]> git.proxmox.com Git - mirror_qemu.git/blame - hw/intel-hda.c
intel-hda: Honor WAKEEN bits.
[mirror_qemu.git] / hw / intel-hda.c
CommitLineData
d61a4ce8
GH
1/*
2 * Copyright (C) 2010 Red Hat, Inc.
3 *
4 * written by Gerd Hoffmann <kraxel@redhat.com>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 or
9 * (at your option) version 3 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "hw.h"
21#include "pci.h"
22#include "qemu-timer.h"
23#include "audiodev.h"
24#include "intel-hda.h"
25#include "intel-hda-defs.h"
26
27/* --------------------------------------------------------------------- */
28/* hda bus */
29
30static struct BusInfo hda_codec_bus_info = {
31 .name = "HDA",
32 .size = sizeof(HDACodecBus),
33 .props = (Property[]) {
34 DEFINE_PROP_UINT32("cad", HDACodecDevice, cad, -1),
35 DEFINE_PROP_END_OF_LIST()
36 }
37};
38
39void hda_codec_bus_init(DeviceState *dev, HDACodecBus *bus,
40 hda_codec_response_func response,
41 hda_codec_xfer_func xfer)
42{
43 qbus_create_inplace(&bus->qbus, &hda_codec_bus_info, dev, NULL);
44 bus->response = response;
45 bus->xfer = xfer;
46}
47
48static int hda_codec_dev_init(DeviceState *qdev, DeviceInfo *base)
49{
50 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, qdev->parent_bus);
51 HDACodecDevice *dev = DO_UPCAST(HDACodecDevice, qdev, qdev);
52 HDACodecDeviceInfo *info = DO_UPCAST(HDACodecDeviceInfo, qdev, base);
53
54 dev->info = info;
55 if (dev->cad == -1) {
56 dev->cad = bus->next_cad;
57 }
58 if (dev->cad > 15)
59 return -1;
60 bus->next_cad = dev->cad + 1;
61 return info->init(dev);
62}
63
dc4b9240
GH
64static int hda_codec_dev_exit(DeviceState *qdev)
65{
66 HDACodecDevice *dev = DO_UPCAST(HDACodecDevice, qdev, qdev);
67
68 if (dev->info->exit) {
69 dev->info->exit(dev);
70 }
71 return 0;
72}
73
d61a4ce8
GH
74void hda_codec_register(HDACodecDeviceInfo *info)
75{
76 info->qdev.init = hda_codec_dev_init;
dc4b9240 77 info->qdev.exit = hda_codec_dev_exit;
d61a4ce8
GH
78 info->qdev.bus_info = &hda_codec_bus_info;
79 qdev_register(&info->qdev);
80}
81
82HDACodecDevice *hda_codec_find(HDACodecBus *bus, uint32_t cad)
83{
84 DeviceState *qdev;
85 HDACodecDevice *cdev;
86
87 QLIST_FOREACH(qdev, &bus->qbus.children, sibling) {
88 cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
89 if (cdev->cad == cad) {
90 return cdev;
91 }
92 }
93 return NULL;
94}
95
96void hda_codec_response(HDACodecDevice *dev, bool solicited, uint32_t response)
97{
98 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
99 bus->response(dev, solicited, response);
100}
101
102bool hda_codec_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
103 uint8_t *buf, uint32_t len)
104{
105 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
106 return bus->xfer(dev, stnr, output, buf, len);
107}
108
109/* --------------------------------------------------------------------- */
110/* intel hda emulation */
111
112typedef struct IntelHDAStream IntelHDAStream;
113typedef struct IntelHDAState IntelHDAState;
114typedef struct IntelHDAReg IntelHDAReg;
115
116typedef struct bpl {
117 uint64_t addr;
118 uint32_t len;
119 uint32_t flags;
120} bpl;
121
122struct IntelHDAStream {
123 /* registers */
124 uint32_t ctl;
125 uint32_t lpib;
126 uint32_t cbl;
127 uint32_t lvi;
128 uint32_t fmt;
129 uint32_t bdlp_lbase;
130 uint32_t bdlp_ubase;
131
132 /* state */
133 bpl *bpl;
134 uint32_t bentries;
135 uint32_t bsize, be, bp;
136};
137
138struct IntelHDAState {
139 PCIDevice pci;
140 const char *name;
141 HDACodecBus codecs;
142
143 /* registers */
144 uint32_t g_ctl;
145 uint32_t wake_en;
146 uint32_t state_sts;
147 uint32_t int_ctl;
148 uint32_t int_sts;
149 uint32_t wall_clk;
150
151 uint32_t corb_lbase;
152 uint32_t corb_ubase;
153 uint32_t corb_rp;
154 uint32_t corb_wp;
155 uint32_t corb_ctl;
156 uint32_t corb_sts;
157 uint32_t corb_size;
158
159 uint32_t rirb_lbase;
160 uint32_t rirb_ubase;
161 uint32_t rirb_wp;
162 uint32_t rirb_cnt;
163 uint32_t rirb_ctl;
164 uint32_t rirb_sts;
165 uint32_t rirb_size;
166
167 uint32_t dp_lbase;
168 uint32_t dp_ubase;
169
170 uint32_t icw;
171 uint32_t irr;
172 uint32_t ics;
173
174 /* streams */
175 IntelHDAStream st[8];
176
177 /* state */
178 int mmio_addr;
