]> git.proxmox.com Git - mirror_qemu.git/blame - hw/intc/arm_gic.c
spapr/xive: print out the EQ page address in the monitor
[mirror_qemu.git] / hw / intc / arm_gic.c
CommitLineData
5fafdf24 1/*
9ee6e8bb 2 * ARM Generic/Distributed Interrupt Controller
e69954b9 3 *
9ee6e8bb 4 * Copyright (c) 2006-2007 CodeSourcery.
e69954b9
PB
5 * Written by Paul Brook
6 *
8e31bf38 7 * This code is licensed under the GPL.
e69954b9
PB
8 */
9
9ee6e8bb 10/* This file contains implementation code for the RealView EB interrupt
0d256bdc
PM
11 * controller, MPCore distributed interrupt controller and ARMv7-M
12 * Nested Vectored Interrupt Controller.
13 * It is compiled in two ways:
14 * (1) as a standalone file to produce a sysbus device which is a GIC
15 * that can be used on the realview board and as one of the builtin
16 * private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17 * (2) by being directly #included into armv7m_nvic.c to produce the
18 * armv7m_nvic device.
19 */
e69954b9 20
8ef94f0b 21#include "qemu/osdep.h"
83c9f4ca 22#include "hw/sysbus.h"
47b43a1f 23#include "gic_internal.h"
da34e65c 24#include "qapi/error.h"
dfc08079 25#include "qom/cpu.h"
03dd024f 26#include "qemu/log.h"
2531088f 27#include "trace.h"
5d721b78 28#include "sysemu/kvm.h"
386e2955 29
68bf93ce 30/* #define DEBUG_GIC */
e69954b9
PB
31
32#ifdef DEBUG_GIC
68bf93ce 33#define DEBUG_GIC_GATE 1
e69954b9 34#else
68bf93ce 35#define DEBUG_GIC_GATE 0
e69954b9
PB
36#endif
37
68bf93ce
AB
38#define DPRINTF(fmt, ...) do { \
39 if (DEBUG_GIC_GATE) { \
40 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
41 } \
42 } while (0)
43
3355c360
AF
44static const uint8_t gic_id_11mpcore[] = {
45 0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
46};
47
48static const uint8_t gic_id_gicv1[] = {
49 0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
50};
51
52static const uint8_t gic_id_gicv2[] = {
53 0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
2a29ddee
PM
54};
55
fae15286 56static inline int gic_get_current_cpu(GICState *s)
926c4aff 57{
926c4aff 58 if (s->num_cpu > 1) {
4917cf44 59 return current_cpu->cpu_index;
926c4aff 60 }
926c4aff
PM
61 return 0;
62}
63
4a37e0e4
LM
64static inline int gic_get_current_vcpu(GICState *s)
65{
66 return gic_get_current_cpu(s) + GIC_NCPU;
67}
68
c27a5ba9
FA
69/* Return true if this GIC config has interrupt groups, which is
70 * true if we're a GICv2, or a GICv1 with the security extensions.
71 */
72static inline bool gic_has_groups(GICState *s)
73{
74 return s->revision == 2 || s->security_extn;
75}
76
3dd0471b
LM
77static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
78{
79 return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
80}
81
cbe1282b
LM
82static inline void gic_get_best_irq(GICState *s, int cpu,
83 int *best_irq, int *best_prio, int *group)
84{
85 int irq;
86 int cm = 1 << cpu;
87
88 *best_irq = 1023;
89 *best_prio = 0x100;
90
91 for (irq = 0; irq < s->num_irq; irq++) {
92 if (GIC_DIST_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
93 (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
94 (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
95 if (GIC_DIST_GET_PRIORITY(irq, cpu) < *best_prio) {
96 *best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
97 *best_irq = irq;
98 }
99 }
100 }
101
102 if (*best_irq < 1023) {
103 *group = GIC_DIST_TEST_GROUP(*best_irq, cm);
104 }
105}
106
107static inline void gic_get_best_virq(GICState *s, int cpu,
108 int *best_irq, int *best_prio, int *group)
109{
110 int lr_idx = 0;
111
112 *best_irq = 1023;
113 *best_prio = 0x100;
114
115 for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
116 uint32_t lr_entry = s->h_lr[lr_idx][cpu];
117 int state = GICH_LR_STATE(lr_entry);
118
119 if (state == GICH_LR_STATE_PENDING) {
120 int prio = GICH_LR_PRIORITY(lr_entry);
121
122 if (prio < *best_prio) {
123 *best_prio = prio;
124 *best_irq = GICH_LR_VIRT_ID(lr_entry);
125 *group = GICH_LR_GROUP(lr_entry);
126 }
127 }
128 }
129}
130
131/* Return true if IRQ signaling is enabled for the given cpu and at least one
132 * of the given groups:
133 * - in the non-virt case, the distributor must be enabled for one of the
134 * given groups
135 * - in the virt case, the virtual interface must be enabled.
136 * - in all cases, the (v)CPU interface must be enabled for one of the given
137 * groups.
138 */
139static inline bool gic_irq_signaling_enabled(GICState *s, int cpu, bool virt,
140 int group_mask)
141{
142 if (!virt && !(s->ctlr & group_mask)) {
143 return false;
144 }
145
146 if (virt && !(s->h_hcr[cpu] & R_GICH_HCR_EN_MASK)) {
147 return false;
148 }
149
150 if (!(s->cpu_ctlr[cpu] & group_mask)) {
151 return false;
152 }
153
154 return true;
155}
156
e69954b9
PB
157/* TODO: Many places that call this routine could be optimized. */
158/* Update interrupt status after enabled or pending bits have been changed. */
cbe1282b 159static inline void gic_update_internal(GICState *s, bool virt)
e69954b9
PB
160{
161 int best_irq;
162 int best_prio;
dadbb58f 163 int irq_level, fiq_level;
cbe1282b
LM
164 int cpu, cpu_iface;
165 int group = 0;
166 qemu_irq *irq_lines = virt ? s->parent_virq : s->parent_irq;
167 qemu_irq *fiq_lines = virt ? s->parent_vfiq : s->parent_fiq;
9ee6e8bb 168
b95690c9 169 for (cpu = 0; cpu < s->num_cpu; cpu++) {
cbe1282b
LM
170 cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
171
172 s->current_pending[cpu_iface] = 1023;
173 if (!gic_irq_signaling_enabled(s, cpu, virt,
174 GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1)) {
175 qemu_irq_lower(irq_lines[cpu]);
176 qemu_irq_lower(fiq_lines[cpu]);
235069a3 177 continue;
9ee6e8bb 178 }
cbe1282b
LM
179
180 if (virt) {
181 gic_get_best_virq(s, cpu, &best_irq, &best_prio, &group);
182 } else {
183 gic_get_best_irq(s, cpu, &best_irq, &best_prio, &group);
e69954b9 184 }
dadbb58f 185
2531088f 186 if (best_irq != 1023) {
067a2b9c
LM
187 trace_gic_update_bestirq(virt ? "vcpu" : "cpu", cpu,
188 best_irq, best_prio,
189 s->priority_mask[cpu_iface],
190 s->running_priority[cpu_iface]);
2531088f
HB
191 }
192
dadbb58f
PM
193 irq_level = fiq_level = 0;
194
cbe1282b
LM
195 if (best_prio < s->priority_mask[cpu_iface]) {
196 s->current_pending[cpu_iface] = best_irq;
197 if (best_prio < s->running_priority[cpu_iface]) {
198 if (gic_irq_signaling_enabled(s, cpu, virt, 1 << group)) {
199 if (group == 0 &&
200 s->cpu_ctlr[cpu_iface] & GICC_CTLR_FIQ_EN) {
dadbb58f 201 DPRINTF("Raised pending FIQ %d (cpu %d)\n",
cbe1282b 202 best_irq, cpu_iface);
dadbb58f 203 fiq_level = 1;
cbe1282b
LM
204 trace_gic_update_set_irq(cpu, virt ? "vfiq" : "fiq",
205 fiq_level);
dadbb58f
PM
206 } else {
207 DPRINTF("Raised pending IRQ %d (cpu %d)\n",
cbe1282b 208 best_irq, cpu_iface);
dadbb58f 209 irq_level = 1;
cbe1282b
LM
210 trace_gic_update_set_irq(cpu, virt ? "virq" : "irq",
211 irq_level);
dadbb58f
PM
212 }
213 }
9ee6e8bb 214 }
e69954b9 215 }
dadbb58f 216
cbe1282b
LM
217 qemu_set_irq(irq_lines[cpu], irq_level);
218 qemu_set_irq(fiq_lines[cpu], fiq_level);
e69954b9
PB
219 }
220}
221
cbe1282b
LM
222static void gic_update(GICState *s)
223{
224 gic_update_internal(s, false);
225}
226
527d296f
LM
227/* Return true if this LR is empty, i.e. the corresponding bit
228 * in ELRSR is set.
229 */
230static inline bool gic_lr_entry_is_free(uint32_t entry)
231{
232 return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
233 && (GICH_LR_HW(entry) || !GICH_LR_EOI(entry));
234}
235
236/* Return true if this LR should trigger an EOI maintenance interrupt, i.e. the
237 * corrsponding bit in EISR is set.
