]> git.proxmox.com Git - mirror_qemu.git/blame - hw/etraxfs_eth.c
Change MMIO callbacks to use offsets, not absolute addresses.
[mirror_qemu.git] / hw / etraxfs_eth.c
CommitLineData
a3ea5df5
EI
1/*
2 * QEMU ETRAX Ethernet Controller.
3 *
4 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25#include <stdio.h>
26#include "hw.h"
27#include "net.h"
28
29#include "etraxfs_dma.h"
30
31#define D(x)
32
c6488268
EI
33/* Advertisement control register. */
34#define ADVERTISE_10HALF 0x0020 /* Try for 10mbps half-duplex */
35#define ADVERTISE_10FULL 0x0040 /* Try for 10mbps full-duplex */
36#define ADVERTISE_100HALF 0x0080 /* Try for 100mbps half-duplex */
37#define ADVERTISE_100FULL 0x0100 /* Try for 100mbps full-duplex */
38
2e56350e
EI
39/*
40 * The MDIO extensions in the TDK PHY model were reversed engineered from the
41 * linux driver (PHYID and Diagnostics reg).
42 * TODO: Add friendly names for the register nums.
43 */
a3ea5df5
EI
44struct qemu_phy
45{
46 uint32_t regs[32];
47
48 unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
2e56350e
EI
49 void (*write)(struct qemu_phy *phy, unsigned int req,
50 unsigned int data);
a3ea5df5
EI
51};
52
53static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
54{
55 int regnum;
56 unsigned r = 0;
57
58 regnum = req & 0x1f;
59
60 switch (regnum) {
61 case 1:
f6953f13 62 /* MR1. */
a3ea5df5
EI
63 /* Speeds and modes. */
64 r |= (1 << 13) | (1 << 14);
65 r |= (1 << 11) | (1 << 12);
66 r |= (1 << 5); /* Autoneg complete. */
f6953f13
EI
67 r |= (1 << 3); /* Autoneg able. */
68 r |= (1 << 2); /* Link. */
a3ea5df5 69 break;
2e56350e
EI
70 case 5:
71 /* Link partner ability.
72 We are kind; always agree with whatever best mode
73 the guest advertises. */
74 r = 1 << 14; /* Success. */
75 /* Copy advertised modes. */
76 r |= phy->regs[4] & (15 << 5);
77 /* Autoneg support. */
78 r |= 1;
79 break;
80 case 18:
81 {
82 /* Diagnostics reg. */
83 int duplex = 0;
84 int speed_100 = 0;
85
86 /* Are we advertising 100 half or 100 duplex ? */
c6488268
EI
87 speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
88 speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);
89
2e56350e 90 /* Are we advertising 10 duplex or 100 duplex ? */
c6488268
EI
91 duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
92 duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
2e56350e
EI
93 r = (speed_100 << 10) | (duplex << 11);
94 }
95 break;
96
a3ea5df5
EI
97 default:
98 r = phy->regs[regnum];
99 break;
100 }
2e56350e 101 D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
a3ea5df5
EI
102 return r;
103}
104
105static void
106tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
107{
108 int regnum;
109
110 regnum = req & 0x1f;
111 D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
112 switch (regnum) {
113 default:
114 phy->regs[regnum] = data;
115 break;
116 }
117}
118
119static void
120tdk_init(struct qemu_phy *phy)
121{
2e56350e
EI
122 phy->regs[0] = 0x3100;
123 /* PHY Id. */
124 phy->regs[2] = 0x0300;
125 phy->regs[3] = 0xe400;
126 /* Autonegotiation advertisement reg. */
127 phy->regs[4] = 0x01E1;
128
a3ea5df5
EI
129 phy->read = tdk_read;
130 phy->write = tdk_write;
131}
132
133struct qemu_mdio
134{
f6953f13 135 /* bus. */
a3ea5df5
EI
136 int mdc;
137 int mdio;
138
139 /* decoder. */
140 enum {
141 PREAMBLE,
142 SOF,
143 OPC,
144 ADDR,
145 REQ,
146 TURNAROUND,
147 DATA
148 } state;
149 unsigned int drive;
150
151 unsigned int cnt;
152 unsigned int addr;
153 unsigned int opc;
154 unsigned int req;
155 unsigned int data;
156
157 struct qemu_phy *devs[32];
158};
159
160static void
161mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
162{
163 bus->devs[addr & 0x1f] = phy;
164}
165
d297f464 166#ifdef USE_THIS_DEAD_CODE