179 uint32_t rirb_count;
180 int64_t wall_base_ns;
181
182 /* debug logging */
183 const IntelHDAReg *last_reg;
184 uint32_t last_val;
185 uint32_t last_write;
186 uint32_t last_sec;
187 uint32_t repeat_count;
188
189 /* properties */
190 uint32_t debug;
191};
192
193struct IntelHDAReg {
194 const char *name; /* register name */
195 uint32_t size; /* size in bytes */
196 uint32_t reset; /* reset value */
197 uint32_t wmask; /* write mask */
198 uint32_t wclear; /* write 1 to clear bits */
199 uint32_t offset; /* location in IntelHDAState */
200 uint32_t shift; /* byte access entries for dwords */
201 uint32_t stream;
202 void (*whandler)(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old);
203 void (*rhandler)(IntelHDAState *d, const IntelHDAReg *reg);
204};
205
206static void intel_hda_reset(DeviceState *dev);
207
208/* --------------------------------------------------------------------- */
209
210static target_phys_addr_t intel_hda_addr(uint32_t lbase, uint32_t ubase)
211{
212 target_phys_addr_t addr;
213
214#if TARGET_PHYS_ADDR_BITS == 32
215 addr = lbase;
216#else
217 addr = ubase;
218 addr <<= 32;
219 addr |= lbase;
220#endif
221 return addr;
222}
223
224static void stl_phys_le(target_phys_addr_t addr, uint32_t value)
225{
226 uint32_t value_le = cpu_to_le32(value);
227 cpu_physical_memory_write(addr, (uint8_t*)(&value_le), sizeof(value_le));
228}
229
230static uint32_t ldl_phys_le(target_phys_addr_t addr)
231{
232 uint32_t value_le;
233 cpu_physical_memory_read(addr, (uint8_t*)(&value_le), sizeof(value_le));
234 return le32_to_cpu(value_le);
235}
236
237static void intel_hda_update_int_sts(IntelHDAState *d)
238{
239 uint32_t sts = 0;
240 uint32_t i;
241
242 /* update controller status */
243 if (d->rirb_sts & ICH6_RBSTS_IRQ) {
244 sts |= (1 << 30);
245 }
246 if (d->rirb_sts & ICH6_RBSTS_OVERRUN) {
247 sts |= (1 << 30);
248 }
af93485c 249 if (d->state_sts & d->wake_en) {
d61a4ce8
GH
250 sts |= (1 << 30);
251 }
252
253 /* update stream status */
254 for (i = 0; i < 8; i++) {
255 /* buffer completion interrupt */
256 if (d->st[i].ctl & (1 << 26)) {
257 sts |= (1 << i);
258 }
259 }
260
261 /* update global status */
262 if (sts & d->int_ctl) {
263 sts |= (1 << 31);
264 }
265
266 d->int_sts = sts;
267}
268
269static void intel_hda_update_irq(IntelHDAState *d)
270{
271 int level;
272
273 intel_hda_update_int_sts(d);
274 if (d->int_sts & (1 << 31) && d->int_ctl & (1 << 31)) {
275 level = 1;
276 } else {
277 level = 0;
278 }
279 dprint(d, 2, "%s: level %d\n", __FUNCTION__, level);
280 qemu_set_irq(d->pci.irq[0], level);
281}
282
283static int intel_hda_send_command(IntelHDAState *d, uint32_t verb)
284{
285 uint32_t cad, nid, data;
286 HDACodecDevice *codec;
287
288 cad = (verb >> 28) & 0x0f;
289 if (verb & (1 << 27)) {
290 /* indirect node addressing, not specified in HDA 1.0 */
291 dprint(d, 1, "%s: indirect node addressing (guest bug?)\n", __FUNCTION__);
292 return -1;
293 }
294 nid = (verb >> 20) & 0x7f;
295 data = verb & 0xfffff;
296
297 codec = hda_codec_find(&d->codecs, cad);
298 if (codec == NULL) {
299 dprint(d, 1, "%s: addressed non-existing codec\n", __FUNCTION__);
300 return -1;
301 }
302 codec->info->command(codec, nid, data);
303 return 0;
304}
305
306static void intel_hda_corb_run(IntelHDAState *d)
307{
308 target_phys_addr_t addr;
309 uint32_t rp, verb;
310
311 if (d->ics & ICH6_IRS_BUSY) {
312 dprint(d, 2, "%s: [icw] verb 0x%08x\n", __FUNCTION__, d->icw);
313 intel_hda_send_command(d, d->icw);
314 return;
315 }
316
317 for (;;) {
318 if (!(d->corb_ctl & ICH6_CORBCTL_RUN)) {
319 dprint(d, 2, "%s: !run\n", __FUNCTION__);
320 return;
321 }
322 if ((d->corb_rp & 0xff) == d->corb_wp) {
323 dprint(d, 2, "%s: corb ring empty\n", __FUNCTION__);
324 return;
325 }
326 if (d->rirb_count == d->rirb_cnt) {
327 dprint(d, 2, "%s: rirb count reached\n", __FUNCTION__);
328 return;
329 }
330
331 rp = (d->corb_rp + 1) & 0xff;
332 addr = intel_hda_addr(d->corb_lbase, d->corb_ubase);
333 verb = ldl_phys_le(addr + 4*rp);
334 d->corb_rp = rp;
335
336 dprint(d, 2, "%s: [rp 0x%x] verb 0x%08x\n", __FUNCTION__, rp, verb);
337 intel_hda_send_command(d, verb);
338 }
339}
340
341static void intel_hda_response(HDACodecDevice *dev, bool solicited, uint32_t response)
