]> git.proxmox.com Git - mirror_qemu.git/blame - hw/intc/arm_gicv3_cpuif.c
hw/intc/arm_gicv3_redist: Implement gicv3_redist_inv_vlpi()
[mirror_qemu.git] / hw / intc / arm_gicv3_cpuif.c
CommitLineData
359fbe65 1/*
a1d742d8 2 * ARM Generic Interrupt Controller v3 (emulation)
359fbe65
PM
3 *
4 * Copyright (c) 2016 Linaro Limited
5 * Written by Peter Maydell
6 *
7 * This code is licensed under the GPL, version 2 or (at your option)
8 * any later version.
9 */
10
11/* This file contains the code for the system register interface
12 * portions of the GICv3.
13 */
14
15#include "qemu/osdep.h"
77620ba6 16#include "qemu/bitops.h"
96a664d0 17#include "qemu/log.h"
8d04fb55 18#include "qemu/main-loop.h"
359fbe65
PM
19#include "trace.h"
20#include "gicv3_internal.h"
64552b6b 21#include "hw/irq.h"
359fbe65
PM
22#include "cpu.h"
23
c3f21b06
PM
24/*
25 * Special case return value from hppvi_index(); must be larger than
26 * the architecturally maximum possible list register index (which is 15)
27 */
28#define HPPVI_INDEX_VLPI 16
29
359fbe65
PM
30static GICv3CPUState *icc_cs_from_env(CPUARMState *env)
31{
d5a5e4c9 32 return env->gicv3state;
359fbe65
PM
33}
34
35static bool gicv3_use_ns_bank(CPUARMState *env)
36{
37 /* Return true if we should use the NonSecure bank for a banked GIC
38 * CPU interface register. Note that this differs from the
39 * access_secure_reg() function because GICv3 banked registers are
40 * banked even for AArch64, unlike the other CPU system registers.
41 */
42 return !arm_is_secure_below_el3(env);
43}
44
4eb833b5
PM
45/* The minimum BPR for the virtual interface is a configurable property */
46static inline int icv_min_vbpr(GICv3CPUState *cs)
47{
48 return 7 - cs->vprebits;
49}
50
83f036fe 51/* Simple accessor functions for LR fields */
df313f48
PM
52static uint32_t ich_lr_vintid(uint64_t lr)
53{
54 return extract64(lr, ICH_LR_EL2_VINTID_SHIFT, ICH_LR_EL2_VINTID_LENGTH);
55}
56
57static uint32_t ich_lr_pintid(uint64_t lr)
58{
59 return extract64(lr, ICH_LR_EL2_PINTID_SHIFT, ICH_LR_EL2_PINTID_LENGTH);
60}
61
62static uint32_t ich_lr_prio(uint64_t lr)
63{
64 return extract64(lr, ICH_LR_EL2_PRIORITY_SHIFT, ICH_LR_EL2_PRIORITY_LENGTH);
65}
66
83f036fe
PM
67static int ich_lr_state(uint64_t lr)
68{
69 return extract64(lr, ICH_LR_EL2_STATE_SHIFT, ICH_LR_EL2_STATE_LENGTH);
70}
71
77620ba6
PM
72static bool icv_access(CPUARMState *env, int hcr_flags)
73{
74 /* Return true if this ICC_ register access should really be
75 * directed to an ICV_ access. hcr_flags is a mask of
76 * HCR_EL2 bits to check: we treat this as an ICV_ access
77 * if we are in NS EL1 and at least one of the specified
78 * HCR_EL2 bits is set.
79 *
80 * ICV registers fall into four categories:
81 * * access if NS EL1 and HCR_EL2.FMO == 1:
82 * all ICV regs with '0' in their name
83 * * access if NS EL1 and HCR_EL2.IMO == 1:
84 * all ICV regs with '1' in their name
85 * * access if NS EL1 and either IMO or FMO == 1:
86 * CTLR, DIR, PMR, RPR
87 */
f7778444
RH
88 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
89 bool flagmatch = hcr_el2 & hcr_flags & (HCR_IMO | HCR_FMO);
ac656b16
PM
90
91 return flagmatch && arm_current_el(env) == 1
77620ba6
PM
92 && !arm_is_secure_below_el3(env);
93}
94
83f036fe
PM
95static int read_vbpr(GICv3CPUState *cs, int grp)
96{
97 /* Read VBPR value out of the VMCR field (caller must handle
98 * VCBPR effects if required)
99 */
100 if (grp == GICV3_G0) {
101 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
102 ICH_VMCR_EL2_VBPR0_LENGTH);
103 } else {
104 return extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
105 ICH_VMCR_EL2_VBPR1_LENGTH);
106 }
107}
108
109static void write_vbpr(GICv3CPUState *cs, int grp, int value)
110{
111 /* Write new VBPR1 value, handling the "writing a value less than
112 * the minimum sets it to the minimum" semantics.
113 */
114 int min = icv_min_vbpr(cs);
115
116 if (grp != GICV3_G0) {
117 min++;
118 }
119
120 value = MAX(value, min);
121
122 if (grp == GICV3_G0) {
123 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR0_SHIFT,
124 ICH_VMCR_EL2_VBPR0_LENGTH, value);
125 } else {
126 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VBPR1_SHIFT,
127 ICH_VMCR_EL2_VBPR1_LENGTH, value);
128 }
129}
130
77620ba6
PM
131static uint32_t icv_fullprio_mask(GICv3CPUState *cs)
132{
133 /* Return a mask word which clears the unimplemented priority bits
134 * from a priority value for a virtual interrupt. (Not to be confused
135 * with the group priority, whose mask depends on the value of VBPR
136 * for the interrupt group.)
137 */
138 return ~0U << (8 - cs->vpribits);
139}
140
df313f48
PM
141static int ich_highest_active_virt_prio(GICv3CPUState *cs)
142{
143 /* Calculate the current running priority based on the set bits
144 * in the ICH Active Priority Registers.
145 */
146 int i;
147 int aprmax = 1 << (cs->vprebits - 5);
148
149 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
150
151 for (i = 0; i < aprmax; i++) {
152 uint32_t apr = cs->ich_apr[GICV3_G0][i] |
153 cs->ich_apr[GICV3_G1NS][i];
154
155 if (!apr) {
156 continue;
157 }
158 return (i * 32 + ctz32(apr)) << (icv_min_vbpr(cs) + 1);
159 }
160 /* No current active interrupts: return idle priority */
161 return 0xff;
162}
163
164static int hppvi_index(GICv3CPUState *cs)
165{
c3f21b06
PM
166 /*
167 * Return the list register index of the highest priority pending
df313f48
PM
168 * virtual interrupt, as per the HighestPriorityVirtualInterrupt
169 * pseudocode. If no pending virtual interrupts, return -1.
c3f21b06
PM
170 * If the highest priority pending virtual interrupt is a vLPI,
171 * return HPPVI_INDEX_VLPI.
172 * (The pseudocode handles checking whether the vLPI is higher
173 * priority than the highest priority list register at every
174 * callsite of HighestPriorityVirtualInterrupt; we check it here.)
df313f48 175 */
c3f21b06
PM
176 ARMCPU *cpu = ARM_CPU(cs->cpu);
177 CPUARMState *env = &cpu->env;
df313f48
PM
178 int idx = -1;
179 int i;
180 /* Note that a list register entry with a priority of 0xff will
181 * never be reported by this function; this is the architecturally
182 * correct behaviour.
183 */
184 int prio = 0xff;
185
186 if (!(cs->ich_vmcr_el2 & (ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1))) {
187 /* Both groups disabled, definitely nothing to do */
188 return idx;
189 }
190
191 for (i = 0; i < cs->num_list_regs; i++) {
192 uint64_t lr = cs->ich_lr_el2[i];
193 int thisprio;
194
195 if (ich_lr_state(lr) != ICH_LR_EL2_STATE_PENDING) {
196 /* Not Pending */
197 continue;
198 }
199
200 /* Ignore interrupts if relevant group enable not set */
201 if (lr & ICH_LR_EL2_GROUP) {
202 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
203 continue;
204 }
205 } else {
206 if (!(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
207 continue;
208 }
209 }
210
211 thisprio = ich_lr_prio(lr);
212
213 if (thisprio < prio) {
214 prio = thisprio;
215 idx = i;
216 }
217 }
218
c3f21b06
PM
219 /*
220 * "no pending vLPI" is indicated with prio = 0xff, which always
221 * fails the priority check here. vLPIs are only considered
222 * when we are in Non-Secure state.
223 */
224 if (cs->hppvlpi.prio < prio && !arm_is_secure(env)) {
225 if (cs->hppvlpi.grp == GICV3_G0) {
226 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0) {
227 return HPPVI_INDEX_VLPI;
228 }
229 } else {
230 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1) {
231 return HPPVI_INDEX_VLPI;
232 }
233 }
234 }
235
df313f48
PM
236 return idx;
237}
238
b3b48f52
PM
239static uint32_t icv_gprio_mask(GICv3CPUState *cs, int group)
240{
241 /* Return a mask word which clears the subpriority bits from
242 * a priority value for a virtual interrupt in the specified group.
a89ff39e
PM
243 * This depends on the VBPR value.
244 * If using VBPR0 then:
b3b48f52
PM
245 * a BPR of 0 means the group priority bits are [7:1];
246 * a BPR of 1 means they are [7:2], and so on down to
247 * a BPR of 7 meaning no group priority bits at all.
a89ff39e
PM
248 * If using VBPR1 then:
249 * a BPR of 0 is impossible (the minimum value is 1)
250 * a BPR of 1 means the group priority bits are [7:1];
251 * a BPR of 2 means they are [7:2], and so on down to
252 * a BPR of 7 meaning the group priority is [7].
253 *
b3b48f52
PM
254 * Which BPR to use depends on the group of the interrupt and
255 * the current ICH_VMCR_EL2.VCBPR settings.
a89ff39e
PM
256 *
257 * This corresponds to the VGroupBits() pseudocode.
b3b48f52 258 */
a89ff39e
PM
259 int bpr;
260
b3b48f52
PM
261 if (group == GICV3_G1NS && cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
262 group = GICV3_G0;
263 }
264
a89ff39e
PM
265 bpr = read_vbpr(cs, group);
266 if (group == GICV3_G1NS) {
267 assert(bpr > 0);
268 bpr--;
269 }
270
271 return ~0U << (bpr + 1);
b3b48f52
PM
272}
273
274static bool icv_hppi_can_preempt(GICv3CPUState *cs, uint64_t lr)
275{
276 /* Return true if we can signal this virtual interrupt defined by
277 * the given list register value; see the pseudocode functions
278 * CanSignalVirtualInterrupt and CanSignalVirtualInt.
279 * Compare also icc_hppi_can_preempt() which is the non-virtual
280 * equivalent of these checks.
281 */
282 int grp;
283 uint32_t mask, prio, rprio, vpmr;
284
285 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
286 /* Virtual interface disabled */
287 return false;
288 }
289
290 /* We don't need to check that this LR is in Pending state because
291 * that has already been done in hppvi_index().
292 */
293
294 prio = ich_lr_prio(lr);
295 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
296 ICH_VMCR_EL2_VPMR_LENGTH);
297
298 if (prio >= vpmr) {
299 /* Priority mask masks this interrupt */
300 return false;
301 }
302
303 rprio = ich_highest_active_virt_prio(cs);
304 if (rprio == 0xff) {
305 /* No running interrupt so we can preempt */
306 return true;
307 }
308
309 grp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
310
311 mask = icv_gprio_mask(cs, grp);
312
313 /* We only preempt a running interrupt if the pending interrupt's
314 * group priority is sufficient (the subpriorities are not considered).
315 */
316 if ((prio & mask) < (rprio & mask)) {
317 return true;
318 }
319
320 return false;
321}
322
c3f21b06
PM
323static bool icv_hppvlpi_can_preempt(GICv3CPUState *cs)
324{
325 /*
326 * Return true if we can signal the highest priority pending vLPI.
327 * We can assume we're Non-secure because hppvi_index() already
328 * tested for that.
329 */
330 uint32_t mask, rprio, vpmr;
331
332 if (!(cs->ich_hcr_el2 & ICH_HCR_EL2_EN)) {
333 /* Virtual interface disabled */
334 return false;
335 }
336
337 vpmr = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
338 ICH_VMCR_EL2_VPMR_LENGTH);
339
340 if (cs->hppvlpi.prio >= vpmr) {
341 /* Priority mask masks this interrupt */
342 return false;
343 }
344
345 rprio = ich_highest_active_virt_prio(cs);
346 if (rprio == 0xff) {
347 /* No running interrupt so we can preempt */
348 return true;
349 }
350
351 mask = icv_gprio_mask(cs, cs->hppvlpi.grp);
352
353 /*
354 * We only preempt a running interrupt if the pending interrupt's
355 * group priority is sufficient (the subpriorities are not considered).
356 */
357 if ((cs->hppvlpi.prio & mask) < (rprio & mask)) {
358 return true;
359 }
360
361 return false;
362}
363
83f036fe
PM
364static uint32_t eoi_maintenance_interrupt_state(GICv3CPUState *cs,
365 uint32_t *misr)
366{
367 /* Return a set of bits indicating the EOI maintenance interrupt status
368 * for each list register. The EOI maintenance interrupt status is
369 * 1 if LR.State == 0 && LR.HW == 0 && LR.EOI == 1
370 * (see the GICv3 spec for the ICH_EISR_EL2 register).
371 * If misr is not NULL then we should also collect the information
372 * about the MISR.EOI, MISR.NP and MISR.U bits.
