]> git.proxmox.com Git - mirror_qemu.git/blame - hw/intc/arm_gic.c
Merge remote-tracking branch 'remotes/armbru/tags/pull-qapi-2016-03-18' into staging
[mirror_qemu.git] / hw / intc / arm_gic.c
CommitLineData
5fafdf24 1/*
9ee6e8bb 2 * ARM Generic/Distributed Interrupt Controller
e69954b9 3 *
9ee6e8bb 4 * Copyright (c) 2006-2007 CodeSourcery.
e69954b9
PB
5 * Written by Paul Brook
6 *
8e31bf38 7 * This code is licensed under the GPL.
e69954b9
PB
8 */
9
9ee6e8bb 10/* This file contains implementation code for the RealView EB interrupt
0d256bdc
PM
11 * controller, MPCore distributed interrupt controller and ARMv7-M
12 * Nested Vectored Interrupt Controller.
13 * It is compiled in two ways:
14 * (1) as a standalone file to produce a sysbus device which is a GIC
15 * that can be used on the realview board and as one of the builtin
16 * private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17 * (2) by being directly #included into armv7m_nvic.c to produce the
18 * armv7m_nvic device.
19 */
e69954b9 20
8ef94f0b 21#include "qemu/osdep.h"
83c9f4ca 22#include "hw/sysbus.h"
47b43a1f 23#include "gic_internal.h"
dfc08079 24#include "qom/cpu.h"
386e2955 25
e69954b9
PB
26//#define DEBUG_GIC
27
28#ifdef DEBUG_GIC
001faf32 29#define DPRINTF(fmt, ...) \
5eb98401 30do { fprintf(stderr, "arm_gic: " fmt , ## __VA_ARGS__); } while (0)
e69954b9 31#else
001faf32 32#define DPRINTF(fmt, ...) do {} while(0)
e69954b9
PB
33#endif
34
3355c360
AF
35static const uint8_t gic_id_11mpcore[] = {
36 0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
37};
38
39static const uint8_t gic_id_gicv1[] = {
40 0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
41};
42
43static const uint8_t gic_id_gicv2[] = {
44 0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
2a29ddee
PM
45};
46
fae15286 47static inline int gic_get_current_cpu(GICState *s)
926c4aff 48{
926c4aff 49 if (s->num_cpu > 1) {
4917cf44 50 return current_cpu->cpu_index;
926c4aff 51 }
926c4aff
PM
52 return 0;
53}
54
c27a5ba9
FA
55/* Return true if this GIC config has interrupt groups, which is
56 * true if we're a GICv2, or a GICv1 with the security extensions.
57 */
58static inline bool gic_has_groups(GICState *s)
59{
60 return s->revision == 2 || s->security_extn;
61}
62
e69954b9
PB
63/* TODO: Many places that call this routine could be optimized. */
64/* Update interrupt status after enabled or pending bits have been changed. */
fae15286 65void gic_update(GICState *s)
e69954b9
PB
66{
67 int best_irq;
68 int best_prio;
69 int irq;
dadbb58f 70 int irq_level, fiq_level;
9ee6e8bb
PB
71 int cpu;
72 int cm;
73
b95690c9 74 for (cpu = 0; cpu < s->num_cpu; cpu++) {
9ee6e8bb
PB
75 cm = 1 << cpu;
76 s->current_pending[cpu] = 1023;
679aa175 77 if (!(s->ctlr & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1))
32951860 78 || !(s->cpu_ctlr[cpu] & (GICC_CTLR_EN_GRP0 | GICC_CTLR_EN_GRP1))) {
c79981ce 79 qemu_irq_lower(s->parent_irq[cpu]);
dadbb58f 80 qemu_irq_lower(s->parent_fiq[cpu]);
235069a3 81 continue;
9ee6e8bb
PB
82 }
83 best_prio = 0x100;
84 best_irq = 1023;
a32134aa 85 for (irq = 0; irq < s->num_irq; irq++) {
b52b81e4
SF
86 if (GIC_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
87 (irq < GIC_INTERNAL || GIC_TARGET(irq) & cm)) {
9ee6e8bb
PB
88 if (GIC_GET_PRIORITY(irq, cpu) < best_prio) {
89 best_prio = GIC_GET_PRIORITY(irq, cpu);
90 best_irq = irq;
91 }
e69954b9
PB
92 }
93 }
dadbb58f
PM
94
95 irq_level = fiq_level = 0;
96
cad065f1 97 if (best_prio < s->priority_mask[cpu]) {
9ee6e8bb
PB
98 s->current_pending[cpu] = best_irq;
99 if (best_prio < s->running_priority[cpu]) {
dadbb58f
PM
100 int group = GIC_TEST_GROUP(best_irq, cm);
101
102 if (extract32(s->ctlr, group, 1) &&
103 extract32(s->cpu_ctlr[cpu], group, 1)) {
104 if (group == 0 && s->cpu_ctlr[cpu] & GICC_CTLR_FIQ_EN) {
105 DPRINTF("Raised pending FIQ %d (cpu %d)\n",
106 best_irq, cpu);
107 fiq_level = 1;
108 } else {
109 DPRINTF("Raised pending IRQ %d (cpu %d)\n",
110 best_irq, cpu);
111 irq_level = 1;
112 }
113 }
9ee6e8bb 114 }
e69954b9 115 }
dadbb58f
PM
116
117 qemu_set_irq(s->parent_irq[cpu], irq_level);
118 qemu_set_irq(s->parent_fiq[cpu], fiq_level);
e69954b9
PB
119 }
120}
121
fae15286 122void gic_set_pending_private(GICState *s, int cpu, int irq)
9ee6e8bb
PB
123{
124 int cm = 1 << cpu;
125
8d999995 126 if (gic_test_pending(s, irq, cm)) {
9ee6e8bb 127 return;
8d999995 128 }
9ee6e8bb
PB
129
130 DPRINTF("Set %d pending cpu %d\n", irq, cpu);
131 GIC_SET_PENDING(irq, cm);
132 gic_update(s);
133}
134
8d999995
CD
135static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
136 int cm, int target)
137{
138 if (level) {
139 GIC_SET_LEVEL(irq, cm);
140 if (GIC_TEST_EDGE_TRIGGER(irq) || GIC_TEST_ENABLED(irq, cm)) {
141 DPRINTF("Set %d pending mask %x\n", irq, target);
142 GIC_SET_PENDING(irq, target);
143 }
144 } else {
145 GIC_CLEAR_LEVEL(irq, cm);
146 }
147}
148
149static void gic_set_irq_generic(GICState *s, int irq, int level,
150 int cm, int target)
151{
152 if (level) {
153 GIC_SET_LEVEL(irq, cm);
154 DPRINTF("Set %d pending mask %x\n", irq, target);
155 if (GIC_TEST_EDGE_TRIGGER(irq)) {
156 GIC_SET_PENDING(irq, target);
157 }
158 } else {
159 GIC_CLEAR_LEVEL(irq, cm);
160 }
161}
162
9ee6e8bb 163/* Process a change in an external IRQ input. */
e69954b9
PB
164static void gic_set_irq(void *opaque, int irq, int level)
165{
544d1afa
PM
166 /* Meaning of the 'irq' parameter:
167 * [0..N-1] : external interrupts
168 * [N..N+31] : PPI (internal) interrupts for CPU 0
169 * [N+32..N+63] : PPI (internal interrupts for CPU 1
170 * ...