342{
343 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
344 IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
345 target_phys_addr_t addr;
346 uint32_t wp, ex;
347
348 if (d->ics & ICH6_IRS_BUSY) {
349 dprint(d, 2, "%s: [irr] response 0x%x, cad 0x%x\n",
350 __FUNCTION__, response, dev->cad);
351 d->irr = response;
352 d->ics &= ~(ICH6_IRS_BUSY | 0xf0);
353 d->ics |= (ICH6_IRS_VALID | (dev->cad << 4));
354 return;
355 }
356
357 if (!(d->rirb_ctl & ICH6_RBCTL_DMA_EN)) {
358 dprint(d, 1, "%s: rirb dma disabled, drop codec response\n", __FUNCTION__);
359 return;
360 }
361
362 ex = (solicited ? 0 : (1 << 4)) | dev->cad;
363 wp = (d->rirb_wp + 1) & 0xff;
364 addr = intel_hda_addr(d->rirb_lbase, d->rirb_ubase);
365 stl_phys_le(addr + 8*wp, response);
366 stl_phys_le(addr + 8*wp + 4, ex);
367 d->rirb_wp = wp;
368
369 dprint(d, 2, "%s: [wp 0x%x] response 0x%x, extra 0x%x\n",
370 __FUNCTION__, wp, response, ex);
371
372 d->rirb_count++;
373 if (d->rirb_count == d->rirb_cnt) {
374 dprint(d, 2, "%s: rirb count reached (%d)\n", __FUNCTION__, d->rirb_count);
375 if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
376 d->rirb_sts |= ICH6_RBSTS_IRQ;
377 intel_hda_update_irq(d);
378 }
379 } else if ((d->corb_rp & 0xff) == d->corb_wp) {
380 dprint(d, 2, "%s: corb ring empty (%d/%d)\n", __FUNCTION__,
381 d->rirb_count, d->rirb_cnt);
382 if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
383 d->rirb_sts |= ICH6_RBSTS_IRQ;
384 intel_hda_update_irq(d);
385 }
386 }
387}
388
389static bool intel_hda_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
390 uint8_t *buf, uint32_t len)
391{
392 HDACodecBus *bus = DO_UPCAST(HDACodecBus, qbus, dev->qdev.parent_bus);
393 IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
394 IntelHDAStream *st = NULL;
395 target_phys_addr_t addr;
396 uint32_t s, copy, left;
397 bool irq = false;
398
399 for (s = 0; s < ARRAY_SIZE(d->st); s++) {
400 if (stnr == ((d->st[s].ctl >> 20) & 0x0f)) {
401 st = d->st + s;
402 break;
403 }
404 }
405 if (st == NULL) {
406 return false;
407 }
408 if (st->bpl == NULL) {
409 return false;
410 }
411 if (st->ctl & (1 << 26)) {
412 /*
413 * Wait with the next DMA xfer until the guest
414 * has acked the buffer completion interrupt
415 */
416 return false;
417 }
418
419 left = len;
420 while (left > 0) {
421 copy = left;
422 if (copy > st->bsize - st->lpib)
423 copy = st->bsize - st->lpib;
424 if (copy > st->bpl[st->be].len - st->bp)
425 copy = st->bpl[st->be].len - st->bp;
426
427 dprint(d, 3, "dma: entry %d, pos %d/%d, copy %d\n",
428 st->be, st->bp, st->bpl[st->be].len, copy);
429
430 cpu_physical_memory_rw(st->bpl[st->be].addr + st->bp,
431 buf, copy, !output);
432 st->lpib += copy;
433 st->bp += copy;
434 buf += copy;
435 left -= copy;
436
437 if (st->bpl[st->be].len == st->bp) {
438 /* bpl entry filled */
439 if (st->bpl[st->be].flags & 0x01) {
440 irq = true;
441 }
442 st->bp = 0;
443 st->be++;
444 if (st->be == st->bentries) {
445 /* bpl wrap around */
446 st->be = 0;
447 st->lpib = 0;
448 }
449 }
450 }
451 if (d->dp_lbase & 0x01) {
452 addr = intel_hda_addr(d->dp_lbase & ~0x01, d->dp_ubase);
453 stl_phys_le(addr + 8*s, st->lpib);
454 }
455 dprint(d, 3, "dma: --\n");
456
457 if (irq) {
458 st->ctl |= (1 << 26); /* buffer completion interrupt */
459 intel_hda_update_irq(d);
460 }
461 return true;
462}
463
464static void intel_hda_parse_bdl(IntelHDAState *d, IntelHDAStream *st)
465{
466 target_phys_addr_t addr;
467 uint8_t buf[16];
468 uint32_t i;
469
470 addr = intel_hda_addr(st->bdlp_lbase, st->bdlp_ubase);
471 st->bentries = st->lvi +1;
472 qemu_free(st->bpl);
473 st->bpl = qemu_malloc(sizeof(bpl) * st->bentries);
474 for (i = 0; i < st->bentries; i++, addr += 16) {
475 cpu_physical_memory_read(addr, buf, 16);
476 st->bpl[i].addr = le64_to_cpu(*(uint64_t *)buf);
477 st->bpl[i].len = le32_to_cpu(*(uint32_t *)(buf + 8));
478 st->bpl[i].flags = le32_to_cpu(*(uint32_t *)(buf + 12));
479 dprint(d, 1, "bdl/%d: 0x%" PRIx64 " +0x%x, 0x%x\n",
480 i, st->bpl[i].addr, st->bpl[i].len, st->bpl[i].flags);
481 }
482
483 st->bsize = st->cbl;
484 st->lpib = 0;
485 st->be = 0;
486 st->bp = 0;
487}
488