238 */
239static inline bool gic_lr_entry_is_eoi(uint32_t entry)
240{
241 return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
242 && !GICH_LR_HW(entry) && GICH_LR_EOI(entry);
243}
244
50e57926
LM
245static inline void gic_extract_lr_info(GICState *s, int cpu,
246 int *num_eoi, int *num_valid, int *num_pending)
247{
248 int lr_idx;
249
250 *num_eoi = 0;
251 *num_valid = 0;
252 *num_pending = 0;
253
254 for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
255 uint32_t *entry = &s->h_lr[lr_idx][cpu];
256
257 if (gic_lr_entry_is_eoi(*entry)) {
258 (*num_eoi)++;
259 }
260
261 if (GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID) {
262 (*num_valid)++;
263 }
264
265 if (GICH_LR_STATE(*entry) == GICH_LR_STATE_PENDING) {
266 (*num_pending)++;
267 }
268 }
269}
270
271static void gic_compute_misr(GICState *s, int cpu)
272{
273 uint32_t value = 0;
274 int vcpu = cpu + GIC_NCPU;
275
276 int num_eoi, num_valid, num_pending;
277
278 gic_extract_lr_info(s, cpu, &num_eoi, &num_valid, &num_pending);
279
280 /* EOI */
281 if (num_eoi) {
282 value |= R_GICH_MISR_EOI_MASK;
283 }
284
285 /* U: true if only 0 or 1 LR entry is valid */
286 if ((s->h_hcr[cpu] & R_GICH_HCR_UIE_MASK) && (num_valid < 2)) {
287 value |= R_GICH_MISR_U_MASK;
288 }
289
290 /* LRENP: EOICount is not 0 */
291 if ((s->h_hcr[cpu] & R_GICH_HCR_LRENPIE_MASK) &&
292 ((s->h_hcr[cpu] & R_GICH_HCR_EOICount_MASK) != 0)) {
293 value |= R_GICH_MISR_LRENP_MASK;
294 }
295
296 /* NP: no pending interrupts */
297 if ((s->h_hcr[cpu] & R_GICH_HCR_NPIE_MASK) && (num_pending == 0)) {
298 value |= R_GICH_MISR_NP_MASK;
299 }
300
301 /* VGrp0E: group0 virq signaling enabled */
302 if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0EIE_MASK) &&
303 (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
304 value |= R_GICH_MISR_VGrp0E_MASK;
305 }
306
307 /* VGrp0D: group0 virq signaling disabled */
308 if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0DIE_MASK) &&
309 !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
310 value |= R_GICH_MISR_VGrp0D_MASK;
311 }
312
313 /* VGrp1E: group1 virq signaling enabled */
314 if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1EIE_MASK) &&
315 (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
316 value |= R_GICH_MISR_VGrp1E_MASK;
317 }
318
319 /* VGrp1D: group1 virq signaling disabled */
320 if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1DIE_MASK) &&
321 !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
322 value |= R_GICH_MISR_VGrp1D_MASK;
323 }
324
325 s->h_misr[cpu] = value;
326}
327
328static void gic_update_maintenance(GICState *s)
329{
330 int cpu = 0;
331 int maint_level;
332
333 for (cpu = 0; cpu < s->num_cpu; cpu++) {
334 gic_compute_misr(s, cpu);
335 maint_level = (s->h_hcr[cpu] & R_GICH_HCR_EN_MASK) && s->h_misr[cpu];
336
067a2b9c 337 trace_gic_update_maintenance_irq(cpu, maint_level);
50e57926
LM
338 qemu_set_irq(s->maintenance_irq[cpu], maint_level);
339 }
340}
341
cbe1282b
LM
342static void gic_update_virt(GICState *s)
343{
344 gic_update_internal(s, true);
50e57926 345 gic_update_maintenance(s);
cbe1282b
LM
346}
347
8d999995
CD
348static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
349 int cm, int target)
350{
351 if (level) {
67ce697a
LM
352 GIC_DIST_SET_LEVEL(irq, cm);
353 if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
8d999995 354 DPRINTF("Set %d pending mask %x\n", irq, target);
67ce697a 355 GIC_DIST_SET_PENDING(irq, target);
8d999995
CD
356 }
357 } else {
67ce697a 358 GIC_DIST_CLEAR_LEVEL(irq, cm);
8d999995
CD
359 }
360}
361
362static void gic_set_irq_generic(GICState *s, int irq, int level,
363 int cm, int target)
364{
365 if (level) {
67ce697a 366 GIC_DIST_SET_LEVEL(irq, cm);
8d999995 367 DPRINTF("Set %d pending mask %x\n", irq, target);
67ce697a
LM
368 if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
369 GIC_DIST_SET_PENDING(irq, target);
8d999995
CD
370 }
371 } else {
67ce697a 372 GIC_DIST_CLEAR_LEVEL(irq, cm);
8d999995
CD
373 }
374}
375
9ee6e8bb 376/* Process a change in an external IRQ input. */
e69954b9
PB
377static void gic_set_irq(void *opaque, int irq, int level)
378{
544d1afa
PM
379 /* Meaning of the 'irq' parameter:
380 * [0..N-1] : external interrupts
381 * [N..N+31] : PPI (internal) interrupts for CPU 0
382 * [N+32..N+63] : PPI (internal interrupts for CPU 1
383 * ...
384 */
fae15286 385 GICState *s = (GICState *)opaque;
544d1afa
PM
386 int cm, target;
387 if (irq < (s->num_irq - GIC_INTERNAL)) {
388 /* The first external input line is internal interrupt 32. */
389 cm = ALL_CPU_MASK;
390 irq += GIC_INTERNAL;
67ce697a 391 target = GIC_DIST_TARGET(irq);
544d1afa
PM
392 } else {
393 int cpu;
394 irq -= (s->num_irq - GIC_INTERNAL);
395 cpu = irq / GIC_INTERNAL;
396 irq %= GIC_INTERNAL;
397 cm = 1 << cpu;
398 target = cm;
399 }
400
40d22500
CD
401 assert(irq >= GIC_NR_SGIS);
402
67ce697a 403 if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
e69954b9 404 return;
544d1afa 405 }
e69954b9 406
3bc4b52c 407 if (s->revision == REV_11MPCORE) {
8d999995 408 gic_set_irq_11mpcore(s, irq, level, cm, target);
e69954b9 409 } else {
8d999995 410 gic_set_irq_generic(s, irq, level, cm, target);
e69954b9 411 }
2531088f 412 trace_gic_set_irq(irq, level, cm, target);
8d999995 413
e69954b9
PB
414 gic_update(s);
415}
416
7c0fa108
FA
417static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
418 MemTxAttrs attrs)
419{
420 uint16_t pending_irq = s->current_pending[cpu];
421
422 if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
86b350f0
LM
423 int group = gic_test_group(s, pending_irq, cpu);
424
7c0fa108
FA
425 /* On a GIC without the security extensions, reading this register
426 * behaves in the same way as a secure access to a GIC with them.
427 */
3dd0471b 428 bool secure = !gic_cpu_ns_access(s, cpu, attrs);
7c0fa108
FA
429
430 if (group == 0 && !secure) {
431 /* Group0 interrupts hidden from Non-secure access */
432 return 1023;
433 }
434 if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
435 /* Group1 interrupts only seen by Secure access if
436 * AckCtl bit set.
437 */
438 return 1022;
439 }
440 }
441 return pending_irq;
442}
443
df92cfa6
PM
444static int gic_get_group_priority(GICState *s, int cpu, int irq)
445{
446 /* Return the group priority of the specified interrupt
447 * (which is the top bits of its priority, with the number
448 * of bits masked determined by the applicable binary point register).
449 */
450 int bpr;
451 uint32_t mask;
452
453 if (gic_has_groups(s) &&
454 !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
86b350f0 455 gic_test_group(s, irq, cpu)) {
fc05a6f2
LM
456 bpr = s->abpr[cpu] - 1;
457 assert(bpr >= 0);
df92cfa6
PM
458 } else {
459 bpr = s->bpr[cpu];
460 }
461
462 /* a BPR of 0 means the group priority bits are [7:1];
463 * a BPR of 1 means they are [7:2], and so on down to
464 * a BPR of 7 meaning no group priority bits at all.
465 */
466 mask = ~0U << ((bpr & 7) + 1);
467
86b350f0 468 return gic_get_priority(s, irq, cpu) & mask;
df92cfa6
PM
469}
470
72889c8a 471static void gic_activate_irq(GICState *s, int cpu, int irq)
e69954b9 472{
72889c8a
PM
473 /* Set the appropriate Active Priority Register bit for this IRQ,
474 * and update the running priority.
475 */
476 int prio = gic_get_group_priority(s, cpu, irq);
a1d7b8d8
LM
477 int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
478 int preemption_level = prio >> (min_bpr + 1);
72889c8a
PM
479 int regno = preemption_level / 32;
480 int bitno = preemption_level % 32;
a1d7b8d8 481 uint32_t *papr = NULL;
72889c8a 482
a1d7b8d8
LM
483 if (gic_is_vcpu(cpu)) {
484 assert(regno == 0);
485 papr = &s->h_apr[gic_get_vcpu_real_id(cpu)];
486 } else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
487 papr = &s->nsapr[regno][cpu];
9ee6e8bb 488 } else {
a1d7b8d8 489 papr = &s->apr[regno][cpu];
9ee6e8bb 490 }
72889c8a 491
a1d7b8d8
LM
492 *papr |= (1 << bitno);
493
72889c8a 494 s->running_priority[cpu] = prio;
86b350f0 495 gic_set_active(s, irq, cpu);
72889c8a
PM
496}
497
498static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
499{
500 /* Recalculate the current running priority for this CPU based
501 * on the set bits in the Active Priority Registers.
502 */
503 int i;
a1d7b8d8
LM
504
505 if (gic_is_vcpu(cpu)) {
506 uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)];
507 if (apr) {
508 return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1);
509 } else {
510 return 0x100;
511 }
512 }
513
72889c8a
PM
514 for (i = 0; i < GIC_NR_APRS; i++) {
515 uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
516 if (!apr) {
517 continue;
518 }
519 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
520 }
521 return 0x100;
522}
523
524static void gic_drop_prio(GICState *s, int cpu, int group)
525{
526 /* Drop the priority of the currently active interrupt in the
527 * specified group.
528 *
529 * Note that we can guarantee (because of the requirement to nest
530 * GICC_IAR reads [which activate an interrupt and raise priority]
531 * with GICC_EOIR writes [which drop the priority for the interrupt])
532 * that the interrupt we're being called for is the highest priority
533 * active interrupt, meaning that it has the lowest set bit in the
534 * APR registers.
535 *
536 * If the guest does not honour the ordering constraints then the
537 * behaviour of the GIC is UNPREDICTABLE, which for us means that
538 * the values of the APR registers might become incorrect and the
539 * running priority will be wrong, so interrupts that should preempt
540 * might not do so, and interrupts that should not preempt might do so.