373 */
374 uint32_t value = 0;
375 int validcount = 0;
376 bool seenpending = false;
377 int i;
378
379 for (i = 0; i < cs->num_list_regs; i++) {
380 uint64_t lr = cs->ich_lr_el2[i];
381
382 if ((lr & (ICH_LR_EL2_STATE_MASK | ICH_LR_EL2_HW | ICH_LR_EL2_EOI))
383 == ICH_LR_EL2_EOI) {
384 value |= (1 << i);
385 }
386 if ((lr & ICH_LR_EL2_STATE_MASK)) {
387 validcount++;
388 }
389 if (ich_lr_state(lr) == ICH_LR_EL2_STATE_PENDING) {
390 seenpending = true;
391 }
392 }
393
394 if (misr) {
395 if (validcount < 2 && (cs->ich_hcr_el2 & ICH_HCR_EL2_UIE)) {
396 *misr |= ICH_MISR_EL2_U;
397 }
398 if (!seenpending && (cs->ich_hcr_el2 & ICH_HCR_EL2_NPIE)) {
399 *misr |= ICH_MISR_EL2_NP;
400 }
401 if (value) {
402 *misr |= ICH_MISR_EL2_EOI;
403 }
404 }
405 return value;
406}
407
408static uint32_t maintenance_interrupt_state(GICv3CPUState *cs)
409{
410 /* Return a set of bits indicating the maintenance interrupt status
411 * (as seen in the ICH_MISR_EL2 register).
412 */
413 uint32_t value = 0;
414
415 /* Scan list registers and fill in the U, NP and EOI bits */
416 eoi_maintenance_interrupt_state(cs, &value);
417
2958e515
DH
418 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_LRENPIE) &&
419 (cs->ich_hcr_el2 & ICH_HCR_EL2_EOICOUNT_MASK)) {
83f036fe
PM
420 value |= ICH_MISR_EL2_LRENP;
421 }
422
423 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0EIE) &&
424 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG0)) {
425 value |= ICH_MISR_EL2_VGRP0E;
426 }
427
428 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP0DIE) &&
429 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
430 value |= ICH_MISR_EL2_VGRP0D;
431 }
432 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1EIE) &&
433 (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
434 value |= ICH_MISR_EL2_VGRP1E;
435 }
436
437 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_VGRP1DIE) &&
438 !(cs->ich_vmcr_el2 & ICH_VMCR_EL2_VENG1)) {
439 value |= ICH_MISR_EL2_VGRP1D;
440 }
441
442 return value;
443}
444
10337638 445void gicv3_cpuif_virt_irq_fiq_update(GICv3CPUState *cs)
83f036fe 446{
10337638
PM
447 /*
448 * Tell the CPU about any pending virtual interrupts.
449 * This should only be called for changes that affect the
450 * vIRQ and vFIQ status and do not change the maintenance
451 * interrupt status. This means that unlike gicv3_cpuif_virt_update()
452 * this function won't recursively call back into the GIC code.
453 * The main use of this is when the redistributor has changed the
454 * highest priority pending virtual LPI.
c5fc89b3
PM
455 */
456 int idx;
457 int irqlevel = 0;
458 int fiqlevel = 0;
c5fc89b3
PM
459
460 idx = hppvi_index(cs);
c3f21b06
PM
461 trace_gicv3_cpuif_virt_update(gicv3_redist_affid(cs), idx,
462 cs->hppvlpi.irq, cs->hppvlpi.grp,
463 cs->hppvlpi.prio);
464 if (idx == HPPVI_INDEX_VLPI) {
465 if (icv_hppvlpi_can_preempt(cs)) {
466 if (cs->hppvlpi.grp == GICV3_G0) {
467 fiqlevel = 1;
468 } else {
469 irqlevel = 1;
470 }
471 }
472 } else if (idx >= 0) {
c5fc89b3
PM
473 uint64_t lr = cs->ich_lr_el2[idx];
474
475 if (icv_hppi_can_preempt(cs, lr)) {
476 /* Virtual interrupts are simple: G0 are always FIQ, and G1 IRQ */
477 if (lr & ICH_LR_EL2_GROUP) {
478 irqlevel = 1;
479 } else {
480 fiqlevel = 1;
481 }
482 }
483 }
484
10337638
PM
485 trace_gicv3_cpuif_virt_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
486 qemu_set_irq(cs->parent_vfiq, fiqlevel);
487 qemu_set_irq(cs->parent_virq, irqlevel);
488}
489
490static void gicv3_cpuif_virt_update(GICv3CPUState *cs)
491{
492 /*
493 * Tell the CPU about any pending virtual interrupts or
494 * maintenance interrupts, following a change to the state
495 * of the CPU interface relevant to virtual interrupts.
496 *
497 * CAUTION: this function will call qemu_set_irq() on the
498 * CPU maintenance IRQ line, which is typically wired up
499 * to the GIC as a per-CPU interrupt. This means that it
500 * will recursively call back into the GIC code via
501 * gicv3_redist_set_irq() and thus into the CPU interface code's
502 * gicv3_cpuif_update(). It is therefore important that this
503 * function is only called as the final action of a CPU interface
504 * register write implementation, after all the GIC state
505 * fields have been updated. gicv3_cpuif_update() also must
506 * not cause this function to be called, but that happens
507 * naturally as a result of there being no architectural
508 * linkage between the physical and virtual GIC logic.
509 */
510 ARMCPU *cpu = ARM_CPU(cs->cpu);
511 int maintlevel = 0;
512
513 gicv3_cpuif_virt_irq_fiq_update(cs);
514
9cee1efe
SM
515 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_EN) &&
516 maintenance_interrupt_state(cs) != 0) {
517 maintlevel = 1;
c5fc89b3
PM
518 }
519
10337638 520 trace_gicv3_cpuif_virt_set_maint_irq(gicv3_redist_affid(cs), maintlevel);
c20a135a 521 qemu_set_irq(cpu->gicv3_maintenance_interrupt, maintlevel);
83f036fe
PM
522}
523
77620ba6
PM
524static uint64_t icv_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
525{
526 GICv3CPUState *cs = icc_cs_from_env(env);
527 int regno = ri->opc2 & 3;
887aae10 528 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
77620ba6
PM
529 uint64_t value = cs->ich_apr[grp][regno];
530
531 trace_gicv3_icv_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
532 return value;
533}
534
535static void icv_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
536 uint64_t value)
537{
538 GICv3CPUState *cs = icc_cs_from_env(env);
539 int regno = ri->opc2 & 3;
887aae10 540 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
77620ba6
PM
541
542 trace_gicv3_icv_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
543
544 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
545
189d1d9d 546 gicv3_cpuif_virt_irq_fiq_update(cs);
77620ba6
PM
547 return;
548}
549
550static uint64_t icv_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
551{
552 GICv3CPUState *cs = icc_cs_from_env(env);
553 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
554 uint64_t bpr;
555 bool satinc = false;
556
557 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
558 /* reads return bpr0 + 1 saturated to 7, writes ignored */
559 grp = GICV3_G0;
560 satinc = true;
561 }
562
563 bpr = read_vbpr(cs, grp);
564
565 if (satinc) {
566 bpr++;
567 bpr = MIN(bpr, 7);
568 }
569
570 trace_gicv3_icv_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
571
572 return bpr;
573}
574
575static void icv_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
576 uint64_t value)
577{
578 GICv3CPUState *cs = icc_cs_from_env(env);
579 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1NS;
580
581 trace_gicv3_icv_bpr_write(ri->crm == 8 ? 0 : 1,
582 gicv3_redist_affid(cs), value);
583
584 if (grp == GICV3_G1NS && (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR)) {
585 /* reads return bpr0 + 1 saturated to 7, writes ignored */
586 return;
587 }
588
589 write_vbpr(cs, grp, value);
590
189d1d9d 591 gicv3_cpuif_virt_irq_fiq_update(cs);
77620ba6
PM
592}
593
594static uint64_t icv_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
595{
596 GICv3CPUState *cs = icc_cs_from_env(env);
597 uint64_t value;
598
599 value = extract64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
600 ICH_VMCR_EL2_VPMR_LENGTH);
601
602 trace_gicv3_icv_pmr_read(gicv3_redist_affid(cs), value);
603 return value;
604}
605
606static void icv_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
607 uint64_t value)
608{
609 GICv3CPUState *cs = icc_cs_from_env(env);
610
611 trace_gicv3_icv_pmr_write(gicv3_redist_affid(cs), value);
612
613 value &= icv_fullprio_mask(cs);
614
615 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VPMR_SHIFT,
616 ICH_VMCR_EL2_VPMR_LENGTH, value);
617
189d1d9d 618 gicv3_cpuif_virt_irq_fiq_update(cs);
77620ba6
PM
619}
620
621static uint64_t icv_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
622{
623 GICv3CPUState *cs = icc_cs_from_env(env);
624 int enbit;
625 uint64_t value;
626
627 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
628 value = extract64(cs->ich_vmcr_el2, enbit, 1);
629
630 trace_gicv3_icv_igrpen_read(ri->opc2 & 1 ? 1 : 0,
631 gicv3_redist_affid(cs), value);
632 return value;
633}
634
635static void icv_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
636 uint64_t value)
637{
638 GICv3CPUState *cs = icc_cs_from_env(env);
639 int enbit;
640
641 trace_gicv3_icv_igrpen_write(ri->opc2 & 1 ? 1 : 0,
642 gicv3_redist_affid(cs), value);
643
644 enbit = ri->opc2 & 1 ? ICH_VMCR_EL2_VENG1_SHIFT : ICH_VMCR_EL2_VENG0_SHIFT;
645
646 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, enbit, 1, value);
647 gicv3_cpuif_virt_update(cs);
648}
649
650static uint64_t icv_ctlr_read(CPUARMState *env, const ARMCPRegInfo *ri)
651{
652 GICv3CPUState *cs = icc_cs_from_env(env);
653 uint64_t value;
654
655 /* Note that the fixed fields here (A3V, SEIS, IDbits, PRIbits)
656 * should match the ones reported in ich_vtr_read().
657 */
658 value = ICC_CTLR_EL1_A3V | (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
659 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
660
661 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM) {
662 value |= ICC_CTLR_EL1_EOIMODE;
663 }
664
665 if (cs->ich_vmcr_el2 & ICH_VMCR_EL2_VCBPR) {
666 value |= ICC_CTLR_EL1_CBPR;
667 }
668
669 trace_gicv3_icv_ctlr_read(gicv3_redist_affid(cs), value);
670 return value;
671}
672
673static void icv_ctlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
674 uint64_t value)
675{
676 GICv3CPUState *cs = icc_cs_from_env(env);
677
678 trace_gicv3_icv_ctlr_write(gicv3_redist_affid(cs), value);
679
680 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VCBPR_SHIFT,
681 1, value & ICC_CTLR_EL1_CBPR ? 1 : 0);
682 cs->ich_vmcr_el2 = deposit64(cs->ich_vmcr_el2, ICH_VMCR_EL2_VEOIM_SHIFT,
683 1, value & ICC_CTLR_EL1_EOIMODE ? 1 : 0);
684
189d1d9d 685 gicv3_cpuif_virt_irq_fiq_update(cs);
77620ba6
PM
686}
687
df313f48
PM
688static uint64_t icv_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
689{
690 GICv3CPUState *cs = icc_cs_from_env(env);
691 int prio = ich_highest_active_virt_prio(cs);
692
693 trace_gicv3_icv_rpr_read(gicv3_redist_affid(cs), prio);
694 return prio;
695}
696
697static uint64_t icv_hppir_read(CPUARMState *env, const ARMCPRegInfo *ri)
698{
699 GICv3CPUState *cs = icc_cs_from_env(env);
700 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
701 int idx = hppvi_index(cs);
702 uint64_t value = INTID_SPURIOUS;
703
c3f21b06
PM
704 if (idx == HPPVI_INDEX_VLPI) {
705 if (cs->hppvlpi.grp == grp) {
706 value = cs->hppvlpi.irq;
707 }
708 } else if (idx >= 0) {
df313f48
PM
709 uint64_t lr = cs->ich_lr_el2[idx];
710 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
711
712 if (grp == thisgrp) {
713 value = ich_lr_vintid(lr);
714 }
715 }
716
cf734c2a
PM
717 trace_gicv3_icv_hppir_read(ri->crm == 8 ? 0 : 1,
718 gicv3_redist_affid(cs), value);
df313f48
PM
719 return value;
720}
721
b3b48f52
PM
722static void icv_activate_irq(GICv3CPUState *cs, int idx, int grp)
723{
724 /* Activate the interrupt in the specified list register
725 * by moving it from Pending to Active state, and update the
726 * Active Priority Registers.
727 */
728 uint32_t mask = icv_gprio_mask(cs, grp);
729 int prio = ich_lr_prio(cs->ich_lr_el2[idx]) & mask;
730 int aprbit = prio >> (8 - cs->vprebits);
731 int regno = aprbit / 32;
732 int regbit = aprbit % 32;
733
734 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
735 cs->ich_lr_el2[idx] |= ICH_LR_EL2_STATE_ACTIVE_BIT;
736 cs->ich_apr[grp][regno] |= (1 << regbit);
737}
738
c3f21b06
PM
739static void icv_activate_vlpi(GICv3CPUState *cs)
740{
741 uint32_t mask = icv_gprio_mask(cs, cs->hppvlpi.grp);
742 int prio = cs->hppvlpi.prio & mask;
743 int aprbit = prio >> (8 - cs->vprebits);
744 int regno = aprbit / 32;
745 int regbit = aprbit % 32;
746
747 cs->ich_apr[cs->hppvlpi.grp][regno] |= (1 << regbit);
748 gicv3_redist_vlpi_pending(cs, cs->hppvlpi.irq, 0);
749}
750
b3b48f52
PM
751static uint64_t icv_iar_read(CPUARMState *env, const ARMCPRegInfo *ri)
752{
753 GICv3CPUState *cs = icc_cs_from_env(env);
754 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
755 int idx = hppvi_index(cs);
756 uint64_t intid = INTID_SPURIOUS;
757
c3f21b06
PM
758 if (idx == HPPVI_INDEX_VLPI) {
759 if (cs->hppvlpi.grp == grp && icv_hppvlpi_can_preempt(cs)) {
760 intid = cs->hppvlpi.irq;
761 icv_activate_vlpi(cs);
762 }
763 } else if (idx >= 0) {
b3b48f52
PM
764 uint64_t lr = cs->ich_lr_el2[idx];
765 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
766
767 if (thisgrp == grp && icv_hppi_can_preempt(cs, lr)) {
768 intid = ich_lr_vintid(lr);
90feffad 769 if (!gicv3_intid_is_special(intid)) {
b3b48f52
PM
770 icv_activate_irq(cs, idx, grp);
771 } else {
772 /* Interrupt goes from Pending to Invalid */
773 cs->ich_lr_el2[idx] &= ~ICH_LR_EL2_STATE_PENDING_BIT;
774 /* We will now return the (bogus) ID from the list register,
775 * as per the pseudocode.
