]> git.proxmox.com Git - mirror_qemu.git/blame - hw/intc/armv7m_nvic.c
nvic: Handle ARMv6-M SCS reserved registers
[mirror_qemu.git] / hw / intc / armv7m_nvic.c
CommitLineData
9ee6e8bb
PB
1/*
2 * ARM Nested Vectored Interrupt Controller
3 *
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
6 *
8e31bf38 7 * This code is licensed under the GPL.
9ee6e8bb
PB
8 *
9 * The ARMv7M System controller is fairly tightly tied in with the
10 * NVIC. Much of that is also implemented here.
11 */
12
8ef94f0b 13#include "qemu/osdep.h"
da34e65c 14#include "qapi/error.h"
4771d756 15#include "qemu-common.h"
33c11879 16#include "cpu.h"
83c9f4ca 17#include "hw/sysbus.h"
1de7afc9 18#include "qemu/timer.h"
bd2be150 19#include "hw/arm/arm.h"
d2db1de6 20#include "hw/intc/armv7m_nvic.h"
da6d674e 21#include "target/arm/cpu.h"
29c483a5 22#include "exec/exec-all.h"
03dd024f 23#include "qemu/log.h"
da6d674e
MD
24#include "trace.h"
25
26/* IRQ number counting:
27 *
28 * the num-irq property counts the number of external IRQ lines
29 *
30 * NVICState::num_irq counts the total number of exceptions
31 * (external IRQs, the 15 internal exceptions including reset,
32 * and one for the unused exception number 0).
33 *
34 * NVIC_MAX_IRQ is the highest permitted number of external IRQ lines.
35 *
36 * NVIC_MAX_VECTORS is the highest permitted number of exceptions.
37 *
38 * Iterating through all exceptions should typically be done with
39 * for (i = 1; i < s->num_irq; i++) to avoid the unused slot 0.
40 *
41 * The external qemu_irq lines are the NVIC's external IRQ lines,
42 * so line 0 is exception 16.
43 *
44 * In the terminology of the architecture manual, "interrupts" are
45 * a subcategory of exception referring to the external interrupts
46 * (which are exception numbers NVIC_FIRST_IRQ and upward).
47 * For historical reasons QEMU tends to use "interrupt" and
48 * "exception" more or less interchangeably.
49 */
17906a16 50#define NVIC_FIRST_IRQ NVIC_INTERNAL_VECTORS
da6d674e
MD
51#define NVIC_MAX_IRQ (NVIC_MAX_VECTORS - NVIC_FIRST_IRQ)
52
53/* Effective running priority of the CPU when no exception is active
54 * (higher than the highest possible priority value)
55 */
56#define NVIC_NOEXC_PRIO 0x100
ff96c64a
PM
57/* Maximum priority of non-secure exceptions when AIRCR.PRIS is set */
58#define NVIC_NS_PRIO_LIMIT 0x80
da6d674e 59
2a29ddee
PM
60static const uint8_t nvic_id[] = {
61 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1
62};
63
da6d674e
MD
64static int nvic_pending_prio(NVICState *s)
65{
5255fcf8 66 /* return the group priority of the current pending interrupt,
da6d674e
MD
67 * or NVIC_NOEXC_PRIO if no interrupt is pending
68 */
5255fcf8 69 return s->vectpending_prio;
da6d674e
MD
70}
71
72/* Return the value of the ISCR RETTOBASE bit:
73 * 1 if there is exactly one active exception
74 * 0 if there is more than one active exception
75 * UNKNOWN if there are no active exceptions (we choose 1,
76 * which matches the choice Cortex-M3 is documented as making).
77 *
78 * NB: some versions of the documentation talk about this
79 * counting "active exceptions other than the one shown by IPSR";
80 * this is only different in the obscure corner case where guest
81 * code has manually deactivated an exception and is about
82 * to fail an exception-return integrity check. The definition
83 * above is the one from the v8M ARM ARM and is also in line
84 * with the behaviour documented for the Cortex-M3.
85 */
86static bool nvic_rettobase(NVICState *s)
87{
88 int irq, nhand = 0;
028b0da4 89 bool check_sec = arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
da6d674e
MD
90
91 for (irq = ARMV7M_EXCP_RESET; irq < s->num_irq; irq++) {
028b0da4
PM
92 if (s->vectors[irq].active ||
93 (check_sec && irq < NVIC_INTERNAL_VECTORS &&
94 s->sec_vectors[irq].active)) {
da6d674e
MD
95 nhand++;
96 if (nhand == 2) {
97 return 0;
98 }
99 }
100 }
101
102 return 1;
103}
104
105/* Return the value of the ISCR ISRPENDING bit:
106 * 1 if an external interrupt is pending
107 * 0 if no external interrupt is pending
108 */
109static bool nvic_isrpending(NVICState *s)
110{
111 int irq;
112
113 /* We can shortcut if the highest priority pending interrupt
114 * happens to be external or if there is nothing pending.
115 */
116 if (s->vectpending > NVIC_FIRST_IRQ) {
117 return true;
118 }
119 if (s->vectpending == 0) {
120 return false;
121 }
122
123 for (irq = NVIC_FIRST_IRQ; irq < s->num_irq; irq++) {
124 if (s->vectors[irq].pending) {
125 return true;
126 }
127 }
128 return false;
129}
130
ff96c64a
PM
131static bool exc_is_banked(int exc)
132{
133 /* Return true if this is one of the limited set of exceptions which
134 * are banked (and thus have state in sec_vectors[])
135 */
136 return exc == ARMV7M_EXCP_HARD ||
137 exc == ARMV7M_EXCP_MEM ||
138 exc == ARMV7M_EXCP_USAGE ||
139 exc == ARMV7M_EXCP_SVC ||
140 exc == ARMV7M_EXCP_PENDSV ||
141 exc == ARMV7M_EXCP_SYSTICK;
142}
143
da6d674e
MD
144/* Return a mask word which clears the subpriority bits from
145 * a priority value for an M-profile exception, leaving only
146 * the group priority.
147 */
ff96c64a 148static inline uint32_t nvic_gprio_mask(NVICState *s, bool secure)
da6d674e 149{
ff96c64a
PM
150 return ~0U << (s->prigroup[secure] + 1);
151}
152
153static bool exc_targets_secure(NVICState *s, int exc)
154{
155 /* Return true if this non-banked exception targets Secure state. */
156 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
157 return false;
158 }
159
160 if (exc >= NVIC_FIRST_IRQ) {
161 return !s->itns[exc];
162 }
163
164 /* Function shouldn't be called for banked exceptions. */
165 assert(!exc_is_banked(exc));
166
167 switch (exc) {
168 case ARMV7M_EXCP_NMI:
169 case ARMV7M_EXCP_BUS:
170 return !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK);
171 case ARMV7M_EXCP_SECURE:
172 return true;
173 case ARMV7M_EXCP_DEBUG:
174 /* TODO: controlled by DEMCR.SDME, which we don't yet implement */
175 return false;
176 default:
177 /* reset, and reserved (unused) low exception numbers.
178 * We'll get called by code that loops through all the exception
179 * numbers, but it doesn't matter what we return here as these
180 * non-existent exceptions will never be pended or active.
181 */
182 return true;
183 }
184}
185
186static int exc_group_prio(NVICState *s, int rawprio, bool targets_secure)
187{
188 /* Return the group priority for this exception, given its raw
189 * (group-and-subgroup) priority value and whether it is targeting
190 * secure state or not.
191 */
192 if (rawprio < 0) {
193 return rawprio;
194 }
195 rawprio &= nvic_gprio_mask(s, targets_secure);
196 /* AIRCR.PRIS causes us to squash all NS priorities into the
197 * lower half of the total range
198 */
199 if (!targets_secure &&
200 (s->cpu->env.v7m.aircr & R_V7M_AIRCR_PRIS_MASK)) {
201 rawprio = (rawprio >> 1) + NVIC_NS_PRIO_LIMIT;
202 }
203 return rawprio;
204}
205
206/* Recompute vectpending and exception_prio for a CPU which implements
207 * the Security extension
208 */
209static void nvic_recompute_state_secure(NVICState *s)
210{
211 int i, bank;
212 int pend_prio = NVIC_NOEXC_PRIO;
213 int active_prio = NVIC_NOEXC_PRIO;
214 int pend_irq = 0;
215 bool pending_is_s_banked = false;
216
217 /* R_CQRV: precedence is by:
218 * - lowest group priority; if both the same then
219 * - lowest subpriority; if both the same then
220 * - lowest exception number; if both the same (ie banked) then
221 * - secure exception takes precedence
222 * Compare pseudocode RawExecutionPriority.
223 * Annoyingly, now we have two prigroup values (for S and NS)
224 * we can't do the loop comparison on raw priority values.
225 */
226 for (i = 1; i < s->num_irq; i++) {
227 for (bank = M_REG_S; bank >= M_REG_NS; bank--) {
228 VecInfo *vec;
229 int prio;
230 bool targets_secure;
231
232 if (bank == M_REG_S) {
233 if (!exc_is_banked(i)) {
234 continue;
235 }
236 vec = &s->sec_vectors[i];
237 targets_secure = true;
238 } else {
239 vec = &s->vectors[i];
240 targets_secure = !exc_is_banked(i) && exc_targets_secure(s, i);
241 }
242
243 prio = exc_group_prio(s, vec->prio, targets_secure);
244 if (vec->enabled && vec->pending && prio < pend_prio) {
245 pend_prio = prio;
246 pend_irq = i;
247 pending_is_s_banked = (bank == M_REG_S);
248 }
249 if (vec->active && prio < active_prio) {
250 active_prio = prio;
251 }
252 }
253 }
254
255 s->vectpending_is_s_banked = pending_is_s_banked;
256 s->vectpending = pend_irq;
257 s->vectpending_prio = pend_prio;
258 s->exception_prio = active_prio;
259
260 trace_nvic_recompute_state_secure(s->vectpending,
261 s->vectpending_is_s_banked,
262 s->vectpending_prio,
263 s->exception_prio);
da6d674e
MD
264}
265
266/* Recompute vectpending and exception_prio */
267static void nvic_recompute_state(NVICState *s)
268{
269 int i;
270 int pend_prio = NVIC_NOEXC_PRIO;
271 int active_prio = NVIC_NOEXC_PRIO;
272 int pend_irq = 0;
273
ff96c64a
PM
274 /* In theory we could write one function that handled both
275 * the "security extension present" and "not present"; however
276 * the security related changes significantly complicate the
277 * recomputation just by themselves and mixing both cases together
278 * would be even worse, so we retain a separate non-secure-only
279 * version for CPUs which don't implement the security extension.
280 */
281 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
282 nvic_recompute_state_secure(s);
283 return;
284 }
285
da6d674e
MD
286 for (i = 1; i < s->num_irq; i++) {
287 VecInfo *vec = &s->vectors[i];
288
289 if (vec->enabled && vec->pending && vec->prio < pend_prio) {
290 pend_prio = vec->prio;
291 pend_irq = i;
292 }
293 if (vec->active && vec->prio < active_prio) {
294 active_prio = vec->prio;
295 }
296 }
297
22a9c26a 298 if (active_prio > 0) {
ff96c64a 299 active_prio &= nvic_gprio_mask(s, false);
22a9c26a
PM
300 }
301
5255fcf8 302 if (pend_prio > 0) {
ff96c64a 303 pend_prio &= nvic_gprio_mask(s, false);
5255fcf8
PM
304 }
305
da6d674e 306 s->vectpending = pend_irq;
5255fcf8 307 s->vectpending_prio = pend_prio;
22a9c26a 308 s->exception_prio = active_prio;
da6d674e 309
5255fcf8
PM
310 trace_nvic_recompute_state(s->vectpending,
311 s->vectpending_prio,
312 s->exception_prio);
da6d674e
MD
313}
314
315/* Return the current execution priority of the CPU
316 * (equivalent to the pseudocode ExecutionPriority function).
317 * This is a value between -2 (NMI priority) and NVIC_NOEXC_PRIO.