171 */
fae15286 172 GICState *s = (GICState *)opaque;
544d1afa
PM
173 int cm, target;
174 if (irq < (s->num_irq - GIC_INTERNAL)) {
175 /* The first external input line is internal interrupt 32. */
176 cm = ALL_CPU_MASK;
177 irq += GIC_INTERNAL;
178 target = GIC_TARGET(irq);
179 } else {
180 int cpu;
181 irq -= (s->num_irq - GIC_INTERNAL);
182 cpu = irq / GIC_INTERNAL;
183 irq %= GIC_INTERNAL;
184 cm = 1 << cpu;
185 target = cm;
186 }
187
40d22500
CD
188 assert(irq >= GIC_NR_SGIS);
189
544d1afa 190 if (level == GIC_TEST_LEVEL(irq, cm)) {
e69954b9 191 return;
544d1afa 192 }
e69954b9 193
8d999995
CD
194 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
195 gic_set_irq_11mpcore(s, irq, level, cm, target);
e69954b9 196 } else {
8d999995 197 gic_set_irq_generic(s, irq, level, cm, target);
e69954b9 198 }
8d999995 199
e69954b9
PB
200 gic_update(s);
201}
202
7c0fa108
FA
203static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
204 MemTxAttrs attrs)
205{
206 uint16_t pending_irq = s->current_pending[cpu];
207
208 if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
209 int group = GIC_TEST_GROUP(pending_irq, (1 << cpu));
210 /* On a GIC without the security extensions, reading this register
211 * behaves in the same way as a secure access to a GIC with them.
212 */
213 bool secure = !s->security_extn || attrs.secure;
214
215 if (group == 0 && !secure) {
216 /* Group0 interrupts hidden from Non-secure access */
217 return 1023;
218 }
219 if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
220 /* Group1 interrupts only seen by Secure access if
221 * AckCtl bit set.
222 */
223 return 1022;
224 }
225 }
226 return pending_irq;
227}
228
df92cfa6
PM
229static int gic_get_group_priority(GICState *s, int cpu, int irq)
230{
231 /* Return the group priority of the specified interrupt
232 * (which is the top bits of its priority, with the number
233 * of bits masked determined by the applicable binary point register).
234 */
235 int bpr;
236 uint32_t mask;
237
238 if (gic_has_groups(s) &&
239 !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
240 GIC_TEST_GROUP(irq, (1 << cpu))) {
241 bpr = s->abpr[cpu];
242 } else {
243 bpr = s->bpr[cpu];
244 }
245
246 /* a BPR of 0 means the group priority bits are [7:1];
247 * a BPR of 1 means they are [7:2], and so on down to
248 * a BPR of 7 meaning no group priority bits at all.
249 */
250 mask = ~0U << ((bpr & 7) + 1);
251
252 return GIC_GET_PRIORITY(irq, cpu) & mask;
253}
254
72889c8a 255static void gic_activate_irq(GICState *s, int cpu, int irq)
e69954b9 256{
72889c8a
PM
257 /* Set the appropriate Active Priority Register bit for this IRQ,
258 * and update the running priority.
259 */
260 int prio = gic_get_group_priority(s, cpu, irq);
261 int preemption_level = prio >> (GIC_MIN_BPR + 1);
262 int regno = preemption_level / 32;
263 int bitno = preemption_level % 32;
264
265 if (gic_has_groups(s) && GIC_TEST_GROUP(irq, (1 << cpu))) {
a8595957 266 s->nsapr[regno][cpu] |= (1 << bitno);
9ee6e8bb 267 } else {
a8595957 268 s->apr[regno][cpu] |= (1 << bitno);
9ee6e8bb 269 }
72889c8a
PM
270
271 s->running_priority[cpu] = prio;
d5523a13 272 GIC_SET_ACTIVE(irq, 1 << cpu);
72889c8a
PM
273}
274
275static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
276{
277 /* Recalculate the current running priority for this CPU based
278 * on the set bits in the Active Priority Registers.
279 */
280 int i;
281 for (i = 0; i < GIC_NR_APRS; i++) {
282 uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
283 if (!apr) {
284 continue;
285 }
286 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
287 }
288 return 0x100;
289}
290
291static void gic_drop_prio(GICState *s, int cpu, int group)
292{
293 /* Drop the priority of the currently active interrupt in the
294 * specified group.
295 *
296 * Note that we can guarantee (because of the requirement to nest
297 * GICC_IAR reads [which activate an interrupt and raise priority]
298 * with GICC_EOIR writes [which drop the priority for the interrupt])
299 * that the interrupt we're being called for is the highest priority
300 * active interrupt, meaning that it has the lowest set bit in the
301 * APR registers.
302 *
303 * If the guest does not honour the ordering constraints then the
304 * behaviour of the GIC is UNPREDICTABLE, which for us means that
305 * the values of the APR registers might become incorrect and the
306 * running priority will be wrong, so interrupts that should preempt
307 * might not do so, and interrupts that should not preempt might do so.
308 */
309 int i;
310
311 for (i = 0; i < GIC_NR_APRS; i++) {
312 uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
313 if (!*papr) {
314 continue;
315 }
316 /* Clear lowest set bit */
317 *papr &= *papr - 1;
318 break;
319 }
320
321 s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
e69954b9
PB
322}
323
c5619bf9 324uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
e69954b9 325{
40d22500 326 int ret, irq, src;
9ee6e8bb 327 int cm = 1 << cpu;
c5619bf9
FA
328
329 /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
330 * for the case where this GIC supports grouping and the pending interrupt
331 * is in the wrong group.
332 */
a8f15a27 333 irq = gic_get_current_pending_irq(s, cpu, attrs);
c5619bf9
FA
334
335 if (irq >= GIC_MAXIRQ) {
336 DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
337 return irq;
338 }
339
340 if (GIC_GET_PRIORITY(irq, cpu) >= s->running_priority[cpu]) {
341 DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
e69954b9
PB
342 return 1023;
343 }
40d22500 344
87316902 345 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
40d22500
CD
346 /* Clear pending flags for both level and edge triggered interrupts.