541 */
a1d7b8d8
LM
542 if (gic_is_vcpu(cpu)) {
543 int rcpu = gic_get_vcpu_real_id(cpu);
72889c8a 544
a1d7b8d8
LM
545 if (s->h_apr[rcpu]) {
546 /* Clear lowest set bit */
547 s->h_apr[rcpu] &= s->h_apr[rcpu] - 1;
548 }
549 } else {
550 int i;
551
552 for (i = 0; i < GIC_NR_APRS; i++) {
553 uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
554 if (!*papr) {
555 continue;
556 }
557 /* Clear lowest set bit */
558 *papr &= *papr - 1;
559 break;
72889c8a 560 }
72889c8a
PM
561 }
562
563 s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
e69954b9
PB
564}
565
439badd6
LM
566static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu)
567{
568 int src;
569 uint32_t ret;
570
571 if (!gic_is_vcpu(cpu)) {
572 /* Lookup the source CPU for the SGI and clear this in the
573 * sgi_pending map. Return the src and clear the overall pending
574 * state on this CPU if the SGI is not pending from any CPUs.
575 */
576 assert(s->sgi_pending[irq][cpu] != 0);
577 src = ctz32(s->sgi_pending[irq][cpu]);
578 s->sgi_pending[irq][cpu] &= ~(1 << src);
579 if (s->sgi_pending[irq][cpu] == 0) {
580 gic_clear_pending(s, irq, cpu);
581 }
582 ret = irq | ((src & 0x7) << 10);
583 } else {
584 uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu);
585 src = GICH_LR_CPUID(*lr_entry);
586
587 gic_clear_pending(s, irq, cpu);
588 ret = irq | (src << 10);
589 }
590
591 return ret;
592}
593
c5619bf9 594uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
e69954b9 595{
439badd6 596 int ret, irq;
c5619bf9
FA
597
598 /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
599 * for the case where this GIC supports grouping and the pending interrupt
600 * is in the wrong group.
601 */
a8f15a27 602 irq = gic_get_current_pending_irq(s, cpu, attrs);
067a2b9c
LM
603 trace_gic_acknowledge_irq(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
604 gic_get_vcpu_real_id(cpu), irq);
c5619bf9
FA
605
606 if (irq >= GIC_MAXIRQ) {
607 DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
608 return irq;
609 }
610
86b350f0 611 if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
c5619bf9 612 DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
e69954b9
PB
613 return 1023;
614 }
40d22500 615
439badd6
LM
616 gic_activate_irq(s, cpu, irq);
617
7c14b3ac 618 if (s->revision == REV_11MPCORE) {
40d22500
CD
619 /* Clear pending flags for both level and edge triggered interrupts.
620 * Level triggered IRQs will be reasserted once they become inactive.
621 */
86b350f0 622 gic_clear_pending(s, irq, cpu);
40d22500
CD
623 ret = irq;
624 } else {
625 if (irq < GIC_NR_SGIS) {
439badd6 626 ret = gic_clear_pending_sgi(s, irq, cpu);
40d22500 627 } else {
86b350f0 628 gic_clear_pending(s, irq, cpu);
40d22500
CD
629 ret = irq;
630 }
631 }
632
cbe1282b
LM
633 if (gic_is_vcpu(cpu)) {
634 gic_update_virt(s);
635 } else {
636 gic_update(s);
637 }
40d22500
CD
638 DPRINTF("ACK %d\n", irq);
639 return ret;
e69954b9
PB
640}
641
67ce697a 642void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
81508470 643 MemTxAttrs attrs)
9df90ad0 644{
81508470 645 if (s->security_extn && !attrs.secure) {
67ce697a 646 if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
81508470
FA
647 return; /* Ignore Non-secure access of Group0 IRQ */
648 }
649 val = 0x80 | (val >> 1); /* Non-secure view */
650 }
651
9df90ad0
CD
652 if (irq < GIC_INTERNAL) {
653 s->priority1[irq][cpu] = val;
654 } else {
655 s->priority2[(irq) - GIC_INTERNAL] = val;
656 }
657}
658
67ce697a 659static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
81508470
FA
660 MemTxAttrs attrs)
661{
67ce697a 662 uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
81508470
FA
663
664 if (s->security_extn && !attrs.secure) {
67ce697a 665 if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
81508470
FA
666 return 0; /* Non-secure access cannot read priority of Group0 IRQ */
667 }
668 prio = (prio << 1) & 0xff; /* Non-secure view */
669 }
670 return prio;
671}
672
673static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
674 MemTxAttrs attrs)
675{
3dd0471b 676 if (gic_cpu_ns_access(s, cpu, attrs)) {
81508470
FA
677 if (s->priority_mask[cpu] & 0x80) {
678 /* Priority Mask in upper half */
679 pmask = 0x80 | (pmask >> 1);
680 } else {
681 /* Non-secure write ignored if priority mask is in lower half */
682 return;
683 }
684 }
685 s->priority_mask[cpu] = pmask;
686}
687
688static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
689{
690 uint32_t pmask = s->priority_mask[cpu];
691
3dd0471b 692 if (gic_cpu_ns_access(s, cpu, attrs)) {
81508470
FA
693 if (pmask & 0x80) {
694 /* Priority Mask in upper half, return Non-secure view */
695 pmask = (pmask << 1) & 0xff;
696 } else {
697 /* Priority Mask in lower half, RAZ */
698 pmask = 0;
699 }
700 }
701 return pmask;
702}
703
32951860
FA
704static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
705{
706 uint32_t ret = s->cpu_ctlr[cpu];
707
3dd0471b 708 if (gic_cpu_ns_access(s, cpu, attrs)) {
32951860
FA
709 /* Construct the NS banked view of GICC_CTLR from the correct
710 * bits of the S banked view. We don't need to move the bypass
711 * control bits because we don't implement that (IMPDEF) part
712 * of the GIC architecture.
713 */
714 ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
715 }
716 return ret;
717}
718
719static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
720 MemTxAttrs attrs)
721{
722 uint32_t mask;
723
3dd0471b 724 if (gic_cpu_ns_access(s, cpu, attrs)) {
32951860
FA
725 /* The NS view can only write certain bits in the register;
726 * the rest are unchanged
727 */
728 mask = GICC_CTLR_EN_GRP1;
729 if (s->revision == 2) {
730 mask |= GICC_CTLR_EOIMODE_NS;
731 }
732 s->cpu_ctlr[cpu] &= ~mask;
733 s->cpu_ctlr[cpu] |= (value << 1) & mask;
734 } else {
735 if (s->revision == 2) {
736 mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
737 } else {
738 mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
739 }
740 s->cpu_ctlr[cpu] = value & mask;
741 }
742 DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
743 "Group1 Interrupts %sabled\n", cpu,
744 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
745 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
746}
747
08efa9f2
FA
748static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
749{
71aa735b
LM
750 if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
751 /* Idle priority */
752 return 0xff;
753 }
754
3dd0471b 755 if (gic_cpu_ns_access(s, cpu, attrs)) {
08efa9f2
FA
756 if (s->running_priority[cpu] & 0x80) {
757 /* Running priority in upper half of range: return the Non-secure
758 * view of the priority.
759 */
760 return s->running_priority[cpu] << 1;
761 } else {
762 /* Running priority in lower half of range: RAZ */
763 return 0;
764 }
765 } else {
766 return s->running_priority[cpu];
767 }
768}
769
a55c910e
PM
770/* Return true if we should split priority drop and interrupt deactivation,
771 * ie whether the relevant EOIMode bit is set.
772 */
773static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
774{
775 if (s->revision != 2) {
776 /* Before GICv2 prio-drop and deactivate are not separable */
777 return false;
778 }
3dd0471b 779 if (gic_cpu_ns_access(s, cpu, attrs)) {
a55c910e
PM
780 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
781 }
782 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
783}
784
785static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
786{
ee03cca8
PM
787 int group;
788
02f2e22d 789 if (irq >= GIC_MAXIRQ || (!gic_is_vcpu(cpu) && irq >= s->num_irq)) {
ee03cca8
PM
790 /*
791 * This handles two cases:
792 * 1. If software writes the ID of a spurious interrupt [ie 1023]
793 * to the GICC_DIR, the GIC ignores that write.
794 * 2. If software writes the number of a non-existent interrupt
795 * this must be a subcase of "value written is not an active interrupt"
02f2e22d
LM
796 * and so this is UNPREDICTABLE. We choose to ignore it. For vCPUs,
797 * all IRQs potentially exist, so this limit does not apply.
ee03cca8
PM
798 */
799 return;
800 }
801
a55c910e
PM
802 if (!gic_eoi_split(s, cpu, attrs)) {
803 /* This is UNPREDICTABLE; we choose to ignore it */
804 qemu_log_mask(LOG_GUEST_ERROR,
805 "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
806 return;
807 }
808
02f2e22d
LM
809 if (gic_is_vcpu(cpu) && !gic_virq_is_valid(s, irq, cpu)) {
810 /* This vIRQ does not have an LR entry which is either active or
811 * pending and active. Increment EOICount and ignore the write.
812 */
813 int rcpu = gic_get_vcpu_real_id(cpu);
814 s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
cbe1282b
LM
815
816 /* Update the virtual interface in case a maintenance interrupt should
817 * be raised.
818 */
819 gic_update_virt(s);
02f2e22d
LM
820 return;
821 }
822
823 group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
824
3dd0471b 825 if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
a55c910e
PM
826 DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
827 return;
828 }
829
86b350f0 830 gic_clear_active(s, irq, cpu);
a55c910e
PM
831}
832
50491c56 833static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
e69954b9 834{
9ee6e8bb 835 int cm = 1 << cpu;
72889c8a
PM
836 int group;
837
df628ff1 838 DPRINTF("EOI %d\n", irq);
02f2e22d
LM
839 if (gic_is_vcpu(cpu)) {
840 /* The call to gic_prio_drop() will clear a bit in GICH_APR iff the
841 * running prio is < 0x100.
842 */
843 bool prio_drop = s->running_priority[cpu] < 0x100;
844
845 if (irq >= GIC_MAXIRQ) {
846 /* Ignore spurious interrupt */
847 return;
848 }
849
850 gic_drop_prio(s, cpu, 0);
851
852 if (!gic_eoi_split(s, cpu, attrs)) {
853 bool valid = gic_virq_is_valid(s, irq, cpu);
854 if (prio_drop && !valid) {
855 /* We are in a situation where:
856 * - V_CTRL.EOIMode is false (no EOI split),
857 * - The call to gic_drop_prio() cleared a bit in GICH_APR,
858 * - This vIRQ does not have an LR entry which is either
859 * active or pending and active.