776 */
777 }
778 }
779 }
780
781 trace_gicv3_icv_iar_read(ri->crm == 8 ? 0 : 1,
782 gicv3_redist_affid(cs), intid);
ef125521
JK
783
784 gicv3_cpuif_virt_update(cs);
785
b3b48f52
PM
786 return intid;
787}
788
f7b9358e
PM
789static int icc_highest_active_prio(GICv3CPUState *cs)
790{
791 /* Calculate the current running priority based on the set bits
792 * in the Active Priority Registers.
793 */
794 int i;
795
796 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
797 uint32_t apr = cs->icc_apr[GICV3_G0][i] |
798 cs->icc_apr[GICV3_G1][i] | cs->icc_apr[GICV3_G1NS][i];
799
800 if (!apr) {
801 continue;
802 }
803 return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
804 }
805 /* No current active interrupts: return idle priority */
806 return 0xff;
807}
808
809static uint32_t icc_gprio_mask(GICv3CPUState *cs, int group)
810{
811 /* Return a mask word which clears the subpriority bits from
812 * a priority value for an interrupt in the specified group.
a89ff39e 813 * This depends on the BPR value. For CBPR0 (S or NS):
f7b9358e
PM
814 * a BPR of 0 means the group priority bits are [7:1];
815 * a BPR of 1 means they are [7:2], and so on down to
816 * a BPR of 7 meaning no group priority bits at all.
a89ff39e
PM
817 * For CBPR1 NS:
818 * a BPR of 0 is impossible (the minimum value is 1)
819 * a BPR of 1 means the group priority bits are [7:1];
820 * a BPR of 2 means they are [7:2], and so on down to
821 * a BPR of 7 meaning the group priority is [7].
822 *
f7b9358e
PM
823 * Which BPR to use depends on the group of the interrupt and
824 * the current ICC_CTLR.CBPR settings.
a89ff39e
PM
825 *
826 * This corresponds to the GroupBits() pseudocode.
f7b9358e 827 */
a89ff39e
PM
828 int bpr;
829
f7b9358e
PM
830 if ((group == GICV3_G1 && cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR) ||
831 (group == GICV3_G1NS &&
832 cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
833 group = GICV3_G0;
834 }
835
a89ff39e
PM
836 bpr = cs->icc_bpr[group] & 7;
837
838 if (group == GICV3_G1NS) {
839 assert(bpr > 0);
840 bpr--;
841 }
842
843 return ~0U << (bpr + 1);
f7b9358e
PM
844}
845
846static bool icc_no_enabled_hppi(GICv3CPUState *cs)
847{
848 /* Return true if there is no pending interrupt, or the
849 * highest priority pending interrupt is in a group which has been
850 * disabled at the CPU interface by the ICC_IGRPEN* register enable bits.
851 */
852 return cs->hppi.prio == 0xff || (cs->icc_igrpen[cs->hppi.grp] == 0);
853}
854
855static bool icc_hppi_can_preempt(GICv3CPUState *cs)
856{
857 /* Return true if we have a pending interrupt of sufficient
858 * priority to preempt.
859 */
860 int rprio;
861 uint32_t mask;
862
863 if (icc_no_enabled_hppi(cs)) {
864 return false;
865 }
866
867 if (cs->hppi.prio >= cs->icc_pmr_el1) {
868 /* Priority mask masks this interrupt */
869 return false;
870 }
871
872 rprio = icc_highest_active_prio(cs);
873 if (rprio == 0xff) {
874 /* No currently running interrupt so we can preempt */
875 return true;
876 }
877
878 mask = icc_gprio_mask(cs, cs->hppi.grp);
879
880 /* We only preempt a running interrupt if the pending interrupt's
881 * group priority is sufficient (the subpriorities are not considered).
882 */
883 if ((cs->hppi.prio & mask) < (rprio & mask)) {
884 return true;
885 }
886
887 return false;
888}
889
890void gicv3_cpuif_update(GICv3CPUState *cs)
891{
892 /* Tell the CPU about its highest priority pending interrupt */
893 int irqlevel = 0;
894 int fiqlevel = 0;
895 ARMCPU *cpu = ARM_CPU(cs->cpu);
896 CPUARMState *env = &cpu->env;
897
8d04fb55
JK
898 g_assert(qemu_mutex_iothread_locked());
899
f7b9358e
PM
900 trace_gicv3_cpuif_update(gicv3_redist_affid(cs), cs->hppi.irq,
901 cs->hppi.grp, cs->hppi.prio);
902
903 if (cs->hppi.grp == GICV3_G1 && !arm_feature(env, ARM_FEATURE_EL3)) {
904 /* If a Security-enabled GIC sends a G1S interrupt to a
905 * Security-disabled CPU, we must treat it as if it were G0.
906 */
907 cs->hppi.grp = GICV3_G0;
908 }
909
910 if (icc_hppi_can_preempt(cs)) {
911 /* We have an interrupt: should we signal it as IRQ or FIQ?
912 * This is described in the GICv3 spec section 4.6.2.
913 */
914 bool isfiq;
915
916 switch (cs->hppi.grp) {
917 case GICV3_G0:
918 isfiq = true;
919 break;
920 case GICV3_G1:
921 isfiq = (!arm_is_secure(env) ||
922 (arm_current_el(env) == 3 && arm_el_is_aa64(env, 3)));
923 break;
924 case GICV3_G1NS:
925 isfiq = arm_is_secure(env);
926 break;
927 default:
928 g_assert_not_reached();
929 }
930
931 if (isfiq) {
932 fiqlevel = 1;
933 } else {
934 irqlevel = 1;
935 }
936 }
937
938 trace_gicv3_cpuif_set_irqs(gicv3_redist_affid(cs), fiqlevel, irqlevel);
939
940 qemu_set_irq(cs->parent_fiq, fiqlevel);
941 qemu_set_irq(cs->parent_irq, irqlevel);
942}
943
359fbe65
PM
944static uint64_t icc_pmr_read(CPUARMState *env, const ARMCPRegInfo *ri)
945{
946 GICv3CPUState *cs = icc_cs_from_env(env);
947 uint32_t value = cs->icc_pmr_el1;
948
77620ba6
PM
949 if (icv_access(env, HCR_FMO | HCR_IMO)) {
950 return icv_pmr_read(env, ri);
951 }
952
359fbe65
PM
953 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
954 (env->cp15.scr_el3 & SCR_FIQ)) {
955 /* NS access and Group 0 is inaccessible to NS: return the
956 * NS view of the current priority
957 */
a2e2d7fc 958 if ((value & 0x80) == 0) {
359fbe65
PM
959 /* Secure priorities not visible to NS */
960 value = 0;
961 } else if (value != 0xff) {
962 value = (value << 1) & 0xff;
963 }
964 }
965
966 trace_gicv3_icc_pmr_read(gicv3_redist_affid(cs), value);
967
968 return value;
969}
970
971static void icc_pmr_write(CPUARMState *env, const ARMCPRegInfo *ri,
972 uint64_t value)
973{
974 GICv3CPUState *cs = icc_cs_from_env(env);
975
77620ba6
PM
976 if (icv_access(env, HCR_FMO | HCR_IMO)) {
977 return icv_pmr_write(env, ri, value);
978 }
979
359fbe65
PM
980 trace_gicv3_icc_pmr_write(gicv3_redist_affid(cs), value);
981
982 value &= 0xff;
983
984 if (arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env) &&
985 (env->cp15.scr_el3 & SCR_FIQ)) {
986 /* NS access and Group 0 is inaccessible to NS: return the
987 * NS view of the current priority
988 */
989 if (!(cs->icc_pmr_el1 & 0x80)) {
990 /* Current PMR in the secure range, don't allow NS to change it */
991 return;
992 }
a2e2d7fc 993 value = (value >> 1) | 0x80;
359fbe65
PM
994 }
995 cs->icc_pmr_el1 = value;
996 gicv3_cpuif_update(cs);
997}
998
227a8653
PM
999static void icc_activate_irq(GICv3CPUState *cs, int irq)
1000{
1001 /* Move the interrupt from the Pending state to Active, and update
1002 * the Active Priority Registers
1003 */
1004 uint32_t mask = icc_gprio_mask(cs, cs->hppi.grp);
1005 int prio = cs->hppi.prio & mask;
1006 int aprbit = prio >> 1;
1007 int regno = aprbit / 32;
1008 int regbit = aprbit % 32;
1009
1010 cs->icc_apr[cs->hppi.grp][regno] |= (1 << regbit);
1011
1012 if (irq < GIC_INTERNAL) {
1013 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 1);
1014 cs->gicr_ipendr0 = deposit32(cs->gicr_ipendr0, irq, 1, 0);
1015 gicv3_redist_update(cs);
17fb5e36 1016 } else if (irq < GICV3_LPI_INTID_START) {
227a8653
PM
1017 gicv3_gicd_active_set(cs->gic, irq);
1018 gicv3_gicd_pending_clear(cs->gic, irq);
1019 gicv3_update(cs->gic, irq, 1);
17fb5e36
SM
1020 } else {
1021 gicv3_redist_lpi_pending(cs, irq, 0);
227a8653
PM
1022 }
1023}
1024
1025static uint64_t icc_hppir0_value(GICv3CPUState *cs, CPUARMState *env)
1026{
1027 /* Return the highest priority pending interrupt register value
1028 * for group 0.
1029 */
1030 bool irq_is_secure;
1031
1032 if (cs->hppi.prio == 0xff) {
1033 return INTID_SPURIOUS;
1034 }
1035
1036 /* Check whether we can return the interrupt or if we should return
1037 * a special identifier, as per the CheckGroup0ForSpecialIdentifiers
1038 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
1039 * is always zero.)
1040 */
1041 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
1042 (cs->hppi.grp != GICV3_G1NS));
1043
1044 if (cs->hppi.grp != GICV3_G0 && !arm_is_el3_or_mon(env)) {
1045 return INTID_SPURIOUS;
1046 }
1047 if (irq_is_secure && !arm_is_secure(env)) {
1048 /* Secure interrupts not visible to Nonsecure */
1049 return INTID_SPURIOUS;
1050 }
1051
1052 if (cs->hppi.grp != GICV3_G0) {
1053 /* Indicate to EL3 that there's a Group 1 interrupt for the other
1054 * state pending.
1055 */
1056 return irq_is_secure ? INTID_SECURE : INTID_NONSECURE;
1057 }
1058
1059 return cs->hppi.irq;
1060}
1061
1062static uint64_t icc_hppir1_value(GICv3CPUState *cs, CPUARMState *env)
1063{
1064 /* Return the highest priority pending interrupt register value
1065 * for group 1.
1066 */
1067 bool irq_is_secure;
1068
1069 if (cs->hppi.prio == 0xff) {
1070 return INTID_SPURIOUS;
1071 }
1072
1073 /* Check whether we can return the interrupt or if we should return
1074 * a special identifier, as per the CheckGroup1ForSpecialIdentifiers
1075 * pseudocode. (We can simplify a little because for us ICC_SRE_EL1.RM
1076 * is always zero.)
1077 */
1078 irq_is_secure = (!(cs->gic->gicd_ctlr & GICD_CTLR_DS) &&
1079 (cs->hppi.grp != GICV3_G1NS));
1080
1081 if (cs->hppi.grp == GICV3_G0) {
1082 /* Group 0 interrupts not visible via HPPIR1 */
1083 return INTID_SPURIOUS;
1084 }
1085 if (irq_is_secure) {
1086 if (!arm_is_secure(env)) {
1087 /* Secure interrupts not visible in Non-secure */
1088 return INTID_SPURIOUS;
1089 }
1090 } else if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
1091 /* Group 1 non-secure interrupts not visible in Secure EL1 */
1092 return INTID_SPURIOUS;
1093 }
1094
1095 return cs->hppi.irq;
1096}
1097
1098static uint64_t icc_iar0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1099{
1100 GICv3CPUState *cs = icc_cs_from_env(env);
1101 uint64_t intid;
1102
b3b48f52
PM
1103 if (icv_access(env, HCR_FMO)) {
1104 return icv_iar_read(env, ri);
1105 }
1106
227a8653
PM
1107 if (!icc_hppi_can_preempt(cs)) {
1108 intid = INTID_SPURIOUS;
1109 } else {
1110 intid = icc_hppir0_value(cs, env);
1111 }
1112
b74d7c0e 1113 if (!gicv3_intid_is_special(intid)) {
227a8653
PM
1114 icc_activate_irq(cs, intid);
1115 }
1116
1117 trace_gicv3_icc_iar0_read(gicv3_redist_affid(cs), intid);
1118 return intid;
1119}
1120
1121static uint64_t icc_iar1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1122{
1123 GICv3CPUState *cs = icc_cs_from_env(env);
1124 uint64_t intid;
1125
b3b48f52
PM
1126 if (icv_access(env, HCR_IMO)) {
1127 return icv_iar_read(env, ri);
1128 }
1129
227a8653
PM
1130 if (!icc_hppi_can_preempt(cs)) {
1131 intid = INTID_SPURIOUS;
1132 } else {
1133 intid = icc_hppir1_value(cs, env);
1134 }
1135
b74d7c0e 1136 if (!gicv3_intid_is_special(intid)) {
227a8653
PM
1137 icc_activate_irq(cs, intid);
1138 }
1139
1140 trace_gicv3_icc_iar1_read(gicv3_redist_affid(cs), intid);
1141 return intid;
1142}
1143
1144static void icc_drop_prio(GICv3CPUState *cs, int grp)
1145{
1146 /* Drop the priority of the currently active interrupt in
1147 * the specified group.