489static void intel_hda_notify_codecs(IntelHDAState *d, uint32_t stream, bool running)
490{
491 DeviceState *qdev;
492 HDACodecDevice *cdev;
493
494 QLIST_FOREACH(qdev, &d->codecs.qbus.children, sibling) {
495 cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
496 if (cdev->info->stream) {
497 cdev->info->stream(cdev, stream, running);
498 }
499 }
500}
501
502/* --------------------------------------------------------------------- */
503
504static void intel_hda_set_g_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
505{
506 if ((d->g_ctl & ICH6_GCTL_RESET) == 0) {
507 intel_hda_reset(&d->pci.qdev);
508 }
509}
510
511static void intel_hda_set_state_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
512{
513 intel_hda_update_irq(d);
514}
515
516static void intel_hda_set_int_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
517{
518 intel_hda_update_irq(d);
519}
520
521static void intel_hda_get_wall_clk(IntelHDAState *d, const IntelHDAReg *reg)
522{
523 int64_t ns;
524
525 ns = qemu_get_clock_ns(vm_clock) - d->wall_base_ns;
526 d->wall_clk = (uint32_t)(ns * 24 / 1000); /* 24 MHz */
527}
528
529static void intel_hda_set_corb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
530{
531 intel_hda_corb_run(d);
532}
533
534static void intel_hda_set_corb_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
535{
536 intel_hda_corb_run(d);
537}
538
539static void intel_hda_set_rirb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
540{
541 if (d->rirb_wp & ICH6_RIRBWP_RST) {
542 d->rirb_wp = 0;
543 }
544}
545
546static void intel_hda_set_rirb_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
547{
548 intel_hda_update_irq(d);
549
550 if ((old & ICH6_RBSTS_IRQ) && !(d->rirb_sts & ICH6_RBSTS_IRQ)) {
551 /* cleared ICH6_RBSTS_IRQ */
552 d->rirb_count = 0;
553 intel_hda_corb_run(d);
554 }
555}
556
557static void intel_hda_set_ics(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
558{
559 if (d->ics & ICH6_IRS_BUSY) {
560 intel_hda_corb_run(d);
561 }
562}
563
564static void intel_hda_set_st_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
565{
566 IntelHDAStream *st = d->st + reg->stream;
567
568 if (st->ctl & 0x01) {
569 /* reset */
570 dprint(d, 1, "st #%d: reset\n", reg->stream);
571 st->ctl = 0;
572 }
573 if ((st->ctl & 0x02) != (old & 0x02)) {
574 uint32_t stnr = (st->ctl >> 20) & 0x0f;
575 /* run bit flipped */
576 if (st->ctl & 0x02) {
577 /* start */
578 dprint(d, 1, "st #%d: start %d (ring buf %d bytes)\n",
579 reg->stream, stnr, st->cbl);
580 intel_hda_parse_bdl(d, st);
581 intel_hda_notify_codecs(d, stnr, true);
582 } else {
583 /* stop */
584 dprint(d, 1, "st #%d: stop %d\n", reg->stream, stnr);
585 intel_hda_notify_codecs(d, stnr, false);
586 }
587 }
588 intel_hda_update_irq(d);
589}
590
591/* --------------------------------------------------------------------- */
592
593#define ST_REG(_n, _o) (0x80 + (_n) * 0x20 + (_o))
594
595static const struct IntelHDAReg regtab[] = {
596 /* global */
597 [ ICH6_REG_GCAP ] = {
598 .name = "GCAP",
599 .size = 2,
600 .reset = 0x4401,
601 },
602 [ ICH6_REG_VMIN ] = {
603 .name = "VMIN",
604 .size = 1,
605 },
606 [ ICH6_REG_VMAJ ] = {
607 .name = "VMAJ",
608 .size = 1,
609 .reset = 1,
610 },
611 [ ICH6_REG_OUTPAY ] = {
612 .name = "OUTPAY",
613 .size = 2,
614 .reset = 0x3c,
615 },
616 [ ICH6_REG_INPAY ] = {
617 .name = "INPAY",
618 .size = 2,
619 .reset = 0x1d,
620 },
621 [ ICH6_REG_GCTL ] = {
622 .name = "GCTL",
623 .size = 4,
624 .wmask = 0x0103,
625 .offset = offsetof(IntelHDAState, g_ctl),
626 .whandler = intel_hda_set_g_ctl,
627 },
628 [ ICH6_REG_WAKEEN ] = {
629 .name = "WAKEEN",
630 .size = 2,
af93485c 631 .wmask = 0x3fff,
d61a4ce8
GH
632 .offset = offsetof(IntelHDAState, wake_en),
633 },
634 [ ICH6_REG_STATESTS ] = {
635 .name = "STATESTS",
636 .size = 2,
637 .wmask = 0x3fff,
638 .wclear = 0x3fff,
639 .offset = offsetof(IntelHDAState, state_sts),
640 .whandler = intel_hda_set_state_sts,
641 },
642
643 /* interrupts */
644 [ ICH6_REG_INTCTL ] = {
645 .name = "INTCTL",
646 .size = 4,
647 .wmask = 0xc00000ff,
648 .offset = offsetof(IntelHDAState, int_ctl),
649 .whandler = intel_hda_set_int_ctl,
650 },
651 [ ICH6_REG_INTSTS ] = {
652 .name = "INTSTS",