860 * In that case, we must increment EOICount.
861 */
862 int rcpu = gic_get_vcpu_real_id(cpu);
863 s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
864 } else if (valid) {
865 gic_clear_active(s, irq, cpu);
866 }
867 }
868
cbe1282b 869 gic_update_virt(s);
02f2e22d
LM
870 return;
871 }
872
a32134aa 873 if (irq >= s->num_irq) {
217bfb44
PM
874 /* This handles two cases:
875 * 1. If software writes the ID of a spurious interrupt [ie 1023]
876 * to the GICC_EOIR, the GIC ignores that write.
877 * 2. If software writes the number of a non-existent interrupt
878 * this must be a subcase of "value written does not match the last
879 * valid interrupt value read from the Interrupt Acknowledge
880 * register" and so this is UNPREDICTABLE. We choose to ignore it.
881 */
882 return;
883 }
72889c8a 884 if (s->running_priority[cpu] == 0x100) {
e69954b9 885 return; /* No active IRQ. */
72889c8a 886 }
8d999995 887
3bc4b52c 888 if (s->revision == REV_11MPCORE) {
8d999995
CD
889 /* Mark level triggered interrupts as pending if they are still
890 raised. */
67ce697a
LM
891 if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
892 && GIC_DIST_TEST_LEVEL(irq, cm)
893 && (GIC_DIST_TARGET(irq) & cm) != 0) {
8d999995 894 DPRINTF("Set %d pending mask %x\n", irq, cm);
67ce697a 895 GIC_DIST_SET_PENDING(irq, cm);
8d999995 896 }
e69954b9 897 }
8d999995 898
86b350f0 899 group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
72889c8a 900
3dd0471b 901 if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
f9c6a7f1
FA
902 DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
903 return;
904 }
905
906 /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
907 * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
908 * i.e. go ahead and complete the irq anyway.
909 */
910
72889c8a 911 gic_drop_prio(s, cpu, group);
a55c910e
PM
912
913 /* In GICv2 the guest can choose to split priority-drop and deactivate */
914 if (!gic_eoi_split(s, cpu, attrs)) {
86b350f0 915 gic_clear_active(s, irq, cpu);
a55c910e 916 }
72889c8a 917 gic_update(s);
e69954b9
PB
918}
919
a9d85353 920static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
e69954b9 921{
fae15286 922 GICState *s = (GICState *)opaque;
e69954b9
PB
923 uint32_t res;
924 int irq;
925 int i;
9ee6e8bb
PB
926 int cpu;
927 int cm;
928 int mask;
e69954b9 929
926c4aff 930 cpu = gic_get_current_cpu(s);
9ee6e8bb 931 cm = 1 << cpu;
e69954b9 932 if (offset < 0x100) {
679aa175
FA
933 if (offset == 0) { /* GICD_CTLR */
934 if (s->security_extn && !attrs.secure) {
935 /* The NS bank of this register is just an alias of the
936 * EnableGrp1 bit in the S bank version.
937 */
938 return extract32(s->ctlr, 1, 1);
939 } else {
940 return s->ctlr;
941 }
942 }
e69954b9 943 if (offset == 4)
5543d1ab
FA
944 /* Interrupt Controller Type Register */
945 return ((s->num_irq / 32) - 1)
b95690c9 946 | ((s->num_cpu - 1) << 5)
5543d1ab 947 | (s->security_extn << 10);
e69954b9
PB
948 if (offset < 0x08)
949 return 0;
b79f2265 950 if (offset >= 0x80) {
c27a5ba9
FA
951 /* Interrupt Group Registers: these RAZ/WI if this is an NS
952 * access to a GIC with the security extensions, or if the GIC
953 * doesn't have groups at all.
954 */
955 res = 0;
956 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
957 /* Every byte offset holds 8 group status bits */
b6e6c651 958 irq = (offset - 0x080) * 8;
c27a5ba9
FA
959 if (irq >= s->num_irq) {
960 goto bad_reg;
961 }
962 for (i = 0; i < 8; i++) {
67ce697a 963 if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
c27a5ba9
FA
964 res |= (1 << i);
965 }
966 }
967 }
968 return res;
b79f2265 969 }
e69954b9
PB
970 goto bad_reg;
971 } else if (offset < 0x200) {
972 /* Interrupt Set/Clear Enable. */
973 if (offset < 0x180)
974 irq = (offset - 0x100) * 8;
975 else
976 irq = (offset - 0x180) * 8;
a32134aa 977 if (irq >= s->num_irq)
e69954b9
PB
978 goto bad_reg;
979 res = 0;
980 for (i = 0; i < 8; i++) {
fea8a08e 981 if (s->security_extn && !attrs.secure &&
67ce697a 982 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
fea8a08e
JW
983 continue; /* Ignore Non-secure access of Group0 IRQ */
984 }
985
67ce697a 986 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
e69954b9
PB
987 res |= (1 << i);
988 }
989 }
990 } else if (offset < 0x300) {
991 /* Interrupt Set/Clear Pending. */
992 if (offset < 0x280)
993 irq = (offset - 0x200) * 8;
994 else
995 irq = (offset - 0x280) * 8;
a32134aa 996 if (irq >= s->num_irq)
e69954b9
PB
997 goto bad_reg;
998 res = 0;
69253800 999 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
e69954b9 1000 for (i = 0; i < 8; i++) {
fea8a08e 1001 if (s->security_extn && !attrs.secure &&
67ce697a 1002 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
fea8a08e
JW
1003 continue; /* Ignore Non-secure access of Group0 IRQ */
1004 }
1005
8d999995 1006 if (gic_test_pending(s, irq + i, mask)) {
e69954b9
PB
1007 res |= (1 << i);
1008 }
1009 }
1010 } else if (offset < 0x400) {
3bb0b038
LM
1011 /* Interrupt Set/Clear Active. */
1012 if (offset < 0x380) {
1013 irq = (offset - 0x300) * 8;
1014 } else if (s->revision == 2) {
1015 irq = (offset - 0x380) * 8;
1016 } else {
1017 goto bad_reg;
1018 }
1019
a32134aa 1020 if (irq >= s->num_irq)
e69954b9
PB
1021 goto bad_reg;
1022 res = 0;
69253800 1023 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
e69954b9 1024 for (i = 0; i < 8; i++) {
fea8a08e 1025 if (s->security_extn && !attrs.secure &&
67ce697a 1026 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
fea8a08e
JW
1027 continue; /* Ignore Non-secure access of Group0 IRQ */
1028 }
1029
67ce697a 1030 if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
e69954b9
PB
1031 res |= (1 << i);
1032 }
1033 }
1034 } else if (offset < 0x800) {
1035 /* Interrupt Priority. */
b6e6c651 1036 irq = (offset - 0x400);
a32134aa 1037 if (irq >= s->num_irq)
e69954b9 1038 goto bad_reg;
67ce697a 1039 res = gic_dist_get_priority(s, cpu, irq, attrs);
e69954b9
PB
1040 } else if (offset < 0xc00) {
1041 /* Interrupt CPU Target. */
6b9680bb
PM
1042 if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
1043 /* For uniprocessor GICs these RAZ/WI */
1044 res = 0;
9ee6e8bb 1045 } else {
b6e6c651 1046 irq = (offset - 0x800);
6b9680bb
PM
1047 if (irq >= s->num_irq) {
1048 goto bad_reg;
1049 }
7995206d
PM
1050 if (irq < 29 && s->revision == REV_11MPCORE) {
1051 res = 0;
1052 } else if (irq < GIC_INTERNAL) {
6b9680bb
PM
1053 res = cm;
1054 } else {
67ce697a 1055 res = GIC_DIST_TARGET(irq);
6b9680bb 1056 }
9ee6e8bb 1057 }
e69954b9
PB
1058 } else if (offset < 0xf00) {
1059 /* Interrupt Configuration. */
b6e6c651 1060 irq = (offset - 0xc00) * 4;
a32134aa 1061 if (irq >= s->num_irq)
e69954b9
PB
1062 goto bad_reg;
1063 res = 0;
1064 for (i = 0; i < 4; i++) {
fea8a08e 1065 if (s->security_extn && !attrs.secure &&
67ce697a 1066 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
fea8a08e
JW
1067 continue; /* Ignore Non-secure access of Group0 IRQ */
1068 }
1069
67ce697a 1070 if (GIC_DIST_TEST_MODEL(irq + i)) {
e69954b9 1071 res |= (1 << (i * 2));
67ce697a
LM
1072 }
1073 if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
e69954b9 1074 res |= (2 << (i * 2));
67ce697a 1075 }
e69954b9 1076 }
40d22500
CD
1077 } else if (offset < 0xf10) {
1078 goto bad_reg;
1079 } else if (offset < 0xf30) {
7c14b3ac 1080 if (s->revision == REV_11MPCORE) {
40d22500
CD
1081 goto bad_reg;
1082 }
1083
1084 if (offset < 0xf20) {
1085 /* GICD_CPENDSGIRn */
1086 irq = (offset - 0xf10);
1087 } else {
1088 irq = (offset - 0xf20);
1089 /* GICD_SPENDSGIRn */
1090 }
1091
fea8a08e 1092 if (s->security_extn && !attrs.secure &&
67ce697a 1093 !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
fea8a08e
JW
1094 res = 0; /* Ignore Non-secure access of Group0 IRQ */
1095 } else {
1096 res = s->sgi_pending[irq][cpu];
1097 }
3355c360 1098 } else if (offset < 0xfd0) {
e69954b9 1099 goto bad_reg;
3355c360 1100 } else if (offset < 0x1000) {
e69954b9
PB
1101 if (offset & 3) {
1102 res = 0;
1103 } else {
3355c360
AF
1104 switch (s->revision) {
1105 case REV_11MPCORE:
1106 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
1107 break;
1108 case 1:
1109 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
1110 break;
1111 case 2:
1112 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
1113 break;
3355c360
AF
1114 default:
1115 res = 0;
1116 }
e69954b9 1117 }
3355c360
AF
1118 } else {
1119 g_assert_not_reached();
e69954b9
PB
1120 }
1121 return res;
1122bad_reg:
8c8dc39f
PM
1123 qemu_log_mask(LOG_GUEST_ERROR,
1124 "gic_dist_readb: Bad offset %x\n", (int)offset);
e69954b9
PB
1125 return 0;
1126}
1127
a9d85353
PM
1128static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
1129 unsigned size, MemTxAttrs attrs)
e69954b9 1130{
a9d85353
PM
1131 switch (size) {
1132 case 1:
1133 *data = gic_dist_readb(opaque, offset, attrs);
067a2b9c 1134 break;
a9d85353
PM
1135 case 2:
1136 *data = gic_dist_readb(opaque, offset, attrs);
1137 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
067a2b9c 1138 break;
a9d85353
PM
1139 case 4:
1140 *data = gic_dist_readb(opaque, offset, attrs);
1141 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1142 *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
1143 *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
067a2b9c 1144 break;
a9d85353
PM
1145 default:
1146 return MEMTX_ERROR;
1147 }
067a2b9c
LM
1148
1149 trace_gic_dist_read(offset, size, *data);
1150 return MEMTX_OK;
e69954b9
PB
1151}
1152
a8170e5e 1153static void gic_dist_writeb(void *opaque, hwaddr offset,
a9d85353 1154 uint32_t value, MemTxAttrs attrs)
e69954b9 1155{
fae15286 1156 GICState *s = (GICState *)opaque;
e69954b9
PB
1157 int irq;
1158 int i;
9ee6e8bb 1159 int cpu;
e69954b9 1160
926c4aff 1161 cpu = gic_get_current_cpu(s);
e69954b9
PB
1162 if (offset < 0x100) {
1163 if (offset == 0) {
679aa175
FA
1164 if (s->security_extn && !attrs.secure) {
1165 /* NS version is just an alias of the S version's bit 1 */
1166 s->ctlr = deposit32(s->ctlr, 1, 1, value);
1167 } else if (gic_has_groups(s)) {
1168 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
1169 } else {
1170 s->ctlr = value & GICD_CTLR_EN_GRP0;
1171 }
1172 DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
1173 s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
1174 s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
e69954b9
PB
1175 } else if (offset < 4) {
1176 /* ignored. */
b79f2265 1177 } else if (offset >= 0x80) {
c27a5ba9
FA
1178 /* Interrupt Group Registers: RAZ/WI for NS access to secure
1179 * GIC, or for GICs without groups.
