 break;
582
583 case RW_ACK_INTR:
584 case RW_INTR_MASK:
585 ctrl->channels[c].regs[addr] = value;
586 channel_update_irq(ctrl, c);
587 if (addr == RW_ACK_INTR)
588 ctrl->channels[c].regs[RW_ACK_INTR] = 0;
589 break;
590
591 case RW_STREAM_CMD:
592 ctrl->channels[c].regs[addr] = value;
593 channel_stream_cmd(ctrl, c, value);
594 break;
595
596 default:
597 D(printf ("%s c=%d %x %x pc=%x\n",
598 __func__, c, addr, value, env->pc));
599 break;
600 }
601}
602
603static CPUReadMemoryFunc *dma_read[] = {
604 &dma_rinvalid,
605 &dma_rinvalid,
606 &dma_readl,
607};
608
609static CPUWriteMemoryFunc *dma_write[] = {
610 &dma_winvalid,
611 &dma_winvalid,
612 &dma_writel,
613};
614
615void etraxfs_dmac_run(void *opaque)
616{
617 struct fs_dma_ctrl *ctrl = opaque;
618 int i;
619 int p = 0;
620
621 for (i = 0;
622 i < ctrl->nr_channels;
623 i++)
624 {
625 if (ctrl->channels[i].state == RUNNING)
626 {
627 p++;
628 if (ctrl->channels[i].input)
629 channel_in_run(ctrl, i);
630 else
631 channel_out_run(ctrl, i);
632 }
633 }
634}
635
636int etraxfs_dmac_input(struct etraxfs_dma_client *client,
637 void *buf, int len, int eop)
638{
639 return channel_in_process(client->ctrl, client->channel,
640 buf, len, eop);
641}
642
643/* Connect an IRQ line with a channel. */
644void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input)
645{
646 struct fs_dma_ctrl *ctrl = opaque;
647 ctrl->channels[c].irq = line;
648 ctrl->channels[c].input = input;
649}
650
651void etraxfs_dmac_connect_client(void *opaque, int c,
652 struct etraxfs_dma_client *cl)
653{
654 struct fs_dma_ctrl *ctrl = opaque;
655 cl->ctrl = ctrl;
656 cl->channel = c;
657 ctrl->channels[c].client = cl;
658}
659
660
661void *etraxfs_dmac_init(CPUState *env,
662 target_phys_addr_t base, int nr_channels)
663{
664 struct fs_dma_ctrl *ctrl = NULL;
665 int i;
666
667 ctrl = qemu_mallocz(sizeof *ctrl);
668 if (!ctrl)
669 return NULL;
670
671 ctrl->base = base;
672 ctrl->env = env;
673 ctrl->nr_channels = nr_channels;
674 ctrl->channels = qemu_mallocz(sizeof ctrl->channels[0] * nr_channels);
675 if (!ctrl->channels)
676 goto err;
677
678 for (i = 0; i < nr_channels; i++)
679 {
680 ctrl->channels[i].regmap = cpu_register_io_memory(0,
681 dma_read,
682 dma_write,
683 ctrl);
684 cpu_register_physical_memory (base + i * 0x2000,
685 sizeof ctrl->channels[i].regs,
686 ctrl->channels[i].regmap);
687 }
688
689 return ctrl;
690 err:
691 qemu_free(ctrl->channels);
692 qemu_free(ctrl);
693 return NULL;
694}