318 */
319static inline int nvic_exec_prio(NVICState *s)
320{
321 CPUARMState *env = &s->cpu->env;
49c80c38 322 int running = NVIC_NOEXC_PRIO;
da6d674e 323
49c80c38
PM
324 if (env->v7m.basepri[M_REG_NS] > 0) {
325 running = exc_group_prio(s, env->v7m.basepri[M_REG_NS], M_REG_NS);
326 }
327
328 if (env->v7m.basepri[M_REG_S] > 0) {
329 int basepri = exc_group_prio(s, env->v7m.basepri[M_REG_S], M_REG_S);
330 if (running > basepri) {
331 running = basepri;
332 }
333 }
334
335 if (env->v7m.primask[M_REG_NS]) {
336 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
337 if (running > NVIC_NS_PRIO_LIMIT) {
338 running = NVIC_NS_PRIO_LIMIT;
339 }
340 } else {
341 running = 0;
342 }
343 }
344
345 if (env->v7m.primask[M_REG_S]) {
da6d674e 346 running = 0;
da6d674e 347 }
49c80c38
PM
348
349 if (env->v7m.faultmask[M_REG_NS]) {
350 if (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
351 running = -1;
352 } else {
353 if (env->v7m.aircr & R_V7M_AIRCR_PRIS_MASK) {
354 if (running > NVIC_NS_PRIO_LIMIT) {
355 running = NVIC_NS_PRIO_LIMIT;
356 }
357 } else {
358 running = 0;
359 }
360 }
361 }
362
363 if (env->v7m.faultmask[M_REG_S]) {
364 running = (env->v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) ? -3 : -1;
365 }
366
da6d674e
MD
367 /* consider priority of active handler */
368 return MIN(running, s->exception_prio);
369}
370
5d479199
PM
371bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
372{
373 /* Return true if the requested execution priority is negative
374 * for the specified security state, ie that security state
375 * has an active NMI or HardFault or has set its FAULTMASK.
376 * Note that this is not the same as whether the execution
377 * priority is actually negative (for instance AIRCR.PRIS may
378 * mean we don't allow FAULTMASK_NS to actually make the execution
379 * priority negative). Compare pseudocode IsReqExcPriNeg().
380 */
381 NVICState *s = opaque;
382
383 if (s->cpu->env.v7m.faultmask[secure]) {
384 return true;
385 }
386
387 if (secure ? s->sec_vectors[ARMV7M_EXCP_HARD].active :
388 s->vectors[ARMV7M_EXCP_HARD].active) {
389 return true;
390 }
391
392 if (s->vectors[ARMV7M_EXCP_NMI].active &&
393 exc_targets_secure(s, ARMV7M_EXCP_NMI) == secure) {
394 return true;
395 }
396
397 return false;
398}
399
7ecdaa4a
PM
400bool armv7m_nvic_can_take_pending_exception(void *opaque)
401{
402 NVICState *s = opaque;
403
404 return nvic_exec_prio(s) > nvic_pending_prio(s);
405}
406
42a6686b
PM
407int armv7m_nvic_raw_execution_priority(void *opaque)
408{
409 NVICState *s = opaque;
410
411 return s->exception_prio;
412}
413
e6a0d350
PM
414/* caller must call nvic_irq_update() after this.
415 * secure indicates the bank to use for banked exceptions (we assert if
416 * we are passed secure=true for a non-banked exception).
417 */
418static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
da6d674e
MD
419{
420 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
421 assert(irq < s->num_irq);
422
e6a0d350
PM
423 if (secure) {
424 assert(exc_is_banked(irq));
425 s->sec_vectors[irq].prio = prio;
426 } else {
427 s->vectors[irq].prio = prio;
428 }
429
430 trace_nvic_set_prio(irq, secure, prio);
431}
432
433/* Return the current raw priority register value.
434 * secure indicates the bank to use for banked exceptions (we assert if
435 * we are passed secure=true for a non-banked exception).
436 */
437static int get_prio(NVICState *s, unsigned irq, bool secure)
438{
439 assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
440 assert(irq < s->num_irq);
da6d674e 441
e6a0d350
PM
442 if (secure) {
443 assert(exc_is_banked(irq));
444 return s->sec_vectors[irq].prio;
445 } else {
446 return s->vectors[irq].prio;
447 }
da6d674e
MD
448}
449
450/* Recompute state and assert irq line accordingly.
451 * Must be called after changes to:
452 * vec->active, vec->enabled, vec->pending or vec->prio for any vector
453 * prigroup
454 */
455static void nvic_irq_update(NVICState *s)
456{
457 int lvl;
458 int pend_prio;
459
460 nvic_recompute_state(s);
461 pend_prio = nvic_pending_prio(s);
462
463 /* Raise NVIC output if this IRQ would be taken, except that we
464 * ignore the effects of the BASEPRI, FAULTMASK and PRIMASK (which
465 * will be checked for in arm_v7m_cpu_exec_interrupt()); changes
466 * to those CPU registers don't cause us to recalculate the NVIC
467 * pending info.
468 */
469 lvl = (pend_prio < s->exception_prio);
470 trace_nvic_irq_update(s->vectpending, pend_prio, s->exception_prio, lvl);
471 qemu_set_irq(s->excpout, lvl);
472}
473
2fb50a33
PM
474/**
475 * armv7m_nvic_clear_pending: mark the specified exception as not pending
476 * @opaque: the NVIC
477 * @irq: the exception number to mark as not pending
478 * @secure: false for non-banked exceptions or for the nonsecure
479 * version of a banked exception, true for the secure version of a banked
480 * exception.
481 *
482 * Marks the specified exception as not pending. Note that we will assert()
483 * if @secure is true and @irq does not specify one of the fixed set
484 * of architecturally banked exceptions.
485 */
486static void armv7m_nvic_clear_pending(void *opaque, int irq, bool secure)
da6d674e
MD
487{
488 NVICState *s = (NVICState *)opaque;
489 VecInfo *vec;
490
491 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
492
2fb50a33
PM
493 if (secure) {
494 assert(exc_is_banked(irq));
495 vec = &s->sec_vectors[irq];
496 } else {
497 vec = &s->vectors[irq];
498 }
499 trace_nvic_clear_pending(irq, secure, vec->enabled, vec->prio);
da6d674e
MD
500 if (vec->pending) {
501 vec->pending = 0;
502 nvic_irq_update(s);
503 }
504}
505
5ede82b8
PM
506static void do_armv7m_nvic_set_pending(void *opaque, int irq, bool secure,
507 bool derived)
9ee6e8bb 508{
5ede82b8
PM
509 /* Pend an exception, including possibly escalating it to HardFault.
510 *
511 * This function handles both "normal" pending of interrupts and
512 * exceptions, and also derived exceptions (ones which occur as
513 * a result of trying to take some other exception).
514 *
515 * If derived == true, the caller guarantees that we are part way through
516 * trying to take an exception (but have not yet called
517 * armv7m_nvic_acknowledge_irq() to make it active), and so:
518 * - s->vectpending is the "original exception" we were trying to take
519 * - irq is the "derived exception"
520 * - nvic_exec_prio(s) gives the priority before exception entry
521 * Here we handle the prioritization logic which the pseudocode puts
522 * in the DerivedLateArrival() function.
523 */
524
f797c075 525 NVICState *s = (NVICState *)opaque;
2fb50a33 526 bool banked = exc_is_banked(irq);
da6d674e 527 VecInfo *vec;
1a5182c0 528 bool targets_secure;
da6d674e
MD
529
530 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
2fb50a33 531 assert(!secure || banked);
da6d674e 532
2fb50a33 533 vec = (banked && secure) ? &s->sec_vectors[irq] : &s->vectors[irq];
a73c98e1 534
1a5182c0
PM
535 targets_secure = banked ? secure : exc_targets_secure(s, irq);
536
537 trace_nvic_set_pending(irq, secure, targets_secure,
538 derived, vec->enabled, vec->prio);
5ede82b8
PM
539
540 if (derived) {
541 /* Derived exceptions are always synchronous. */
542 assert(irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV);
543
544 if (irq == ARMV7M_EXCP_DEBUG &&
545 exc_group_prio(s, vec->prio, secure) >= nvic_exec_prio(s)) {
546 /* DebugMonitorFault, but its priority is lower than the
547 * preempted exception priority: just ignore it.
548 */
549 return;
550 }
551
552 if (irq == ARMV7M_EXCP_HARD && vec->prio >= s->vectpending_prio) {
553 /* If this is a terminal exception (one which means we cannot
554 * take the original exception, like a failure to read its
555 * vector table entry), then we must take the derived exception.
556 * If the derived exception can't take priority over the
557 * original exception, then we go into Lockup.
558 *
559 * For QEMU, we rely on the fact that a derived exception is
560 * terminal if and only if it's reported to us as HardFault,
561 * which saves having to have an extra argument is_terminal
562 * that we'd only use in one place.
563 */
564 cpu_abort(&s->cpu->parent_obj,
565 "Lockup: can't take terminal derived exception "
566 "(original exception priority %d)\n",
567 s->vectpending_prio);
568 }
569 /* We now continue with the same code as for a normal pending
570 * exception, which will cause us to pend the derived exception.
571 * We'll then take either the original or the derived exception
572 * based on which is higher priority by the usual mechanism
573 * for selecting the highest priority pending interrupt.
574 */
575 }
a73c98e1
MD
576
577 if (irq >= ARMV7M_EXCP_HARD && irq < ARMV7M_EXCP_PENDSV) {
578 /* If a synchronous exception is pending then it may be
579 * escalated to HardFault if:
580 * * it is equal or lower priority to current execution
581 * * it is disabled
582 * (ie we need to take it immediately but we can't do so).
583 * Asynchronous exceptions (and interrupts) simply remain pending.
584 *
585 * For QEMU, we don't have any imprecise (asynchronous) faults,
586 * so we can assume that PREFETCH_ABORT and DATA_ABORT are always
587 * synchronous.
588 * Debug exceptions are awkward because only Debug exceptions
589 * resulting from the BKPT instruction should be escalated,
590 * but we don't currently implement any Debug exceptions other
591 * than those that result from BKPT, so we treat all debug exceptions
592 * as needing escalation.
593 *
594 * This all means we can identify whether to escalate based only on
595 * the exception number and don't (yet) need the caller to explicitly
596 * tell us whether this exception is synchronous or not.
597 */
598 int running = nvic_exec_prio(s);
599 bool escalate = false;
600
80ac2390 601 if (exc_group_prio(s, vec->prio, secure) >= running) {
a73c98e1
MD
602 trace_nvic_escalate_prio(irq, vec->prio, running);
603 escalate = true;
604 } else if (!vec->enabled) {
605 trace_nvic_escalate_disabled(irq);
606 escalate = true;
607 }
608
609 if (escalate) {
a73c98e1 610
94a34abe 611 /* We need to escalate this exception to a synchronous HardFault.
2fb50a33
PM
612 * If BFHFNMINS is set then we escalate to the banked HF for
613 * the target security state of the original exception; otherwise
614 * we take a Secure HardFault.
615 */
a73c98e1 616 irq = ARMV7M_EXCP_HARD;
2fb50a33 617 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY) &&
1a5182c0 618 (targets_secure ||
2fb50a33
PM
619 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))) {
620 vec = &s->sec_vectors[irq];
621 } else {
622 vec = &s->vectors[irq];
623 }
94a34abe
PM
624 if (running <= vec->prio) {
625 /* We want to escalate to HardFault but we can't take the
626 * synchronous HardFault at this point either. This is a
627 * Lockup condition due to a guest bug. We don't model
628 * Lockup, so report via cpu_abort() instead.