1180 */
1181 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
1182 /* Every byte offset holds 8 group status bits */
b6e6c651 1183 irq = (offset - 0x80) * 8;
c27a5ba9
FA
1184 if (irq >= s->num_irq) {
1185 goto bad_reg;
1186 }
1187 for (i = 0; i < 8; i++) {
1188 /* Group bits are banked for private interrupts */
1189 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1190 if (value & (1 << i)) {
1191 /* Group1 (Non-secure) */
67ce697a 1192 GIC_DIST_SET_GROUP(irq + i, cm);
c27a5ba9
FA
1193 } else {
1194 /* Group0 (Secure) */
67ce697a 1195 GIC_DIST_CLEAR_GROUP(irq + i, cm);
c27a5ba9
FA
1196 }
1197 }
1198 }
e69954b9
PB
1199 } else {
1200 goto bad_reg;
1201 }
1202 } else if (offset < 0x180) {
1203 /* Interrupt Set Enable. */
b6e6c651 1204 irq = (offset - 0x100) * 8;
a32134aa 1205 if (irq >= s->num_irq)
e69954b9 1206 goto bad_reg;
41ab7b55
CD
1207 if (irq < GIC_NR_SGIS) {
1208 value = 0xff;
1209 }
1210
e69954b9
PB
1211 for (i = 0; i < 8; i++) {
1212 if (value & (1 << i)) {
f47b48fb 1213 int mask =
67ce697a
LM
1214 (irq < GIC_INTERNAL) ? (1 << cpu)
1215 : GIC_DIST_TARGET(irq + i);
69253800 1216 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
41bf234d 1217
fea8a08e 1218 if (s->security_extn && !attrs.secure &&
67ce697a 1219 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
fea8a08e
JW
1220 continue; /* Ignore Non-secure access of Group0 IRQ */
1221 }
1222
67ce697a 1223 if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
e69954b9 1224 DPRINTF("Enabled IRQ %d\n", irq + i);
2531088f 1225 trace_gic_enable_irq(irq + i);
41bf234d 1226 }
67ce697a 1227 GIC_DIST_SET_ENABLED(irq + i, cm);
e69954b9
PB
1228 /* If a raised level triggered IRQ enabled then mark
1229 is as pending. */
67ce697a
LM
1230 if (GIC_DIST_TEST_LEVEL(irq + i, mask)
1231 && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
9ee6e8bb 1232 DPRINTF("Set %d pending mask %x\n", irq + i, mask);
67ce697a 1233 GIC_DIST_SET_PENDING(irq + i, mask);
9ee6e8bb 1234 }
e69954b9
PB
1235 }
1236 }
1237 } else if (offset < 0x200) {
1238 /* Interrupt Clear Enable. */
b6e6c651 1239 irq = (offset - 0x180) * 8;
a32134aa 1240 if (irq >= s->num_irq)
e69954b9 1241 goto bad_reg;
41ab7b55
CD
1242 if (irq < GIC_NR_SGIS) {
1243 value = 0;
1244 }
1245
e69954b9
PB
1246 for (i = 0; i < 8; i++) {
1247 if (value & (1 << i)) {
69253800 1248 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
41bf234d 1249
fea8a08e 1250 if (s->security_extn && !attrs.secure &&
67ce697a 1251 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
fea8a08e
JW
1252 continue; /* Ignore Non-secure access of Group0 IRQ */
1253 }
1254
67ce697a 1255 if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
e69954b9 1256 DPRINTF("Disabled IRQ %d\n", irq + i);
2531088f 1257 trace_gic_disable_irq(irq + i);
41bf234d 1258 }
67ce697a 1259 GIC_DIST_CLEAR_ENABLED(irq + i, cm);
e69954b9
PB
1260 }
1261 }
1262 } else if (offset < 0x280) {
1263 /* Interrupt Set Pending. */
b6e6c651 1264 irq = (offset - 0x200) * 8;
a32134aa 1265 if (irq >= s->num_irq)
e69954b9 1266 goto bad_reg;
41ab7b55 1267 if (irq < GIC_NR_SGIS) {
5b0adce1 1268 value = 0;
41ab7b55 1269 }
9ee6e8bb 1270
e69954b9
PB
1271 for (i = 0; i < 8; i++) {
1272 if (value & (1 << i)) {
fea8a08e 1273 if (s->security_extn && !attrs.secure &&
67ce697a 1274 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
fea8a08e
JW
1275 continue; /* Ignore Non-secure access of Group0 IRQ */
1276 }
1277
67ce697a 1278 GIC_DIST_SET_PENDING(irq + i, GIC_DIST_TARGET(irq + i));
e69954b9
PB
1279 }
1280 }
1281 } else if (offset < 0x300) {
1282 /* Interrupt Clear Pending. */
b6e6c651 1283 irq = (offset - 0x280) * 8;
a32134aa 1284 if (irq >= s->num_irq)
e69954b9 1285 goto bad_reg;
5b0adce1
CD
1286 if (irq < GIC_NR_SGIS) {
1287 value = 0;
1288 }
1289
e69954b9 1290 for (i = 0; i < 8; i++) {
fea8a08e 1291 if (s->security_extn && !attrs.secure &&
67ce697a 1292 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
fea8a08e
JW
1293 continue; /* Ignore Non-secure access of Group0 IRQ */
1294 }
1295
9ee6e8bb
PB
1296 /* ??? This currently clears the pending bit for all CPUs, even
1297 for per-CPU interrupts. It's unclear whether this is the
1298 corect behavior. */
e69954b9 1299 if (value & (1 << i)) {
67ce697a 1300 GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
e69954b9
PB
1301 }
1302 }
3bb0b038
LM
1303 } else if (offset < 0x380) {
1304 /* Interrupt Set Active. */
1305 if (s->revision != 2) {
1306 goto bad_reg;
1307 }
1308
b6e6c651 1309 irq = (offset - 0x300) * 8;
3bb0b038
LM
1310 if (irq >= s->num_irq) {
1311 goto bad_reg;
1312 }
1313
1314 /* This register is banked per-cpu for PPIs */
1315 int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1316
1317 for (i = 0; i < 8; i++) {
1318 if (s->security_extn && !attrs.secure &&
1319 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1320 continue; /* Ignore Non-secure access of Group0 IRQ */
1321 }
1322
1323 if (value & (1 << i)) {
1324 GIC_DIST_SET_ACTIVE(irq + i, cm);
1325 }
1326 }
e69954b9 1327 } else if (offset < 0x400) {
3bb0b038
LM
1328 /* Interrupt Clear Active. */
1329 if (s->revision != 2) {
1330 goto bad_reg;
1331 }
1332
b6e6c651 1333 irq = (offset - 0x380) * 8;
3bb0b038
LM
1334 if (irq >= s->num_irq) {
1335 goto bad_reg;
1336 }
1337
1338 /* This register is banked per-cpu for PPIs */
1339 int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1340
1341 for (i = 0; i < 8; i++) {
1342 if (s->security_extn && !attrs.secure &&
1343 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1344 continue; /* Ignore Non-secure access of Group0 IRQ */
1345 }
1346
1347 if (value & (1 << i)) {
1348 GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1349 }
1350 }
e69954b9
PB
1351 } else if (offset < 0x800) {
1352 /* Interrupt Priority. */
b6e6c651 1353 irq = (offset - 0x400);
a32134aa 1354 if (irq >= s->num_irq)
e69954b9 1355 goto bad_reg;
67ce697a 1356 gic_dist_set_priority(s, cpu, irq, value, attrs);
e69954b9 1357 } else if (offset < 0xc00) {
6b9680bb
PM
1358 /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1359 * annoying exception of the 11MPCore's GIC.