653 .size = 4,
654 .wmask = 0xc00000ff,
655 .wclear = 0xc00000ff,
656 .offset = offsetof(IntelHDAState, int_sts),
657 },
658
659 /* misc */
660 [ ICH6_REG_WALLCLK ] = {
661 .name = "WALLCLK",
662 .size = 4,
663 .offset = offsetof(IntelHDAState, wall_clk),
664 .rhandler = intel_hda_get_wall_clk,
665 },
666 [ ICH6_REG_WALLCLK + 0x2000 ] = {
667 .name = "WALLCLK(alias)",
668 .size = 4,
669 .offset = offsetof(IntelHDAState, wall_clk),
670 .rhandler = intel_hda_get_wall_clk,
671 },
672
673 /* dma engine */
674 [ ICH6_REG_CORBLBASE ] = {
675 .name = "CORBLBASE",
676 .size = 4,
677 .wmask = 0xffffff80,
678 .offset = offsetof(IntelHDAState, corb_lbase),
679 },
680 [ ICH6_REG_CORBUBASE ] = {
681 .name = "CORBUBASE",
682 .size = 4,
683 .wmask = 0xffffffff,
684 .offset = offsetof(IntelHDAState, corb_ubase),
685 },
686 [ ICH6_REG_CORBWP ] = {
687 .name = "CORBWP",
688 .size = 2,
689 .wmask = 0xff,
690 .offset = offsetof(IntelHDAState, corb_wp),
691 .whandler = intel_hda_set_corb_wp,
692 },
693 [ ICH6_REG_CORBRP ] = {
694 .name = "CORBRP",
695 .size = 2,
696 .wmask = 0x80ff,
697 .offset = offsetof(IntelHDAState, corb_rp),
698 },
699 [ ICH6_REG_CORBCTL ] = {
700 .name = "CORBCTL",
701 .size = 1,
702 .wmask = 0x03,
703 .offset = offsetof(IntelHDAState, corb_ctl),
704 .whandler = intel_hda_set_corb_ctl,
705 },
706 [ ICH6_REG_CORBSTS ] = {
707 .name = "CORBSTS",
708 .size = 1,
709 .wmask = 0x01,
710 .wclear = 0x01,
711 .offset = offsetof(IntelHDAState, corb_sts),
712 },
713 [ ICH6_REG_CORBSIZE ] = {
714 .name = "CORBSIZE",
715 .size = 1,
716 .reset = 0x42,
717 .offset = offsetof(IntelHDAState, corb_size),
718 },
719 [ ICH6_REG_RIRBLBASE ] = {
720 .name = "RIRBLBASE",
721 .size = 4,
722 .wmask = 0xffffff80,
723 .offset = offsetof(IntelHDAState, rirb_lbase),
724 },
725 [ ICH6_REG_RIRBUBASE ] = {
726 .name = "RIRBUBASE",
727 .size = 4,
728 .wmask = 0xffffffff,
729 .offset = offsetof(IntelHDAState, rirb_ubase),
730 },
731 [ ICH6_REG_RIRBWP ] = {
732 .name = "RIRBWP",
733 .size = 2,
734 .wmask = 0x8000,
735 .offset = offsetof(IntelHDAState, rirb_wp),
736 .whandler = intel_hda_set_rirb_wp,
737 },
738 [ ICH6_REG_RINTCNT ] = {
739 .name = "RINTCNT",
740 .size = 2,
741 .wmask = 0xff,
742 .offset = offsetof(IntelHDAState, rirb_cnt),
743 },
744 [ ICH6_REG_RIRBCTL ] = {
745 .name = "RIRBCTL",
746 .size = 1,
747 .wmask = 0x07,
748 .offset = offsetof(IntelHDAState, rirb_ctl),
749 },
750 [ ICH6_REG_RIRBSTS ] = {
751 .name = "RIRBSTS",
752 .size = 1,
753 .wmask = 0x05,
754 .wclear = 0x05,
755 .offset = offsetof(IntelHDAState, rirb_sts),
756 .whandler = intel_hda_set_rirb_sts,
757 },
758 [ ICH6_REG_RIRBSIZE ] = {
759 .name = "RIRBSIZE",
760 .size = 1,
761 .reset = 0x42,
762 .offset = offsetof(IntelHDAState, rirb_size),
763 },
764
765 [ ICH6_REG_DPLBASE ] = {
766 .name = "DPLBASE",
767 .size = 4,
768 .wmask = 0xffffff81,
769 .offset = offsetof(IntelHDAState, dp_lbase),
770 },
771 [ ICH6_REG_DPUBASE ] = {
772 .name = "DPUBASE",
773 .size = 4,
774 .wmask = 0xffffffff,
775 .offset = offsetof(IntelHDAState, dp_ubase),
776 },
777
778 [ ICH6_REG_IC ] = {
779 .name = "ICW",
780 .size = 4,
781 .wmask = 0xffffffff,
782 .offset = offsetof(IntelHDAState, icw),
783 },
784 [ ICH6_REG_IR ] = {
785 .name = "IRR",
786 .size = 4,
787 .offset = offsetof(IntelHDAState, irr),
788 },
789 [ ICH6_REG_IRS ] = {
790 .name = "ICS",
791 .size = 2,
792 .wmask = 0x0003,
793 .wclear = 0x0002,
794 .offset = offsetof(IntelHDAState, ics),
795 .whandler = intel_hda_set_ics,
796 },
797
798#define HDA_STREAM(_t, _i) \
799 [ ST_REG(_i, ICH6_REG_SD_CTL) ] = { \
800 .stream = _i, \
801 .name = _t stringify(_i) " CTL", \
802 .size = 4, \
803 .wmask = 0x1cff001f, \
804 .offset = offsetof(IntelHDAState, st[_i].ctl), \
805 .whandler = intel_hda_set_st_ctl, \
806 }, \
807 [ ST_REG(_i, ICH6_REG_SD_CTL) + 2] = { \
808 .stream = _i, \
809 .name = _t stringify(_i) " CTL(stnr)", \
810 .size = 1, \
811 .shift = 16, \
812 .wmask = 0x00ff0000, \
813 .offset = offsetof(IntelHDAState, st[_i].ctl), \
814 .whandler = intel_hda_set_st_ctl, \
815 }, \
816 [ ST_REG(_i, ICH6_REG_SD_STS)] = { \
817 .stream = _i, \
818 .name = _t stringify(_i) " CTL(sts)", \
819 .size = 1, \
820 .shift = 24, \
821 .wmask = 0x1c000000, \