629 */
630 cpu_abort(&s->cpu->parent_obj,
631 "Lockup: can't escalate %d to HardFault "
632 "(current priority %d)\n", irq, running);
633 }
634
2fb50a33 635 /* HF may be banked but there is only one shared HFSR */
a73c98e1
MD
636 s->cpu->env.v7m.hfsr |= R_V7M_HFSR_FORCED_MASK;
637 }
638 }
639
da6d674e
MD
640 if (!vec->pending) {
641 vec->pending = 1;
642 nvic_irq_update(s);
643 }
9ee6e8bb
PB
644}
645
5ede82b8
PM
646void armv7m_nvic_set_pending(void *opaque, int irq, bool secure)
647{
648 do_armv7m_nvic_set_pending(opaque, irq, secure, false);
649}
650
651void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure)
652{
653 do_armv7m_nvic_set_pending(opaque, irq, secure, true);
654}
655
9ee6e8bb 656/* Make pending IRQ active. */
6c948518 657void armv7m_nvic_acknowledge_irq(void *opaque)
9ee6e8bb 658{
f797c075 659 NVICState *s = (NVICState *)opaque;
da6d674e
MD
660 CPUARMState *env = &s->cpu->env;
661 const int pending = s->vectpending;
662 const int running = nvic_exec_prio(s);
da6d674e
MD
663 VecInfo *vec;
664
665 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
666
5cb18069
PM
667 if (s->vectpending_is_s_banked) {
668 vec = &s->sec_vectors[pending];
5cb18069
PM
669 } else {
670 vec = &s->vectors[pending];
5cb18069 671 }
da6d674e
MD
672
673 assert(vec->enabled);
674 assert(vec->pending);
675
5255fcf8 676 assert(s->vectpending_prio < running);
da6d674e 677
6c948518 678 trace_nvic_acknowledge_irq(pending, s->vectpending_prio);
da6d674e
MD
679
680 vec->active = 1;
681 vec->pending = 0;
682
de2db7ec 683 write_v7m_exception(env, s->vectpending);
da6d674e
MD
684
685 nvic_irq_update(s);
6c948518
PM
686}
687
688void armv7m_nvic_get_pending_irq_info(void *opaque,
689 int *pirq, bool *ptargets_secure)
690{
691 NVICState *s = (NVICState *)opaque;
692 const int pending = s->vectpending;
693 bool targets_secure;
694
695 assert(pending > ARMV7M_EXCP_RESET && pending < s->num_irq);
696
697 if (s->vectpending_is_s_banked) {
698 targets_secure = true;
699 } else {
700 targets_secure = !exc_is_banked(pending) &&
701 exc_targets_secure(s, pending);
702 }
703
704 trace_nvic_get_pending_irq_info(pending, targets_secure);
5cb18069 705
6c948518
PM
706 *ptargets_secure = targets_secure;
707 *pirq = pending;
9ee6e8bb
PB
708}
709
5cb18069 710int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure)
9ee6e8bb 711{
f797c075 712 NVICState *s = (NVICState *)opaque;
da6d674e 713 VecInfo *vec;
aa488fe3 714 int ret;
da6d674e
MD
715
716 assert(irq > ARMV7M_EXCP_RESET && irq < s->num_irq);
717
5cb18069
PM
718 if (secure && exc_is_banked(irq)) {
719 vec = &s->sec_vectors[irq];
720 } else {
721 vec = &s->vectors[irq];
722 }
da6d674e 723
5cb18069 724 trace_nvic_complete_irq(irq, secure);
da6d674e 725
aa488fe3
PM
726 if (!vec->active) {
727 /* Tell the caller this was an illegal exception return */
728 return -1;
729 }
730
731 ret = nvic_rettobase(s);
732
da6d674e
MD
733 vec->active = 0;
734 if (vec->level) {
735 /* Re-pend the exception if it's still held high; only
736 * happens for extenal IRQs
737 */
738 assert(irq >= NVIC_FIRST_IRQ);
739 vec->pending = 1;
740 }
741
742 nvic_irq_update(s);
aa488fe3
PM
743
744 return ret;
da6d674e
MD
745}
746
747/* callback when external interrupt line is changed */
748static void set_irq_level(void *opaque, int n, int level)
749{
750 NVICState *s = opaque;
751 VecInfo *vec;
752
753 n += NVIC_FIRST_IRQ;
754
755 assert(n >= NVIC_FIRST_IRQ && n < s->num_irq);
756
757 trace_nvic_set_irq_level(n, level);
758
759 /* The pending status of an external interrupt is
760 * latched on rising edge and exception handler return.
761 *
762 * Pulsing the IRQ will always run the handler
763 * once, and the handler will re-run until the
764 * level is low when the handler completes.
765 */
766 vec = &s->vectors[n];
767 if (level != vec->level) {
768 vec->level = level;
769 if (level) {
2fb50a33 770 armv7m_nvic_set_pending(s, n, false);
da6d674e
MD
771 }
772 }
9ee6e8bb
PB
773}
774
45db7ba6 775static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
9ee6e8bb 776{
d713ea6c 777 ARMCPU *cpu = s->cpu;
9ee6e8bb 778 uint32_t val;
9ee6e8bb
PB
779
780 switch (offset) {
781 case 4: /* Interrupt Control Type. */
da6d674e 782 return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
ae7c5c85
PM
783 case 0xc: /* CPPWR */
784 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
785 goto bad_offset;
786 }
787 /* We make the IMPDEF choice that nothing can ever go into a
788 * non-retentive power state, which allows us to RAZ/WI this.
789 */
790 return 0;
e1be0a57
PM
791 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
792 {
cf5f7937 793 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
e1be0a57
PM
794 int i;
795
796 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
797 goto bad_offset;
798 }
799 if (!attrs.secure) {
800 return 0;
801 }
802 val = 0;
803 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
804 if (s->itns[startvec + i]) {
805 val |= (1 << i);
806 }
807 }
808 return val;
809 }
9ee6e8bb 810 case 0xd00: /* CPUID Base. */
e3da9921 811 return cpu->midr;
3f1e0eb7 812 case 0xd04: /* Interrupt Control State (ICSR) */
9ee6e8bb 813 /* VECTACTIVE */
b06c262b 814 val = cpu->env.v7m.exception;
9ee6e8bb 815 /* VECTPENDING */
da6d674e
MD
816 val |= (s->vectpending & 0xff) << 12;
817 /* ISRPENDING - set if any external IRQ is pending */
818 if (nvic_isrpending(s)) {
819 val |= (1 << 22);
820 }
821 /* RETTOBASE - set if only one handler is active */
822 if (nvic_rettobase(s)) {
823 val |= (1 << 11);
9ee6e8bb 824 }
3f1e0eb7
PM
825 if (attrs.secure) {
826 /* PENDSTSET */
827 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].pending) {
828 val |= (1 << 26);
829 }
830 /* PENDSVSET */
831 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].pending) {
832 val |= (1 << 28);
833 }
834 } else {
835 /* PENDSTSET */
836 if (s->vectors[ARMV7M_EXCP_SYSTICK].pending) {
837 val |= (1 << 26);
838 }
839 /* PENDSVSET */
840 if (s->vectors[ARMV7M_EXCP_PENDSV].pending) {
841 val |= (1 << 28);
842 }
da6d674e 843 }
9ee6e8bb 844 /* NMIPENDSET */
4f2eff36
PM
845 if ((attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK))
846 && s->vectors[ARMV7M_EXCP_NMI].pending) {
9ee6e8bb 847 val |= (1 << 31);
da6d674e 848 }
3f1e0eb7
PM
849 /* ISRPREEMPT: RES0 when halting debug not implemented */
850 /* STTNS: RES0 for the Main Extension */
9ee6e8bb
PB
851 return val;
852 case 0xd08: /* Vector Table Offset. */
45db7ba6 853 return cpu->env.v7m.vecbase[attrs.secure];
3b2e9344
PM
854 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
855 val = 0xfa050000 | (s->prigroup[attrs.secure] << 8);
856 if (attrs.secure) {
857 /* s->aircr stores PRIS, BFHFNMINS, SYSRESETREQS */
858 val |= cpu->env.v7m.aircr;
859 } else {
860 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
861 /* BFHFNMINS is R/O from NS; other bits are RAZ/WI. If
862 * security isn't supported then BFHFNMINS is RAO (and
863 * the bit in env.v7m.aircr is always set).
864 */
865 val |= cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK;
866 }
867 }
868 return val;
9ee6e8bb 869 case 0xd10: /* System Control. */
7c9140af
JS
870 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
871 goto bad_offset;
872 }
24ac0fb1 873 return cpu->env.v7m.scr[attrs.secure];
9ee6e8bb 874 case 0xd14: /* Configuration Control. */
9d40cd8a
PM
875 /* The BFHFNMIGN bit is the only non-banked bit; we
876 * keep it in the non-secure copy of the register.
877 */
878 val = cpu->env.v7m.ccr[attrs.secure];
879 val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
880 return val;
437d59c1 881 case 0xd24: /* System Handler Control and State (SHCSR) */
9ee6e8bb 882 val = 0;
437d59c1
PM
883 if (attrs.secure) {
884 if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
885 val |= (1 << 0);
886 }
887 if (s->sec_vectors[ARMV7M_EXCP_HARD].active) {
888 val |= (1 << 2);
889 }
890 if (s->sec_vectors[ARMV7M_EXCP_USAGE].active) {
891 val |= (1 << 3);
892 }
893 if (s->sec_vectors[ARMV7M_EXCP_SVC].active) {
894 val |= (1 << 7);
895 }
896 if (s->sec_vectors[ARMV7M_EXCP_PENDSV].active) {
897 val |= (1 << 10);
898 }
899 if (s->sec_vectors[ARMV7M_EXCP_SYSTICK].active) {
900 val |= (1 << 11);
901 }
902 if (s->sec_vectors[ARMV7M_EXCP_USAGE].pending) {
903 val |= (1 << 12);
904 }
905 if (s->sec_vectors[ARMV7M_EXCP_MEM].pending) {
906 val |= (1 << 13);
907 }
908 if (s->sec_vectors[ARMV7M_EXCP_SVC].pending) {
909 val |= (1 << 15);
910 }
911 if (s->sec_vectors[ARMV7M_EXCP_MEM].enabled) {
912 val |= (1 << 16);
913 }
914 if (s->sec_vectors[ARMV7M_EXCP_USAGE].enabled) {
915 val |= (1 << 18);
916 }
917 if (s->sec_vectors[ARMV7M_EXCP_HARD].pending) {
918 val |= (1 << 21);
919 }
920 /* SecureFault is not banked but is always RAZ/WI to NS */
921 if (s->vectors[ARMV7M_EXCP_SECURE].active) {
922 val |= (1 << 4);
923 }
924 if (s->vectors[ARMV7M_EXCP_SECURE].enabled) {
925 val |= (1 << 19);
926 }
927 if (s->vectors[ARMV7M_EXCP_SECURE].pending) {
928 val |= (1 << 20);
929 }
930 } else {
931 if (s->vectors[ARMV7M_EXCP_MEM].active) {
932 val |= (1 << 0);
933 }
934 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
935 /* HARDFAULTACT, HARDFAULTPENDED not present in v7M */
936 if (s->vectors[ARMV7M_EXCP_HARD].active) {
937 val |= (1 << 2);
938 }
939 if (s->vectors[ARMV7M_EXCP_HARD].pending) {
940 val |= (1 << 21);
941 }
942 }
943 if (s->vectors[ARMV7M_EXCP_USAGE].active) {
944 val |= (1 << 3);
945 }
946 if (s->vectors[ARMV7M_EXCP_SVC].active) {
947 val |= (1 << 7);
948 }
949 if (s->vectors[ARMV7M_EXCP_PENDSV].active) {
950 val |= (1 << 10);
951 }
952 if (s->vectors[ARMV7M_EXCP_SYSTICK].active) {
953 val |= (1 << 11);
954 }
955 if (s->vectors[ARMV7M_EXCP_USAGE].pending) {
956 val |= (1 << 12);
957 }
958 if (s->vectors[ARMV7M_EXCP_MEM].pending) {
959 val |= (1 << 13);
960 }
961 if (s->vectors[ARMV7M_EXCP_SVC].pending) {
962 val |= (1 << 15);
963 }
964 if (s->vectors[ARMV7M_EXCP_MEM].enabled) {
965 val |= (1 << 16);
966 }
967 if (s->vectors[ARMV7M_EXCP_USAGE].enabled) {
968 val |= (1 << 18);
969 }
da6d674e 970 }
437d59c1
PM
971 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
972 if (s->vectors[ARMV7M_EXCP_BUS].active) {
973 val |= (1 << 1);
974 }
975 if (s->vectors[ARMV7M_EXCP_BUS].pending) {
976 val |= (1 << 14);
977 }
978 if (s->vectors[ARMV7M_EXCP_BUS].enabled) {
979 val |= (1 << 17);
980 }
981 if (arm_feature(&cpu->env, ARM_FEATURE_V8) &&
982 s->vectors[ARMV7M_EXCP_NMI].active) {
983 /* NMIACT is not present in v7M */