1148 *
1149 * Note that we can guarantee (because of the requirement to nest
1150 * ICC_IAR reads [which activate an interrupt and raise priority]
1151 * with ICC_EOIR writes [which drop the priority for the interrupt])
1152 * that the interrupt we're being called for is the highest priority
1153 * active interrupt, meaning that it has the lowest set bit in the
1154 * APR registers.
1155 *
1156 * If the guest does not honour the ordering constraints then the
1157 * behaviour of the GIC is UNPREDICTABLE, which for us means that
1158 * the values of the APR registers might become incorrect and the
1159 * running priority will be wrong, so interrupts that should preempt
1160 * might not do so, and interrupts that should not preempt might do so.
1161 */
1162 int i;
1163
1164 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[grp]); i++) {
1165 uint64_t *papr = &cs->icc_apr[grp][i];
1166
1167 if (!*papr) {
1168 continue;
1169 }
1170 /* Clear the lowest set bit */
1171 *papr &= *papr - 1;
1172 break;
1173 }
1174
1175 /* running priority change means we need an update for this cpu i/f */
1176 gicv3_cpuif_update(cs);
1177}
1178
1179static bool icc_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1180{
1181 /* Return true if we should split priority drop and interrupt
1182 * deactivation, ie whether the relevant EOIMode bit is set.
1183 */
1184 if (arm_is_el3_or_mon(env)) {
1185 return cs->icc_ctlr_el3 & ICC_CTLR_EL3_EOIMODE_EL3;
1186 }
1187 if (arm_is_secure_below_el3(env)) {
1188 return cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_EOIMODE;
1189 } else {
1190 return cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE;
1191 }
1192}
1193
1194static int icc_highest_active_group(GICv3CPUState *cs)
1195{
1196 /* Return the group with the highest priority active interrupt.
1197 * We can do this by just comparing the APRs to see which one
1198 * has the lowest set bit.
1199 * (If more than one group is active at the same priority then
1200 * we're in UNPREDICTABLE territory.)
1201 */
1202 int i;
1203
1204 for (i = 0; i < ARRAY_SIZE(cs->icc_apr[0]); i++) {
1205 int g0ctz = ctz32(cs->icc_apr[GICV3_G0][i]);
1206 int g1ctz = ctz32(cs->icc_apr[GICV3_G1][i]);
1207 int g1nsctz = ctz32(cs->icc_apr[GICV3_G1NS][i]);
1208
1209 if (g1nsctz < g0ctz && g1nsctz < g1ctz) {
1210 return GICV3_G1NS;
1211 }
1212 if (g1ctz < g0ctz) {
1213 return GICV3_G1;
1214 }
1215 if (g0ctz < 32) {
1216 return GICV3_G0;
1217 }
1218 }
1219 /* No set active bits? UNPREDICTABLE; return -1 so the caller
1220 * ignores the spurious EOI attempt.
1221 */
1222 return -1;
1223}
1224
1225static void icc_deactivate_irq(GICv3CPUState *cs, int irq)
1226{
1227 if (irq < GIC_INTERNAL) {
1228 cs->gicr_iactiver0 = deposit32(cs->gicr_iactiver0, irq, 1, 0);
1229 gicv3_redist_update(cs);
1230 } else {
1231 gicv3_gicd_active_clear(cs->gic, irq);
1232 gicv3_update(cs->gic, irq, 1);
1233 }
1234}
1235
df313f48
PM
1236static bool icv_eoi_split(CPUARMState *env, GICv3CPUState *cs)
1237{
1238 /* Return true if we should split priority drop and interrupt
1239 * deactivation, ie whether the virtual EOIMode bit is set.
1240 */
1241 return cs->ich_vmcr_el2 & ICH_VMCR_EL2_VEOIM;
1242}
1243
1244static int icv_find_active(GICv3CPUState *cs, int irq)
1245{
1246 /* Given an interrupt number for an active interrupt, return the index
1247 * of the corresponding list register, or -1 if there is no match.
1248 * Corresponds to FindActiveVirtualInterrupt pseudocode.
1249 */
1250 int i;
1251
1252 for (i = 0; i < cs->num_list_regs; i++) {
1253 uint64_t lr = cs->ich_lr_el2[i];
1254
1255 if ((lr & ICH_LR_EL2_STATE_ACTIVE_BIT) && ich_lr_vintid(lr) == irq) {
1256 return i;
1257 }
1258 }
1259
1260 return -1;
1261}
1262
1263static void icv_deactivate_irq(GICv3CPUState *cs, int idx)
1264{
1265 /* Deactivate the interrupt in the specified list register index */
1266 uint64_t lr = cs->ich_lr_el2[idx];
1267
1268 if (lr & ICH_LR_EL2_HW) {
1269 /* Deactivate the associated physical interrupt */
1270 int pirq = ich_lr_pintid(lr);
1271
1272 if (pirq < INTID_SECURE) {
1273 icc_deactivate_irq(cs, pirq);
1274 }
1275 }
1276
1277 /* Clear the 'active' part of the state, so ActivePending->Pending
1278 * and Active->Invalid.
1279 */
1280 lr &= ~ICH_LR_EL2_STATE_ACTIVE_BIT;
1281 cs->ich_lr_el2[idx] = lr;
1282}
1283
1284static void icv_increment_eoicount(GICv3CPUState *cs)
1285{
1286 /* Increment the EOICOUNT field in ICH_HCR_EL2 */
1287 int eoicount = extract64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1288 ICH_HCR_EL2_EOICOUNT_LENGTH);
1289
1290 cs->ich_hcr_el2 = deposit64(cs->ich_hcr_el2, ICH_HCR_EL2_EOICOUNT_SHIFT,
1291 ICH_HCR_EL2_EOICOUNT_LENGTH, eoicount + 1);
1292}
1293
b3b48f52
PM
1294static int icv_drop_prio(GICv3CPUState *cs)
1295{
1296 /* Drop the priority of the currently active virtual interrupt
1297 * (favouring group 0 if there is a set active bit at
1298 * the same priority for both group 0 and group 1).
1299 * Return the priority value for the bit we just cleared,
1300 * or 0xff if no bits were set in the AP registers at all.
1301 * Note that though the ich_apr[] are uint64_t only the low
1302 * 32 bits are actually relevant.
1303 */
1304 int i;
1305 int aprmax = 1 << (cs->vprebits - 5);
1306
1307 assert(aprmax <= ARRAY_SIZE(cs->ich_apr[0]));
1308
1309 for (i = 0; i < aprmax; i++) {
1310 uint64_t *papr0 = &cs->ich_apr[GICV3_G0][i];
1311 uint64_t *papr1 = &cs->ich_apr[GICV3_G1NS][i];
1312 int apr0count, apr1count;
1313
1314 if (!*papr0 && !*papr1) {
1315 continue;
1316 }
1317
1318 /* We can't just use the bit-twiddling hack icc_drop_prio() does
1319 * because we need to return the bit number we cleared so
1320 * it can be compared against the list register's priority field.
1321 */
1322 apr0count = ctz32(*papr0);
1323 apr1count = ctz32(*papr1);
1324
1325 if (apr0count <= apr1count) {
1326 *papr0 &= *papr0 - 1;
1327 return (apr0count + i * 32) << (icv_min_vbpr(cs) + 1);
1328 } else {
1329 *papr1 &= *papr1 - 1;
1330 return (apr1count + i * 32) << (icv_min_vbpr(cs) + 1);
1331 }
1332 }
1333 return 0xff;
1334}
1335
df313f48
PM
1336static void icv_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1337 uint64_t value)
1338{
1339 /* Deactivate interrupt */
1340 GICv3CPUState *cs = icc_cs_from_env(env);
1341 int idx;
1342 int irq = value & 0xffffff;
1343
1344 trace_gicv3_icv_dir_write(gicv3_redist_affid(cs), value);
1345
f4ec71d0 1346 if (irq >= GICV3_MAXIRQ) {
df313f48
PM
1347 /* Also catches special interrupt numbers and LPIs */
1348 return;
1349 }
1350
1351 if (!icv_eoi_split(env, cs)) {
1352 return;
1353 }
1354
1355 idx = icv_find_active(cs, irq);
1356
1357 if (idx < 0) {
1358 /* No list register matching this, so increment the EOI count
1359 * (might trigger a maintenance interrupt)
1360 */
1361 icv_increment_eoicount(cs);
1362 } else {
1363 icv_deactivate_irq(cs, idx);
1364 }
1365
1366 gicv3_cpuif_virt_update(cs);
1367}
1368
b3b48f52
PM
1369static void icv_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1370 uint64_t value)
1371{
1372 /* End of Interrupt */
1373 GICv3CPUState *cs = icc_cs_from_env(env);
1374 int irq = value & 0xffffff;
1375 int grp = ri->crm == 8 ? GICV3_G0 : GICV3_G1NS;
1376 int idx, dropprio;
1377
1378 trace_gicv3_icv_eoir_write(ri->crm == 8 ? 0 : 1,
1379 gicv3_redist_affid(cs), value);
1380
90feffad 1381 if (gicv3_intid_is_special(irq)) {
b3b48f52
PM
1382 return;
1383 }
1384
1385 /* We implement the IMPDEF choice of "drop priority before doing
1386 * error checks" (because that lets us avoid scanning the AP
1387 * registers twice).
1388 */
1389 dropprio = icv_drop_prio(cs);
1390 if (dropprio == 0xff) {
1391 /* No active interrupt. It is CONSTRAINED UNPREDICTABLE
1392 * whether the list registers are checked in this
1393 * situation; we choose not to.
1394 */
1395 return;
1396 }
1397
1398 idx = icv_find_active(cs, irq);
1399
1400 if (idx < 0) {
1401 /* No valid list register corresponding to EOI ID */
1402 icv_increment_eoicount(cs);
1403 } else {
1404 uint64_t lr = cs->ich_lr_el2[idx];
1405 int thisgrp = (lr & ICH_LR_EL2_GROUP) ? GICV3_G1NS : GICV3_G0;
1406 int lr_gprio = ich_lr_prio(lr) & icv_gprio_mask(cs, grp);
1407
1408 if (thisgrp == grp && lr_gprio == dropprio) {
1409 if (!icv_eoi_split(env, cs)) {
1410 /* Priority drop and deactivate not split: deactivate irq now */
1411 icv_deactivate_irq(cs, idx);
1412 }
1413 }
1414 }
1415
1416 gicv3_cpuif_virt_update(cs);
1417}
1418
227a8653
PM
1419static void icc_eoir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1420 uint64_t value)
1421{
1422 /* End of Interrupt */
1423 GICv3CPUState *cs = icc_cs_from_env(env);
1424 int irq = value & 0xffffff;
1425 int grp;
382c7160 1426 bool is_eoir0 = ri->crm == 8;
227a8653 1427
382c7160 1428 if (icv_access(env, is_eoir0 ? HCR_FMO : HCR_IMO)) {
b3b48f52
PM
1429 icv_eoir_write(env, ri, value);
1430 return;
1431 }
1432
382c7160 1433 trace_gicv3_icc_eoir_write(is_eoir0 ? 0 : 1,
081b1b98 1434 gicv3_redist_affid(cs), value);
227a8653 1435
17fb5e36
SM
1436 if ((irq >= cs->gic->num_irq) &&
1437 !(cs->gic->lpi_enable && (irq >= GICV3_LPI_INTID_START))) {
227a8653
PM
1438 /* This handles two cases:
1439 * 1. If software writes the ID of a spurious interrupt [ie 1020-1023]
1440 * to the GICC_EOIR, the GIC ignores that write.
1441 * 2. If software writes the number of a non-existent interrupt
1442 * this must be a subcase of "value written does not match the last
1443 * valid interrupt value read from the Interrupt Acknowledge
1444 * register" and so this is UNPREDICTABLE. We choose to ignore it.