347 * Level triggered IRQs will be reasserted once they become inactive.
348 */
349 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
350 ret = irq;
351 } else {
352 if (irq < GIC_NR_SGIS) {
353 /* Lookup the source CPU for the SGI and clear this in the
354 * sgi_pending map. Return the src and clear the overall pending
355 * state on this CPU if the SGI is not pending from any CPUs.
356 */
357 assert(s->sgi_pending[irq][cpu] != 0);
358 src = ctz32(s->sgi_pending[irq][cpu]);
359 s->sgi_pending[irq][cpu] &= ~(1 << src);
360 if (s->sgi_pending[irq][cpu] == 0) {
361 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
362 }
363 ret = irq | ((src & 0x7) << 10);
364 } else {
365 /* Clear pending state for both level and edge triggered
366 * interrupts. (level triggered interrupts with an active line
367 * remain pending, see gic_test_pending)
368 */
369 GIC_CLEAR_PENDING(irq, GIC_TEST_MODEL(irq) ? ALL_CPU_MASK : cm);
370 ret = irq;
371 }
372 }
373
72889c8a
PM
374 gic_activate_irq(s, cpu, irq);
375 gic_update(s);
40d22500
CD
376 DPRINTF("ACK %d\n", irq);
377 return ret;
e69954b9
PB
378}
379
81508470
FA
380void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val,
381 MemTxAttrs attrs)
9df90ad0 382{
81508470
FA
383 if (s->security_extn && !attrs.secure) {
384 if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
385 return; /* Ignore Non-secure access of Group0 IRQ */
386 }
387 val = 0x80 | (val >> 1); /* Non-secure view */
388 }
389
9df90ad0
CD
390 if (irq < GIC_INTERNAL) {
391 s->priority1[irq][cpu] = val;
392 } else {
393 s->priority2[(irq) - GIC_INTERNAL] = val;
394 }
395}
396
81508470
FA
397static uint32_t gic_get_priority(GICState *s, int cpu, int irq,
398 MemTxAttrs attrs)
399{
400 uint32_t prio = GIC_GET_PRIORITY(irq, cpu);
401
402 if (s->security_extn && !attrs.secure) {
403 if (!GIC_TEST_GROUP(irq, (1 << cpu))) {
404 return 0; /* Non-secure access cannot read priority of Group0 IRQ */
405 }
406 prio = (prio << 1) & 0xff; /* Non-secure view */
407 }
408 return prio;
409}
410
411static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
412 MemTxAttrs attrs)
413{
414 if (s->security_extn && !attrs.secure) {
415 if (s->priority_mask[cpu] & 0x80) {
416 /* Priority Mask in upper half */
417 pmask = 0x80 | (pmask >> 1);
418 } else {
419 /* Non-secure write ignored if priority mask is in lower half */
420 return;
421 }
422 }
423 s->priority_mask[cpu] = pmask;
424}
425
426static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
427{
428 uint32_t pmask = s->priority_mask[cpu];
429
430 if (s->security_extn && !attrs.secure) {
431 if (pmask & 0x80) {
432 /* Priority Mask in upper half, return Non-secure view */
433 pmask = (pmask << 1) & 0xff;
434 } else {
435 /* Priority Mask in lower half, RAZ */
436 pmask = 0;
437 }
438 }
439 return pmask;
440}
441
32951860
FA
442static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
443{
444 uint32_t ret = s->cpu_ctlr[cpu];
445
446 if (s->security_extn && !attrs.secure) {
447 /* Construct the NS banked view of GICC_CTLR from the correct
448 * bits of the S banked view. We don't need to move the bypass
449 * control bits because we don't implement that (IMPDEF) part
450 * of the GIC architecture.
451 */
452 ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
453 }
454 return ret;
455}
456
457static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
458 MemTxAttrs attrs)
459{
460 uint32_t mask;
461
462 if (s->security_extn && !attrs.secure) {
463 /* The NS view can only write certain bits in the register;
464 * the rest are unchanged
465 */
466 mask = GICC_CTLR_EN_GRP1;
467 if (s->revision == 2) {
468 mask |= GICC_CTLR_EOIMODE_NS;
469 }
470 s->cpu_ctlr[cpu] &= ~mask;
471 s->cpu_ctlr[cpu] |= (value << 1) & mask;
472 } else {
473 if (s->revision == 2) {
474 mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
475 } else {
476 mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
477 }
478 s->cpu_ctlr[cpu] = value & mask;
479 }
480 DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
481 "Group1 Interrupts %sabled\n", cpu,
482 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
483 (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
484}
485
08efa9f2
FA
486static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
487{
488 if (s->security_extn && !attrs.secure) {
489 if (s->running_priority[cpu] & 0x80) {
490 /* Running priority in upper half of range: return the Non-secure
491 * view of the priority.
492 */
493 return s->running_priority[cpu] << 1;
494 } else {
495 /* Running priority in lower half of range: RAZ */
496 return 0;
497 }
498 } else {
499 return s->running_priority[cpu];
500 }
501}
502
a55c910e
PM
503/* Return true if we should split priority drop and interrupt deactivation,
504 * ie whether the relevant EOIMode bit is set.
505 */
506static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
507{
508 if (s->revision != 2) {
509 /* Before GICv2 prio-drop and deactivate are not separable */
510 return false;
511 }
512 if (s->security_extn && !attrs.secure) {
513 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
514 }
515 return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
516}
517
518static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
519{
520 int cm = 1 << cpu;
521 int group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
522
523 if (!gic_eoi_split(s, cpu, attrs)) {
524 /* This is UNPREDICTABLE; we choose to ignore it */
525 qemu_log_mask(LOG_GUEST_ERROR,
526 "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
527 return;
528 }
529
530 if (s->security_extn && !attrs.secure && !group) {
531 DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
532 return;
533 }
534
535 GIC_CLEAR_ACTIVE(irq, cm);
536}
537
f9c6a7f1 538void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
e69954b9 539{
9ee6e8bb 540 int cm = 1 << cpu;
72889c8a
PM
541 int group;
542
df628ff1 543 DPRINTF("EOI %d\n", irq);
a32134aa 544 if (irq >= s->num_irq) {
217bfb44
PM
545 /* This handles two cases:
546 * 1. If software writes the ID of a spurious interrupt [ie 1023]
547 * to the GICC_EOIR, the GIC ignores that write.
548 * 2. If software writes the number of a non-existent interrupt
549 * this must be a subcase of "value written does not match the last
550 * valid interrupt value read from the Interrupt Acknowledge
551 * register" and so this is UNPREDICTABLE. We choose to ignore it.