984 val |= (1 << 5);
985 }
da6d674e 986 }
437d59c1
PM
987
988 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
da6d674e
MD
989 if (s->vectors[ARMV7M_EXCP_DEBUG].active) {
990 val |= (1 << 8);
991 }
9ee6e8bb 992 return val;
9ee6e8bb 993 case 0xd2c: /* Hard Fault Status. */
7c9140af
JS
994 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
995 goto bad_offset;
996 }
e6b33209 997 return cpu->env.v7m.hfsr;
9ee6e8bb 998 case 0xd30: /* Debug Fault Status. */
e6b33209
MD
999 return cpu->env.v7m.dfsr;
1000 case 0xd34: /* MMFAR MemManage Fault Address */
7c9140af
JS
1001 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1002 goto bad_offset;
1003 }
c51a5cfc 1004 return cpu->env.v7m.mmfar[attrs.secure];
9ee6e8bb 1005 case 0xd38: /* Bus Fault Address. */
7c9140af
JS
1006 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1007 goto bad_offset;
1008 }
e6b33209 1009 return cpu->env.v7m.bfar;
9ee6e8bb
PB
1010 case 0xd3c: /* Aux Fault Status. */
1011 /* TODO: Implement fault status registers. */
e6b33209
MD
1012 qemu_log_mask(LOG_UNIMP,
1013 "Aux Fault status registers unimplemented\n");
e72e3ffc 1014 return 0;
9ee6e8bb 1015 case 0xd40: /* PFR0. */
5a53e2c1
PM
1016 return cpu->id_pfr0;
1017 case 0xd44: /* PFR1. */
1018 return cpu->id_pfr1;
9ee6e8bb 1019 case 0xd48: /* DFR0. */
5a53e2c1 1020 return cpu->id_dfr0;
9ee6e8bb 1021 case 0xd4c: /* AFR0. */
5a53e2c1 1022 return cpu->id_afr0;
9ee6e8bb 1023 case 0xd50: /* MMFR0. */
5a53e2c1 1024 return cpu->id_mmfr0;
9ee6e8bb 1025 case 0xd54: /* MMFR1. */
5a53e2c1 1026 return cpu->id_mmfr1;
9ee6e8bb 1027 case 0xd58: /* MMFR2. */
5a53e2c1 1028 return cpu->id_mmfr2;
9ee6e8bb 1029 case 0xd5c: /* MMFR3. */
5a53e2c1 1030 return cpu->id_mmfr3;
9ee6e8bb 1031 case 0xd60: /* ISAR0. */
5a53e2c1 1032 return cpu->id_isar0;
9ee6e8bb 1033 case 0xd64: /* ISAR1. */
5a53e2c1 1034 return cpu->id_isar1;
9ee6e8bb 1035 case 0xd68: /* ISAR2. */
5a53e2c1 1036 return cpu->id_isar2;
9ee6e8bb 1037 case 0xd6c: /* ISAR3. */
5a53e2c1 1038 return cpu->id_isar3;
9ee6e8bb 1039 case 0xd70: /* ISAR4. */
5a53e2c1
PM
1040 return cpu->id_isar4;
1041 case 0xd74: /* ISAR5. */
1042 return cpu->id_isar5;
43bbce7f
PM
1043 case 0xd78: /* CLIDR */
1044 return cpu->clidr;
1045 case 0xd7c: /* CTR */
1046 return cpu->ctr;
1047 case 0xd80: /* CSSIDR */
1048 {
1049 int idx = cpu->env.v7m.csselr[attrs.secure] & R_V7M_CSSELR_INDEX_MASK;
1050 return cpu->ccsidr[idx];
1051 }
1052 case 0xd84: /* CSSELR */
1053 return cpu->env.v7m.csselr[attrs.secure];
9ee6e8bb 1054 /* TODO: Implement debug registers. */
29c483a5
MD
1055 case 0xd90: /* MPU_TYPE */
1056 /* Unified MPU; if the MPU is not present this value is zero */
1057 return cpu->pmsav7_dregion << 8;
1058 break;
1059 case 0xd94: /* MPU_CTRL */
ecf5e8ea 1060 return cpu->env.v7m.mpu_ctrl[attrs.secure];
29c483a5 1061 case 0xd98: /* MPU_RNR */
1bc04a88 1062 return cpu->env.pmsav7.rnr[attrs.secure];
29c483a5
MD
1063 case 0xd9c: /* MPU_RBAR */
1064 case 0xda4: /* MPU_RBAR_A1 */
1065 case 0xdac: /* MPU_RBAR_A2 */
1066 case 0xdb4: /* MPU_RBAR_A3 */
1067 {
1bc04a88 1068 int region = cpu->env.pmsav7.rnr[attrs.secure];
29c483a5 1069
0e1a46bb
PM
1070 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1071 /* PMSAv8M handling of the aliases is different from v7M:
1072 * aliases A1, A2, A3 override the low two bits of the region
1073 * number in MPU_RNR, and there is no 'region' field in the
1074 * RBAR register.
1075 */
1076 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1077 if (aliasno) {
1078 region = deposit32(region, 0, 2, aliasno);
1079 }
1080 if (region >= cpu->pmsav7_dregion) {
1081 return 0;
1082 }
62c58ee0 1083 return cpu->env.pmsav8.rbar[attrs.secure][region];
0e1a46bb
PM
1084 }
1085
29c483a5
MD
1086 if (region >= cpu->pmsav7_dregion) {
1087 return 0;
1088 }
2b75ef01 1089 return (cpu->env.pmsav7.drbar[region] & ~0x1f) | (region & 0xf);
29c483a5 1090 }
0e1a46bb
PM
1091 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1092 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1093 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1094 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
29c483a5 1095 {
1bc04a88 1096 int region = cpu->env.pmsav7.rnr[attrs.secure];
29c483a5 1097
0e1a46bb
PM
1098 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1099 /* PMSAv8M handling of the aliases is different from v7M:
1100 * aliases A1, A2, A3 override the low two bits of the region
1101 * number in MPU_RNR.
1102 */
1103 int aliasno = (offset - 0xda0) / 8; /* 0..3 */
1104 if (aliasno) {
1105 region = deposit32(region, 0, 2, aliasno);
1106 }
1107 if (region >= cpu->pmsav7_dregion) {
1108 return 0;
1109 }
62c58ee0 1110 return cpu->env.pmsav8.rlar[attrs.secure][region];
0e1a46bb
PM
1111 }
1112
29c483a5
MD
1113 if (region >= cpu->pmsav7_dregion) {
1114 return 0;
1115 }
1116 return ((cpu->env.pmsav7.dracr[region] & 0xffff) << 16) |
1117 (cpu->env.pmsav7.drsr[region] & 0xffff);
1118 }
0e1a46bb
PM
1119 case 0xdc0: /* MPU_MAIR0 */
1120 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1121 goto bad_offset;
1122 }
4125e6fe 1123 return cpu->env.pmsav8.mair0[attrs.secure];
0e1a46bb
PM
1124 case 0xdc4: /* MPU_MAIR1 */
1125 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1126 goto bad_offset;
1127 }
4125e6fe 1128 return cpu->env.pmsav8.mair1[attrs.secure];
9901c576
PM
1129 case 0xdd0: /* SAU_CTRL */
1130 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1131 goto bad_offset;
1132 }
1133 if (!attrs.secure) {
1134 return 0;
1135 }
1136 return cpu->env.sau.ctrl;
1137 case 0xdd4: /* SAU_TYPE */
1138 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1139 goto bad_offset;
1140 }
1141 if (!attrs.secure) {
1142 return 0;
1143 }
1144 return cpu->sau_sregion;
1145 case 0xdd8: /* SAU_RNR */
1146 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1147 goto bad_offset;
1148 }
1149 if (!attrs.secure) {
1150 return 0;
1151 }
1152 return cpu->env.sau.rnr;
1153 case 0xddc: /* SAU_RBAR */
1154 {
1155 int region = cpu->env.sau.rnr;
1156
1157 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1158 goto bad_offset;
1159 }
1160 if (!attrs.secure) {
1161 return 0;
1162 }
1163 if (region >= cpu->sau_sregion) {
1164 return 0;
1165 }
1166 return cpu->env.sau.rbar[region];
1167 }
1168 case 0xde0: /* SAU_RLAR */
1169 {
1170 int region = cpu->env.sau.rnr;
1171
1172 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1173 goto bad_offset;
1174 }
1175 if (!attrs.secure) {
1176 return 0;
1177 }
1178 if (region >= cpu->sau_sregion) {
1179 return 0;
1180 }
1181 return cpu->env.sau.rlar[region];
1182 }
bed079da
PM
1183 case 0xde4: /* SFSR */
1184 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1185 goto bad_offset;
1186 }
1187 if (!attrs.secure) {
1188 return 0;
1189 }
1190 return cpu->env.v7m.sfsr;
1191 case 0xde8: /* SFAR */
1192 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1193 goto bad_offset;
1194 }
1195 if (!attrs.secure) {
1196 return 0;
1197 }
1198 return cpu->env.v7m.sfar;
9ee6e8bb 1199 default:
0e1a46bb 1200 bad_offset:
e72e3ffc
PM
1201 qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset);
1202 return 0;
9ee6e8bb
PB
1203 }
1204}
1205
45db7ba6
PM
1206static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
1207 MemTxAttrs attrs)
9ee6e8bb 1208{
d713ea6c 1209 ARMCPU *cpu = s->cpu;
ff68dacb 1210
9ee6e8bb 1211 switch (offset) {
ae7c5c85
PM
1212 case 0xc: /* CPPWR */
1213 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1214 goto bad_offset;
1215 }
1216 /* Make the IMPDEF choice to RAZ/WI this. */
1217 break;
e1be0a57
PM
1218 case 0x380 ... 0x3bf: /* NVIC_ITNS<n> */
1219 {
cf5f7937 1220 int startvec = 8 * (offset - 0x380) + NVIC_FIRST_IRQ;
e1be0a57
PM
1221 int i;
1222
1223 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1224 goto bad_offset;
1225 }
1226 if (!attrs.secure) {
1227 break;
1228 }
1229 for (i = 0; i < 32 && startvec + i < s->num_irq; i++) {
1230 s->itns[startvec + i] = (value >> i) & 1;
1231 }
1232 nvic_irq_update(s);
1233 break;
1234 }
3f1e0eb7 1235 case 0xd04: /* Interrupt Control State (ICSR) */
4f2eff36 1236 if (attrs.secure || cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
3f1e0eb7
PM
1237 if (value & (1 << 31)) {
1238 armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI, false);
1239 } else if (value & (1 << 30) &&
1240 arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1241 /* PENDNMICLR didn't exist in v7M */
1242 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_NMI, false);
1243 }
9ee6e8bb
PB
1244 }
1245 if (value & (1 << 28)) {
2fb50a33 1246 armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
9ee6e8bb 1247 } else if (value & (1 << 27)) {
2fb50a33 1248 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_PENDSV, attrs.secure);
9ee6e8bb
PB
1249 }
1250 if (value & (1 << 26)) {
2fb50a33 1251 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
9ee6e8bb 1252 } else if (value & (1 << 25)) {
2fb50a33 1253 armv7m_nvic_clear_pending(s, ARMV7M_EXCP_SYSTICK, attrs.secure);
9ee6e8bb
PB
1254 }
1255 break;
1256 case 0xd08: /* Vector Table Offset. */
45db7ba6 1257 cpu->env.v7m.vecbase[attrs.secure] = value & 0xffffff80;
9ee6e8bb 1258 break;
3b2e9344
PM
1259 case 0xd0c: /* Application Interrupt/Reset Control (AIRCR) */
1260 if ((value >> R_V7M_AIRCR_VECTKEY_SHIFT) == 0x05fa) {
1261 if (value & R_V7M_AIRCR_SYSRESETREQ_MASK) {
1262 if (attrs.secure ||
1263 !(cpu->env.v7m.aircr & R_V7M_AIRCR_SYSRESETREQS_MASK)) {
1264 qemu_irq_pulse(s->sysresetreq);
1265 }
e192becd 1266 }
3b2e9344 1267 if (value & R_V7M_AIRCR_VECTCLRACTIVE_MASK) {
14790f73
MD
1268 qemu_log_mask(LOG_GUEST_ERROR,
1269 "Setting VECTCLRACTIVE when not in DEBUG mode "
1270 "is UNPREDICTABLE\n");
9ee6e8bb 1271 }
3b2e9344
PM
1272 if (value & R_V7M_AIRCR_VECTRESET_MASK) {
1273 /* NB: this bit is RES0 in v8M */
14790f73
MD
1274 qemu_log_mask(LOG_GUEST_ERROR,
1275 "Setting VECTRESET when not in DEBUG mode "
1276 "is UNPREDICTABLE\n");
9ee6e8bb 1277 }
3b2e9344
PM
1278 s->prigroup[attrs.secure] = extract32(value,
1279 R_V7M_AIRCR_PRIGROUP_SHIFT,
1280 R_V7M_AIRCR_PRIGROUP_LENGTH);
1281 if (attrs.secure) {
1282 /* These bits are only writable by secure */
1283 cpu->env.v7m.aircr = value &
1284 (R_V7M_AIRCR_SYSRESETREQS_MASK |
1285 R_V7M_AIRCR_BFHFNMINS_MASK |
1286 R_V7M_AIRCR_PRIS_MASK);
7208b426
PM
1287 /* BFHFNMINS changes the priority of Secure HardFault, and
1288 * allows a pending Non-secure HardFault to preempt (which
1289 * we implement by marking it enabled).