822 .wclear = 0x1c000000, \
823 .offset = offsetof(IntelHDAState, st[_i].ctl), \
824 .whandler = intel_hda_set_st_ctl, \
825 }, \
826 [ ST_REG(_i, ICH6_REG_SD_LPIB) ] = { \
827 .stream = _i, \
828 .name = _t stringify(_i) " LPIB", \
829 .size = 4, \
830 .offset = offsetof(IntelHDAState, st[_i].lpib), \
831 }, \
832 [ ST_REG(_i, ICH6_REG_SD_LPIB) + 0x2000 ] = { \
833 .stream = _i, \
834 .name = _t stringify(_i) " LPIB(alias)", \
835 .size = 4, \
836 .offset = offsetof(IntelHDAState, st[_i].lpib), \
837 }, \
838 [ ST_REG(_i, ICH6_REG_SD_CBL) ] = { \
839 .stream = _i, \
840 .name = _t stringify(_i) " CBL", \
841 .size = 4, \
842 .wmask = 0xffffffff, \
843 .offset = offsetof(IntelHDAState, st[_i].cbl), \
844 }, \
845 [ ST_REG(_i, ICH6_REG_SD_LVI) ] = { \
846 .stream = _i, \
847 .name = _t stringify(_i) " LVI", \
848 .size = 2, \
849 .wmask = 0x00ff, \
850 .offset = offsetof(IntelHDAState, st[_i].lvi), \
851 }, \
852 [ ST_REG(_i, ICH6_REG_SD_FIFOSIZE) ] = { \
853 .stream = _i, \
854 .name = _t stringify(_i) " FIFOS", \
855 .size = 2, \
856 .reset = HDA_BUFFER_SIZE, \
857 }, \
858 [ ST_REG(_i, ICH6_REG_SD_FORMAT) ] = { \
859 .stream = _i, \
860 .name = _t stringify(_i) " FMT", \
861 .size = 2, \
862 .wmask = 0x7f7f, \
863 .offset = offsetof(IntelHDAState, st[_i].fmt), \
864 }, \
865 [ ST_REG(_i, ICH6_REG_SD_BDLPL) ] = { \
866 .stream = _i, \
867 .name = _t stringify(_i) " BDLPL", \
868 .size = 4, \
869 .wmask = 0xffffff80, \
870 .offset = offsetof(IntelHDAState, st[_i].bdlp_lbase), \
871 }, \
872 [ ST_REG(_i, ICH6_REG_SD_BDLPU) ] = { \
873 .stream = _i, \
874 .name = _t stringify(_i) " BDLPU", \
875 .size = 4, \
876 .wmask = 0xffffffff, \
877 .offset = offsetof(IntelHDAState, st[_i].bdlp_ubase), \
878 }, \
879
880 HDA_STREAM("IN", 0)
881 HDA_STREAM("IN", 1)
882 HDA_STREAM("IN", 2)
883 HDA_STREAM("IN", 3)
884
885 HDA_STREAM("OUT", 4)
886 HDA_STREAM("OUT", 5)
887 HDA_STREAM("OUT", 6)
888 HDA_STREAM("OUT", 7)
889
890};
891
892static const IntelHDAReg *intel_hda_reg_find(IntelHDAState *d, target_phys_addr_t addr)
893{
894 const IntelHDAReg *reg;
895
896 if (addr >= sizeof(regtab)/sizeof(regtab[0])) {
897 goto noreg;
898 }
899 reg = regtab+addr;
900 if (reg->name == NULL) {
901 goto noreg;
902 }
903 return reg;
904
905noreg:
906 dprint(d, 1, "unknown register, addr 0x%x\n", (int) addr);
907 return NULL;
908}
909
910static uint32_t *intel_hda_reg_addr(IntelHDAState *d, const IntelHDAReg *reg)
911{
912 uint8_t *addr = (void*)d;
913
914 addr += reg->offset;
915 return (uint32_t*)addr;
916}
917
918static void intel_hda_reg_write(IntelHDAState *d, const IntelHDAReg *reg, uint32_t val,
919 uint32_t wmask)
920{
921 uint32_t *addr;
922 uint32_t old;
923
924 if (!reg) {
925 return;
926 }
927
928 if (d->debug) {
929 time_t now = time(NULL);
930 if (d->last_write && d->last_reg == reg && d->last_val == val) {
931 d->repeat_count++;
932 if (d->last_sec != now) {
933 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
934 d->last_sec = now;
935 d->repeat_count = 0;
936 }
937 } else {
938 if (d->repeat_count) {
939 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
940 }
941 dprint(d, 2, "write %-16s: 0x%x (%x)\n", reg->name, val, wmask);
942 d->last_write = 1;
943 d->last_reg = reg;
944 d->last_val = val;
945 d->last_sec = now;
946 d->repeat_count = 0;
947 }
948 }
949 assert(reg->offset != 0);
950
951 addr = intel_hda_reg_addr(d, reg);
952 old = *addr;
953
954 if (reg->shift) {
955 val <<= reg->shift;
956 wmask <<= reg->shift;
957 }
958 wmask &= reg->wmask;
959 *addr &= ~wmask;
960 *addr |= wmask & val;
961 *addr &= ~(val & reg->wclear);
962
963 if (reg->whandler) {
964 reg->whandler(d, reg, old);
965 }
966}
967
968static uint32_t intel_hda_reg_read(IntelHDAState *d, const IntelHDAReg *reg,
969 uint32_t rmask)
970{
971 uint32_t *addr, ret;
972
973 if (!reg) {
974 return 0;
975 }
976
977 if (reg->rhandler) {
978 reg->rhandler(d, reg);
979 }
980
981 if (reg->offset == 0) {
982 /* constant read-only register */
983 ret = reg->reset;
984 } else {
985 addr = intel_hda_reg_addr(d, reg);
986 ret = *addr;
987 if (reg->shift) {
988 ret >>= reg->shift;
989 }
990 ret &= rmask;
991 }
992 if (d->debug) {
993 time_t now = time(NULL);