552 */
553 return;
554 }
72889c8a 555 if (s->running_priority[cpu] == 0x100) {
e69954b9 556 return; /* No active IRQ. */
72889c8a 557 }
8d999995
CD
558
559 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
560 /* Mark level triggered interrupts as pending if they are still
561 raised. */
562 if (!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_ENABLED(irq, cm)
563 && GIC_TEST_LEVEL(irq, cm) && (GIC_TARGET(irq) & cm) != 0) {
564 DPRINTF("Set %d pending mask %x\n", irq, cm);
565 GIC_SET_PENDING(irq, cm);
8d999995 566 }
e69954b9 567 }
8d999995 568
72889c8a
PM
569 group = gic_has_groups(s) && GIC_TEST_GROUP(irq, cm);
570
571 if (s->security_extn && !attrs.secure && !group) {
f9c6a7f1
FA
572 DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
573 return;
574 }
575
576 /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
577 * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
578 * i.e. go ahead and complete the irq anyway.
579 */
580
72889c8a 581 gic_drop_prio(s, cpu, group);
a55c910e
PM
582
583 /* In GICv2 the guest can choose to split priority-drop and deactivate */
584 if (!gic_eoi_split(s, cpu, attrs)) {
585 GIC_CLEAR_ACTIVE(irq, cm);
586 }
72889c8a 587 gic_update(s);
e69954b9
PB
588}
589
a9d85353 590static uint32_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
e69954b9 591{
fae15286 592 GICState *s = (GICState *)opaque;
e69954b9
PB
593 uint32_t res;
594 int irq;
595 int i;
9ee6e8bb
PB
596 int cpu;
597 int cm;
598 int mask;
e69954b9 599
926c4aff 600 cpu = gic_get_current_cpu(s);
9ee6e8bb 601 cm = 1 << cpu;
e69954b9 602 if (offset < 0x100) {
679aa175
FA
603 if (offset == 0) { /* GICD_CTLR */
604 if (s->security_extn && !attrs.secure) {
605 /* The NS bank of this register is just an alias of the
606 * EnableGrp1 bit in the S bank version.
607 */
608 return extract32(s->ctlr, 1, 1);
609 } else {
610 return s->ctlr;
611 }
612 }
e69954b9 613 if (offset == 4)
5543d1ab
FA
614 /* Interrupt Controller Type Register */
615 return ((s->num_irq / 32) - 1)
b95690c9 616 | ((s->num_cpu - 1) << 5)
5543d1ab 617 | (s->security_extn << 10);
e69954b9
PB
618 if (offset < 0x08)
619 return 0;
b79f2265 620 if (offset >= 0x80) {
c27a5ba9
FA
621 /* Interrupt Group Registers: these RAZ/WI if this is an NS
622 * access to a GIC with the security extensions, or if the GIC
623 * doesn't have groups at all.
624 */
625 res = 0;
626 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
627 /* Every byte offset holds 8 group status bits */
628 irq = (offset - 0x080) * 8 + GIC_BASE_IRQ;
629 if (irq >= s->num_irq) {
630 goto bad_reg;
631 }
632 for (i = 0; i < 8; i++) {
633 if (GIC_TEST_GROUP(irq + i, cm)) {
634 res |= (1 << i);
635 }
636 }
637 }
638 return res;
b79f2265 639 }
e69954b9
PB
640 goto bad_reg;
641 } else if (offset < 0x200) {
642 /* Interrupt Set/Clear Enable. */
643 if (offset < 0x180)
644 irq = (offset - 0x100) * 8;
645 else
646 irq = (offset - 0x180) * 8;
9ee6e8bb 647 irq += GIC_BASE_IRQ;
a32134aa 648 if (irq >= s->num_irq)
e69954b9
PB
649 goto bad_reg;
650 res = 0;
651 for (i = 0; i < 8; i++) {
41bf234d 652 if (GIC_TEST_ENABLED(irq + i, cm)) {
e69954b9
PB
653 res |= (1 << i);
654 }
655 }
656 } else if (offset < 0x300) {
657 /* Interrupt Set/Clear Pending. */
658 if (offset < 0x280)
659 irq = (offset - 0x200) * 8;
660 else
661 irq = (offset - 0x280) * 8;
9ee6e8bb 662 irq += GIC_BASE_IRQ;
a32134aa 663 if (irq >= s->num_irq)
e69954b9
PB
664 goto bad_reg;
665 res = 0;
69253800 666 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
e69954b9 667 for (i = 0; i < 8; i++) {
8d999995 668 if (gic_test_pending(s, irq + i, mask)) {
e69954b9
PB
669 res |= (1 << i);
670 }
671 }
672 } else if (offset < 0x400) {
673 /* Interrupt Active. */
9ee6e8bb 674 irq = (offset - 0x300) * 8 + GIC_BASE_IRQ;
a32134aa 675 if (irq >= s->num_irq)
e69954b9
PB
676 goto bad_reg;
677 res = 0;
69253800 678 mask = (irq < GIC_INTERNAL) ? cm : ALL_CPU_MASK;
e69954b9 679 for (i = 0; i < 8; i++) {
9ee6e8bb 680 if (GIC_TEST_ACTIVE(irq + i, mask)) {
e69954b9
PB
681 res |= (1 << i);
682 }
683 }
684 } else if (offset < 0x800) {
685 /* Interrupt Priority. */
9ee6e8bb 686 irq = (offset - 0x400) + GIC_BASE_IRQ;
a32134aa 687 if (irq >= s->num_irq)
e69954b9 688 goto bad_reg;
81508470 689 res = gic_get_priority(s, cpu, irq, attrs);
e69954b9
PB
690 } else if (offset < 0xc00) {
691 /* Interrupt CPU Target. */
6b9680bb
PM
692 if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
693 /* For uniprocessor GICs these RAZ/WI */
694 res = 0;
9ee6e8bb 695 } else {
6b9680bb
PM
696 irq = (offset - 0x800) + GIC_BASE_IRQ;
697 if (irq >= s->num_irq) {
698 goto bad_reg;
699 }
700 if (irq >= 29 && irq <= 31) {
701 res = cm;
702 } else {
703 res = GIC_TARGET(irq);
704 }
9ee6e8bb 705 }
e69954b9
PB
706 } else if (offset < 0xf00) {
707 /* Interrupt Configuration. */
71a62046 708 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
a32134aa 709 if (irq >= s->num_irq)
e69954b9
PB
710 goto bad_reg;
711 res = 0;
712 for (i = 0; i < 4; i++) {
713 if (GIC_TEST_MODEL(irq + i))
714 res |= (1 << (i * 2));
04050c5c 715 if (GIC_TEST_EDGE_TRIGGER(irq + i))
e69954b9
PB
716 res |= (2 << (i * 2));
717 }
40d22500
CD
718 } else if (offset < 0xf10) {
719 goto bad_reg;
720 } else if (offset < 0xf30) {
721 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
722 goto bad_reg;
723 }
724
725 if (offset < 0xf20) {
726 /* GICD_CPENDSGIRn */
727 irq = (offset - 0xf10);
728 } else {
729 irq = (offset - 0xf20);
730 /* GICD_SPENDSGIRn */
731 }
732
733 res = s->sgi_pending[irq][cpu];
3355c360 734 } else if (offset < 0xfd0) {
e69954b9 735 goto bad_reg;
3355c360 736 } else if (offset < 0x1000) {
e69954b9
PB
737 if (offset & 3) {
738 res = 0;
739 } else {
3355c360
AF
740 switch (s->revision) {
741 case REV_11MPCORE:
742 res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
743 break;
744 case 1:
745 res = gic_id_gicv1[(offset - 0xfd0) >> 2];