1290 */
331f4bae
PM
1291 if (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) {
1292 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -3;
7208b426 1293 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
331f4bae
PM
1294 } else {
1295 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
7208b426 1296 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
331f4bae 1297 }
3b2e9344 1298 }
da6d674e 1299 nvic_irq_update(s);
9ee6e8bb
PB
1300 }
1301 break;
1302 case 0xd10: /* System Control. */
7c9140af
JS
1303 if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1304 goto bad_offset;
1305 }
24ac0fb1
PM
1306 /* We don't implement deep-sleep so these bits are RAZ/WI.
1307 * The other bits in the register are banked.
1308 * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
1309 * is architecturally permitted.
1310 */
1311 value &= ~(R_V7M_SCR_SLEEPDEEP_MASK | R_V7M_SCR_SLEEPDEEPS_MASK);
1312 cpu->env.v7m.scr[attrs.secure] = value;
e6b33209
MD
1313 break;
1314 case 0xd14: /* Configuration Control. */
1315 /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
1316 value &= (R_V7M_CCR_STKALIGN_MASK |
1317 R_V7M_CCR_BFHFNMIGN_MASK |
1318 R_V7M_CCR_DIV_0_TRP_MASK |
1319 R_V7M_CCR_UNALIGN_TRP_MASK |
1320 R_V7M_CCR_USERSETMPEND_MASK |
1321 R_V7M_CCR_NONBASETHRDENA_MASK);
1322
9d40cd8a
PM
1323 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1324 /* v8M makes NONBASETHRDENA and STKALIGN be RES1 */
1325 value |= R_V7M_CCR_NONBASETHRDENA_MASK
1326 | R_V7M_CCR_STKALIGN_MASK;
1327 }
1328 if (attrs.secure) {
1329 /* the BFHFNMIGN bit is not banked; keep that in the NS copy */
1330 cpu->env.v7m.ccr[M_REG_NS] =
1331 (cpu->env.v7m.ccr[M_REG_NS] & ~R_V7M_CCR_BFHFNMIGN_MASK)
1332 | (value & R_V7M_CCR_BFHFNMIGN_MASK);
1333 value &= ~R_V7M_CCR_BFHFNMIGN_MASK;
1334 }
1335
1336 cpu->env.v7m.ccr[attrs.secure] = value;
e72e3ffc 1337 break;
437d59c1
PM
1338 case 0xd24: /* System Handler Control and State (SHCSR) */
1339 if (attrs.secure) {
1340 s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1341 /* Secure HardFault active bit cannot be written */
1342 s->sec_vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1343 s->sec_vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1344 s->sec_vectors[ARMV7M_EXCP_PENDSV].active =
1345 (value & (1 << 10)) != 0;
1346 s->sec_vectors[ARMV7M_EXCP_SYSTICK].active =
1347 (value & (1 << 11)) != 0;
1348 s->sec_vectors[ARMV7M_EXCP_USAGE].pending =
1349 (value & (1 << 12)) != 0;
1350 s->sec_vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1351 s->sec_vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1352 s->sec_vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1353 s->sec_vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1354 s->sec_vectors[ARMV7M_EXCP_USAGE].enabled =
1355 (value & (1 << 18)) != 0;
04829ce3 1356 s->sec_vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
437d59c1
PM
1357 /* SecureFault not banked, but RAZ/WI to NS */
1358 s->vectors[ARMV7M_EXCP_SECURE].active = (value & (1 << 4)) != 0;
1359 s->vectors[ARMV7M_EXCP_SECURE].enabled = (value & (1 << 19)) != 0;
1360 s->vectors[ARMV7M_EXCP_SECURE].pending = (value & (1 << 20)) != 0;
1361 } else {
1362 s->vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
1363 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1364 /* HARDFAULTPENDED is not present in v7M */
1365 s->vectors[ARMV7M_EXCP_HARD].pending = (value & (1 << 21)) != 0;
1366 }
1367 s->vectors[ARMV7M_EXCP_USAGE].active = (value & (1 << 3)) != 0;
1368 s->vectors[ARMV7M_EXCP_SVC].active = (value & (1 << 7)) != 0;
1369 s->vectors[ARMV7M_EXCP_PENDSV].active = (value & (1 << 10)) != 0;
1370 s->vectors[ARMV7M_EXCP_SYSTICK].active = (value & (1 << 11)) != 0;
1371 s->vectors[ARMV7M_EXCP_USAGE].pending = (value & (1 << 12)) != 0;
1372 s->vectors[ARMV7M_EXCP_MEM].pending = (value & (1 << 13)) != 0;
1373 s->vectors[ARMV7M_EXCP_SVC].pending = (value & (1 << 15)) != 0;
1374 s->vectors[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0;
1375 s->vectors[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0;
1376 }
1377 if (attrs.secure || (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1378 s->vectors[ARMV7M_EXCP_BUS].active = (value & (1 << 1)) != 0;
1379 s->vectors[ARMV7M_EXCP_BUS].pending = (value & (1 << 14)) != 0;
1380 s->vectors[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0;
1381 }
1382 /* NMIACT can only be written if the write is of a zero, with
1383 * BFHFNMINS 1, and by the CPU in secure state via the NS alias.
1384 */
1385 if (!attrs.secure && cpu->env.v7m.secure &&
1386 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1387 (value & (1 << 5)) == 0) {
1388 s->vectors[ARMV7M_EXCP_NMI].active = 0;
1389 }
1390 /* HARDFAULTACT can only be written if the write is of a zero
1391 * to the non-secure HardFault state by the CPU in secure state.
1392 * The only case where we can be targeting the non-secure HF state
1393 * when in secure state is if this is a write via the NS alias
1394 * and BFHFNMINS is 1.
1395 */
1396 if (!attrs.secure && cpu->env.v7m.secure &&
1397 (cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK) &&
1398 (value & (1 << 2)) == 0) {
1399 s->vectors[ARMV7M_EXCP_HARD].active = 0;
1400 }
1401
1402 /* TODO: this is RAZ/WI from NS if DEMCR.SDME is set */
5db53e35 1403 s->vectors[ARMV7M_EXCP_DEBUG].active = (value & (1 << 8)) != 0;
da6d674e 1404 nvic_irq_update(s);
9ee6e8bb 1405 break;
9ee6e8bb 1406 case 0xd2c: /* Hard Fault Status. */
7c9140af
JS
1407 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1408 goto bad_offset;
1409 }
e6b33209
MD
1410 cpu->env.v7m.hfsr &= ~value; /* W1C */
1411 break;
9ee6e8bb 1412 case 0xd30: /* Debug Fault Status. */
e6b33209
MD
1413 cpu->env.v7m.dfsr &= ~value; /* W1C */
1414 break;
9ee6e8bb 1415 case 0xd34: /* Mem Manage Address. */
7c9140af
JS
1416 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1417 goto bad_offset;
1418 }
c51a5cfc 1419 cpu->env.v7m.mmfar[attrs.secure] = value;
e6b33209 1420 return;
9ee6e8bb 1421 case 0xd38: /* Bus Fault Address. */
7c9140af
JS
1422 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1423 goto bad_offset;
1424 }
e6b33209
MD
1425 cpu->env.v7m.bfar = value;
1426 return;
9ee6e8bb 1427 case 0xd3c: /* Aux Fault Status. */
e72e3ffc 1428 qemu_log_mask(LOG_UNIMP,
e6b33209 1429 "NVIC: Aux fault status registers unimplemented\n");
e72e3ffc 1430 break;
43bbce7f
PM
1431 case 0xd84: /* CSSELR */
1432 if (!arm_v7m_csselr_razwi(cpu)) {
1433 cpu->env.v7m.csselr[attrs.secure] = value & R_V7M_CSSELR_INDEX_MASK;
1434 }
1435 break;
29c483a5
MD
1436 case 0xd90: /* MPU_TYPE */
1437 return; /* RO */
1438 case 0xd94: /* MPU_CTRL */
1439 if ((value &
1440 (R_V7M_MPU_CTRL_HFNMIENA_MASK | R_V7M_MPU_CTRL_ENABLE_MASK))
1441 == R_V7M_MPU_CTRL_HFNMIENA_MASK) {
1442 qemu_log_mask(LOG_GUEST_ERROR, "MPU_CTRL: HFNMIENA and !ENABLE is "
1443 "UNPREDICTABLE\n");
1444 }
ecf5e8ea
PM
1445 cpu->env.v7m.mpu_ctrl[attrs.secure]
1446 = value & (R_V7M_MPU_CTRL_ENABLE_MASK |
1447 R_V7M_MPU_CTRL_HFNMIENA_MASK |
1448 R_V7M_MPU_CTRL_PRIVDEFENA_MASK);
29c483a5
MD
1449 tlb_flush(CPU(cpu));
1450 break;
1451 case 0xd98: /* MPU_RNR */
1452 if (value >= cpu->pmsav7_dregion) {
1453 qemu_log_mask(LOG_GUEST_ERROR, "MPU region out of range %"
1454 PRIu32 "/%" PRIu32 "\n",
1455 value, cpu->pmsav7_dregion);
1456 } else {
1bc04a88 1457 cpu->env.pmsav7.rnr[attrs.secure] = value;
29c483a5
MD
1458 }
1459 break;
1460 case 0xd9c: /* MPU_RBAR */
1461 case 0xda4: /* MPU_RBAR_A1 */
1462 case 0xdac: /* MPU_RBAR_A2 */
1463 case 0xdb4: /* MPU_RBAR_A3 */
1464 {
1465 int region;
1466
0e1a46bb
PM
1467 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1468 /* PMSAv8M handling of the aliases is different from v7M:
1469 * aliases A1, A2, A3 override the low two bits of the region
1470 * number in MPU_RNR, and there is no 'region' field in the
1471 * RBAR register.
1472 */
1473 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1474
1bc04a88 1475 region = cpu->env.pmsav7.rnr[attrs.secure];
0e1a46bb
PM
1476 if (aliasno) {
1477 region = deposit32(region, 0, 2, aliasno);
1478 }
1479 if (region >= cpu->pmsav7_dregion) {
1480 return;
1481 }
62c58ee0 1482 cpu->env.pmsav8.rbar[attrs.secure][region] = value;
0e1a46bb
PM
1483 tlb_flush(CPU(cpu));
1484 return;
1485 }
1486
29c483a5
MD
1487 if (value & (1 << 4)) {
1488 /* VALID bit means use the region number specified in this
1489 * value and also update MPU_RNR.REGION with that value.
1490 */
1491 region = extract32(value, 0, 4);
1492 if (region >= cpu->pmsav7_dregion) {
1493 qemu_log_mask(LOG_GUEST_ERROR,
1494 "MPU region out of range %u/%" PRIu32 "\n",
1495 region, cpu->pmsav7_dregion);
1496 return;
1497 }
1bc04a88 1498 cpu->env.pmsav7.rnr[attrs.secure] = region;
29c483a5 1499 } else {
1bc04a88 1500 region = cpu->env.pmsav7.rnr[attrs.secure];
29c483a5
MD
1501 }
1502
1503 if (region >= cpu->pmsav7_dregion) {
1504 return;
1505 }
1506
1507 cpu->env.pmsav7.drbar[region] = value & ~0x1f;
1508 tlb_flush(CPU(cpu));
1509 break;
1510 }
0e1a46bb
PM
1511 case 0xda0: /* MPU_RASR (v7M), MPU_RLAR (v8M) */
1512 case 0xda8: /* MPU_RASR_A1 (v7M), MPU_RLAR_A1 (v8M) */
1513 case 0xdb0: /* MPU_RASR_A2 (v7M), MPU_RLAR_A2 (v8M) */
1514 case 0xdb8: /* MPU_RASR_A3 (v7M), MPU_RLAR_A3 (v8M) */
29c483a5 1515 {
1bc04a88 1516 int region = cpu->env.pmsav7.rnr[attrs.secure];
29c483a5 1517
0e1a46bb
PM
1518 if (arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1519 /* PMSAv8M handling of the aliases is different from v7M:
1520 * aliases A1, A2, A3 override the low two bits of the region
1521 * number in MPU_RNR.