994 if (!d->last_write && d->last_reg == reg && d->last_val == ret) {
995 d->repeat_count++;
996 if (d->last_sec != now) {
997 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
998 d->last_sec = now;
999 d->repeat_count = 0;
1000 }
1001 } else {
1002 if (d->repeat_count) {
1003 dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
1004 }
1005 dprint(d, 2, "read %-16s: 0x%x (%x)\n", reg->name, ret, rmask);
1006 d->last_write = 0;
1007 d->last_reg = reg;
1008 d->last_val = ret;
1009 d->last_sec = now;
1010 d->repeat_count = 0;
1011 }
1012 }
1013 return ret;
1014}
1015
1016static void intel_hda_regs_reset(IntelHDAState *d)
1017{
1018 uint32_t *addr;
1019 int i;
1020
1021 for (i = 0; i < sizeof(regtab)/sizeof(regtab[0]); i++) {
1022 if (regtab[i].name == NULL) {
1023 continue;
1024 }
1025 if (regtab[i].offset == 0) {
1026 continue;
1027 }
1028 addr = intel_hda_reg_addr(d, regtab + i);
1029 *addr = regtab[i].reset;
1030 }
1031}
1032
1033/* --------------------------------------------------------------------- */
1034
1035static void intel_hda_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1036{
1037 IntelHDAState *d = opaque;
1038 const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1039
1040 intel_hda_reg_write(d, reg, val, 0xff);
1041}
1042
1043static void intel_hda_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1044{
1045 IntelHDAState *d = opaque;
1046 const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1047
1048 intel_hda_reg_write(d, reg, val, 0xffff);
1049}
1050
1051static void intel_hda_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1052{
1053 IntelHDAState *d = opaque;
1054 const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1055
1056 intel_hda_reg_write(d, reg, val, 0xffffffff);
1057}
1058
1059static uint32_t intel_hda_mmio_readb(void *opaque, target_phys_addr_t addr)
1060{
1061 IntelHDAState *d = opaque;
1062 const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1063
1064 return intel_hda_reg_read(d, reg, 0xff);
1065}
1066
1067static uint32_t intel_hda_mmio_readw(void *opaque, target_phys_addr_t addr)
1068{
1069 IntelHDAState *d = opaque;
1070 const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1071
1072 return intel_hda_reg_read(d, reg, 0xffff);
1073}
1074
1075static uint32_t intel_hda_mmio_readl(void *opaque, target_phys_addr_t addr)
1076{
1077 IntelHDAState *d = opaque;
1078 const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
1079
1080 return intel_hda_reg_read(d, reg, 0xffffffff);
1081}
1082
1083static CPUReadMemoryFunc * const intel_hda_mmio_read[3] = {
1084 intel_hda_mmio_readb,
1085 intel_hda_mmio_readw,
1086 intel_hda_mmio_readl,
1087};
1088
1089static CPUWriteMemoryFunc * const intel_hda_mmio_write[3] = {
1090 intel_hda_mmio_writeb,
1091 intel_hda_mmio_writew,
1092 intel_hda_mmio_writel,
1093};
1094
1095static void intel_hda_map(PCIDevice *pci, int region_num,
1096 pcibus_t addr, pcibus_t size, int type)
1097{
1098 IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
1099
1100 cpu_register_physical_memory(addr, 0x4000, d->mmio_addr);
1101}
1102
1103/* --------------------------------------------------------------------- */
1104
1105static void intel_hda_reset(DeviceState *dev)
1106{
1107 IntelHDAState *d = DO_UPCAST(IntelHDAState, pci.qdev, dev);
1108 DeviceState *qdev;
1109 HDACodecDevice *cdev;
1110
1111 intel_hda_regs_reset(d);
1112 d->wall_base_ns = qemu_get_clock(vm_clock);
1113
1114 /* reset codecs */
1115 QLIST_FOREACH(qdev, &d->codecs.qbus.children, sibling) {
1116 cdev = DO_UPCAST(HDACodecDevice, qdev, qdev);
1117 if (qdev->info->reset) {
1118 qdev->info->reset(qdev);
1119 }
1120 d->state_sts |= (1 << cdev->cad);
1121 }
1122 intel_hda_update_irq(d);
1123}
1124
1125static int intel_hda_init(PCIDevice *pci)
1126{
1127 IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
1128 uint8_t *conf = d->pci.config;
1129
1130 d->name = d->pci.qdev.info->name;
1131
1132 pci_config_set_vendor_id(conf, PCI_VENDOR_ID_INTEL);
1133 pci_config_set_device_id(conf, 0x2668);
1134 pci_config_set_revision(conf, 1);
1135 pci_config_set_class(conf, PCI_CLASS_MULTIMEDIA_HD_AUDIO);
1136 pci_config_set_interrupt_pin(conf, 1);
1137