746 break;
747 case 2:
748 res = gic_id_gicv2[(offset - 0xfd0) >> 2];
749 break;
750 case REV_NVIC:
751 /* Shouldn't be able to get here */
752 abort();
753 default:
754 res = 0;
755 }
e69954b9 756 }
3355c360
AF
757 } else {
758 g_assert_not_reached();
e69954b9
PB
759 }
760 return res;
761bad_reg:
8c8dc39f
PM
762 qemu_log_mask(LOG_GUEST_ERROR,
763 "gic_dist_readb: Bad offset %x\n", (int)offset);
e69954b9
PB
764 return 0;
765}
766
a9d85353
PM
767static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
768 unsigned size, MemTxAttrs attrs)
e69954b9 769{
a9d85353
PM
770 switch (size) {
771 case 1:
772 *data = gic_dist_readb(opaque, offset, attrs);
773 return MEMTX_OK;
774 case 2:
775 *data = gic_dist_readb(opaque, offset, attrs);
776 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
777 return MEMTX_OK;
778 case 4:
779 *data = gic_dist_readb(opaque, offset, attrs);
780 *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
781 *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
782 *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
783 return MEMTX_OK;
784 default:
785 return MEMTX_ERROR;
786 }
e69954b9
PB
787}
788
a8170e5e 789static void gic_dist_writeb(void *opaque, hwaddr offset,
a9d85353 790 uint32_t value, MemTxAttrs attrs)
e69954b9 791{
fae15286 792 GICState *s = (GICState *)opaque;
e69954b9
PB
793 int irq;
794 int i;
9ee6e8bb 795 int cpu;
e69954b9 796
926c4aff 797 cpu = gic_get_current_cpu(s);
e69954b9
PB
798 if (offset < 0x100) {
799 if (offset == 0) {
679aa175
FA
800 if (s->security_extn && !attrs.secure) {
801 /* NS version is just an alias of the S version's bit 1 */
802 s->ctlr = deposit32(s->ctlr, 1, 1, value);
803 } else if (gic_has_groups(s)) {
804 s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
805 } else {
806 s->ctlr = value & GICD_CTLR_EN_GRP0;
807 }
808 DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
809 s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
810 s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
e69954b9
PB
811 } else if (offset < 4) {
812 /* ignored. */
b79f2265 813 } else if (offset >= 0x80) {
c27a5ba9
FA
814 /* Interrupt Group Registers: RAZ/WI for NS access to secure
815 * GIC, or for GICs without groups.
816 */
817 if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
818 /* Every byte offset holds 8 group status bits */
819 irq = (offset - 0x80) * 8 + GIC_BASE_IRQ;
820 if (irq >= s->num_irq) {
821 goto bad_reg;
822 }
823 for (i = 0; i < 8; i++) {
824 /* Group bits are banked for private interrupts */
825 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
826 if (value & (1 << i)) {
827 /* Group1 (Non-secure) */
828 GIC_SET_GROUP(irq + i, cm);
829 } else {
830 /* Group0 (Secure) */
831 GIC_CLEAR_GROUP(irq + i, cm);
832 }
833 }
834 }
e69954b9
PB
835 } else {
836 goto bad_reg;
837 }
838 } else if (offset < 0x180) {
839 /* Interrupt Set Enable. */
9ee6e8bb 840 irq = (offset - 0x100) * 8 + GIC_BASE_IRQ;
a32134aa 841 if (irq >= s->num_irq)
e69954b9 842 goto bad_reg;
41ab7b55
CD
843 if (irq < GIC_NR_SGIS) {
844 value = 0xff;
845 }
846
e69954b9
PB
847 for (i = 0; i < 8; i++) {
848 if (value & (1 << i)) {
f47b48fb
DS
849 int mask =
850 (irq < GIC_INTERNAL) ? (1 << cpu) : GIC_TARGET(irq + i);
69253800 851 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
41bf234d
RV
852
853 if (!GIC_TEST_ENABLED(irq + i, cm)) {
e69954b9 854 DPRINTF("Enabled IRQ %d\n", irq + i);
41bf234d
RV
855 }
856 GIC_SET_ENABLED(irq + i, cm);
e69954b9
PB
857 /* If a raised level triggered IRQ enabled then mark
858 is as pending. */
9ee6e8bb 859 if (GIC_TEST_LEVEL(irq + i, mask)
04050c5c 860 && !GIC_TEST_EDGE_TRIGGER(irq + i)) {
9ee6e8bb
PB
861 DPRINTF("Set %d pending mask %x\n", irq + i, mask);
862 GIC_SET_PENDING(irq + i, mask);
863 }
e69954b9
PB
864 }
865 }
866 } else if (offset < 0x200) {
867 /* Interrupt Clear Enable. */
9ee6e8bb 868 irq = (offset - 0x180) * 8 + GIC_BASE_IRQ;
a32134aa 869 if (irq >= s->num_irq)
e69954b9 870 goto bad_reg;
41ab7b55
CD
871 if (irq < GIC_NR_SGIS) {
872 value = 0;
873 }
874
e69954b9
PB
875 for (i = 0; i < 8; i++) {
876 if (value & (1 << i)) {
69253800 877 int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
41bf234d
RV
878
879 if (GIC_TEST_ENABLED(irq + i, cm)) {
e69954b9 880 DPRINTF("Disabled IRQ %d\n", irq + i);
41bf234d
RV
881 }
882 GIC_CLEAR_ENABLED(irq + i, cm);
e69954b9
PB
883 }
884 }
885 } else if (offset < 0x280) {
886 /* Interrupt Set Pending. */
9ee6e8bb 887 irq = (offset - 0x200) * 8 + GIC_BASE_IRQ;
a32134aa 888 if (irq >= s->num_irq)
e69954b9 889 goto bad_reg;
41ab7b55 890 if (irq < GIC_NR_SGIS) {
5b0adce1 891 value = 0;
41ab7b55 892 }
9ee6e8bb 893
e69954b9
PB
894 for (i = 0; i < 8; i++) {
895 if (value & (1 << i)) {
f47b48fb 896 GIC_SET_PENDING(irq + i, GIC_TARGET(irq + i));
e69954b9
PB
897 }
898 }
899 } else if (offset < 0x300) {
900 /* Interrupt Clear Pending. */
9ee6e8bb 901 irq = (offset - 0x280) * 8 + GIC_BASE_IRQ;
a32134aa 902 if (irq >= s->num_irq)
e69954b9 903 goto bad_reg;
5b0adce1
CD
904 if (irq < GIC_NR_SGIS) {
905 value = 0;
906 }
907
e69954b9 908 for (i = 0; i < 8; i++) {
9ee6e8bb
PB
909 /* ??? This currently clears the pending bit for all CPUs, even
910 for per-CPU interrupts. It's unclear whether this is the
911 corect behavior. */
e69954b9 912 if (value & (1 << i)) {
9ee6e8bb 913 GIC_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
e69954b9
PB
914 }
915 }
916 } else if (offset < 0x400) {
917 /* Interrupt Active. */
918 goto bad_reg;
919 } else if (offset < 0x800) {
920 /* Interrupt Priority. */
9ee6e8bb 921 irq = (offset - 0x400) + GIC_BASE_IRQ;
a32134aa 922 if (irq >= s->num_irq)
e69954b9 923 goto bad_reg;
81508470 924 gic_set_priority(s, cpu, irq, value, attrs);
e69954b9 925 } else if (offset < 0xc00) {
6b9680bb
PM
926 /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
927 * annoying exception of the 11MPCore's GIC.