1360 */
1361 if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
b6e6c651 1362 irq = (offset - 0x800);
6b9680bb
PM
1363 if (irq >= s->num_irq) {
1364 goto bad_reg;
1365 }
7995206d 1366 if (irq < 29 && s->revision == REV_11MPCORE) {
6b9680bb
PM
1367 value = 0;
1368 } else if (irq < GIC_INTERNAL) {
1369 value = ALL_CPU_MASK;
1370 }
1371 s->irq_target[irq] = value & ALL_CPU_MASK;
1372 }
e69954b9
PB
1373 } else if (offset < 0xf00) {
1374 /* Interrupt Configuration. */
b6e6c651 1375 irq = (offset - 0xc00) * 4;
a32134aa 1376 if (irq >= s->num_irq)
e69954b9 1377 goto bad_reg;
de7a900f 1378 if (irq < GIC_NR_SGIS)
9ee6e8bb 1379 value |= 0xaa;
e69954b9 1380 for (i = 0; i < 4; i++) {
fea8a08e 1381 if (s->security_extn && !attrs.secure &&
67ce697a 1382 !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
fea8a08e
JW
1383 continue; /* Ignore Non-secure access of Group0 IRQ */
1384 }
1385
7c14b3ac 1386 if (s->revision == REV_11MPCORE) {
24b790df 1387 if (value & (1 << (i * 2))) {
67ce697a 1388 GIC_DIST_SET_MODEL(irq + i);
24b790df 1389 } else {
67ce697a 1390 GIC_DIST_CLEAR_MODEL(irq + i);
24b790df 1391 }
e69954b9
PB
1392 }
1393 if (value & (2 << (i * 2))) {
67ce697a 1394 GIC_DIST_SET_EDGE_TRIGGER(irq + i);
e69954b9 1395 } else {
67ce697a 1396 GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
e69954b9
PB
1397 }
1398 }
40d22500 1399 } else if (offset < 0xf10) {
9ee6e8bb 1400 /* 0xf00 is only handled for 32-bit writes. */
e69954b9 1401 goto bad_reg;
40d22500
CD
1402 } else if (offset < 0xf20) {
1403 /* GICD_CPENDSGIRn */
7c14b3ac 1404 if (s->revision == REV_11MPCORE) {
40d22500
CD
1405 goto bad_reg;
1406 }
1407 irq = (offset - 0xf10);
1408
fea8a08e 1409 if (!s->security_extn || attrs.secure ||
67ce697a 1410 GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
fea8a08e
JW
1411 s->sgi_pending[irq][cpu] &= ~value;
1412 if (s->sgi_pending[irq][cpu] == 0) {
67ce697a 1413 GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
fea8a08e 1414 }
40d22500
CD
1415 }
1416 } else if (offset < 0xf30) {
1417 /* GICD_SPENDSGIRn */
7c14b3ac 1418 if (s->revision == REV_11MPCORE) {
40d22500
CD
1419 goto bad_reg;
1420 }
1421 irq = (offset - 0xf20);
1422
fea8a08e 1423 if (!s->security_extn || attrs.secure ||
67ce697a
LM
1424 GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1425 GIC_DIST_SET_PENDING(irq, 1 << cpu);
fea8a08e
JW
1426 s->sgi_pending[irq][cpu] |= value;
1427 }
40d22500
CD
1428 } else {
1429 goto bad_reg;
e69954b9
PB
1430 }
1431 gic_update(s);
1432 return;
1433bad_reg:
8c8dc39f
PM
1434 qemu_log_mask(LOG_GUEST_ERROR,
1435 "gic_dist_writeb: Bad offset %x\n", (int)offset);
e69954b9
PB
1436}
1437
a8170e5e 1438static void gic_dist_writew(void *opaque, hwaddr offset,
a9d85353 1439 uint32_t value, MemTxAttrs attrs)
e69954b9 1440{
a9d85353
PM
1441 gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1442 gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
e69954b9
PB
1443}
1444
a8170e5e 1445static void gic_dist_writel(void *opaque, hwaddr offset,
a9d85353 1446 uint32_t value, MemTxAttrs attrs)
e69954b9 1447{
fae15286 1448 GICState *s = (GICState *)opaque;
8da3ff18 1449 if (offset == 0xf00) {
9ee6e8bb
PB
1450 int cpu;
1451 int irq;
1452 int mask;
40d22500 1453 int target_cpu;
9ee6e8bb 1454
926c4aff 1455 cpu = gic_get_current_cpu(s);
9ee6e8bb
PB
1456 irq = value & 0x3ff;
1457 switch ((value >> 24) & 3) {
1458 case 0:
1459 mask = (value >> 16) & ALL_CPU_MASK;
1460 break;
1461 case 1:
fa250144 1462 mask = ALL_CPU_MASK ^ (1 << cpu);
9ee6e8bb
PB
1463 break;
1464 case 2:
fa250144 1465 mask = 1 << cpu;
9ee6e8bb
PB
1466 break;
1467 default:
1468 DPRINTF("Bad Soft Int target filter\n");
1469 mask = ALL_CPU_MASK;
1470 break;
1471 }
67ce697a 1472 GIC_DIST_SET_PENDING(irq, mask);
40d22500
CD
1473 target_cpu = ctz32(mask);
1474 while (target_cpu < GIC_NCPU) {
1475 s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1476 mask &= ~(1 << target_cpu);
1477 target_cpu = ctz32(mask);
1478 }
9ee6e8bb
PB
1479 gic_update(s);
1480 return;
1481 }
a9d85353
PM
1482 gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1483 gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1484}
1485
1486static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1487 unsigned size, MemTxAttrs attrs)
1488{
067a2b9c
LM
1489 trace_gic_dist_write(offset, size, data);
1490
a9d85353
PM
1491 switch (size) {
1492 case 1:
1493 gic_dist_writeb(opaque, offset, data, attrs);
1494 return MEMTX_OK;
1495 case 2:
1496 gic_dist_writew(opaque, offset, data, attrs);
1497 return MEMTX_OK;
1498 case 4:
1499 gic_dist_writel(opaque, offset, data, attrs);
1500 return MEMTX_OK;
1501 default:
1502 return MEMTX_ERROR;
1503 }
e69954b9
PB
1504}
1505
51fd06e0
PM
1506static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1507{
1508 /* Return the Nonsecure view of GICC_APR<regno>. This is the
1509 * second half of GICC_NSAPR.
1510 */
1511 switch (GIC_MIN_BPR) {
1512 case 0:
1513 if (regno < 2) {
1514 return s->nsapr[regno + 2][cpu];
1515 }
1516 break;
1517 case 1:
1518 if (regno == 0) {
1519 return s->nsapr[regno + 1][cpu];
1520 }
1521 break;
1522 case 2:
1523 if (regno == 0) {
1524 return extract32(s->nsapr[0][cpu], 16, 16);
1525 }
1526 break;
1527 case 3:
1528 if (regno == 0) {
1529 return extract32(s->nsapr[0][cpu], 8, 8);
1530 }
1531 break;
1532 default:
1533 g_assert_not_reached();
1534 }
1535 return 0;
1536}
1537
1538static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1539 uint32_t value)
1540{
1541 /* Write the Nonsecure view of GICC_APR<regno>. */
1542 switch (GIC_MIN_BPR) {
1543 case 0:
1544 if (regno < 2) {
1545 s->nsapr[regno + 2][cpu] = value;
1546 }
1547 break;
1548 case 1:
1549 if (regno == 0) {
1550 s->nsapr[regno + 1][cpu] = value;
1551 }
1552 break;
1553 case 2:
1554 if (regno == 0) {
1555 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1556 }
1557 break;
1558 case 3:
1559 if (regno == 0) {
1560 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1561 }
1562 break;
1563 default:
1564 g_assert_not_reached();
1565 }
1566}
1567
a9d85353
PM
1568static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1569 uint64_t *data, MemTxAttrs attrs)
e69954b9 1570{
e69954b9
PB
1571 switch (offset) {
1572 case 0x00: /* Control */
32951860 1573 *data = gic_get_cpu_control(s, cpu, attrs);
a9d85353 1574 break;
e69954b9 1575 case 0x04: /* Priority mask */
81508470 1576 *data = gic_get_priority_mask(s, cpu, attrs);
a9d85353 1577 break;
e69954b9 1578 case 0x08: /* Binary Point */
3dd0471b 1579 if (gic_cpu_ns_access(s, cpu, attrs)) {
421a3c22
LM
1580 if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1581 /* NS view of BPR when CBPR is 1 */
1582 *data = MIN(s->bpr[cpu] + 1, 7);
1583 } else {
1584 /* BPR is banked. Non-secure copy stored in ABPR. */
1585 *data = s->abpr[cpu];
1586 }
822e9cc3
FA
1587 } else {
1588 *data = s->bpr[cpu];
1589 }
a9d85353 1590 break;
e69954b9 1591 case 0x0c: /* Acknowledge */
c5619bf9 1592 *data = gic_acknowledge_irq(s, cpu, attrs);
a9d85353 1593 break;
66a0a2cb 1594 case 0x14: /* Running Priority */
08efa9f2 1595 *data = gic_get_running_priority(s, cpu, attrs);
a9d85353 1596 break;
e69954b9 1597 case 0x18: /* Highest Pending Interrupt */
7c0fa108 1598 *data = gic_get_current_pending_irq(s, cpu, attrs);
a9d85353 1599 break;
aa7d461a 1600 case 0x1c: /* Aliased Binary Point */
822e9cc3
FA
1601 /* GIC v2, no security: ABPR
1602 * GIC v1, no security: not implemented (RAZ/WI)
1603 * With security extensions, secure access: ABPR (alias of NS BPR)
1604 * With security extensions, nonsecure access: RAZ/WI
1605 */
3dd0471b 1606 if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
822e9cc3
FA
1607 *data = 0;
1608 } else {
1609 *data = s->abpr[cpu];
1610 }
a9d85353 1611 break;
a9d477c4 1612 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
51fd06e0
PM
1613 {
1614 int regno = (offset - 0xd0) / 4;
7eb079ec 1615 int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
51fd06e0 1616
7eb079ec 1617 if (regno >= nr_aprs || s->revision != 2) {
51fd06e0 1618 *data = 0;
7eb079ec
LM
1619 } else if (gic_is_vcpu(cpu)) {