1522 */
1523 int aliasno = (offset - 0xd9c) / 8; /* 0..3 */
1524
1bc04a88 1525 region = cpu->env.pmsav7.rnr[attrs.secure];
0e1a46bb
PM
1526 if (aliasno) {
1527 region = deposit32(region, 0, 2, aliasno);
1528 }
1529 if (region >= cpu->pmsav7_dregion) {
1530 return;
1531 }
62c58ee0 1532 cpu->env.pmsav8.rlar[attrs.secure][region] = value;
0e1a46bb
PM
1533 tlb_flush(CPU(cpu));
1534 return;
1535 }
1536
29c483a5
MD
1537 if (region >= cpu->pmsav7_dregion) {
1538 return;
1539 }
1540
1541 cpu->env.pmsav7.drsr[region] = value & 0xff3f;
1542 cpu->env.pmsav7.dracr[region] = (value >> 16) & 0x173f;
1543 tlb_flush(CPU(cpu));
1544 break;
1545 }
0e1a46bb
PM
1546 case 0xdc0: /* MPU_MAIR0 */
1547 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1548 goto bad_offset;
1549 }
1550 if (cpu->pmsav7_dregion) {
1551 /* Register is RES0 if no MPU regions are implemented */
4125e6fe 1552 cpu->env.pmsav8.mair0[attrs.secure] = value;
0e1a46bb
PM
1553 }
1554 /* We don't need to do anything else because memory attributes
1555 * only affect cacheability, and we don't implement caching.
1556 */
1557 break;
1558 case 0xdc4: /* MPU_MAIR1 */
1559 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1560 goto bad_offset;
1561 }
1562 if (cpu->pmsav7_dregion) {
1563 /* Register is RES0 if no MPU regions are implemented */
4125e6fe 1564 cpu->env.pmsav8.mair1[attrs.secure] = value;
0e1a46bb
PM
1565 }
1566 /* We don't need to do anything else because memory attributes
1567 * only affect cacheability, and we don't implement caching.
1568 */
1569 break;
9901c576
PM
1570 case 0xdd0: /* SAU_CTRL */
1571 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1572 goto bad_offset;
1573 }
1574 if (!attrs.secure) {
1575 return;
1576 }
1577 cpu->env.sau.ctrl = value & 3;
a94bb9cd 1578 break;
9901c576
PM
1579 case 0xdd4: /* SAU_TYPE */
1580 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1581 goto bad_offset;
1582 }
1583 break;
1584 case 0xdd8: /* SAU_RNR */
1585 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1586 goto bad_offset;
1587 }
1588 if (!attrs.secure) {
1589 return;
1590 }
1591 if (value >= cpu->sau_sregion) {
1592 qemu_log_mask(LOG_GUEST_ERROR, "SAU region out of range %"
1593 PRIu32 "/%" PRIu32 "\n",
1594 value, cpu->sau_sregion);
1595 } else {
1596 cpu->env.sau.rnr = value;
1597 }
1598 break;
1599 case 0xddc: /* SAU_RBAR */
1600 {
1601 int region = cpu->env.sau.rnr;
1602
1603 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1604 goto bad_offset;
1605 }
1606 if (!attrs.secure) {
1607 return;
1608 }
1609 if (region >= cpu->sau_sregion) {
1610 return;
1611 }
1612 cpu->env.sau.rbar[region] = value & ~0x1f;
1613 tlb_flush(CPU(cpu));
1614 break;
1615 }
1616 case 0xde0: /* SAU_RLAR */
1617 {
1618 int region = cpu->env.sau.rnr;
1619
1620 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1621 goto bad_offset;
1622 }
1623 if (!attrs.secure) {
1624 return;
1625 }
1626 if (region >= cpu->sau_sregion) {
1627 return;
1628 }
1629 cpu->env.sau.rlar[region] = value & ~0x1c;
1630 tlb_flush(CPU(cpu));
1631 break;
1632 }
bed079da
PM
1633 case 0xde4: /* SFSR */
1634 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1635 goto bad_offset;
1636 }
1637 if (!attrs.secure) {
1638 return;
1639 }
1640 cpu->env.v7m.sfsr &= ~value; /* W1C */
1641 break;
1642 case 0xde8: /* SFAR */
1643 if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
1644 goto bad_offset;
1645 }
1646 if (!attrs.secure) {
1647 return;
1648 }
1649 cpu->env.v7m.sfsr = value;
1650 break;
2a29ddee 1651 case 0xf00: /* Software Triggered Interrupt Register */
da6d674e 1652 {
da6d674e 1653 int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
7c9140af
JS
1654
1655 if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
1656 goto bad_offset;
1657 }
1658
eb578a23 1659 if (excnum < s->num_irq) {
2fb50a33 1660 armv7m_nvic_set_pending(s, excnum, false);
2a29ddee
PM
1661 }
1662 break;
da6d674e 1663 }
e8ab26c4
PM
1664 case 0xf50: /* ICIALLU */
1665 case 0xf58: /* ICIMVAU */
1666 case 0xf5c: /* DCIMVAC */
1667 case 0xf60: /* DCISW */
1668 case 0xf64: /* DCCMVAU */
1669 case 0xf68: /* DCCMVAC */
1670 case 0xf6c: /* DCCSW */
1671 case 0xf70: /* DCCIMVAC */
1672 case 0xf74: /* DCCISW */
1673 case 0xf78: /* BPIALL */
1674 /* Cache and branch predictor maintenance: for QEMU these always NOP */
1675 break;
9ee6e8bb 1676 default:
0e1a46bb 1677 bad_offset:
e72e3ffc
PM
1678 qemu_log_mask(LOG_GUEST_ERROR,
1679 "NVIC: Bad write offset 0x%x\n", offset);
9ee6e8bb
PB
1680 }
1681}
1682
9d40cd8a 1683static bool nvic_user_access_ok(NVICState *s, hwaddr offset, MemTxAttrs attrs)
eb578a23
PM
1684{
1685 /* Return true if unprivileged access to this register is permitted. */
1686 switch (offset) {
1687 case 0xf00: /* STIR: accessible only if CCR.USERSETMPEND permits */
9d40cd8a
PM
1688 /* For access via STIR_NS it is the NS CCR.USERSETMPEND that
1689 * controls access even though the CPU is in Secure state (I_QDKX).
1690 */
1691 return s->cpu->env.v7m.ccr[attrs.secure] & R_V7M_CCR_USERSETMPEND_MASK;
eb578a23
PM
1692 default:
1693 /* All other user accesses cause a BusFault unconditionally */
1694 return false;
1695 }
1696}
1697
e6a0d350
PM
1698static int shpr_bank(NVICState *s, int exc, MemTxAttrs attrs)
1699{
1700 /* Behaviour for the SHPR register field for this exception:
1701 * return M_REG_NS to use the nonsecure vector (including for
1702 * non-banked exceptions), M_REG_S for the secure version of
1703 * a banked exception, and -1 if this field should RAZ/WI.
1704 */
1705 switch (exc) {
1706 case ARMV7M_EXCP_MEM:
1707 case ARMV7M_EXCP_USAGE:
1708 case ARMV7M_EXCP_SVC:
1709 case ARMV7M_EXCP_PENDSV:
1710 case ARMV7M_EXCP_SYSTICK:
1711 /* Banked exceptions */
1712 return attrs.secure;
1713 case ARMV7M_EXCP_BUS:
1714 /* Not banked, RAZ/WI from nonsecure if BFHFNMINS is zero */
1715 if (!attrs.secure &&
1716 !(s->cpu->env.v7m.aircr & R_V7M_AIRCR_BFHFNMINS_MASK)) {
1717 return -1;
1718 }
1719 return M_REG_NS;
1720 case ARMV7M_EXCP_SECURE:
1721 /* Not banked, RAZ/WI from nonsecure */
1722 if (!attrs.secure) {
1723 return -1;
1724 }
1725 return M_REG_NS;
1726 case ARMV7M_EXCP_DEBUG:
1727 /* Not banked. TODO should RAZ/WI if DEMCR.SDME is set */
1728 return M_REG_NS;
1729 case 8 ... 10:
1730 case 13:
1731 /* RES0 */
1732 return -1;
1733 default:
1734 /* Not reachable due to decode of SHPR register addresses */
1735 g_assert_not_reached();
1736 }
1737}
1738
eb578a23
PM
1739static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
1740 uint64_t *data, unsigned size,
1741 MemTxAttrs attrs)
2a29ddee 1742{
f797c075 1743 NVICState *s = (NVICState *)opaque;
2a29ddee 1744 uint32_t offset = addr;
da6d674e 1745 unsigned i, startvec, end;
0e8153dd
AB
1746 uint32_t val;
1747
9d40cd8a 1748 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
eb578a23
PM
1749 /* Generate BusFault for unprivileged accesses */
1750 return MEMTX_ERROR;
1751 }
1752
0e8153dd 1753 switch (offset) {
da6d674e
MD
1754 /* reads of set and clear both return the status */
1755 case 0x100 ... 0x13f: /* NVIC Set enable */
1756 offset += 0x80;
1757 /* fall through */
1758 case 0x180 ... 0x1bf: /* NVIC Clear enable */
1759 val = 0;
12fbf1a1 1760 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ; /* vector # */
da6d674e
MD
1761
1762 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
e1be0a57
PM
1763 if (s->vectors[startvec + i].enabled &&
1764 (attrs.secure || s->itns[startvec + i])) {
da6d674e
MD
1765 val |= (1 << i);
1766 }
1767 }
1768 break;
1769 case 0x200 ... 0x23f: /* NVIC Set pend */
1770 offset += 0x80;
1771 /* fall through */
1772 case 0x280 ... 0x2bf: /* NVIC Clear pend */
1773 val = 0;
12fbf1a1 1774 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
da6d674e 1775 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
e1be0a57
PM
1776 if (s->vectors[startvec + i].pending &&
1777 (attrs.secure || s->itns[startvec + i])) {
da6d674e
MD
1778 val |= (1 << i);
1779 }
1780 }
1781 break;
1782 case 0x300 ... 0x33f: /* NVIC Active */
1783 val = 0;
12fbf1a1 1784 startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
da6d674e
MD
1785
1786 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
e1be0a57
PM
1787 if (s->vectors[startvec + i].active &&
1788 (attrs.secure || s->itns[startvec + i])) {
da6d674e
MD
1789 val |= (1 << i);
1790 }
1791 }
1792 break;
1793 case 0x400 ... 0x5ef: /* NVIC Priority */
1794 val = 0;
1795 startvec = offset - 0x400 + NVIC_FIRST_IRQ; /* vector # */
1796
1797 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
e1be0a57
PM
1798 if (attrs.secure || s->itns[startvec + i]) {
1799 val |= s->vectors[startvec + i].prio << (8 * i);
1800 }
da6d674e
MD
1801 }
1802 break;
7c9140af
JS
1803 case 0xd18: /* System Handler Priority (SHPR1) */
1804 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1805 val = 0;
1806 break;
1807 }
1808 /* fall through */
1809 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
0e8153dd
AB
1810 val = 0;
1811 for (i = 0; i < size; i++) {
e6a0d350
PM
1812 unsigned hdlidx = (offset - 0xd14) + i;
1813 int sbank = shpr_bank(s, hdlidx, attrs);
1814
1815 if (sbank < 0) {
1816 continue;
1817 }
1818 val = deposit32(val, i * 8, 8, get_prio(s, hdlidx, sbank));
0e8153dd 1819 }
da6d674e 1820 break;
4b9774ef 1821 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