928 */
929 if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
930 irq = (offset - 0x800) + GIC_BASE_IRQ;
931 if (irq >= s->num_irq) {
932 goto bad_reg;
933 }
934 if (irq < 29) {
935 value = 0;
936 } else if (irq < GIC_INTERNAL) {
937 value = ALL_CPU_MASK;
938 }
939 s->irq_target[irq] = value & ALL_CPU_MASK;
940 }
e69954b9
PB
941 } else if (offset < 0xf00) {
942 /* Interrupt Configuration. */
9ee6e8bb 943 irq = (offset - 0xc00) * 4 + GIC_BASE_IRQ;
a32134aa 944 if (irq >= s->num_irq)
e69954b9 945 goto bad_reg;
de7a900f 946 if (irq < GIC_NR_SGIS)
9ee6e8bb 947 value |= 0xaa;
e69954b9 948 for (i = 0; i < 4; i++) {
24b790df
AL
949 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
950 if (value & (1 << (i * 2))) {
951 GIC_SET_MODEL(irq + i);
952 } else {
953 GIC_CLEAR_MODEL(irq + i);
954 }
e69954b9
PB
955 }
956 if (value & (2 << (i * 2))) {
04050c5c 957 GIC_SET_EDGE_TRIGGER(irq + i);
e69954b9 958 } else {
04050c5c 959 GIC_CLEAR_EDGE_TRIGGER(irq + i);
e69954b9
PB
960 }
961 }
40d22500 962 } else if (offset < 0xf10) {
9ee6e8bb 963 /* 0xf00 is only handled for 32-bit writes. */
e69954b9 964 goto bad_reg;
40d22500
CD
965 } else if (offset < 0xf20) {
966 /* GICD_CPENDSGIRn */
967 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
968 goto bad_reg;
969 }
970 irq = (offset - 0xf10);
971
972 s->sgi_pending[irq][cpu] &= ~value;
973 if (s->sgi_pending[irq][cpu] == 0) {
974 GIC_CLEAR_PENDING(irq, 1 << cpu);
975 }
976 } else if (offset < 0xf30) {
977 /* GICD_SPENDSGIRn */
978 if (s->revision == REV_11MPCORE || s->revision == REV_NVIC) {
979 goto bad_reg;
980 }
981 irq = (offset - 0xf20);
982
983 GIC_SET_PENDING(irq, 1 << cpu);
984 s->sgi_pending[irq][cpu] |= value;
985 } else {
986 goto bad_reg;
e69954b9
PB
987 }
988 gic_update(s);
989 return;
990bad_reg:
8c8dc39f
PM
991 qemu_log_mask(LOG_GUEST_ERROR,
992 "gic_dist_writeb: Bad offset %x\n", (int)offset);
e69954b9
PB
993}
994
a8170e5e 995static void gic_dist_writew(void *opaque, hwaddr offset,
a9d85353 996 uint32_t value, MemTxAttrs attrs)
e69954b9 997{
a9d85353
PM
998 gic_dist_writeb(opaque, offset, value & 0xff, attrs);
999 gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
e69954b9
PB
1000}
1001
a8170e5e 1002static void gic_dist_writel(void *opaque, hwaddr offset,
a9d85353 1003 uint32_t value, MemTxAttrs attrs)
e69954b9 1004{
fae15286 1005 GICState *s = (GICState *)opaque;
8da3ff18 1006 if (offset == 0xf00) {
9ee6e8bb
PB
1007 int cpu;
1008 int irq;
1009 int mask;
40d22500 1010 int target_cpu;
9ee6e8bb 1011
926c4aff 1012 cpu = gic_get_current_cpu(s);
9ee6e8bb
PB
1013 irq = value & 0x3ff;
1014 switch ((value >> 24) & 3) {
1015 case 0:
1016 mask = (value >> 16) & ALL_CPU_MASK;
1017 break;
1018 case 1:
fa250144 1019 mask = ALL_CPU_MASK ^ (1 << cpu);
9ee6e8bb
PB
1020 break;
1021 case 2:
fa250144 1022 mask = 1 << cpu;
9ee6e8bb
PB
1023 break;
1024 default:
1025 DPRINTF("Bad Soft Int target filter\n");
1026 mask = ALL_CPU_MASK;
1027 break;
1028 }
1029 GIC_SET_PENDING(irq, mask);
40d22500
CD
1030 target_cpu = ctz32(mask);
1031 while (target_cpu < GIC_NCPU) {
1032 s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1033 mask &= ~(1 << target_cpu);
1034 target_cpu = ctz32(mask);
1035 }
9ee6e8bb
PB
1036 gic_update(s);
1037 return;
1038 }
a9d85353
PM
1039 gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1040 gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1041}
1042
1043static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1044 unsigned size, MemTxAttrs attrs)
1045{
1046 switch (size) {
1047 case 1:
1048 gic_dist_writeb(opaque, offset, data, attrs);
1049 return MEMTX_OK;
1050 case 2:
1051 gic_dist_writew(opaque, offset, data, attrs);
1052 return MEMTX_OK;
1053 case 4:
1054 gic_dist_writel(opaque, offset, data, attrs);
1055 return MEMTX_OK;
1056 default:
1057 return MEMTX_ERROR;
1058 }
e69954b9
PB
1059}
1060
51fd06e0
PM
1061static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1062{
1063 /* Return the Nonsecure view of GICC_APR<regno>. This is the
1064 * second half of GICC_NSAPR.