a3ea5df5
EI
167static void
168mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
169{
170 bus->devs[addr & 0x1f] = NULL;
171}
d297f464 172#endif
a3ea5df5
EI
173
174static void mdio_read_req(struct qemu_mdio *bus)
175{
176 struct qemu_phy *phy;
177
178 phy = bus->devs[bus->addr];
179 if (phy && phy->read)
180 bus->data = phy->read(phy, bus->req);
181 else
182 bus->data = 0xffff;
183}
184
185static void mdio_write_req(struct qemu_mdio *bus)
186{
187 struct qemu_phy *phy;
188
189 phy = bus->devs[bus->addr];
190 if (phy && phy->write)
191 phy->write(phy, bus->req, bus->data);
192}
193
194static void mdio_cycle(struct qemu_mdio *bus)
195{
196 bus->cnt++;
197
198 D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
199 bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
200#if 0
201 if (bus->mdc)
202 printf("%d", bus->mdio);
203#endif
204 switch (bus->state)
205 {
206 case PREAMBLE:
207 if (bus->mdc) {
208 if (bus->cnt >= (32 * 2) && !bus->mdio) {
209 bus->cnt = 0;
210 bus->state = SOF;
211 bus->data = 0;
212 }
213 }
214 break;
215 case SOF:
216 if (bus->mdc) {
217 if (bus->mdio != 1)
218 printf("WARNING: no SOF\n");
219 if (bus->cnt == 1*2) {
220 bus->cnt = 0;
221 bus->opc = 0;
222 bus->state = OPC;
223 }
224 }
225 break;
226 case OPC:
227 if (bus->mdc) {
228 bus->opc <<= 1;
229 bus->opc |= bus->mdio & 1;
230 if (bus->cnt == 2*2) {
231 bus->cnt = 0;
232 bus->addr = 0;
233 bus->state = ADDR;
234 }
235 }
236 break;
237 case ADDR:
238 if (bus->mdc) {
239 bus->addr <<= 1;
240 bus->addr |= bus->mdio & 1;
241
242 if (bus->cnt == 5*2) {
243 bus->cnt = 0;
244 bus->req = 0;
245 bus->state = REQ;
246 }
247 }
248 break;
249 case REQ:
250 if (bus->mdc) {
251 bus->req <<= 1;
252 bus->req |= bus->mdio & 1;
253 if (bus->cnt == 5*2) {
254 bus->cnt = 0;
255 bus->state = TURNAROUND;
256 }
257 }
258 break;
259 case TURNAROUND:
260 if (bus->mdc && bus->cnt == 2*2) {
261 bus->mdio = 0;
262 bus->cnt = 0;
263
264 if (bus->opc == 2) {
265 bus->drive = 1;
266 mdio_read_req(bus);
267 bus->mdio = bus->data & 1;
268 }
269 bus->state = DATA;
270 }
271 break;
272 case DATA:
273 if (!bus->mdc) {
274 if (bus->drive) {
2e56350e
EI
275 bus->mdio = !!(bus->data & (1 << 15));
276 bus->data <<= 1;
a3ea5df5
EI
277 }
278 } else {
279 if (!bus->drive) {
280 bus->data <<= 1;
281 bus->data |= bus->mdio;
282 }
283 if (bus->cnt == 16 * 2) {
284 bus->cnt = 0;
285 bus->state = PREAMBLE;
2e56350e
EI
286 if (!bus->drive)
287 mdio_write_req(bus);
288 bus->drive = 0;
a3ea5df5
EI
289 }
290 }
291 break;
292 default:
293 break;
294 }
295}
296
2e56350e
EI
297/* ETRAX-FS Ethernet MAC block starts here. */
298
f6953f13
EI
299#define RW_MA0_LO 0x00
300#define RW_MA0_HI 0x04
301#define RW_MA1_LO 0x08
302#define RW_MA1_HI 0x0c
303#define RW_GA_LO 0x10
304#define RW_GA_HI 0x14
305#define RW_GEN_CTRL 0x18
306#define RW_REC_CTRL 0x1c
307#define RW_TR_CTRL 0x20
308#define RW_CLR_ERR 0x24
309#define RW_MGM_CTRL 0x28
310#define R_STAT 0x2c
311#define FS_ETH_MAX_REGS 0x5c
a3ea5df5
EI
312
313struct fs_eth
314{
f6953f13 315 CPUState *env;
a3ea5df5 316 qemu_irq *irq;
a3ea5df5 317 VLANClientState *vc;
a3ea5df5
EI
318 int ethregs;
319
f6953f13
EI
320 /* Two addrs in the filter. */
321 uint8_t macaddr[2][6];
a3ea5df5
EI
322 uint32_t regs[FS_ETH_MAX_REGS];
323
a3ea5df5
EI
324 struct etraxfs_dma_client *dma_out;
325 struct etraxfs_dma_client *dma_in;
326
327 /* MDIO bus. */
328 struct qemu_mdio mdio_bus;
c6488268
EI
329 unsigned int phyaddr;
330 int duplex_mismatch;
331
f6953f13 332 /* PHY. */
a3ea5df5
EI
333 struct qemu_phy phy;
334};
335
c6488268
EI
336static void eth_validate_duplex(struct fs_eth *eth)
337{
338 struct qemu_phy *phy;
339 unsigned int phy_duplex;
340 unsigned int mac_duplex;