1620 *data = s->h_apr[gic_get_vcpu_real_id(cpu)];
3dd0471b 1621 } else if (gic_cpu_ns_access(s, cpu, attrs)) {
51fd06e0
PM
1622 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1623 *data = gic_apr_ns_view(s, regno, cpu);
1624 } else {
1625 *data = s->apr[regno][cpu];
1626 }
a9d85353 1627 break;
51fd06e0
PM
1628 }
1629 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1630 {
1631 int regno = (offset - 0xe0) / 4;
1632
1633 if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
7eb079ec 1634 gic_cpu_ns_access(s, cpu, attrs) || gic_is_vcpu(cpu)) {
51fd06e0
PM
1635 *data = 0;
1636 } else {
1637 *data = s->nsapr[regno][cpu];
1638 }
1639 break;
1640 }
e69954b9 1641 default:
8c8dc39f
PM
1642 qemu_log_mask(LOG_GUEST_ERROR,
1643 "gic_cpu_read: Bad offset %x\n", (int)offset);
0cf09852
PM
1644 *data = 0;
1645 break;
e69954b9 1646 }
067a2b9c
LM
1647
1648 trace_gic_cpu_read(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1649 gic_get_vcpu_real_id(cpu), offset, *data);
a9d85353 1650 return MEMTX_OK;
e69954b9
PB
1651}
1652
a9d85353
PM
1653static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1654 uint32_t value, MemTxAttrs attrs)
e69954b9 1655{
067a2b9c
LM
1656 trace_gic_cpu_write(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1657 gic_get_vcpu_real_id(cpu), offset, value);
1658
e69954b9
PB
1659 switch (offset) {
1660 case 0x00: /* Control */
32951860 1661 gic_set_cpu_control(s, cpu, value, attrs);
e69954b9
PB
1662 break;
1663 case 0x04: /* Priority mask */
81508470 1664 gic_set_priority_mask(s, cpu, value, attrs);
e69954b9
PB
1665 break;
1666 case 0x08: /* Binary Point */
3dd0471b 1667 if (gic_cpu_ns_access(s, cpu, attrs)) {
421a3c22
LM
1668 if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1669 /* WI when CBPR is 1 */
1670 return MEMTX_OK;
1671 } else {
1672 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1673 }
822e9cc3 1674 } else {
7eb079ec
LM
1675 int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
1676 s->bpr[cpu] = MAX(value & 0x7, min_bpr);
822e9cc3 1677 }
e69954b9
PB
1678 break;
1679 case 0x10: /* End Of Interrupt */
f9c6a7f1 1680 gic_complete_irq(s, cpu, value & 0x3ff, attrs);
a9d85353 1681 return MEMTX_OK;
aa7d461a 1682 case 0x1c: /* Aliased Binary Point */
3dd0471b 1683 if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
822e9cc3
FA
1684 /* unimplemented, or NS access: RAZ/WI */
1685 return MEMTX_OK;
1686 } else {
1687 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
aa7d461a
CD
1688 }
1689 break;
a9d477c4 1690 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
51fd06e0
PM
1691 {
1692 int regno = (offset - 0xd0) / 4;
7eb079ec 1693 int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
51fd06e0 1694
7eb079ec 1695 if (regno >= nr_aprs || s->revision != 2) {
51fd06e0
PM
1696 return MEMTX_OK;
1697 }
7eb079ec
LM
1698 if (gic_is_vcpu(cpu)) {
1699 s->h_apr[gic_get_vcpu_real_id(cpu)] = value;
1700 } else if (gic_cpu_ns_access(s, cpu, attrs)) {
51fd06e0
PM
1701 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1702 gic_apr_write_ns_view(s, regno, cpu, value);
1703 } else {
1704 s->apr[regno][cpu] = value;
1705 }
1706 break;
1707 }
1708 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1709 {
1710 int regno = (offset - 0xe0) / 4;
1711
1712 if (regno >= GIC_NR_APRS || s->revision != 2) {
1713 return MEMTX_OK;
1714 }
7eb079ec
LM
1715 if (gic_is_vcpu(cpu)) {
1716 return MEMTX_OK;
1717 }
3dd0471b 1718 if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
51fd06e0
PM
1719 return MEMTX_OK;
1720 }
1721 s->nsapr[regno][cpu] = value;
a9d477c4 1722 break;
51fd06e0 1723 }
a55c910e
PM
1724 case 0x1000:
1725 /* GICC_DIR */
1726 gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1727 break;
e69954b9 1728 default:
8c8dc39f
PM
1729 qemu_log_mask(LOG_GUEST_ERROR,
1730 "gic_cpu_write: Bad offset %x\n", (int)offset);
0cf09852 1731 return MEMTX_OK;
e69954b9 1732 }
cbe1282b
LM
1733
1734 if (gic_is_vcpu(cpu)) {
1735 gic_update_virt(s);
1736 } else {
1737 gic_update(s);
1738 }
1739
a9d85353 1740 return MEMTX_OK;
e69954b9 1741}
e2c56465
PM
1742
1743/* Wrappers to read/write the GIC CPU interface for the current CPU */
a9d85353
PM
1744static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1745 unsigned size, MemTxAttrs attrs)
e2c56465 1746{
fae15286 1747 GICState *s = (GICState *)opaque;
a9d85353 1748 return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
e2c56465
PM
1749}
1750
a9d85353
PM
1751static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1752 uint64_t value, unsigned size,
1753 MemTxAttrs attrs)
e2c56465 1754{
fae15286 1755 GICState *s = (GICState *)opaque;
a9d85353 1756 return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
e2c56465
PM
1757}
1758
1759/* Wrappers to read/write the GIC CPU interface for a specific CPU.
fae15286 1760 * These just decode the opaque pointer into GICState* + cpu id.
e2c56465 1761 */
a9d85353
PM
1762static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1763 unsigned size, MemTxAttrs attrs)
e2c56465 1764{
fae15286
PM
1765 GICState **backref = (GICState **)opaque;
1766 GICState *s = *backref;
e2c56465 1767 int id = (backref - s->backref);
a9d85353 1768 return gic_cpu_read(s, id, addr, data, attrs);
e2c56465
PM
1769}
1770
a9d85353
PM
1771static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1772 uint64_t value, unsigned size,
1773 MemTxAttrs attrs)
e2c56465 1774{
fae15286
PM
1775 GICState **backref = (GICState **)opaque;
1776 GICState *s = *backref;
e2c56465 1777 int id = (backref - s->backref);
a9d85353 1778 return gic_cpu_write(s, id, addr, value, attrs);
e2c56465
PM
1779}
1780
2c679ac7
LM
1781static MemTxResult gic_thisvcpu_read(void *opaque, hwaddr addr, uint64_t *data,
1782 unsigned size, MemTxAttrs attrs)
1783{
1784 GICState *s = (GICState *)opaque;
1785
1786 return gic_cpu_read(s, gic_get_current_vcpu(s), addr, data, attrs);
1787}
1788
1789static MemTxResult gic_thisvcpu_write(void *opaque, hwaddr addr,
1790 uint64_t value, unsigned size,
1791 MemTxAttrs attrs)
1792{
1793 GICState *s = (GICState *)opaque;
1794
1795 return gic_cpu_write(s, gic_get_current_vcpu(s), addr, value, attrs);
1796}
1797
527d296f
LM
1798static uint32_t gic_compute_eisr(GICState *s, int cpu, int lr_start)
1799{
1800 int lr_idx;
1801 uint32_t ret = 0;
1802
1803 for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1804 uint32_t *entry = &s->h_lr[lr_idx][cpu];
1805 ret = deposit32(ret, lr_idx - lr_start, 1,
1806 gic_lr_entry_is_eoi(*entry));
1807 }
1808
1809 return ret;
1810}
1811
1812static uint32_t gic_compute_elrsr(GICState *s, int cpu, int lr_start)
1813{
1814 int lr_idx;
1815 uint32_t ret = 0;
1816
1817 for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1818 uint32_t *entry = &s->h_lr[lr_idx][cpu];
1819 ret = deposit32(ret, lr_idx - lr_start, 1,
1820 gic_lr_entry_is_free(*entry));
1821 }
1822
1823 return ret;
1824}
1825
1826static void gic_vmcr_write(GICState *s, uint32_t value, MemTxAttrs attrs)
1827{
1828 int vcpu = gic_get_current_vcpu(s);
1829 uint32_t ctlr;
1830 uint32_t abpr;
1831 uint32_t bpr;
1832 uint32_t prio_mask;
1833
1834 ctlr = FIELD_EX32(value, GICH_VMCR, VMCCtlr);
1835 abpr = FIELD_EX32(value, GICH_VMCR, VMABP);
1836 bpr = FIELD_EX32(value, GICH_VMCR, VMBP);
1837 prio_mask = FIELD_EX32(value, GICH_VMCR, VMPriMask) << 3;
1838
1839 gic_set_cpu_control(s, vcpu, ctlr, attrs);
1840 s->abpr[vcpu] = MAX(abpr, GIC_VIRT_MIN_ABPR);
1841 s->bpr[vcpu] = MAX(bpr, GIC_VIRT_MIN_BPR);
1842 gic_set_priority_mask(s, vcpu, prio_mask, attrs);
1843}
1844
1845static MemTxResult gic_hyp_read(void *opaque, int cpu, hwaddr addr,
1846 uint64_t *data, MemTxAttrs attrs)
1847{
1848 GICState *s = ARM_GIC(opaque);
1849 int vcpu = cpu + GIC_NCPU;
1850
1851 switch (addr) {
1852 case A_GICH_HCR: /* Hypervisor Control */
1853 *data = s->h_hcr[cpu];
1854 break;
1855
1856 case A_GICH_VTR: /* VGIC Type */
1857 *data = FIELD_DP32(0, GICH_VTR, ListRegs, s->num_lrs - 1);
1858 *data = FIELD_DP32(*data, GICH_VTR, PREbits,
1859 GIC_VIRT_MAX_GROUP_PRIO_BITS - 1);
1860 *data = FIELD_DP32(*data, GICH_VTR, PRIbits,