1065 */
1066 switch (GIC_MIN_BPR) {
1067 case 0:
1068 if (regno < 2) {
1069 return s->nsapr[regno + 2][cpu];
1070 }
1071 break;
1072 case 1:
1073 if (regno == 0) {
1074 return s->nsapr[regno + 1][cpu];
1075 }
1076 break;
1077 case 2:
1078 if (regno == 0) {
1079 return extract32(s->nsapr[0][cpu], 16, 16);
1080 }
1081 break;
1082 case 3:
1083 if (regno == 0) {
1084 return extract32(s->nsapr[0][cpu], 8, 8);
1085 }
1086 break;
1087 default:
1088 g_assert_not_reached();
1089 }
1090 return 0;
1091}
1092
1093static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1094 uint32_t value)
1095{
1096 /* Write the Nonsecure view of GICC_APR<regno>. */
1097 switch (GIC_MIN_BPR) {
1098 case 0:
1099 if (regno < 2) {
1100 s->nsapr[regno + 2][cpu] = value;
1101 }
1102 break;
1103 case 1:
1104 if (regno == 0) {
1105 s->nsapr[regno + 1][cpu] = value;
1106 }
1107 break;
1108 case 2:
1109 if (regno == 0) {
1110 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1111 }
1112 break;
1113 case 3:
1114 if (regno == 0) {
1115 s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1116 }
1117 break;
1118 default:
1119 g_assert_not_reached();
1120 }
1121}
1122
a9d85353
PM
1123static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1124 uint64_t *data, MemTxAttrs attrs)
e69954b9 1125{
e69954b9
PB
1126 switch (offset) {
1127 case 0x00: /* Control */
32951860 1128 *data = gic_get_cpu_control(s, cpu, attrs);
a9d85353 1129 break;
e69954b9 1130 case 0x04: /* Priority mask */
81508470 1131 *data = gic_get_priority_mask(s, cpu, attrs);
a9d85353 1132 break;
e69954b9 1133 case 0x08: /* Binary Point */
822e9cc3
FA
1134 if (s->security_extn && !attrs.secure) {
1135 /* BPR is banked. Non-secure copy stored in ABPR. */
1136 *data = s->abpr[cpu];
1137 } else {
1138 *data = s->bpr[cpu];
1139 }
a9d85353 1140 break;
e69954b9 1141 case 0x0c: /* Acknowledge */
c5619bf9 1142 *data = gic_acknowledge_irq(s, cpu, attrs);
a9d85353 1143 break;
66a0a2cb 1144 case 0x14: /* Running Priority */
08efa9f2 1145 *data = gic_get_running_priority(s, cpu, attrs);
a9d85353 1146 break;
e69954b9 1147 case 0x18: /* Highest Pending Interrupt */
7c0fa108 1148 *data = gic_get_current_pending_irq(s, cpu, attrs);
a9d85353 1149 break;
aa7d461a 1150 case 0x1c: /* Aliased Binary Point */
822e9cc3
FA
1151 /* GIC v2, no security: ABPR
1152 * GIC v1, no security: not implemented (RAZ/WI)
1153 * With security extensions, secure access: ABPR (alias of NS BPR)
1154 * With security extensions, nonsecure access: RAZ/WI
1155 */
1156 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1157 *data = 0;
1158 } else {
1159 *data = s->abpr[cpu];
1160 }
a9d85353 1161 break;
a9d477c4 1162 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
51fd06e0
PM
1163 {
1164 int regno = (offset - 0xd0) / 4;
1165
1166 if (regno >= GIC_NR_APRS || s->revision != 2) {
1167 *data = 0;
1168 } else if (s->security_extn && !attrs.secure) {
1169 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1170 *data = gic_apr_ns_view(s, regno, cpu);
1171 } else {
1172 *data = s->apr[regno][cpu];
1173 }
a9d85353 1174 break;
51fd06e0
PM
1175 }
1176 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1177 {
1178 int regno = (offset - 0xe0) / 4;
1179
1180 if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1181 (s->security_extn && !attrs.secure)) {
1182 *data = 0;
1183 } else {
1184 *data = s->nsapr[regno][cpu];
1185 }
1186 break;
1187 }
e69954b9 1188 default:
8c8dc39f
PM
1189 qemu_log_mask(LOG_GUEST_ERROR,
1190 "gic_cpu_read: Bad offset %x\n", (int)offset);
a9d85353 1191 return MEMTX_ERROR;
e69954b9 1192 }
a9d85353 1193 return MEMTX_OK;
e69954b9
PB
1194}
1195
a9d85353
PM
1196static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1197 uint32_t value, MemTxAttrs attrs)
e69954b9 1198{
e69954b9
PB
1199 switch (offset) {
1200 case 0x00: /* Control */
32951860 1201 gic_set_cpu_control(s, cpu, value, attrs);
e69954b9
PB
1202 break;
1203 case 0x04: /* Priority mask */
81508470 1204 gic_set_priority_mask(s, cpu, value, attrs);
e69954b9
PB
1205 break;
1206 case 0x08: /* Binary Point */
822e9cc3
FA
1207 if (s->security_extn && !attrs.secure) {
1208 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1209 } else {
1210 s->bpr[cpu] = MAX(value & 0x7, GIC_MIN_BPR);
1211 }
e69954b9
PB
1212 break;
1213 case 0x10: /* End Of Interrupt */
f9c6a7f1 1214 gic_complete_irq(s, cpu, value & 0x3ff, attrs);
a9d85353 1215 return MEMTX_OK;
aa7d461a 1216 case 0x1c: /* Aliased Binary Point */
822e9cc3
FA
1217 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1218 /* unimplemented, or NS access: RAZ/WI */
1219 return MEMTX_OK;
1220 } else {
1221 s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
aa7d461a
CD
1222 }
1223 break;
a9d477c4 1224 case 0xd0: case 0xd4: case 0xd8: case 0xdc:
51fd06e0
PM
1225 {
1226 int regno = (offset - 0xd0) / 4;
1227
1228 if (regno >= GIC_NR_APRS || s->revision != 2) {
1229 return MEMTX_OK;
1230 }
1231 if (s->security_extn && !attrs.secure) {
1232 /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1233 gic_apr_write_ns_view(s, regno, cpu, value);
1234 } else {
1235 s->apr[regno][cpu] = value;
1236 }
1237 break;
1238 }
1239 case 0xe0: case 0xe4: case 0xe8: case 0xec:
1240 {
1241 int regno = (offset - 0xe0) / 4;