341 int new_mm = 0;
342
343 phy = eth->mdio_bus.devs[eth->phyaddr];
344 phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
345 mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);
346
347 if (mac_duplex != phy_duplex)
348 new_mm = 1;
349
350 if (eth->regs[RW_GEN_CTRL] & 1) {
351 if (new_mm != eth->duplex_mismatch) {
352 if (new_mm)
353 printf("HW: WARNING "
354 "ETH duplex mismatch MAC=%d PHY=%d\n",
355 mac_duplex, phy_duplex);
356 else
357 printf("HW: ETH duplex ok.\n");
358 }
359 eth->duplex_mismatch = new_mm;
360 }
361}
362
a3ea5df5
EI
363static uint32_t eth_rinvalid (void *opaque, target_phys_addr_t addr)
364{
f6953f13
EI
365 struct fs_eth *eth = opaque;
366 CPUState *env = eth->env;
d27b2e50
EI
367 cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
368 addr);
f6953f13 369 return 0;
a3ea5df5
EI
370}
371
372static uint32_t eth_readl (void *opaque, target_phys_addr_t addr)
373{
f6953f13 374 struct fs_eth *eth = opaque;
f6953f13 375 uint32_t r = 0;
a3ea5df5 376
f6953f13 377 switch (addr) {
a3ea5df5
EI
378 case R_STAT:
379 /* Attach an MDIO/PHY abstraction. */
380 r = eth->mdio_bus.mdio & 1;
381 break;
f6953f13 382 default:
a3ea5df5 383 r = eth->regs[addr];
d27b2e50 384 D(printf ("%s %x\n", __func__, addr));
f6953f13
EI
385 break;
386 }
387 return r;
a3ea5df5
EI
388}
389
390static void
391eth_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
392{
f6953f13
EI
393 struct fs_eth *eth = opaque;
394 CPUState *env = eth->env;
d27b2e50
EI
395 cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx "\n",
396 addr);
f6953f13
EI
397}
398
399static void eth_update_ma(struct fs_eth *eth, int ma)
400{
401 int reg;
402 int i = 0;
403
404 ma &= 1;
405
406 reg = RW_MA0_LO;
407 if (ma)
408 reg = RW_MA1_LO;
409
410 eth->macaddr[ma][i++] = eth->regs[reg];
411 eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
412 eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
413 eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
414 eth->macaddr[ma][i++] = eth->regs[reg + 4];
415 eth->macaddr[ma][i++] = eth->regs[reg + 4] >> 8;
416
417 D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
418 eth->macaddr[ma][0], eth->macaddr[ma][1],
419 eth->macaddr[ma][2], eth->macaddr[ma][3],
420 eth->macaddr[ma][4], eth->macaddr[ma][5]));
a3ea5df5
EI
421}
422
423static void
424eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
425{
f6953f13 426 struct fs_eth *eth = opaque;
f6953f13 427
f6953f13
EI
428 switch (addr)
429 {
430 case RW_MA0_LO:
431 eth->regs[addr] = value;
432 eth_update_ma(eth, 0);
433 break;
434 case RW_MA0_HI:
435 eth->regs[addr] = value;
436 eth_update_ma(eth, 0);
437 break;
438 case RW_MA1_LO:
439 eth->regs[addr] = value;
440 eth_update_ma(eth, 1);
441 break;
442 case RW_MA1_HI:
443 eth->regs[addr] = value;
444 eth_update_ma(eth, 1);
445 break;
a3ea5df5 446
a3ea5df5
EI
447 case RW_MGM_CTRL:
448 /* Attach an MDIO/PHY abstraction. */
449 if (value & 2)
450 eth->mdio_bus.mdio = value & 1;
c6488268 451 if (eth->mdio_bus.mdc != (value & 4)) {
a3ea5df5 452 mdio_cycle(&eth->mdio_bus);
c6488268
EI
453 eth_validate_duplex(eth);
454 }
a3ea5df5
EI
455 eth->mdio_bus.mdc = !!(value & 4);
456 break;
457
c6488268
EI
458 case RW_REC_CTRL:
459 eth->regs[addr] = value;
460 eth_validate_duplex(eth);
461 break;
462
f6953f13
EI
463 default:
464 eth->regs[addr] = value;
9bcd77d6
EI
465 D(printf ("%s %x %x\n",
466 __func__, addr, value));
f6953f13
EI
467 break;
468 }
469}
470
471/* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
472 filter dropping group addresses we have not joined. The filter has 64
473 bits (m). The has function is a simple nible xor of the group addr. */
474static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa)
475{
476 unsigned int hsh;