1445 */
1446 return;
1447 }
1448
382c7160
PM
1449 grp = icc_highest_active_group(cs);
1450 switch (grp) {
1451 case GICV3_G0:
1452 if (!is_eoir0) {
1453 return;
1454 }
1455 if (!(cs->gic->gicd_ctlr & GICD_CTLR_DS)
1456 && arm_feature(env, ARM_FEATURE_EL3) && !arm_is_secure(env)) {
1457 return;
1458 }
1459 break;
1460 case GICV3_G1:
1461 if (is_eoir0) {
1462 return;
1463 }
1464 if (!arm_is_secure(env)) {
1465 return;
1466 }
1467 break;
1468 case GICV3_G1NS:
1469 if (is_eoir0) {
1470 return;
1471 }
1472 if (!arm_is_el3_or_mon(env) && arm_is_secure(env)) {
1473 return;
1474 }
1475 break;
1476 default:
96a664d0
JPB
1477 qemu_log_mask(LOG_GUEST_ERROR,
1478 "%s: IRQ %d isn't active\n", __func__, irq);
1479 return;
227a8653
PM
1480 }
1481
1482 icc_drop_prio(cs, grp);
1483
1484 if (!icc_eoi_split(env, cs)) {
1485 /* Priority drop and deactivate not split: deactivate irq now */
1486 icc_deactivate_irq(cs, irq);
1487 }
1488}
1489
1490static uint64_t icc_hppir0_read(CPUARMState *env, const ARMCPRegInfo *ri)
1491{
1492 GICv3CPUState *cs = icc_cs_from_env(env);
df313f48
PM
1493 uint64_t value;
1494
1495 if (icv_access(env, HCR_FMO)) {
1496 return icv_hppir_read(env, ri);
1497 }
227a8653 1498
df313f48 1499 value = icc_hppir0_value(cs, env);
227a8653
PM
1500 trace_gicv3_icc_hppir0_read(gicv3_redist_affid(cs), value);
1501 return value;
1502}
1503
1504static uint64_t icc_hppir1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1505{
1506 GICv3CPUState *cs = icc_cs_from_env(env);
df313f48
PM
1507 uint64_t value;
1508
1509 if (icv_access(env, HCR_IMO)) {
1510 return icv_hppir_read(env, ri);
1511 }
227a8653 1512
df313f48 1513 value = icc_hppir1_value(cs, env);
227a8653
PM
1514 trace_gicv3_icc_hppir1_read(gicv3_redist_affid(cs), value);
1515 return value;
1516}
1517
359fbe65
PM
1518static uint64_t icc_bpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1519{
1520 GICv3CPUState *cs = icc_cs_from_env(env);
1521 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
1522 bool satinc = false;
1523 uint64_t bpr;
1524
77620ba6
PM
1525 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1526 return icv_bpr_read(env, ri);
1527 }
1528
359fbe65
PM
1529 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1530 grp = GICV3_G1NS;
1531 }
1532
1533 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1534 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1535 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1536 * modify BPR0
1537 */
1538 grp = GICV3_G0;
1539 }
1540
1541 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1542 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1543 /* reads return bpr0 + 1 sat to 7, writes ignored */
1544 grp = GICV3_G0;
1545 satinc = true;
1546 }
1547
1548 bpr = cs->icc_bpr[grp];
1549 if (satinc) {
1550 bpr++;
1551 bpr = MIN(bpr, 7);
1552 }
1553
081b1b98 1554 trace_gicv3_icc_bpr_read(ri->crm == 8 ? 0 : 1, gicv3_redist_affid(cs), bpr);
359fbe65
PM
1555
1556 return bpr;
1557}
1558
1559static void icc_bpr_write(CPUARMState *env, const ARMCPRegInfo *ri,
1560 uint64_t value)
1561{
1562 GICv3CPUState *cs = icc_cs_from_env(env);
1563 int grp = (ri->crm == 8) ? GICV3_G0 : GICV3_G1;
8193d461 1564 uint64_t minval;
359fbe65 1565
77620ba6
PM
1566 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1567 icv_bpr_write(env, ri, value);
1568 return;
1569 }
1570
081b1b98
PM
1571 trace_gicv3_icc_bpr_write(ri->crm == 8 ? 0 : 1,
1572 gicv3_redist_affid(cs), value);
359fbe65
PM
1573
1574 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1575 grp = GICV3_G1NS;
1576 }
1577
1578 if (grp == GICV3_G1 && !arm_is_el3_or_mon(env) &&
1579 (cs->icc_ctlr_el1[GICV3_S] & ICC_CTLR_EL1_CBPR)) {
1580 /* CBPR_EL1S means secure EL1 or AArch32 EL3 !Mon BPR1 accesses
1581 * modify BPR0
1582 */
1583 grp = GICV3_G0;
1584 }
1585
1586 if (grp == GICV3_G1NS && arm_current_el(env) < 3 &&
1587 (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR)) {
1588 /* reads return bpr0 + 1 sat to 7, writes ignored */
1589 return;
1590 }
1591
8193d461
PM
1592 minval = (grp == GICV3_G1NS) ? GIC_MIN_BPR_NS : GIC_MIN_BPR;
1593 if (value < minval) {
1594 value = minval;
1595 }
1596
359fbe65
PM
1597 cs->icc_bpr[grp] = value & 7;
1598 gicv3_cpuif_update(cs);
1599}
1600
1601static uint64_t icc_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
1602{
1603 GICv3CPUState *cs = icc_cs_from_env(env);
1604 uint64_t value;
1605
1606 int regno = ri->opc2 & 3;
887aae10 1607 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
359fbe65 1608
77620ba6
PM
1609 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1610 return icv_ap_read(env, ri);
1611 }
1612
359fbe65
PM
1613 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1614 grp = GICV3_G1NS;
1615 }
1616
1617 value = cs->icc_apr[grp][regno];
1618
081b1b98 1619 trace_gicv3_icc_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
359fbe65
PM
1620 return value;
1621}
1622
1623static void icc_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
1624 uint64_t value)
1625{
1626 GICv3CPUState *cs = icc_cs_from_env(env);
1627
1628 int regno = ri->opc2 & 3;
887aae10 1629 int grp = (ri->crm & 1) ? GICV3_G1 : GICV3_G0;
359fbe65 1630
77620ba6
PM
1631 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1632 icv_ap_write(env, ri, value);
1633 return;
1634 }
1635
081b1b98 1636 trace_gicv3_icc_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
359fbe65
PM
1637
1638 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1639 grp = GICV3_G1NS;
1640 }
1641
1642 /* It's not possible to claim that a Non-secure interrupt is active
1643 * at a priority outside the Non-secure range (128..255), since this
1644 * would otherwise allow malicious NS code to block delivery of S interrupts
1645 * by writing a bad value to these registers.
1646 */
1647 if (grp == GICV3_G1NS && regno < 2 && arm_feature(env, ARM_FEATURE_EL3)) {
1648 return;
1649 }
1650
1651 cs->icc_apr[grp][regno] = value & 0xFFFFFFFFU;
1652 gicv3_cpuif_update(cs);
1653}
1654
227a8653
PM
1655static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
1656 uint64_t value)
1657{
1658 /* Deactivate interrupt */
1659 GICv3CPUState *cs = icc_cs_from_env(env);
1660 int irq = value & 0xffffff;
1661 bool irq_is_secure, single_sec_state, irq_is_grp0;
1662 bool route_fiq_to_el3, route_irq_to_el3, route_fiq_to_el2, route_irq_to_el2;
1663
df313f48
PM
1664 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1665 icv_dir_write(env, ri, value);
1666 return;
1667 }
1668
227a8653
PM
1669 trace_gicv3_icc_dir_write(gicv3_redist_affid(cs), value);
1670
1671 if (irq >= cs->gic->num_irq) {
1672 /* Also catches special interrupt numbers and LPIs */
1673 return;
1674 }
1675
1676 if (!icc_eoi_split(env, cs)) {
1677 return;
1678 }
1679
1680 int grp = gicv3_irq_group(cs->gic, cs, irq);
1681
1682 single_sec_state = cs->gic->gicd_ctlr & GICD_CTLR_DS;
1683 irq_is_secure = !single_sec_state && (grp != GICV3_G1NS);
1684 irq_is_grp0 = grp == GICV3_G0;
1685
1686 /* Check whether we're allowed to deactivate this interrupt based
1687 * on its group and the current CPU state.
1688 * These checks are laid out to correspond to the spec's pseudocode.
1689 */
1690 route_fiq_to_el3 = env->cp15.scr_el3 & SCR_FIQ;
1691 route_irq_to_el3 = env->cp15.scr_el3 & SCR_IRQ;
1692 /* No need to include !IsSecure in route_*_to_el2 as it's only
1693 * tested in cases where we know !IsSecure is true.
1694 */
f7778444
RH
1695 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
1696 route_fiq_to_el2 = hcr_el2 & HCR_FMO;
1697 route_irq_to_el2 = hcr_el2 & HCR_IMO;
227a8653
PM
1698
1699 switch (arm_current_el(env)) {
1700 case 3:
1701 break;
1702 case 2:
1703 if (single_sec_state && irq_is_grp0 && !route_fiq_to_el3) {
1704 break;
1705 }
1706 if (!irq_is_secure && !irq_is_grp0 && !route_irq_to_el3) {
1707 break;
1708 }
1709 return;
1710 case 1:
1711 if (!arm_is_secure_below_el3(env)) {
1712 if (single_sec_state && irq_is_grp0 &&
1713 !route_fiq_to_el3 && !route_fiq_to_el2) {
1714 break;
1715 }
1716 if (!irq_is_secure && !irq_is_grp0 &&
1717 !route_irq_to_el3 && !route_irq_to_el2) {
1718 break;
1719 }
1720 } else {
1721 if (irq_is_grp0 && !route_fiq_to_el3) {
1722 break;
1723 }
1724 if (!irq_is_grp0 &&
1725 (!irq_is_secure || !single_sec_state) &&
1726 !route_irq_to_el3) {
1727 break;
1728 }
1729 }
1730 return;
1731 default:
1732 g_assert_not_reached();
1733 }
1734
1735 icc_deactivate_irq(cs, irq);
1736}
1737
1738static uint64_t icc_rpr_read(CPUARMState *env, const ARMCPRegInfo *ri)
1739{
1740 GICv3CPUState *cs = icc_cs_from_env(env);
df313f48
PM
1741 int prio;
1742
1743 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1744 return icv_rpr_read(env, ri);
1745 }
1746
1747 prio = icc_highest_active_prio(cs);
227a8653
PM
1748
1749 if (arm_feature(env, ARM_FEATURE_EL3) &&
1750 !arm_is_secure(env) && (env->cp15.scr_el3 & SCR_FIQ)) {
1751 /* NS GIC access and Group 0 is inaccessible to NS */
a2e2d7fc 1752 if ((prio & 0x80) == 0) {
227a8653
PM
1753 /* NS mustn't see priorities in the Secure half of the range */
1754 prio = 0;
1755 } else if (prio != 0xff) {
1756 /* Non-idle priority: show the Non-secure view of it */
1757 prio = (prio << 1) & 0xff;
1758 }
1759 }
1760
1761 trace_gicv3_icc_rpr_read(gicv3_redist_affid(cs), prio);
1762 return prio;
1763}
1764
b1a0eb77
PM
1765static void icc_generate_sgi(CPUARMState *env, GICv3CPUState *cs,
1766 uint64_t value, int grp, bool ns)
1767{
1768 GICv3State *s = cs->gic;
1769
1770 /* Extract Aff3/Aff2/Aff1 and shift into the bottom 24 bits */
1771 uint64_t aff = extract64(value, 48, 8) << 16 |
1772 extract64(value, 32, 8) << 8 |
1773 extract64(value, 16, 8);
1774 uint32_t targetlist = extract64(value, 0, 16);
1775 uint32_t irq = extract64(value, 24, 4);
1776 bool irm = extract64(value, 40, 1);
1777 int i;
1778
1779 if (grp == GICV3_G1 && s->gicd_ctlr & GICD_CTLR_DS) {
1780 /* If GICD_CTLR.DS == 1, the Distributor treats Secure Group 1
1781 * interrupts as Group 0 interrupts and must send Secure Group 0
1782 * interrupts to the target CPUs.
1783 */
1784 grp = GICV3_G0;
1785 }
1786
1787 trace_gicv3_icc_generate_sgi(gicv3_redist_affid(cs), irq, irm,
1788 aff, targetlist);
1789
1790 for (i = 0; i < s->num_cpu; i++) {
1791 GICv3CPUState *ocs = &s->cpu[i];
1792
1793 if (irm) {
1794 /* IRM == 1 : route to all CPUs except self */
1795 if (cs == ocs) {
1796 continue;
1797 }
1798 } else {
1799 /* IRM == 0 : route to Aff3.Aff2.Aff1.n for all n in [0..15]
1800 * where the corresponding bit is set in targetlist
1801 */
1802 int aff0;
1803
1804 if (ocs->gicr_typer >> 40 != aff) {
1805 continue;
1806 }
1807 aff0 = extract64(ocs->gicr_typer, 32, 8);
1808 if (aff0 > 15 || extract32(targetlist, aff0, 1) == 0) {
1809 continue;
1810 }
1811 }
1812
1813 /* The redistributor will check against its own GICR_NSACR as needed */
1814 gicv3_redist_send_sgi(ocs, grp, irq, ns);
1815 }
1816}
1817
1818static void icc_sgi0r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1819 uint64_t value)
1820{
1821 /* Generate Secure Group 0 SGI. */
1822 GICv3CPUState *cs = icc_cs_from_env(env);
1823 bool ns = !arm_is_secure(env);
1824
1825 icc_generate_sgi(env, cs, value, GICV3_G0, ns);
1826}
1827
1828static void icc_sgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1829 uint64_t value)
1830{
1831 /* Generate Group 1 SGI for the current Security state */
1832 GICv3CPUState *cs = icc_cs_from_env(env);
1833 int grp;
1834 bool ns = !arm_is_secure(env);
1835
1836 grp = ns ? GICV3_G1NS : GICV3_G1;
1837 icc_generate_sgi(env, cs, value, grp, ns);
1838}
1839
1840static void icc_asgi1r_write(CPUARMState *env, const ARMCPRegInfo *ri,
1841 uint64_t value)
1842{
1843 /* Generate Group 1 SGI for the Security state that is not
1844 * the current state
1845 */
1846 GICv3CPUState *cs = icc_cs_from_env(env);
1847 int grp;
1848 bool ns = !arm_is_secure(env);
1849
1850 grp = ns ? GICV3_G1 : GICV3_G1NS;
1851 icc_generate_sgi(env, cs, value, grp, ns);
1852}
1853
359fbe65
PM
1854static uint64_t icc_igrpen_read(CPUARMState *env, const ARMCPRegInfo *ri)
1855{
1856 GICv3CPUState *cs = icc_cs_from_env(env);
1857 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1858 uint64_t value;
1859
77620ba6
PM
1860 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1861 return icv_igrpen_read(env, ri);
1862 }
1863
359fbe65
PM
1864 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1865 grp = GICV3_G1NS;
1866 }
1867
1868 value = cs->icc_igrpen[grp];
081b1b98
PM
1869 trace_gicv3_icc_igrpen_read(ri->opc2 & 1 ? 1 : 0,
1870 gicv3_redist_affid(cs), value);
359fbe65
PM
1871 return value;
1872}
1873
1874static void icc_igrpen_write(CPUARMState *env, const ARMCPRegInfo *ri,
1875 uint64_t value)
1876{
1877 GICv3CPUState *cs = icc_cs_from_env(env);
1878 int grp = ri->opc2 & 1 ? GICV3_G1 : GICV3_G0;
1879
77620ba6
PM
1880 if (icv_access(env, grp == GICV3_G0 ? HCR_FMO : HCR_IMO)) {
1881 icv_igrpen_write(env, ri, value);
1882 return;
1883 }
1884
081b1b98
PM
1885 trace_gicv3_icc_igrpen_write(ri->opc2 & 1 ? 1 : 0,
1886 gicv3_redist_affid(cs), value);
359fbe65
PM
1887
1888 if (grp == GICV3_G1 && gicv3_use_ns_bank(env)) {
1889 grp = GICV3_G1NS;
1890 }
1891
1892 cs->icc_igrpen[grp] = value & ICC_IGRPEN_ENABLE;
1893 gicv3_cpuif_update(cs);
1894}
1895
1896static uint64_t icc_igrpen1_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1897{
1898 GICv3CPUState *cs = icc_cs_from_env(env);
081b1b98 1899 uint64_t value;
359fbe65
PM
1900
1901 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
081b1b98
PM
1902 value = cs->icc_igrpen[GICV3_G1NS] | (cs->icc_igrpen[GICV3_G1] << 1);
1903 trace_gicv3_icc_igrpen1_el3_read(gicv3_redist_affid(cs), value);
1904 return value;
359fbe65
PM
1905}
1906
1907static void icc_igrpen1_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1908 uint64_t value)
1909{
1910 GICv3CPUState *cs = icc_cs_from_env(env);
1911
1912 trace_gicv3_icc_igrpen1_el3_write(gicv3_redist_affid(cs), value);
1913
1914 /* IGRPEN1_EL3 bits 0 and 1 are r/w aliases into IGRPEN1_EL1 NS and S */
1915 cs->icc_igrpen[GICV3_G1NS] = extract32(value, 0, 1);
1916 cs->icc_igrpen[GICV3_G1] = extract32(value, 1, 1);
1917 gicv3_cpuif_update(cs);
1918}
1919
1920static uint64_t icc_ctlr_el1_read(CPUARMState *env, const ARMCPRegInfo *ri)
1921{
1922 GICv3CPUState *cs = icc_cs_from_env(env);
1923 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1924 uint64_t value;
1925
77620ba6
PM
1926 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1927 return icv_ctlr_read(env, ri);
1928 }
1929
359fbe65
PM
1930 value = cs->icc_ctlr_el1[bank];
1931 trace_gicv3_icc_ctlr_read(gicv3_redist_affid(cs), value);
1932 return value;
1933}
1934
1935static void icc_ctlr_el1_write(CPUARMState *env, const ARMCPRegInfo *ri,
1936 uint64_t value)
1937{
1938 GICv3CPUState *cs = icc_cs_from_env(env);
1939 int bank = gicv3_use_ns_bank(env) ? GICV3_NS : GICV3_S;
1940 uint64_t mask;
1941
77620ba6
PM
1942 if (icv_access(env, HCR_FMO | HCR_IMO)) {
1943 icv_ctlr_write(env, ri, value);
1944 return;
1945 }
1946
359fbe65
PM
1947 trace_gicv3_icc_ctlr_write(gicv3_redist_affid(cs), value);
1948
1949 /* Only CBPR and EOIMODE can be RW;
1950 * for us PMHE is RAZ/WI (we don't implement 1-of-N interrupts or
1951 * the asseciated priority-based routing of them);
1952 * if EL3 is implemented and GICD_CTLR.DS == 0, then PMHE and CBPR are RO.