7c9140af
JS
1822 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1823 val = 0;
1824 break;
1825 };
4b9774ef
PM
1826 /* The BFSR bits [15:8] are shared between security states
1827 * and we store them in the NS copy
1828 */
1829 val = s->cpu->env.v7m.cfsr[attrs.secure];
1830 val |= s->cpu->env.v7m.cfsr[M_REG_NS] & R_V7M_CFSR_BFSR_MASK;
1831 val = extract32(val, (offset - 0xd28) * 8, size * 8);
1832 break;
0e8153dd 1833 case 0xfe0 ... 0xfff: /* ID. */
2a29ddee 1834 if (offset & 3) {
da6d674e
MD
1835 val = 0;
1836 } else {
1837 val = nvic_id[(offset - 0xfe0) >> 2];
1838 }
1839 break;
1840 default:
1841 if (size == 4) {
45db7ba6 1842 val = nvic_readl(s, offset, attrs);
da6d674e
MD
1843 } else {
1844 qemu_log_mask(LOG_GUEST_ERROR,
1845 "NVIC: Bad read of size %d at offset 0x%x\n",
1846 size, offset);
1847 val = 0;
2a29ddee 1848 }
2a29ddee 1849 }
da6d674e
MD
1850
1851 trace_nvic_sysreg_read(addr, val, size);
eb578a23
PM
1852 *data = val;
1853 return MEMTX_OK;
2a29ddee
PM
1854}
1855
eb578a23
PM
1856static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
1857 uint64_t value, unsigned size,
1858 MemTxAttrs attrs)
2a29ddee 1859{
f797c075 1860 NVICState *s = (NVICState *)opaque;
2a29ddee 1861 uint32_t offset = addr;
da6d674e
MD
1862 unsigned i, startvec, end;
1863 unsigned setval = 0;
1864
1865 trace_nvic_sysreg_write(addr, value, size);
0e8153dd 1866
9d40cd8a 1867 if (attrs.user && !nvic_user_access_ok(s, addr, attrs)) {
eb578a23
PM
1868 /* Generate BusFault for unprivileged accesses */
1869 return MEMTX_ERROR;
1870 }
1871
0e8153dd 1872 switch (offset) {
da6d674e
MD
1873 case 0x100 ... 0x13f: /* NVIC Set enable */
1874 offset += 0x80;
1875 setval = 1;
1876 /* fall through */
1877 case 0x180 ... 0x1bf: /* NVIC Clear enable */
1878 startvec = 8 * (offset - 0x180) + NVIC_FIRST_IRQ;
1879
1880 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
e1be0a57
PM
1881 if (value & (1 << i) &&
1882 (attrs.secure || s->itns[startvec + i])) {
da6d674e
MD
1883 s->vectors[startvec + i].enabled = setval;
1884 }
1885 }
1886 nvic_irq_update(s);
eb578a23 1887 return MEMTX_OK;
da6d674e
MD
1888 case 0x200 ... 0x23f: /* NVIC Set pend */
1889 /* the special logic in armv7m_nvic_set_pending()
1890 * is not needed since IRQs are never escalated
1891 */
1892 offset += 0x80;
1893 setval = 1;
1894 /* fall through */
1895 case 0x280 ... 0x2bf: /* NVIC Clear pend */
1896 startvec = 8 * (offset - 0x280) + NVIC_FIRST_IRQ; /* vector # */
1897
1898 for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
e1be0a57
PM
1899 if (value & (1 << i) &&
1900 (attrs.secure || s->itns[startvec + i])) {
da6d674e
MD
1901 s->vectors[startvec + i].pending = setval;
1902 }
1903 }
1904 nvic_irq_update(s);
eb578a23 1905 return MEMTX_OK;
da6d674e 1906 case 0x300 ... 0x33f: /* NVIC Active */
eb578a23 1907 return MEMTX_OK; /* R/O */
da6d674e 1908 case 0x400 ... 0x5ef: /* NVIC Priority */
12fbf1a1 1909 startvec = (offset - 0x400) + NVIC_FIRST_IRQ; /* vector # */
da6d674e
MD
1910
1911 for (i = 0; i < size && startvec + i < s->num_irq; i++) {
e1be0a57 1912 if (attrs.secure || s->itns[startvec + i]) {
e6a0d350 1913 set_prio(s, startvec + i, false, (value >> (i * 8)) & 0xff);
e1be0a57 1914 }
da6d674e
MD
1915 }
1916 nvic_irq_update(s);
eb578a23 1917 return MEMTX_OK;
7c9140af
JS
1918 case 0xd18: /* System Handler Priority (SHPR1) */
1919 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1920 return MEMTX_OK;
1921 }
1922 /* fall through */
1923 case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
0e8153dd 1924 for (i = 0; i < size; i++) {
da6d674e 1925 unsigned hdlidx = (offset - 0xd14) + i;
e6a0d350
PM
1926 int newprio = extract32(value, i * 8, 8);
1927 int sbank = shpr_bank(s, hdlidx, attrs);
1928
1929 if (sbank < 0) {
1930 continue;
1931 }
1932 set_prio(s, hdlidx, sbank, newprio);
0e8153dd 1933 }
da6d674e 1934 nvic_irq_update(s);
eb578a23 1935 return MEMTX_OK;
4b9774ef 1936 case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
7c9140af
JS
1937 if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
1938 return MEMTX_OK;
1939 }
4b9774ef
PM
1940 /* All bits are W1C, so construct 32 bit value with 0s in
1941 * the parts not written by the access size
1942 */
1943 value <<= ((offset - 0xd28) * 8);
1944
1945 s->cpu->env.v7m.cfsr[attrs.secure] &= ~value;
1946 if (attrs.secure) {
1947 /* The BFSR bits [15:8] are shared between security states
1948 * and we store them in the NS copy.
1949 */
1950 s->cpu->env.v7m.cfsr[M_REG_NS] &= ~(value & R_V7M_CFSR_BFSR_MASK);
1951 }
1952 return MEMTX_OK;
0e8153dd 1953 }
2a29ddee 1954 if (size == 4) {
45db7ba6 1955 nvic_writel(s, offset, value, attrs);
eb578a23 1956 return MEMTX_OK;
2a29ddee 1957 }
e72e3ffc
PM
1958 qemu_log_mask(LOG_GUEST_ERROR,
1959 "NVIC: Bad write of size %d at offset 0x%x\n", size, offset);
eb578a23
PM
1960 /* This is UNPREDICTABLE; treat as RAZ/WI */
1961 return MEMTX_OK;
2a29ddee
PM
1962}
1963
1964static const MemoryRegionOps nvic_sysreg_ops = {
eb578a23
PM
1965 .read_with_attrs = nvic_sysreg_read,
1966 .write_with_attrs = nvic_sysreg_write,
2a29ddee
PM
1967 .endianness = DEVICE_NATIVE_ENDIAN,
1968};
1969
f104919d
PM
1970static MemTxResult nvic_sysreg_ns_write(void *opaque, hwaddr addr,
1971 uint64_t value, unsigned size,
1972 MemTxAttrs attrs)
1973{
62f01848
PM
1974 MemoryRegion *mr = opaque;
1975
f104919d
PM
1976 if (attrs.secure) {
1977 /* S accesses to the alias act like NS accesses to the real region */
1978 attrs.secure = 0;
62f01848 1979 return memory_region_dispatch_write(mr, addr, value, size, attrs);
f104919d
PM
1980 } else {
1981 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
1982 if (attrs.user) {
1983 return MEMTX_ERROR;
1984 }
1985 return MEMTX_OK;
1986 }
1987}
1988
1989static MemTxResult nvic_sysreg_ns_read(void *opaque, hwaddr addr,
1990 uint64_t *data, unsigned size,
1991 MemTxAttrs attrs)
1992{
62f01848
PM
1993 MemoryRegion *mr = opaque;
1994
f104919d
PM
1995 if (attrs.secure) {
1996 /* S accesses to the alias act like NS accesses to the real region */
1997 attrs.secure = 0;
62f01848 1998 return memory_region_dispatch_read(mr, addr, data, size, attrs);
f104919d
PM
1999 } else {
2000 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
2001 if (attrs.user) {
2002 return MEMTX_ERROR;
2003 }
2004 *data = 0;
2005 return MEMTX_OK;
2006 }
2007}
2008
2009static const MemoryRegionOps nvic_sysreg_ns_ops = {
2010 .read_with_attrs = nvic_sysreg_ns_read,
2011 .write_with_attrs = nvic_sysreg_ns_write,
2012 .endianness = DEVICE_NATIVE_ENDIAN,
2013};
2014
27f26bfe
PM
2015static MemTxResult nvic_systick_write(void *opaque, hwaddr addr,
2016 uint64_t value, unsigned size,
2017 MemTxAttrs attrs)
2018{
2019 NVICState *s = opaque;
2020 MemoryRegion *mr;
2021
2022 /* Direct the access to the correct systick */
2023 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2024 return memory_region_dispatch_write(mr, addr, value, size, attrs);
2025}
2026
2027static MemTxResult nvic_systick_read(void *opaque, hwaddr addr,
2028 uint64_t *data, unsigned size,
2029 MemTxAttrs attrs)
2030{
2031 NVICState *s = opaque;
2032 MemoryRegion *mr;
2033
2034 /* Direct the access to the correct systick */
2035 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
2036 return memory_region_dispatch_read(mr, addr, data, size, attrs);
2037}
2038
2039static const MemoryRegionOps nvic_systick_ops = {
2040 .read_with_attrs = nvic_systick_read,
2041 .write_with_attrs = nvic_systick_write,
2042 .endianness = DEVICE_NATIVE_ENDIAN,
2043};
2044
da6d674e
MD
2045static int nvic_post_load(void *opaque, int version_id)
2046{
2047 NVICState *s = opaque;
2048 unsigned i;
331f4bae 2049 int resetprio;
da6d674e
MD
2050
2051 /* Check for out of range priority settings */
331f4bae
PM
2052 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2053
2054 if (s->vectors[ARMV7M_EXCP_RESET].prio != resetprio ||
da6d674e
MD
2055 s->vectors[ARMV7M_EXCP_NMI].prio != -2 ||
2056 s->vectors[ARMV7M_EXCP_HARD].prio != -1) {
2057 return 1;
2058 }
2059 for (i = ARMV7M_EXCP_MEM; i < s->num_irq; i++) {
2060 if (s->vectors[i].prio & ~0xff) {
2061 return 1;
2062 }
2063 }
2064
2065 nvic_recompute_state(s);
2066
2067 return 0;
2068}
2069
2070static const VMStateDescription vmstate_VecInfo = {
2071 .name = "armv7m_nvic_info",
2072 .version_id = 1,
2073 .minimum_version_id = 1,
2074 .fields = (VMStateField[]) {
2075 VMSTATE_INT16(prio, VecInfo),
2076 VMSTATE_UINT8(enabled, VecInfo),
2077 VMSTATE_UINT8(pending, VecInfo),
2078 VMSTATE_UINT8(active, VecInfo),
2079 VMSTATE_UINT8(level, VecInfo),
2080 VMSTATE_END_OF_LIST()
2081 }
2082};
2083
17906a16
PM
2084static bool nvic_security_needed(void *opaque)
2085{
2086 NVICState *s = opaque;
2087
2088 return arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY);
2089}
2090
2091static int nvic_security_post_load(void *opaque, int version_id)
2092{
2093 NVICState *s = opaque;
2094 int i;
2095
2096 /* Check for out of range priority settings */
331f4bae
PM
2097 if (s->sec_vectors[ARMV7M_EXCP_HARD].prio != -1
2098 && s->sec_vectors[ARMV7M_EXCP_HARD].prio != -3) {
2099 /* We can't cross-check against AIRCR.BFHFNMINS as we don't know
2100 * if the CPU state has been migrated yet; a mismatch won't
2101 * cause the emulation to blow up, though.