477 int m_individual = eth->regs[RW_REC_CTRL] & 4;
478 int match;
479
480 /* First bit on the wire of a MAC address signals multicast or
481 physical address. */
482 if (!m_individual && !sa[0] & 1)
483 return 0;
484
485 /* Calculate the hash index for the GA registers. */
486 hsh = 0;
487 hsh ^= (*sa) & 0x3f;
488 hsh ^= ((*sa) >> 6) & 0x03;
489 ++sa;
490 hsh ^= ((*sa) << 2) & 0x03c;
491 hsh ^= ((*sa) >> 4) & 0xf;
492 ++sa;
493 hsh ^= ((*sa) << 4) & 0x30;
494 hsh ^= ((*sa) >> 2) & 0x3f;
495 ++sa;
496 hsh ^= (*sa) & 0x3f;
497 hsh ^= ((*sa) >> 6) & 0x03;
498 ++sa;
499 hsh ^= ((*sa) << 2) & 0x03c;
500 hsh ^= ((*sa) >> 4) & 0xf;
501 ++sa;
502 hsh ^= ((*sa) << 4) & 0x30;
503 hsh ^= ((*sa) >> 2) & 0x3f;
504
505 hsh &= 63;
506 if (hsh > 31)
507 match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
508 else
509 match = eth->regs[RW_GA_LO] & (1 << hsh);
510 D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
511 eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
512 return match;
a3ea5df5
EI
513}
514
515static int eth_can_receive(void *opaque)
516{
aa25cf46 517 return 1;
a3ea5df5
EI
518}
519
520static void eth_receive(void *opaque, const uint8_t *buf, int size)
521{
f6953f13 522 unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
a3ea5df5 523 struct fs_eth *eth = opaque;
f6953f13
EI
524 int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
525 int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
526 int r_bcast = eth->regs[RW_REC_CTRL] & 8;
527
528 if (size < 12)
529 return;
530
531 D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
532 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
533 use_ma0, use_ma1, r_bcast));
534
535 /* Does the frame get through the address filters? */
536 if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
537 && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
538 && (!r_bcast || memcmp(buf, sa_bcast, 6))
539 && !eth_match_groupaddr(eth, buf))
540 return;
541
aa25cf46
EI
542 /* FIXME: Find another way to pass on the fake csum. */
543 etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1);
a3ea5df5
EI
544}
545
546static int eth_tx_push(void *opaque, unsigned char *buf, int len)
547{
548 struct fs_eth *eth = opaque;
549
550 D(printf("%s buf=%p len=%d\n", __func__, buf, len));
551 qemu_send_packet(eth->vc, buf, len);
552 return len;
553}
554
555static CPUReadMemoryFunc *eth_read[] = {
2e56350e
EI
556 &eth_rinvalid,
557 &eth_rinvalid,
558 &eth_readl,
a3ea5df5
EI
559};
560
561static CPUWriteMemoryFunc *eth_write[] = {
2e56350e
EI
562 &eth_winvalid,
563 &eth_winvalid,
564 &eth_writel,
a3ea5df5
EI
565};
566
567void *etraxfs_eth_init(NICInfo *nd, CPUState *env,
568 qemu_irq *irq, target_phys_addr_t base)
569{
570 struct etraxfs_dma_client *dma = NULL;
571 struct fs_eth *eth = NULL;
572
573 dma = qemu_mallocz(sizeof *dma * 2);
574 if (!dma)
575 return NULL;
576
577 eth = qemu_mallocz(sizeof *eth);
578 if (!eth)
579 goto err;
580
581 dma[0].client.push = eth_tx_push;
582 dma[0].client.opaque = eth;
583 dma[1].client.opaque = eth;
aa25cf46 584 dma[1].client.pull = NULL;
a3ea5df5
EI
585
586 eth->env = env;
a3ea5df5
EI
587 eth->irq = irq;
588 eth->dma_out = dma;
589 eth->dma_in = dma + 1;
a3ea5df5
EI
590
591 /* Connect the phy. */
c6488268 592 eth->phyaddr = 1;
a3ea5df5 593 tdk_init(&eth->phy);
c6488268 594 mdio_attach(&eth->mdio_bus, &eth->phy, eth->phyaddr);
a3ea5df5
EI
595
596 eth->ethregs = cpu_register_io_memory(0, eth_read, eth_write, eth);
597 cpu_register_physical_memory (base, 0x5c, eth->ethregs);
598
599 eth->vc = qemu_new_vlan_client(nd->vlan,
600 eth_receive, eth_can_receive, eth);
601
602 return dma;
603 err:
604 qemu_free(eth);
605 qemu_free(dma);
606 return NULL;
607}