1953 */
1954 if (arm_feature(env, ARM_FEATURE_EL3) &&
1955 ((cs->gic->gicd_ctlr & GICD_CTLR_DS) == 0)) {
1956 mask = ICC_CTLR_EL1_EOIMODE;
1957 } else {
1958 mask = ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE;
1959 }
1960
1961 cs->icc_ctlr_el1[bank] &= ~mask;
1962 cs->icc_ctlr_el1[bank] |= (value & mask);
1963 gicv3_cpuif_update(cs);
1964}
1965
1966
1967static uint64_t icc_ctlr_el3_read(CPUARMState *env, const ARMCPRegInfo *ri)
1968{
1969 GICv3CPUState *cs = icc_cs_from_env(env);
1970 uint64_t value;
1971
1972 value = cs->icc_ctlr_el3;
1973 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1974 value |= ICC_CTLR_EL3_EOIMODE_EL1NS;
1975 }
1976 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1977 value |= ICC_CTLR_EL3_CBPR_EL1NS;
1978 }
1979 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_EOIMODE) {
1980 value |= ICC_CTLR_EL3_EOIMODE_EL1S;
1981 }
1982 if (cs->icc_ctlr_el1[GICV3_NS] & ICC_CTLR_EL1_CBPR) {
1983 value |= ICC_CTLR_EL3_CBPR_EL1S;
1984 }
1985
1986 trace_gicv3_icc_ctlr_el3_read(gicv3_redist_affid(cs), value);
1987 return value;
1988}
1989
1990static void icc_ctlr_el3_write(CPUARMState *env, const ARMCPRegInfo *ri,
1991 uint64_t value)
1992{
1993 GICv3CPUState *cs = icc_cs_from_env(env);
1994 uint64_t mask;
1995
1996 trace_gicv3_icc_ctlr_el3_write(gicv3_redist_affid(cs), value);
1997
1998 /* *_EL1NS and *_EL1S bits are aliases into the ICC_CTLR_EL1 bits. */
09380dd1 1999 cs->icc_ctlr_el1[GICV3_NS] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
359fbe65
PM
2000 if (value & ICC_CTLR_EL3_EOIMODE_EL1NS) {
2001 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_EOIMODE;
2002 }
2003 if (value & ICC_CTLR_EL3_CBPR_EL1NS) {
2004 cs->icc_ctlr_el1[GICV3_NS] |= ICC_CTLR_EL1_CBPR;
2005 }
2006
09380dd1 2007 cs->icc_ctlr_el1[GICV3_S] &= ~(ICC_CTLR_EL1_CBPR | ICC_CTLR_EL1_EOIMODE);
359fbe65
PM
2008 if (value & ICC_CTLR_EL3_EOIMODE_EL1S) {
2009 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_EOIMODE;
2010 }
2011 if (value & ICC_CTLR_EL3_CBPR_EL1S) {
2012 cs->icc_ctlr_el1[GICV3_S] |= ICC_CTLR_EL1_CBPR;
2013 }
2014
2015 /* The only bit stored in icc_ctlr_el3 which is writeable is EOIMODE_EL3: */
2016 mask = ICC_CTLR_EL3_EOIMODE_EL3;
2017
2018 cs->icc_ctlr_el3 &= ~mask;
2019 cs->icc_ctlr_el3 |= (value & mask);
2020 gicv3_cpuif_update(cs);
2021}
2022
2023static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
2024 const ARMCPRegInfo *ri, bool isread)
2025{
2026 CPAccessResult r = CP_ACCESS_OK;
86830554
PM
2027 GICv3CPUState *cs = icc_cs_from_env(env);
2028 int el = arm_current_el(env);
2029
2030 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TC) &&
2031 el == 1 && !arm_is_secure_below_el3(env)) {
2032 /* Takes priority over a possible EL3 trap */
2033 return CP_ACCESS_TRAP_EL2;
2034 }
359fbe65
PM
2035
2036 if ((env->cp15.scr_el3 & (SCR_FIQ | SCR_IRQ)) == (SCR_FIQ | SCR_IRQ)) {
86830554 2037 switch (el) {
359fbe65 2038 case 1:
f7778444
RH
2039 /* Note that arm_hcr_el2_eff takes secure state into account. */
2040 if ((arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) == 0) {
359fbe65
PM
2041 r = CP_ACCESS_TRAP_EL3;
2042 }
2043 break;
2044 case 2:
2045 r = CP_ACCESS_TRAP_EL3;
2046 break;
2047 case 3:
2048 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2049 r = CP_ACCESS_TRAP_EL3;
2050 }
92b30c2f 2051 break;
359fbe65
PM
2052 default:
2053 g_assert_not_reached();
2054 }
2055 }
2056
2057 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2058 r = CP_ACCESS_TRAP;
2059 }
2060 return r;
2061}
2062
86830554
PM
2063static CPAccessResult gicv3_dir_access(CPUARMState *env,
2064 const ARMCPRegInfo *ri, bool isread)
2065{
2066 GICv3CPUState *cs = icc_cs_from_env(env);
2067
2068 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TDIR) &&
2069 arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
2070 /* Takes priority over a possible EL3 trap */
2071 return CP_ACCESS_TRAP_EL2;
2072 }
2073
2074 return gicv3_irqfiq_access(env, ri, isread);
2075}
2076
2077static CPAccessResult gicv3_sgi_access(CPUARMState *env,
2078 const ARMCPRegInfo *ri, bool isread)
2079{
f7778444
RH
2080 if (arm_current_el(env) == 1 &&
2081 (arm_hcr_el2_eff(env) & (HCR_IMO | HCR_FMO)) != 0) {
86830554
PM
2082 /* Takes priority over a possible EL3 trap */
2083 return CP_ACCESS_TRAP_EL2;
2084 }
2085
2086 return gicv3_irqfiq_access(env, ri, isread);
2087}
2088
359fbe65
PM
2089static CPAccessResult gicv3_fiq_access(CPUARMState *env,
2090 const ARMCPRegInfo *ri, bool isread)
2091{
2092 CPAccessResult r = CP_ACCESS_OK;
86830554
PM
2093 GICv3CPUState *cs = icc_cs_from_env(env);
2094 int el = arm_current_el(env);
2095
2096 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL0) &&
2097 el == 1 && !arm_is_secure_below_el3(env)) {
2098 /* Takes priority over a possible EL3 trap */
2099 return CP_ACCESS_TRAP_EL2;
2100 }
359fbe65
PM
2101
2102 if (env->cp15.scr_el3 & SCR_FIQ) {
86830554 2103 switch (el) {
359fbe65 2104 case 1:
f7778444 2105 if ((arm_hcr_el2_eff(env) & HCR_FMO) == 0) {
359fbe65
PM
2106 r = CP_ACCESS_TRAP_EL3;
2107 }
2108 break;
2109 case 2:
2110 r = CP_ACCESS_TRAP_EL3;
2111 break;
2112 case 3:
2113 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2114 r = CP_ACCESS_TRAP_EL3;
2115 }
92b30c2f 2116 break;
359fbe65
PM
2117 default:
2118 g_assert_not_reached();
2119 }
2120 }
2121
2122 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2123 r = CP_ACCESS_TRAP;
2124 }
2125 return r;
2126}
2127
2128static CPAccessResult gicv3_irq_access(CPUARMState *env,
2129 const ARMCPRegInfo *ri, bool isread)
2130{
2131 CPAccessResult r = CP_ACCESS_OK;
86830554
PM
2132 GICv3CPUState *cs = icc_cs_from_env(env);
2133 int el = arm_current_el(env);
2134
2135 if ((cs->ich_hcr_el2 & ICH_HCR_EL2_TALL1) &&
2136 el == 1 && !arm_is_secure_below_el3(env)) {
2137 /* Takes priority over a possible EL3 trap */
2138 return CP_ACCESS_TRAP_EL2;
2139 }
359fbe65
PM
2140
2141 if (env->cp15.scr_el3 & SCR_IRQ) {
86830554 2142 switch (el) {
359fbe65 2143 case 1:
f7778444 2144 if ((arm_hcr_el2_eff(env) & HCR_IMO) == 0) {
359fbe65
PM
2145 r = CP_ACCESS_TRAP_EL3;
2146 }
2147 break;
2148 case 2:
2149 r = CP_ACCESS_TRAP_EL3;
2150 break;
2151 case 3:
2152 if (!is_a64(env) && !arm_is_el3_or_mon(env)) {
2153 r = CP_ACCESS_TRAP_EL3;
2154 }
2155 break;
2156 default:
2157 g_assert_not_reached();
2158 }
2159 }
2160
2161 if (r == CP_ACCESS_TRAP_EL3 && !arm_el_is_aa64(env, 3)) {
2162 r = CP_ACCESS_TRAP;
2163 }
2164 return r;
2165}
2166
2167static void icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
2168{
2169 GICv3CPUState *cs = icc_cs_from_env(env);
2170
2171 cs->icc_ctlr_el1[GICV3_S] = ICC_CTLR_EL1_A3V |
2172 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2173 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2174 cs->icc_ctlr_el1[GICV3_NS] = ICC_CTLR_EL1_A3V |
2175 (1 << ICC_CTLR_EL1_IDBITS_SHIFT) |
2176 (7 << ICC_CTLR_EL1_PRIBITS_SHIFT);
2177 cs->icc_pmr_el1 = 0;
2178 cs->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
2179 cs->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
64175afc 2180 cs->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR_NS;
359fbe65
PM
2181 memset(cs->icc_apr, 0, sizeof(cs->icc_apr));
2182 memset(cs->icc_igrpen, 0, sizeof(cs->icc_igrpen));
2183 cs->icc_ctlr_el3 = ICC_CTLR_EL3_NDS | ICC_CTLR_EL3_A3V |
2184 (1 << ICC_CTLR_EL3_IDBITS_SHIFT) |
2185 (7 << ICC_CTLR_EL3_PRIBITS_SHIFT);
4eb833b5
PM
2186
2187 memset(cs->ich_apr, 0, sizeof(cs->ich_apr));
2188 cs->ich_hcr_el2 = 0;
2189 memset(cs->ich_lr_el2, 0, sizeof(cs->ich_lr_el2));
2190 cs->ich_vmcr_el2 = ICH_VMCR_EL2_VFIQEN |
f5dc1b77 2191 ((icv_min_vbpr(cs) + 1) << ICH_VMCR_EL2_VBPR1_SHIFT) |
4eb833b5 2192 (icv_min_vbpr(cs) << ICH_VMCR_EL2_VBPR0_SHIFT);
359fbe65
PM
2193}
2194
2195static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
2196 { .name = "ICC_PMR_EL1", .state = ARM_CP_STATE_BOTH,
2197 .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 6, .opc2 = 0,
2198 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2199 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2200 .readfn = icc_pmr_read,
2201 .writefn = icc_pmr_write,
2202 /* We hang the whole cpu interface reset routine off here
2203 * rather than parcelling it out into one little function
2204 * per register
2205 */
2206 .resetfn = icc_reset,
2207 },
227a8653
PM
2208 { .name = "ICC_IAR0_EL1", .state = ARM_CP_STATE_BOTH,
2209 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 0,
2210 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2211 .access = PL1_R, .accessfn = gicv3_fiq_access,
2212 .readfn = icc_iar0_read,
2213 },
2214 { .name = "ICC_EOIR0_EL1", .state = ARM_CP_STATE_BOTH,
2215 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 1,
2216 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2217 .access = PL1_W, .accessfn = gicv3_fiq_access,
2218 .writefn = icc_eoir_write,
2219 },
2220 { .name = "ICC_HPPIR0_EL1", .state = ARM_CP_STATE_BOTH,
2221 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 2,
2222 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2223 .access = PL1_R, .accessfn = gicv3_fiq_access,
2224 .readfn = icc_hppir0_read,
2225 },
359fbe65
PM
2226 { .name = "ICC_BPR0_EL1", .state = ARM_CP_STATE_BOTH,
2227 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 3,
2228 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2229 .access = PL1_RW, .accessfn = gicv3_fiq_access,
e971fa04 2230 .readfn = icc_bpr_read,
359fbe65
PM
2231 .writefn = icc_bpr_write,
2232 },
2233 { .name = "ICC_AP0R0_EL1", .state = ARM_CP_STATE_BOTH,
2234 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 4,
2235 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2236 .access = PL1_RW, .accessfn = gicv3_fiq_access,
e971fa04 2237 .readfn = icc_ap_read,
359fbe65
PM
2238 .writefn = icc_ap_write,
2239 },
2240 { .name = "ICC_AP0R1_EL1", .state = ARM_CP_STATE_BOTH,
2241 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 5,
2242 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2243 .access = PL1_RW, .accessfn = gicv3_fiq_access,
e971fa04 2244 .readfn = icc_ap_read,
359fbe65
PM
2245 .writefn = icc_ap_write,
2246 },
2247 { .name = "ICC_AP0R2_EL1", .state = ARM_CP_STATE_BOTH,
2248 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 6,
2249 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2250 .access = PL1_RW, .accessfn = gicv3_fiq_access,
e971fa04 2251 .readfn = icc_ap_read,
359fbe65
PM
2252 .writefn = icc_ap_write,
2253 },