1861 (7 - GIC_VIRT_MIN_BPR) - 1);
1862 break;
1863
1864 case A_GICH_VMCR: /* Virtual Machine Control */
1865 *data = FIELD_DP32(0, GICH_VMCR, VMCCtlr,
1866 extract32(s->cpu_ctlr[vcpu], 0, 10));
1867 *data = FIELD_DP32(*data, GICH_VMCR, VMABP, s->abpr[vcpu]);
1868 *data = FIELD_DP32(*data, GICH_VMCR, VMBP, s->bpr[vcpu]);
1869 *data = FIELD_DP32(*data, GICH_VMCR, VMPriMask,
1870 extract32(s->priority_mask[vcpu], 3, 5));
1871 break;
1872
1873 case A_GICH_MISR: /* Maintenance Interrupt Status */
1874 *data = s->h_misr[cpu];
1875 break;
1876
1877 case A_GICH_EISR0: /* End of Interrupt Status 0 and 1 */
1878 case A_GICH_EISR1:
1879 *data = gic_compute_eisr(s, cpu, (addr - A_GICH_EISR0) * 8);
1880 break;
1881
1882 case A_GICH_ELRSR0: /* Empty List Status 0 and 1 */
1883 case A_GICH_ELRSR1:
1884 *data = gic_compute_elrsr(s, cpu, (addr - A_GICH_ELRSR0) * 8);
1885 break;
1886
1887 case A_GICH_APR: /* Active Priorities */
1888 *data = s->h_apr[cpu];
1889 break;
1890
1891 case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1892 {
1893 int lr_idx = (addr - A_GICH_LR0) / 4;
1894
1895 if (lr_idx > s->num_lrs) {
1896 *data = 0;
1897 } else {
1898 *data = s->h_lr[lr_idx][cpu];
1899 }
1900 break;
1901 }
1902
1903 default:
1904 qemu_log_mask(LOG_GUEST_ERROR,
1905 "gic_hyp_read: Bad offset %" HWADDR_PRIx "\n", addr);
1906 return MEMTX_OK;
1907 }
1908
067a2b9c 1909 trace_gic_hyp_read(addr, *data);
527d296f
LM
1910 return MEMTX_OK;
1911}
1912
1913static MemTxResult gic_hyp_write(void *opaque, int cpu, hwaddr addr,
1914 uint64_t value, MemTxAttrs attrs)
1915{
1916 GICState *s = ARM_GIC(opaque);
1917 int vcpu = cpu + GIC_NCPU;
1918
067a2b9c
LM
1919 trace_gic_hyp_write(addr, value);
1920
527d296f
LM
1921 switch (addr) {
1922 case A_GICH_HCR: /* Hypervisor Control */
1923 s->h_hcr[cpu] = value & GICH_HCR_MASK;
1924 break;
1925
1926 case A_GICH_VMCR: /* Virtual Machine Control */
1927 gic_vmcr_write(s, value, attrs);
1928 break;
1929
1930 case A_GICH_APR: /* Active Priorities */
1931 s->h_apr[cpu] = value;
1932 s->running_priority[vcpu] = gic_get_prio_from_apr_bits(s, vcpu);
1933 break;
1934
1935 case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1936 {
1937 int lr_idx = (addr - A_GICH_LR0) / 4;
1938
1939 if (lr_idx > s->num_lrs) {
1940 return MEMTX_OK;
1941 }
1942
1943 s->h_lr[lr_idx][cpu] = value & GICH_LR_MASK;
067a2b9c 1944 trace_gic_lr_entry(cpu, lr_idx, s->h_lr[lr_idx][cpu]);
527d296f
LM
1945 break;
1946 }
1947
1948 default:
1949 qemu_log_mask(LOG_GUEST_ERROR,
1950 "gic_hyp_write: Bad offset %" HWADDR_PRIx "\n", addr);
1951 return MEMTX_OK;
1952 }
1953
cbe1282b 1954 gic_update_virt(s);
527d296f
LM
1955 return MEMTX_OK;
1956}
1957
1958static MemTxResult gic_thiscpu_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
1959 unsigned size, MemTxAttrs attrs)
1960{
1961 GICState *s = (GICState *)opaque;
1962
1963 return gic_hyp_read(s, gic_get_current_cpu(s), addr, data, attrs);
1964}
1965
1966static MemTxResult gic_thiscpu_hyp_write(void *opaque, hwaddr addr,
1967 uint64_t value, unsigned size,
1968 MemTxAttrs attrs)
1969{
1970 GICState *s = (GICState *)opaque;
1971
1972 return gic_hyp_write(s, gic_get_current_cpu(s), addr, value, attrs);
1973}
1974
1975static MemTxResult gic_do_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
1976 unsigned size, MemTxAttrs attrs)
1977{
1978 GICState **backref = (GICState **)opaque;
1979 GICState *s = *backref;
1980 int id = (backref - s->backref);
1981
1982 return gic_hyp_read(s, id, addr, data, attrs);
1983}
1984
1985static MemTxResult gic_do_hyp_write(void *opaque, hwaddr addr,
1986 uint64_t value, unsigned size,
1987 MemTxAttrs attrs)
1988{
1989 GICState **backref = (GICState **)opaque;
1990 GICState *s = *backref;
1991 int id = (backref - s->backref);
1992
1993 return gic_hyp_write(s, id + GIC_NCPU, addr, value, attrs);
1994
1995}
1996
7926c210
PF
1997static const MemoryRegionOps gic_ops[2] = {
1998 {
1999 .read_with_attrs = gic_dist_read,
2000 .write_with_attrs = gic_dist_write,
2001 .endianness = DEVICE_NATIVE_ENDIAN,
2002 },
2003 {
2004 .read_with_attrs = gic_thiscpu_read,
2005 .write_with_attrs = gic_thiscpu_write,
2006 .endianness = DEVICE_NATIVE_ENDIAN,
2007 }
e2c56465
PM
2008};
2009
2010static const MemoryRegionOps gic_cpu_ops = {
a9d85353
PM
2011 .read_with_attrs = gic_do_cpu_read,
2012 .write_with_attrs = gic_do_cpu_write,
e2c56465
PM
2013 .endianness = DEVICE_NATIVE_ENDIAN,
2014};
e69954b9 2015
2c679ac7
LM
2016static const MemoryRegionOps gic_virt_ops[2] = {
2017 {
527d296f
LM
2018 .read_with_attrs = gic_thiscpu_hyp_read,
2019 .write_with_attrs = gic_thiscpu_hyp_write,
2c679ac7
LM
2020 .endianness = DEVICE_NATIVE_ENDIAN,
2021 },
2022 {
2023 .read_with_attrs = gic_thisvcpu_read,
2024 .write_with_attrs = gic_thisvcpu_write,
2025 .endianness = DEVICE_NATIVE_ENDIAN,
2026 }
2027};
2028
527d296f
LM
2029static const MemoryRegionOps gic_viface_ops = {
2030 .read_with_attrs = gic_do_hyp_read,
2031 .write_with_attrs = gic_do_hyp_write,
2032 .endianness = DEVICE_NATIVE_ENDIAN,
2033};
2034
53111180 2035static void arm_gic_realize(DeviceState *dev, Error **errp)
2b518c56 2036{
53111180 2037 /* Device instance realize function for the GIC sysbus device */
2b518c56 2038 int i;
53111180
PM
2039 GICState *s = ARM_GIC(dev);
2040 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1e8cae4d 2041 ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
0175ba10 2042 Error *local_err = NULL;
1e8cae4d 2043
0175ba10
MA
2044 agc->parent_realize(dev, &local_err);
2045 if (local_err) {
2046 error_propagate(errp, local_err);
53111180
PM
2047 return;
2048 }
1e8cae4d 2049
5d721b78
AG
2050 if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
2051 error_setg(errp, "KVM with user space irqchip only works when the "
2052 "host kernel supports KVM_CAP_ARM_USER_IRQ");
2053 return;
2054 }
2055
2c679ac7
LM
2056 /* This creates distributor, main CPU interface (s->cpuiomem[0]) and if
2057 * enabled, virtualization extensions related interfaces (main virtual
2058 * interface (s->vifaceiomem[0]) and virtual CPU interface).
2059 */
2060 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, gic_virt_ops);
2b518c56 2061
7926c210
PF
2062 /* Extra core-specific regions for the CPU interfaces. This is
2063 * necessary for "franken-GIC" implementations, for example on
2064 * Exynos 4.
e2c56465
PM
2065 * NB that the memory region size of 0x100 applies for the 11MPCore
2066 * and also cores following the GIC v1 spec (ie A9).
2067 * GIC v2 defines a larger memory region (0x1000) so this will need
2068 * to be extended when we implement A15.
2069 */
b95690c9 2070 for (i = 0; i < s->num_cpu; i++) {
e2c56465 2071 s->backref[i] = s;
1437c94b
PB
2072 memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
2073 &s->backref[i], "gic_cpu", 0x100);
7926c210 2074 sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
496dbcd1 2075 }
527d296f
LM
2076
2077 /* Extra core-specific regions for virtual interfaces. This is required by
2078 * the GICv2 specification.
2079 */
2080 if (s->virt_extn) {
2081 for (i = 0; i < s->num_cpu; i++) {
2082 memory_region_init_io(&s->vifaceiomem[i + 1], OBJECT(s),
2083 &gic_viface_ops, &s->backref[i],
7210918c 2084 "gic_viface", 0x200);
527d296f
LM
2085 sysbus_init_mmio(sbd, &s->vifaceiomem[i + 1]);
2086 }
2087 }
2088
496dbcd1
PM
2089}
2090
496dbcd1
PM
2091static void arm_gic_class_init(ObjectClass *klass, void *data)
2092{
2093 DeviceClass *dc = DEVICE_CLASS(klass);
1e8cae4d 2094 ARMGICClass *agc = ARM_GIC_CLASS(klass);
53111180 2095
bf853881 2096 device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
496dbcd1
PM
2097}
2098
8c43a6f0 2099static const TypeInfo arm_gic_info = {
1e8cae4d
PM
2100 .name = TYPE_ARM_GIC,
2101 .parent = TYPE_ARM_GIC_COMMON,
fae15286 2102 .instance_size = sizeof(GICState),
496dbcd1 2103 .class_init = arm_gic_class_init,
998a74bc 2104 .class_size = sizeof(ARMGICClass),
496dbcd1
PM
2105};
2106
2107static void arm_gic_register_types(void)
2108{
2109 type_register_static(&arm_gic_info);
2110}
2111
2112type_init(arm_gic_register_types)