1138 /* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */
1139 conf[0x40] = 0x01;
1140
1141 d->mmio_addr = cpu_register_io_memory(intel_hda_mmio_read,
1142 intel_hda_mmio_write, d);
1143 pci_register_bar(&d->pci, 0, 0x4000, PCI_BASE_ADDRESS_SPACE_MEMORY,
1144 intel_hda_map);
1145
1146 hda_codec_bus_init(&d->pci.qdev, &d->codecs,
1147 intel_hda_response, intel_hda_xfer);
1148
1149 return 0;
1150}
1151
dc4b9240
GH
1152static int intel_hda_exit(PCIDevice *pci)
1153{
1154 IntelHDAState *d = DO_UPCAST(IntelHDAState, pci, pci);
1155
1156 cpu_unregister_io_memory(d->mmio_addr);
1157 return 0;
1158}
1159
d61a4ce8
GH
1160static int intel_hda_post_load(void *opaque, int version)
1161{
1162 IntelHDAState* d = opaque;
1163 int i;
1164
1165 dprint(d, 1, "%s\n", __FUNCTION__);
1166 for (i = 0; i < ARRAY_SIZE(d->st); i++) {
1167 if (d->st[i].ctl & 0x02) {
1168 intel_hda_parse_bdl(d, &d->st[i]);
1169 }
1170 }
1171 intel_hda_update_irq(d);
1172 return 0;
1173}
1174
1175static const VMStateDescription vmstate_intel_hda_stream = {
1176 .name = "intel-hda-stream",
1177 .version_id = 1,
1178 .fields = (VMStateField []) {
1179 VMSTATE_UINT32(ctl, IntelHDAStream),
1180 VMSTATE_UINT32(lpib, IntelHDAStream),
1181 VMSTATE_UINT32(cbl, IntelHDAStream),
1182 VMSTATE_UINT32(lvi, IntelHDAStream),
1183 VMSTATE_UINT32(fmt, IntelHDAStream),
1184 VMSTATE_UINT32(bdlp_lbase, IntelHDAStream),
1185 VMSTATE_UINT32(bdlp_ubase, IntelHDAStream),
1186 VMSTATE_END_OF_LIST()
1187 }
1188};
1189
1190static const VMStateDescription vmstate_intel_hda = {
1191 .name = "intel-hda",
1192 .version_id = 1,
1193 .post_load = intel_hda_post_load,
1194 .fields = (VMStateField []) {
1195 VMSTATE_PCI_DEVICE(pci, IntelHDAState),
1196
1197 /* registers */
1198 VMSTATE_UINT32(g_ctl, IntelHDAState),
1199 VMSTATE_UINT32(wake_en, IntelHDAState),
1200 VMSTATE_UINT32(state_sts, IntelHDAState),
1201 VMSTATE_UINT32(int_ctl, IntelHDAState),
1202 VMSTATE_UINT32(int_sts, IntelHDAState),
1203 VMSTATE_UINT32(wall_clk, IntelHDAState),
1204 VMSTATE_UINT32(corb_lbase, IntelHDAState),
1205 VMSTATE_UINT32(corb_ubase, IntelHDAState),
1206 VMSTATE_UINT32(corb_rp, IntelHDAState),
1207 VMSTATE_UINT32(corb_wp, IntelHDAState),
1208 VMSTATE_UINT32(corb_ctl, IntelHDAState),
1209 VMSTATE_UINT32(corb_sts, IntelHDAState),
1210 VMSTATE_UINT32(corb_size, IntelHDAState),
1211 VMSTATE_UINT32(rirb_lbase, IntelHDAState),
1212 VMSTATE_UINT32(rirb_ubase, IntelHDAState),
1213 VMSTATE_UINT32(rirb_wp, IntelHDAState),
1214 VMSTATE_UINT32(rirb_cnt, IntelHDAState),
1215 VMSTATE_UINT32(rirb_ctl, IntelHDAState),
1216 VMSTATE_UINT32(rirb_sts, IntelHDAState),
1217 VMSTATE_UINT32(rirb_size, IntelHDAState),
1218 VMSTATE_UINT32(dp_lbase, IntelHDAState),
1219 VMSTATE_UINT32(dp_ubase, IntelHDAState),
1220 VMSTATE_UINT32(icw, IntelHDAState),
1221 VMSTATE_UINT32(irr, IntelHDAState),
1222 VMSTATE_UINT32(ics, IntelHDAState),
1223 VMSTATE_STRUCT_ARRAY(st, IntelHDAState, 8, 0,
1224 vmstate_intel_hda_stream,
1225 IntelHDAStream),
1226
1227 /* additional state info */
1228 VMSTATE_UINT32(rirb_count, IntelHDAState),
1229 VMSTATE_INT64(wall_base_ns, IntelHDAState),
1230
1231 VMSTATE_END_OF_LIST()
1232 }
1233};
1234
1235static PCIDeviceInfo intel_hda_info = {
1236 .qdev.name = "intel-hda",
1237 .qdev.desc = "Intel HD Audio Controller",
1238 .qdev.size = sizeof(IntelHDAState),
1239 .qdev.vmsd = &vmstate_intel_hda,
1240 .qdev.reset = intel_hda_reset,
1241 .init = intel_hda_init,
dc4b9240 1242 .exit = intel_hda_exit,
d61a4ce8
GH
1243 .qdev.props = (Property[]) {
1244 DEFINE_PROP_UINT32("debug", IntelHDAState, debug, 0),
1245 DEFINE_PROP_END_OF_LIST(),
1246 }
1247};
1248
1249static void intel_hda_register(void)
1250{
1251 pci_qdev_register(&intel_hda_info);
1252}
1253device_init(intel_hda_register);
1254
1255/*
1256 * create intel hda controller with codec attached to it,
1257 * so '-soundhw hda' works.
1258 */
1259int intel_hda_and_codec_init(PCIBus *bus)
1260{
1261 PCIDevice *controller;
1262 BusState *hdabus;
1263 DeviceState *codec;
1264
1265 controller = pci_create_simple(bus, -1, "intel-hda");
1266 hdabus = QLIST_FIRST(&controller->qdev.child_bus);
1267 codec = qdev_create(hdabus, "hda-duplex");
1268 qdev_init_nofail(codec);
1269 return 0;
1270}
1271