]> git.proxmox.com Git - mirror_qemu.git/blame - hw/m25p80.c
pci: Return PCI_INTX_DISABLED when no bus INTx routing support
[mirror_qemu.git] / hw / m25p80.c
CommitLineData
82a24990
PC
1/*
2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
5 *
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 */
23
24#include "hw.h"
25#include "blockdev.h"
26#include "ssi.h"
27#include "devices.h"
28
29#ifdef M25P80_ERR_DEBUG
30#define DB_PRINT(...) do { \
31 fprintf(stderr, ": %s: ", __func__); \
32 fprintf(stderr, ## __VA_ARGS__); \
33 } while (0);
34#else
35 #define DB_PRINT(...)
36#endif
37
38/* Fields for FlashPartInfo->flags */
39
40/* erase capabilities */
41#define ER_4K 1
42#define ER_32K 2
43/* set to allow the page program command to write 0s back to 1. Useful for
44 * modelling EEPROM with SPI flash command set
45 */
46#define WR_1 0x100
47
48typedef struct FlashPartInfo {
49 const char *part_name;
50 /* jedec code. (jedec >> 16) & 0xff is the 1st byte, >> 8 the 2nd etc */
51 uint32_t jedec;
52 /* extended jedec code */
53 uint16_t ext_jedec;
54 /* there is confusion between manufacturers as to what a sector is. In this
55 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
56 * command (opcode 0xd8).
57 */
58 uint32_t sector_size;
59 uint32_t n_sectors;
60 uint32_t page_size;
61 uint8_t flags;
62} FlashPartInfo;
63
64/* adapted from linux */
65
66#define INFO(_part_name, _jedec, _ext_jedec, _sector_size, _n_sectors, _flags)\
67 .part_name = (_part_name),\
68 .jedec = (_jedec),\
69 .ext_jedec = (_ext_jedec),\
70 .sector_size = (_sector_size),\
71 .n_sectors = (_n_sectors),\
72 .page_size = 256,\
73 .flags = (_flags),\
74
75static const FlashPartInfo known_devices[] = {
76 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
77 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
78 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
79
80 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
81 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
82 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
83
84 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
85 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
86 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
87 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
88
89 /* EON -- en25xxx */
90 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
91 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
92 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
93 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
94
95 /* Intel/Numonyx -- xxxs33b */
96 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
97 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
98 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
99
100 /* Macronix */
101 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
102 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
103 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
104 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
105 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
106 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
107 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
108 { INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) },
109 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
110
111 /* Spansion -- single (large) sector size only, at least
112 * for the chips listed here (without boot sectors).
113 */
114 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
115 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
116 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
117 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
118 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
119 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
120 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
121 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
122 { INFO("s25fl512s", 0x010220, 0x4d00, 256 << 10, 256, 0) },
123 { INFO("s70fl01gs", 0x010221, 0x4d00, 256 << 10, 256, 0) },
124 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
125 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
126 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
127 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
128 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
129 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
130
131 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
132 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
133 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
134 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
135 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
136 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
137 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
138 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
139 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
140
141 /* ST Microelectronics -- newer production may have feature updates */
142 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
143 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
144 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
145 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
146 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
147 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
148 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
149 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
150 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
151
152 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
153 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
154 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
155
156 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
157 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
158
159 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
160 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
161 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
162 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
163
164 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
165 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
166 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
167 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
168 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
169 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
170 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
171 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
172 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
173 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
174
175 /* Numonyx -- n25q128 */
176 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
177
178 { },
179};
180
181typedef enum {
182 NOP = 0,
183 PP = 0x2,
184 READ = 0x3,
185 WRDI = 0x4,
186 RDSR = 0x5,
187 WREN = 0x6,
188 FAST_READ = 0xb,
189 ERASE_4K = 0x20,
190 ERASE_32K = 0x52,
191 ERASE_SECTOR = 0xd8,
192 JEDEC_READ = 0x9f,
193 BULK_ERASE = 0xc7,
194} FlashCMD;
195
196typedef enum {
197 STATE_IDLE,
198 STATE_PAGE_PROGRAM,
199 STATE_READ,
200 STATE_COLLECTING_DATA,
201 STATE_READING_DATA,
202} CMDState;
203
204typedef struct Flash {
205 SSISlave ssidev;
206 uint32_t r;
207
208 BlockDriverState *bdrv;
209
210 uint8_t *storage;
211 uint32_t size;
212 int page_size;
213
214 uint8_t state;
215 uint8_t data[16];
216 uint32_t len;
217 uint32_t pos;
218 uint8_t needed_bytes;
219 uint8_t cmd_in_progress;
220 uint64_t cur_addr;
221 bool write_enable;
222
223 int64_t dirty_page;
224
225 char *part_name;
226 const FlashPartInfo *pi;
227
228} Flash;
229
230static void bdrv_sync_complete(void *opaque, int ret)
231{
232 /* do nothing. Masters do not directly interact with the backing store,
233 * only the working copy so no mutexing required.