1242
1243 if (regno >= GIC_NR_APRS || s->revision != 2) {
1244 return MEMTX_OK;
1245 }
1246 if (!gic_has_groups(s) || (s->security_extn && !attrs.secure)) {
1247 return MEMTX_OK;
1248 }
1249 s->nsapr[regno][cpu] = value;
a9d477c4 1250 break;
51fd06e0 1251 }
a55c910e
PM
1252 case 0x1000:
1253 /* GICC_DIR */
1254 gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1255 break;
e69954b9 1256 default:
8c8dc39f
PM
1257 qemu_log_mask(LOG_GUEST_ERROR,
1258 "gic_cpu_write: Bad offset %x\n", (int)offset);
a9d85353 1259 return MEMTX_ERROR;
e69954b9
PB
1260 }
1261 gic_update(s);
a9d85353 1262 return MEMTX_OK;
e69954b9 1263}
e2c56465
PM
1264
1265/* Wrappers to read/write the GIC CPU interface for the current CPU */
a9d85353
PM
1266static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1267 unsigned size, MemTxAttrs attrs)
e2c56465 1268{
fae15286 1269 GICState *s = (GICState *)opaque;
a9d85353 1270 return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
e2c56465
PM
1271}
1272
a9d85353
PM
1273static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1274 uint64_t value, unsigned size,
1275 MemTxAttrs attrs)
e2c56465 1276{
fae15286 1277 GICState *s = (GICState *)opaque;
a9d85353 1278 return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
e2c56465
PM
1279}
1280
1281/* Wrappers to read/write the GIC CPU interface for a specific CPU.
fae15286 1282 * These just decode the opaque pointer into GICState* + cpu id.
e2c56465 1283 */
a9d85353
PM
1284static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1285 unsigned size, MemTxAttrs attrs)
e2c56465 1286{
fae15286
PM
1287 GICState **backref = (GICState **)opaque;
1288 GICState *s = *backref;
e2c56465 1289 int id = (backref - s->backref);
a9d85353 1290 return gic_cpu_read(s, id, addr, data, attrs);
e2c56465
PM
1291}
1292
a9d85353
PM
1293static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1294 uint64_t value, unsigned size,
1295 MemTxAttrs attrs)
e2c56465 1296{
fae15286
PM
1297 GICState **backref = (GICState **)opaque;
1298 GICState *s = *backref;
e2c56465 1299 int id = (backref - s->backref);
a9d85353 1300 return gic_cpu_write(s, id, addr, value, attrs);
e2c56465
PM
1301}
1302
7926c210
PF
1303static const MemoryRegionOps gic_ops[2] = {
1304 {
1305 .read_with_attrs = gic_dist_read,
1306 .write_with_attrs = gic_dist_write,
1307 .endianness = DEVICE_NATIVE_ENDIAN,
1308 },
1309 {
1310 .read_with_attrs = gic_thiscpu_read,
1311 .write_with_attrs = gic_thiscpu_write,
1312 .endianness = DEVICE_NATIVE_ENDIAN,
1313 }
e2c56465
PM
1314};
1315
1316static const MemoryRegionOps gic_cpu_ops = {
a9d85353
PM
1317 .read_with_attrs = gic_do_cpu_read,
1318 .write_with_attrs = gic_do_cpu_write,
e2c56465
PM
1319 .endianness = DEVICE_NATIVE_ENDIAN,
1320};
e69954b9 1321
7926c210 1322/* This function is used by nvic model */
7b95a508 1323void gic_init_irqs_and_distributor(GICState *s)
e69954b9 1324{
7926c210 1325 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
2b518c56
PM
1326}
1327
53111180 1328static void arm_gic_realize(DeviceState *dev, Error **errp)
2b518c56 1329{
53111180 1330 /* Device instance realize function for the GIC sysbus device */
2b518c56 1331 int i;
53111180
PM
1332 GICState *s = ARM_GIC(dev);
1333 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1e8cae4d 1334 ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
0175ba10 1335 Error *local_err = NULL;
1e8cae4d 1336
0175ba10
MA
1337 agc->parent_realize(dev, &local_err);
1338 if (local_err) {
1339 error_propagate(errp, local_err);
53111180
PM
1340 return;
1341 }
1e8cae4d 1342
7926c210
PF
1343 /* This creates distributor and main CPU interface (s->cpuiomem[0]) */
1344 gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops);
2b518c56 1345
7926c210
PF
1346 /* Extra core-specific regions for the CPU interfaces. This is
1347 * necessary for "franken-GIC" implementations, for example on
1348 * Exynos 4.
e2c56465
PM
1349 * NB that the memory region size of 0x100 applies for the 11MPCore
1350 * and also cores following the GIC v1 spec (ie A9).
1351 * GIC v2 defines a larger memory region (0x1000) so this will need
1352 * to be extended when we implement A15.
1353 */
b95690c9 1354 for (i = 0; i < s->num_cpu; i++) {
e2c56465 1355 s->backref[i] = s;
1437c94b
PB
1356 memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
1357 &s->backref[i], "gic_cpu", 0x100);
7926c210 1358 sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
496dbcd1 1359 }
496dbcd1
PM
1360}
1361
496dbcd1
PM
1362static void arm_gic_class_init(ObjectClass *klass, void *data)
1363{
1364 DeviceClass *dc = DEVICE_CLASS(klass);
1e8cae4d 1365 ARMGICClass *agc = ARM_GIC_CLASS(klass);
53111180 1366
53111180
PM
1367 agc->parent_realize = dc->realize;
1368 dc->realize = arm_gic_realize;
496dbcd1
PM
1369}
1370
8c43a6f0 1371static const TypeInfo arm_gic_info = {
1e8cae4d
PM
1372 .name = TYPE_ARM_GIC,
1373 .parent = TYPE_ARM_GIC_COMMON,
fae15286 1374 .instance_size = sizeof(GICState),
496dbcd1 1375 .class_init = arm_gic_class_init,
998a74bc 1376 .class_size = sizeof(ARMGICClass),
496dbcd1
PM
1377};
1378
1379static void arm_gic_register_types(void)
1380{
1381 type_register_static(&arm_gic_info);
1382}
1383
1384type_init(arm_gic_register_types)