2254 { .name = "ICC_AP0R3_EL1", .state = ARM_CP_STATE_BOTH,
2255 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 8, .opc2 = 7,
2256 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2257 .access = PL1_RW, .accessfn = gicv3_fiq_access,
e971fa04 2258 .readfn = icc_ap_read,
359fbe65
PM
2259 .writefn = icc_ap_write,
2260 },
2261 /* All the ICC_AP1R*_EL1 registers are banked */
2262 { .name = "ICC_AP1R0_EL1", .state = ARM_CP_STATE_BOTH,
2263 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 0,
2264 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2265 .access = PL1_RW, .accessfn = gicv3_irq_access,
2266 .readfn = icc_ap_read,
2267 .writefn = icc_ap_write,
2268 },
2269 { .name = "ICC_AP1R1_EL1", .state = ARM_CP_STATE_BOTH,
2270 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 1,
2271 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2272 .access = PL1_RW, .accessfn = gicv3_irq_access,
2273 .readfn = icc_ap_read,
2274 .writefn = icc_ap_write,
2275 },
2276 { .name = "ICC_AP1R2_EL1", .state = ARM_CP_STATE_BOTH,
2277 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 2,
2278 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2279 .access = PL1_RW, .accessfn = gicv3_irq_access,
2280 .readfn = icc_ap_read,
2281 .writefn = icc_ap_write,
2282 },
2283 { .name = "ICC_AP1R3_EL1", .state = ARM_CP_STATE_BOTH,
2284 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 9, .opc2 = 3,
2285 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2286 .access = PL1_RW, .accessfn = gicv3_irq_access,
2287 .readfn = icc_ap_read,
2288 .writefn = icc_ap_write,
2289 },
227a8653
PM
2290 { .name = "ICC_DIR_EL1", .state = ARM_CP_STATE_BOTH,
2291 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 1,
2292 .type = ARM_CP_IO | ARM_CP_NO_RAW,
86830554 2293 .access = PL1_W, .accessfn = gicv3_dir_access,
227a8653
PM
2294 .writefn = icc_dir_write,
2295 },
2296 { .name = "ICC_RPR_EL1", .state = ARM_CP_STATE_BOTH,
2297 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 3,
2298 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2299 .access = PL1_R, .accessfn = gicv3_irqfiq_access,
2300 .readfn = icc_rpr_read,
2301 },
b1a0eb77
PM
2302 { .name = "ICC_SGI1R_EL1", .state = ARM_CP_STATE_AA64,
2303 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 5,
2304 .type = ARM_CP_IO | ARM_CP_NO_RAW,
86830554 2305 .access = PL1_W, .accessfn = gicv3_sgi_access,
b1a0eb77
PM
2306 .writefn = icc_sgi1r_write,
2307 },
2308 { .name = "ICC_SGI1R",
2309 .cp = 15, .opc1 = 0, .crm = 12,
2310 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
86830554 2311 .access = PL1_W, .accessfn = gicv3_sgi_access,
b1a0eb77
PM
2312 .writefn = icc_sgi1r_write,
2313 },
2314 { .name = "ICC_ASGI1R_EL1", .state = ARM_CP_STATE_AA64,
2315 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 6,
2316 .type = ARM_CP_IO | ARM_CP_NO_RAW,
86830554 2317 .access = PL1_W, .accessfn = gicv3_sgi_access,
b1a0eb77
PM
2318 .writefn = icc_asgi1r_write,
2319 },
2320 { .name = "ICC_ASGI1R",
2321 .cp = 15, .opc1 = 1, .crm = 12,
2322 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
86830554 2323 .access = PL1_W, .accessfn = gicv3_sgi_access,
b1a0eb77
PM
2324 .writefn = icc_asgi1r_write,
2325 },
2326 { .name = "ICC_SGI0R_EL1", .state = ARM_CP_STATE_AA64,
2327 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 11, .opc2 = 7,
2328 .type = ARM_CP_IO | ARM_CP_NO_RAW,
86830554 2329 .access = PL1_W, .accessfn = gicv3_sgi_access,
b1a0eb77
PM
2330 .writefn = icc_sgi0r_write,
2331 },
2332 { .name = "ICC_SGI0R",
2333 .cp = 15, .opc1 = 2, .crm = 12,
2334 .type = ARM_CP_64BIT | ARM_CP_IO | ARM_CP_NO_RAW,
86830554 2335 .access = PL1_W, .accessfn = gicv3_sgi_access,
b1a0eb77
PM
2336 .writefn = icc_sgi0r_write,
2337 },
227a8653
PM
2338 { .name = "ICC_IAR1_EL1", .state = ARM_CP_STATE_BOTH,
2339 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 0,
2340 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2341 .access = PL1_R, .accessfn = gicv3_irq_access,
2342 .readfn = icc_iar1_read,
2343 },
2344 { .name = "ICC_EOIR1_EL1", .state = ARM_CP_STATE_BOTH,
2345 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 1,
2346 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2347 .access = PL1_W, .accessfn = gicv3_irq_access,
2348 .writefn = icc_eoir_write,
2349 },
2350 { .name = "ICC_HPPIR1_EL1", .state = ARM_CP_STATE_BOTH,
2351 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 2,
2352 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2353 .access = PL1_R, .accessfn = gicv3_irq_access,
2354 .readfn = icc_hppir1_read,
2355 },
359fbe65
PM
2356 /* This register is banked */
2357 { .name = "ICC_BPR1_EL1", .state = ARM_CP_STATE_BOTH,
2358 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 3,
2359 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2360 .access = PL1_RW, .accessfn = gicv3_irq_access,
2361 .readfn = icc_bpr_read,
2362 .writefn = icc_bpr_write,
2363 },
2364 /* This register is banked */
2365 { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
2366 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
2367 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2368 .access = PL1_RW, .accessfn = gicv3_irqfiq_access,
2369 .readfn = icc_ctlr_el1_read,
2370 .writefn = icc_ctlr_el1_write,
2371 },
2372 { .name = "ICC_SRE_EL1", .state = ARM_CP_STATE_BOTH,
2373 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 5,
2374 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2375 .access = PL1_RW,
2376 /* We don't support IRQ/FIQ bypass and system registers are
2377 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2378 * This register is banked but since it's constant we don't
2379 * need to do anything special.
2380 */
2381 .resetvalue = 0x7,
2382 },
2383 { .name = "ICC_IGRPEN0_EL1", .state = ARM_CP_STATE_BOTH,
2384 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 6,
2385 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2386 .access = PL1_RW, .accessfn = gicv3_fiq_access,
e971fa04 2387 .readfn = icc_igrpen_read,
359fbe65
PM
2388 .writefn = icc_igrpen_write,
2389 },
2390 /* This register is banked */
2391 { .name = "ICC_IGRPEN1_EL1", .state = ARM_CP_STATE_BOTH,
2392 .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 7,
2393 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2394 .access = PL1_RW, .accessfn = gicv3_irq_access,
2395 .readfn = icc_igrpen_read,
2396 .writefn = icc_igrpen_write,
2397 },
2398 { .name = "ICC_SRE_EL2", .state = ARM_CP_STATE_BOTH,
2399 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 5,
2400 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2401 .access = PL2_RW,
2402 /* We don't support IRQ/FIQ bypass and system registers are
2403 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2404 */
2405 .resetvalue = 0xf,
2406 },
2407 { .name = "ICC_CTLR_EL3", .state = ARM_CP_STATE_BOTH,
2408 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 4,
2409 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2410 .access = PL3_RW,
359fbe65
PM
2411 .readfn = icc_ctlr_el3_read,
2412 .writefn = icc_ctlr_el3_write,
2413 },
2414 { .name = "ICC_SRE_EL3", .state = ARM_CP_STATE_BOTH,
2415 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 5,
2416 .type = ARM_CP_NO_RAW | ARM_CP_CONST,
2417 .access = PL3_RW,
2418 /* We don't support IRQ/FIQ bypass and system registers are
2419 * always enabled, so all our bits are RAZ/WI or RAO/WI.
2420 */
2421 .resetvalue = 0xf,
2422 },
2423 { .name = "ICC_IGRPEN1_EL3", .state = ARM_CP_STATE_BOTH,
2424 .opc0 = 3, .opc1 = 6, .crn = 12, .crm = 12, .opc2 = 7,
2425 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2426 .access = PL3_RW,
2427 .readfn = icc_igrpen1_el3_read,
2428 .writefn = icc_igrpen1_el3_write,
2429 },
2430 REGINFO_SENTINEL
2431};
2432
83f036fe
PM
2433static uint64_t ich_ap_read(CPUARMState *env, const ARMCPRegInfo *ri)
2434{
2435 GICv3CPUState *cs = icc_cs_from_env(env);
2436 int regno = ri->opc2 & 3;
887aae10 2437 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
83f036fe
PM
2438 uint64_t value;
2439
2440 value = cs->ich_apr[grp][regno];
2441 trace_gicv3_ich_ap_read(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2442 return value;
2443}
2444
2445static void ich_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
2446 uint64_t value)
2447{
2448 GICv3CPUState *cs = icc_cs_from_env(env);
2449 int regno = ri->opc2 & 3;
887aae10 2450 int grp = (ri->crm & 1) ? GICV3_G1NS : GICV3_G0;
83f036fe
PM
2451
2452 trace_gicv3_ich_ap_write(ri->crm & 1, regno, gicv3_redist_affid(cs), value);
2453
2454 cs->ich_apr[grp][regno] = value & 0xFFFFFFFFU;
189d1d9d 2455 gicv3_cpuif_virt_irq_fiq_update(cs);
83f036fe
PM
2456}
2457
2458static uint64_t ich_hcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2459{
2460 GICv3CPUState *cs = icc_cs_from_env(env);
2461 uint64_t value = cs->ich_hcr_el2;
2462
2463 trace_gicv3_ich_hcr_read(gicv3_redist_affid(cs), value);
2464 return value;
2465}
2466
2467static void ich_hcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2468 uint64_t value)
2469{
2470 GICv3CPUState *cs = icc_cs_from_env(env);
2471
2472 trace_gicv3_ich_hcr_write(gicv3_redist_affid(cs), value);
2473
2474 value &= ICH_HCR_EL2_EN | ICH_HCR_EL2_UIE | ICH_HCR_EL2_LRENPIE |
2475 ICH_HCR_EL2_NPIE | ICH_HCR_EL2_VGRP0EIE | ICH_HCR_EL2_VGRP0DIE |
2476 ICH_HCR_EL2_VGRP1EIE | ICH_HCR_EL2_VGRP1DIE | ICH_HCR_EL2_TC |
2477 ICH_HCR_EL2_TALL0 | ICH_HCR_EL2_TALL1 | ICH_HCR_EL2_TSEI |
2478 ICH_HCR_EL2_TDIR | ICH_HCR_EL2_EOICOUNT_MASK;
2479
2480 cs->ich_hcr_el2 = value;
2481 gicv3_cpuif_virt_update(cs);
2482}
2483
2484static uint64_t ich_vmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2485{
2486 GICv3CPUState *cs = icc_cs_from_env(env);
2487 uint64_t value = cs->ich_vmcr_el2;
2488
2489 trace_gicv3_ich_vmcr_read(gicv3_redist_affid(cs), value);
2490 return value;
2491}
2492
2493static void ich_vmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2494 uint64_t value)
2495{
2496 GICv3CPUState *cs = icc_cs_from_env(env);
2497
2498 trace_gicv3_ich_vmcr_write(gicv3_redist_affid(cs), value);
2499
2500 value &= ICH_VMCR_EL2_VENG0 | ICH_VMCR_EL2_VENG1 | ICH_VMCR_EL2_VCBPR |
2501 ICH_VMCR_EL2_VEOIM | ICH_VMCR_EL2_VBPR1_MASK |
2502 ICH_VMCR_EL2_VBPR0_MASK | ICH_VMCR_EL2_VPMR_MASK;
2503 value |= ICH_VMCR_EL2_VFIQEN;
2504
2505 cs->ich_vmcr_el2 = value;
2506 /* Enforce "writing BPRs to less than minimum sets them to the minimum"
2507 * by reading and writing back the fields.