2102 */
17906a16
PM
2103 return 1;
2104 }
2105 for (i = ARMV7M_EXCP_MEM; i < ARRAY_SIZE(s->sec_vectors); i++) {
2106 if (s->sec_vectors[i].prio & ~0xff) {
2107 return 1;
2108 }
2109 }
2110 return 0;
2111}
2112
2113static const VMStateDescription vmstate_nvic_security = {
942566ff 2114 .name = "armv7m_nvic/m-security",
17906a16
PM
2115 .version_id = 1,
2116 .minimum_version_id = 1,
2117 .needed = nvic_security_needed,
2118 .post_load = &nvic_security_post_load,
2119 .fields = (VMStateField[]) {
2120 VMSTATE_STRUCT_ARRAY(sec_vectors, NVICState, NVIC_INTERNAL_VECTORS, 1,
2121 vmstate_VecInfo, VecInfo),
3b2e9344 2122 VMSTATE_UINT32(prigroup[M_REG_S], NVICState),
e1be0a57 2123 VMSTATE_BOOL_ARRAY(itns, NVICState, NVIC_MAX_VECTORS),
17906a16
PM
2124 VMSTATE_END_OF_LIST()
2125 }
2126};
2127
0797226c
JQ
2128static const VMStateDescription vmstate_nvic = {
2129 .name = "armv7m_nvic",
ff68dacb
PM
2130 .version_id = 4,
2131 .minimum_version_id = 4,
da6d674e 2132 .post_load = &nvic_post_load,
8f1e884b 2133 .fields = (VMStateField[]) {
da6d674e
MD
2134 VMSTATE_STRUCT_ARRAY(vectors, NVICState, NVIC_MAX_VECTORS, 1,
2135 vmstate_VecInfo, VecInfo),
3b2e9344 2136 VMSTATE_UINT32(prigroup[M_REG_NS], NVICState),
0797226c 2137 VMSTATE_END_OF_LIST()
17906a16
PM
2138 },
2139 .subsections = (const VMStateDescription*[]) {
2140 &vmstate_nvic_security,
2141 NULL
0797226c
JQ
2142 }
2143};
23e39294 2144
da6d674e
MD
2145static Property props_nvic[] = {
2146 /* Number of external IRQ lines (so excluding the 16 internal exceptions) */
2147 DEFINE_PROP_UINT32("num-irq", NVICState, num_irq, 64),
2148 DEFINE_PROP_END_OF_LIST()
2149};
2150
aecff692
PM
2151static void armv7m_nvic_reset(DeviceState *dev)
2152{
331f4bae 2153 int resetprio;
f797c075 2154 NVICState *s = NVIC(dev);
da6d674e 2155
8ff26a33
PM
2156 memset(s->vectors, 0, sizeof(s->vectors));
2157 memset(s->sec_vectors, 0, sizeof(s->sec_vectors));
2158 s->prigroup[M_REG_NS] = 0;
2159 s->prigroup[M_REG_S] = 0;
2160
da6d674e 2161 s->vectors[ARMV7M_EXCP_NMI].enabled = 1;
da6d674e
MD
2162 /* MEM, BUS, and USAGE are enabled through
2163 * the System Handler Control register
b3387ede 2164 */
da6d674e
MD
2165 s->vectors[ARMV7M_EXCP_SVC].enabled = 1;
2166 s->vectors[ARMV7M_EXCP_DEBUG].enabled = 1;
2167 s->vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2168 s->vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2169
331f4bae
PM
2170 resetprio = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? -4 : -3;
2171 s->vectors[ARMV7M_EXCP_RESET].prio = resetprio;
da6d674e
MD
2172 s->vectors[ARMV7M_EXCP_NMI].prio = -2;
2173 s->vectors[ARMV7M_EXCP_HARD].prio = -1;
2174
17906a16
PM
2175 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2176 s->sec_vectors[ARMV7M_EXCP_HARD].enabled = 1;
2177 s->sec_vectors[ARMV7M_EXCP_SVC].enabled = 1;
2178 s->sec_vectors[ARMV7M_EXCP_PENDSV].enabled = 1;
2179 s->sec_vectors[ARMV7M_EXCP_SYSTICK].enabled = 1;
2180
2181 /* AIRCR.BFHFNMINS resets to 0 so Secure HF is priority -1 (R_CMTC) */
2182 s->sec_vectors[ARMV7M_EXCP_HARD].prio = -1;
7208b426
PM
2183 /* If AIRCR.BFHFNMINS is 0 then NS HF is (effectively) disabled */
2184 s->vectors[ARMV7M_EXCP_HARD].enabled = 0;
2185 } else {
2186 s->vectors[ARMV7M_EXCP_HARD].enabled = 1;
17906a16
PM
2187 }
2188
da6d674e
MD
2189 /* Strictly speaking the reset handler should be enabled.
2190 * However, we don't simulate soft resets through the NVIC,
2191 * and the reset vector should never be pended.
2192 * So we leave it disabled to catch logic errors.
2193 */
2194
2195 s->exception_prio = NVIC_NOEXC_PRIO;
2196 s->vectpending = 0;
e93bc2ac 2197 s->vectpending_is_s_banked = false;
5255fcf8 2198 s->vectpending_prio = NVIC_NOEXC_PRIO;
e1be0a57
PM
2199
2200 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2201 memset(s->itns, 0, sizeof(s->itns));
2202 } else {
2203 /* This state is constant and not guest accessible in a non-security
2204 * NVIC; we set the bits to true to avoid having to do a feature
2205 * bit check in the NVIC enable/pend/etc register accessors.
2206 */
2207 int i;
2208
2209 for (i = NVIC_FIRST_IRQ; i < ARRAY_SIZE(s->itns); i++) {
2210 s->itns[i] = true;
2211 }
2212 }
ff68dacb 2213}
da6d674e 2214
ff68dacb
PM
2215static void nvic_systick_trigger(void *opaque, int n, int level)
2216{
2217 NVICState *s = opaque;
2218
2219 if (level) {
2220 /* SysTick just asked us to pend its exception.
2221 * (This is different from an external interrupt line's
2222 * behaviour.)
27f26bfe
PM
2223 * n == 0 : NonSecure systick
2224 * n == 1 : Secure systick
ff68dacb 2225 */
27f26bfe 2226 armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK, n);
ff68dacb 2227 }
aecff692
PM
2228}
2229
53111180 2230static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
9ee6e8bb 2231{
f797c075 2232 NVICState *s = NVIC(dev);
ff68dacb 2233 Error *err = NULL;
f104919d 2234 int regionlen;
9ee6e8bb 2235
d713ea6c 2236 s->cpu = ARM_CPU(qemu_get_cpu(0));
95f87565
PM
2237
2238 if (!s->cpu || !arm_feature(&s->cpu->env, ARM_FEATURE_M)) {
2239 error_setg(errp, "The NVIC can only be used with a Cortex-M CPU");
2240 return;
2241 }
da6d674e
MD
2242
2243 if (s->num_irq > NVIC_MAX_IRQ) {
2244 error_setg(errp, "num-irq %d exceeds NVIC maximum", s->num_irq);
53111180
PM
2245 return;
2246 }
da6d674e
MD
2247
2248 qdev_init_gpio_in(dev, set_irq_level, s->num_irq);
2249
2250 /* include space for internal exception vectors */
2251 s->num_irq += NVIC_FIRST_IRQ;
2252
27f26bfe
PM
2253 object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true,
2254 "realized", &err);
ff68dacb
PM
2255 if (err != NULL) {
2256 error_propagate(errp, err);
2257 return;
2258 }
27f26bfe
PM
2259 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
2260 qdev_get_gpio_in_named(dev, "systick-trigger",
2261 M_REG_NS));
2262
2263 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
2264 /* We couldn't init the secure systick device in instance_init
2265 * as we didn't know then if the CPU had the security extensions;
2266 * so we have to do it here.
2267 */
2268 object_initialize(&s->systick[M_REG_S], sizeof(s->systick[M_REG_S]),
2269 TYPE_SYSTICK);
2270 qdev_set_parent_bus(DEVICE(&s->systick[M_REG_S]), sysbus_get_default());
2271
2272 object_property_set_bool(OBJECT(&s->systick[M_REG_S]), true,
2273 "realized", &err);
2274 if (err != NULL) {
2275 error_propagate(errp, err);
2276 return;
2277 }
2278 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
2279 qdev_get_gpio_in_named(dev, "systick-trigger",
2280 M_REG_S));
2281 }
ff68dacb 2282
da6d674e
MD
2283 /* The NVIC and System Control Space (SCS) starts at 0xe000e000
2284 * and looks like this:
2285 * 0x004 - ICTR
ff68dacb 2286 * 0x010 - 0xff - systick
da6d674e
MD
2287 * 0x100..0x7ec - NVIC
2288 * 0x7f0..0xcff - Reserved
2289 * 0xd00..0xd3c - SCS registers
2290 * 0xd40..0xeff - Reserved or Not implemented
2291 * 0xf00 - STIR
f104919d
PM
2292 *
2293 * Some registers within this space are banked between security states.
2294 * In v8M there is a second range 0xe002e000..0xe002efff which is the
2295 * NonSecure alias SCS; secure accesses to this behave like NS accesses
2296 * to the main SCS range, and non-secure accesses (including when
2297 * the security extension is not implemented) are RAZ/WI.
2298 * Note that both the main SCS range and the alias range are defined
2299 * to be exempt from memory attribution (R_BLJT) and so the memory
2300 * transaction attribute always matches the current CPU security
2301 * state (attrs.secure == env->v7m.secure). In the nvic_sysreg_ns_ops
2302 * wrappers we change attrs.secure to indicate the NS access; so
2303 * generally code determining which banked register to use should
2304 * use attrs.secure; code determining actual behaviour of the system
2305 * should use env->v7m.secure.
2a29ddee 2306 */
f104919d
PM
2307 regionlen = arm_feature(&s->cpu->env, ARM_FEATURE_V8) ? 0x21000 : 0x1000;
2308 memory_region_init(&s->container, OBJECT(s), "nvic", regionlen);
2a29ddee
PM
2309 /* The system register region goes at the bottom of the priority
2310 * stack as it covers the whole page.
2311 */
1437c94b 2312 memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s,
2a29ddee
PM
2313 "nvic_sysregs", 0x1000);
2314 memory_region_add_subregion(&s->container, 0, &s->sysregmem);
27f26bfe
PM
2315
2316 memory_region_init_io(&s->systickmem, OBJECT(s),
2317 &nvic_systick_ops, s,
2318 "nvic_systick", 0xe0);
2319
ff68dacb 2320 memory_region_add_subregion_overlap(&s->container, 0x10,
27f26bfe 2321 &s->systickmem, 1);
da6d674e 2322
f104919d
PM
2323 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
2324 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
62f01848 2325 &nvic_sysreg_ns_ops, &s->sysregmem,
f104919d
PM
2326 "nvic_sysregs_ns", 0x1000);
2327 memory_region_add_subregion(&s->container, 0x20000, &s->sysreg_ns_mem);
27f26bfe
PM
2328 memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
2329 &nvic_sysreg_ns_ops, &s->systickmem,
2330 "nvic_systick_ns", 0xe0);
2331 memory_region_add_subregion_overlap(&s->container, 0x20010,
2332 &s->systick_ns_mem, 1);
f104919d
PM
2333 }
2334
98957a94 2335 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->container);
9ee6e8bb 2336}
fe7e8758 2337
55e00a19
PM
2338static void armv7m_nvic_instance_init(Object *obj)
2339{
2340 /* We have a different default value for the num-irq property
2341 * than our superclass. This function runs after qdev init
2342 * has set the defaults from the Property array and before
2343 * any user-specified property setting, so just modify the
fae15286 2344 * value in the GICState struct.
55e00a19 2345 */
e192becd 2346 DeviceState *dev = DEVICE(obj);
f797c075 2347 NVICState *nvic = NVIC(obj);
da6d674e
MD
2348 SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
2349
955cbc6b
TH
2350 sysbus_init_child_obj(obj, "systick-reg-ns", &nvic->systick[M_REG_NS],
2351 sizeof(nvic->systick[M_REG_NS]), TYPE_SYSTICK);
27f26bfe
PM
2352 /* We can't initialize the secure systick here, as we don't know
2353 * yet if we need it.
2354 */
ff68dacb 2355
da6d674e 2356 sysbus_init_irq(sbd, &nvic->excpout);
e192becd 2357 qdev_init_gpio_out_named(dev, &nvic->sysresetreq, "SYSRESETREQ", 1);
27f26bfe
PM
2358 qdev_init_gpio_in_named(dev, nvic_systick_trigger, "systick-trigger",
2359 M_REG_NUM_BANKS);
55e00a19 2360}
39bffca2 2361
999e12bb
AL
2362static void armv7m_nvic_class_init(ObjectClass *klass, void *data)
2363{
39bffca2 2364 DeviceClass *dc = DEVICE_CLASS(klass);
999e12bb 2365
39bffca2 2366 dc->vmsd = &vmstate_nvic;
da6d674e 2367 dc->props = props_nvic;
aecff692 2368 dc->reset = armv7m_nvic_reset;
53111180 2369 dc->realize = armv7m_nvic_realize;
999e12bb
AL
2370}
2371
8c43a6f0 2372static const TypeInfo armv7m_nvic_info = {
1e8cae4d 2373 .name = TYPE_NVIC,
da6d674e 2374 .parent = TYPE_SYS_BUS_DEVICE,
55e00a19 2375 .instance_init = armv7m_nvic_instance_init,
f797c075 2376 .instance_size = sizeof(NVICState),
39bffca2 2377 .class_init = armv7m_nvic_class_init,
da6d674e 2378 .class_size = sizeof(SysBusDeviceClass),
a32134aa
ML
2379};
2380
83f7d43a 2381static void armv7m_nvic_register_types(void)
fe7e8758 2382{
39bffca2 2383 type_register_static(&armv7m_nvic_info);
fe7e8758
PB
2384}
2385
83f7d43a 2386type_init(armv7m_nvic_register_types)