2508 */
8b7fbd6c 2509 write_vbpr(cs, GICV3_G0, read_vbpr(cs, GICV3_G0));
83f036fe
PM
2510 write_vbpr(cs, GICV3_G1, read_vbpr(cs, GICV3_G1));
2511
2512 gicv3_cpuif_virt_update(cs);
2513}
2514
2515static uint64_t ich_lr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2516{
2517 GICv3CPUState *cs = icc_cs_from_env(env);
2518 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2519 uint64_t value;
2520
2521 /* This read function handles all of:
2522 * 64-bit reads of the whole LR
2523 * 32-bit reads of the low half of the LR
2524 * 32-bit reads of the high half of the LR
2525 */
2526 if (ri->state == ARM_CP_STATE_AA32) {
2527 if (ri->crm >= 14) {
2528 value = extract64(cs->ich_lr_el2[regno], 32, 32);
2529 trace_gicv3_ich_lrc_read(regno, gicv3_redist_affid(cs), value);
2530 } else {
2531 value = extract64(cs->ich_lr_el2[regno], 0, 32);
2532 trace_gicv3_ich_lr32_read(regno, gicv3_redist_affid(cs), value);
2533 }
2534 } else {
2535 value = cs->ich_lr_el2[regno];
2536 trace_gicv3_ich_lr_read(regno, gicv3_redist_affid(cs), value);
2537 }
2538
2539 return value;
2540}
2541
2542static void ich_lr_write(CPUARMState *env, const ARMCPRegInfo *ri,
2543 uint64_t value)
2544{
2545 GICv3CPUState *cs = icc_cs_from_env(env);
2546 int regno = ri->opc2 | ((ri->crm & 1) << 3);
2547
2548 /* This write function handles all of:
2549 * 64-bit writes to the whole LR
2550 * 32-bit writes to the low half of the LR
2551 * 32-bit writes to the high half of the LR
2552 */
2553 if (ri->state == ARM_CP_STATE_AA32) {
2554 if (ri->crm >= 14) {
2555 trace_gicv3_ich_lrc_write(regno, gicv3_redist_affid(cs), value);
2556 value = deposit64(cs->ich_lr_el2[regno], 32, 32, value);
2557 } else {
2558 trace_gicv3_ich_lr32_write(regno, gicv3_redist_affid(cs), value);
2559 value = deposit64(cs->ich_lr_el2[regno], 0, 32, value);
2560 }
2561 } else {
2562 trace_gicv3_ich_lr_write(regno, gicv3_redist_affid(cs), value);
2563 }
2564
2565 /* Enforce RES0 bits in priority field */
2566 if (cs->vpribits < 8) {
2567 value = deposit64(value, ICH_LR_EL2_PRIORITY_SHIFT,
2568 8 - cs->vpribits, 0);
2569 }
2570
2571 cs->ich_lr_el2[regno] = value;
2572 gicv3_cpuif_virt_update(cs);
2573}
2574
2575static uint64_t ich_vtr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2576{
2577 GICv3CPUState *cs = icc_cs_from_env(env);
2578 uint64_t value;
2579
2580 value = ((cs->num_list_regs - 1) << ICH_VTR_EL2_LISTREGS_SHIFT)
2581 | ICH_VTR_EL2_TDS | ICH_VTR_EL2_NV4 | ICH_VTR_EL2_A3V
2582 | (1 << ICH_VTR_EL2_IDBITS_SHIFT)
2583 | ((cs->vprebits - 1) << ICH_VTR_EL2_PREBITS_SHIFT)
2584 | ((cs->vpribits - 1) << ICH_VTR_EL2_PRIBITS_SHIFT);
2585
2586 trace_gicv3_ich_vtr_read(gicv3_redist_affid(cs), value);
2587 return value;
2588}
2589
2590static uint64_t ich_misr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2591{
2592 GICv3CPUState *cs = icc_cs_from_env(env);
2593 uint64_t value = maintenance_interrupt_state(cs);
2594
2595 trace_gicv3_ich_misr_read(gicv3_redist_affid(cs), value);
2596 return value;
2597}
2598
2599static uint64_t ich_eisr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2600{
2601 GICv3CPUState *cs = icc_cs_from_env(env);
2602 uint64_t value = eoi_maintenance_interrupt_state(cs, NULL);
2603
2604 trace_gicv3_ich_eisr_read(gicv3_redist_affid(cs), value);
2605 return value;
2606}
2607
2608static uint64_t ich_elrsr_read(CPUARMState *env, const ARMCPRegInfo *ri)
2609{
2610 GICv3CPUState *cs = icc_cs_from_env(env);
2611 uint64_t value = 0;
2612 int i;
2613
2614 for (i = 0; i < cs->num_list_regs; i++) {
2615 uint64_t lr = cs->ich_lr_el2[i];
2616
2617 if ((lr & ICH_LR_EL2_STATE_MASK) == 0 &&
d87576e3 2618 ((lr & ICH_LR_EL2_HW) != 0 || (lr & ICH_LR_EL2_EOI) == 0)) {
83f036fe
PM
2619 value |= (1 << i);
2620 }
2621 }
2622
2623 trace_gicv3_ich_elrsr_read(gicv3_redist_affid(cs), value);
2624 return value;
2625}
2626
2627static const ARMCPRegInfo gicv3_cpuif_hcr_reginfo[] = {
2628 { .name = "ICH_AP0R0_EL2", .state = ARM_CP_STATE_BOTH,
2629 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 0,
2630 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2631 .access = PL2_RW,
2632 .readfn = ich_ap_read,
2633 .writefn = ich_ap_write,
2634 },
2635 { .name = "ICH_AP1R0_EL2", .state = ARM_CP_STATE_BOTH,
2636 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 0,
2637 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2638 .access = PL2_RW,
2639 .readfn = ich_ap_read,
2640 .writefn = ich_ap_write,
2641 },
2642 { .name = "ICH_HCR_EL2", .state = ARM_CP_STATE_BOTH,
2643 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 0,
2644 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2645 .access = PL2_RW,
2646 .readfn = ich_hcr_read,
2647 .writefn = ich_hcr_write,
2648 },
2649 { .name = "ICH_VTR_EL2", .state = ARM_CP_STATE_BOTH,
2650 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 1,
2651 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2652 .access = PL2_R,
2653 .readfn = ich_vtr_read,
2654 },
2655 { .name = "ICH_MISR_EL2", .state = ARM_CP_STATE_BOTH,
2656 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 2,
2657 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2658 .access = PL2_R,
2659 .readfn = ich_misr_read,
2660 },
2661 { .name = "ICH_EISR_EL2", .state = ARM_CP_STATE_BOTH,
2662 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 3,
2663 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2664 .access = PL2_R,
2665 .readfn = ich_eisr_read,
2666 },
2667 { .name = "ICH_ELRSR_EL2", .state = ARM_CP_STATE_BOTH,
2668 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 5,
2669 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2670 .access = PL2_R,
2671 .readfn = ich_elrsr_read,
2672 },
2673 { .name = "ICH_VMCR_EL2", .state = ARM_CP_STATE_BOTH,
2674 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 11, .opc2 = 7,
2675 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2676 .access = PL2_RW,
2677 .readfn = ich_vmcr_read,
2678 .writefn = ich_vmcr_write,
2679 },
2680 REGINFO_SENTINEL
2681};
2682
2683static const ARMCPRegInfo gicv3_cpuif_ich_apxr1_reginfo[] = {
2684 { .name = "ICH_AP0R1_EL2", .state = ARM_CP_STATE_BOTH,
2685 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 1,
2686 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2687 .access = PL2_RW,
2688 .readfn = ich_ap_read,
2689 .writefn = ich_ap_write,
2690 },
2691 { .name = "ICH_AP1R1_EL2", .state = ARM_CP_STATE_BOTH,
2692 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 1,
2693 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2694 .access = PL2_RW,
2695 .readfn = ich_ap_read,
2696 .writefn = ich_ap_write,
2697 },
2698 REGINFO_SENTINEL
2699};
2700
2701static const ARMCPRegInfo gicv3_cpuif_ich_apxr23_reginfo[] = {
2702 { .name = "ICH_AP0R2_EL2", .state = ARM_CP_STATE_BOTH,
2703 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 2,
2704 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2705 .access = PL2_RW,
2706 .readfn = ich_ap_read,
2707 .writefn = ich_ap_write,
2708 },
2709 { .name = "ICH_AP0R3_EL2", .state = ARM_CP_STATE_BOTH,
2710 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 8, .opc2 = 3,
2711 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2712 .access = PL2_RW,
2713 .readfn = ich_ap_read,
2714 .writefn = ich_ap_write,
2715 },
2716 { .name = "ICH_AP1R2_EL2", .state = ARM_CP_STATE_BOTH,
2717 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 2,
2718 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2719 .access = PL2_RW,
2720 .readfn = ich_ap_read,
2721 .writefn = ich_ap_write,
2722 },
2723 { .name = "ICH_AP1R3_EL2", .state = ARM_CP_STATE_BOTH,
2724 .opc0 = 3, .opc1 = 4, .crn = 12, .crm = 9, .opc2 = 3,
2725 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2726 .access = PL2_RW,
2727 .readfn = ich_ap_read,
2728 .writefn = ich_ap_write,
2729 },
2730 REGINFO_SENTINEL
2731};
2732
359fbe65
PM
2733static void gicv3_cpuif_el_change_hook(ARMCPU *cpu, void *opaque)
2734{
f7b9358e
PM
2735 GICv3CPUState *cs = opaque;
2736
2737 gicv3_cpuif_update(cs);
c3f21b06
PM
2738 /*
2739 * Because vLPIs are only pending in NonSecure state,
2740 * an EL change can change the VIRQ/VFIQ status (but
2741 * cannot affect the maintenance interrupt state)
2742 */
2743 gicv3_cpuif_virt_irq_fiq_update(cs);
359fbe65
PM
2744}
2745
2746void gicv3_init_cpuif(GICv3State *s)
2747{
2748 /* Called from the GICv3 realize function; register our system
2749 * registers with the CPU
2750 */
2751 int i;
2752
2753 for (i = 0; i < s->num_cpu; i++) {
2754 ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
2755 GICv3CPUState *cs = &s->cpu[i];
2756
2757 /* Note that we can't just use the GICv3CPUState as an opaque pointer
2758 * in define_arm_cp_regs_with_opaque(), because when we're called back
2759 * it might be with code translated by CPU 0 but run by CPU 1, in
2760 * which case we'd get the wrong value.
2761 * So instead we define the regs with no ri->opaque info, and
d5a5e4c9 2762 * get back to the GICv3CPUState from the CPUARMState.
359fbe65
PM
2763 */
2764 define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
83f036fe
PM
2765 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)
2766 && cpu->gic_num_lrs) {
2767 int j;
2768
2769 cs->num_list_regs = cpu->gic_num_lrs;
2770 cs->vpribits = cpu->gic_vpribits;
2771 cs->vprebits = cpu->gic_vprebits;
2772
2773 /* Check against architectural constraints: getting these
2774 * wrong would be a bug in the CPU code defining these,
2775 * and the implementation relies on them holding.
2776 */
2777 g_assert(cs->vprebits <= cs->vpribits);
2778 g_assert(cs->vprebits >= 5 && cs->vprebits <= 7);
2779 g_assert(cs->vpribits >= 5 && cs->vpribits <= 8);
2780
2781 define_arm_cp_regs(cpu, gicv3_cpuif_hcr_reginfo);
2782
2783 for (j = 0; j < cs->num_list_regs; j++) {
2784 /* Note that the AArch64 LRs are 64-bit; the AArch32 LRs
2785 * are split into two cp15 regs, LR (the low part, with the
2786 * same encoding as the AArch64 LR) and LRC (the high part).
2787 */
2788 ARMCPRegInfo lr_regset[] = {
2789 { .name = "ICH_LRn_EL2", .state = ARM_CP_STATE_BOTH,
2790 .opc0 = 3, .opc1 = 4, .crn = 12,
2791 .crm = 12 + (j >> 3), .opc2 = j & 7,
2792 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2793 .access = PL2_RW,
2794 .readfn = ich_lr_read,
2795 .writefn = ich_lr_write,
2796 },
2797 { .name = "ICH_LRCn_EL2", .state = ARM_CP_STATE_AA32,
2798 .cp = 15, .opc1 = 4, .crn = 12,
2799 .crm = 14 + (j >> 3), .opc2 = j & 7,
2800 .type = ARM_CP_IO | ARM_CP_NO_RAW,
2801 .access = PL2_RW,
2802 .readfn = ich_lr_read,
2803 .writefn = ich_lr_write,
2804 },
2805 REGINFO_SENTINEL
2806 };
2807 define_arm_cp_regs(cpu, lr_regset);
2808 }
2809 if (cs->vprebits >= 6) {
2810 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr1_reginfo);
2811 }
2812 if (cs->vprebits == 7) {
2813 define_arm_cp_regs(cpu, gicv3_cpuif_ich_apxr23_reginfo);
2814 }
2815 }
359fbe65
PM
2816 arm_register_el_change_hook(cpu, gicv3_cpuif_el_change_hook, cs);
2817 }
2818}