234 */
235}
236
237static void flash_sync_page(Flash *s, int page)
238{
239 if (s->bdrv) {
240 int bdrv_sector, nb_sectors;
241 QEMUIOVector iov;
242
243 bdrv_sector = (page * s->pi->page_size) / BDRV_SECTOR_SIZE;
244 nb_sectors = DIV_ROUND_UP(s->pi->page_size, BDRV_SECTOR_SIZE);
245 qemu_iovec_init(&iov, 1);
246 qemu_iovec_add(&iov, s->storage + bdrv_sector * BDRV_SECTOR_SIZE,
247 nb_sectors * BDRV_SECTOR_SIZE);
248 bdrv_aio_writev(s->bdrv, bdrv_sector, &iov, nb_sectors,
249 bdrv_sync_complete, NULL);
250 }
251}
252
253static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
254{
255 int64_t start, end, nb_sectors;
256 QEMUIOVector iov;
257
258 if (!s->bdrv) {
259 return;
260 }
261
262 assert(!(len % BDRV_SECTOR_SIZE));
263 start = off / BDRV_SECTOR_SIZE;
264 end = (off + len) / BDRV_SECTOR_SIZE;
265 nb_sectors = end - start;
266 qemu_iovec_init(&iov, 1);
267 qemu_iovec_add(&iov, s->storage + (start * BDRV_SECTOR_SIZE),
268 nb_sectors * BDRV_SECTOR_SIZE);
269 bdrv_aio_writev(s->bdrv, start, &iov, nb_sectors, bdrv_sync_complete, NULL);
270}
271
272static void flash_erase(Flash *s, int offset, FlashCMD cmd)
273{
274 uint32_t len;
275 uint8_t capa_to_assert = 0;
276
277 switch (cmd) {
278 case ERASE_4K:
279 len = 4 << 10;
280 capa_to_assert = ER_4K;
281 break;
282 case ERASE_32K:
283 len = 32 << 10;
284 capa_to_assert = ER_32K;
285 break;
286 case ERASE_SECTOR:
287 len = s->pi->sector_size;
288 break;
289 case BULK_ERASE:
290 len = s->size;
291 break;
292 default:
293 abort();
294 }
295
296 DB_PRINT("offset = %#x, len = %d\n", offset, len);
297 if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
298 hw_error("m25p80: %dk erase size not supported by device\n", len);
299 }
300
301 if (!s->write_enable) {
302 DB_PRINT("erase with write protect!\n");
303 return;
304 }
305 memset(s->storage + offset, 0xff, len);
306 flash_sync_area(s, offset, len);
307}
308
309static inline void flash_sync_dirty(Flash *s, int64_t newpage)
310{
311 if (s->dirty_page >= 0 && s->dirty_page != newpage) {
312 flash_sync_page(s, s->dirty_page);
313 s->dirty_page = newpage;
314 }
315}
316
317static inline
318void flash_write8(Flash *s, uint64_t addr, uint8_t data)
319{
320 int64_t page = addr / s->pi->page_size;
321 uint8_t prev = s->storage[s->cur_addr];
322
323 if (!s->write_enable) {
324 DB_PRINT("write with write protect!\n");
325 }
326
327 if ((prev ^ data) & data) {
328 DB_PRINT("programming zero to one! addr=%lx %x -> %x\n",
329 addr, prev, data);
330 }
331
332 if (s->pi->flags & WR_1) {
333 s->storage[s->cur_addr] = data;
334 } else {
335 s->storage[s->cur_addr] &= data;
336 }
337
338 flash_sync_dirty(s, page);
339 s->dirty_page = page;
340}
341
342static void complete_collecting_data(Flash *s)
343{
344 s->cur_addr = s->data[0] << 16;
345 s->cur_addr |= s->data[1] << 8;
346 s->cur_addr |= s->data[2];
347
348 switch (s->cmd_in_progress) {
349 case PP:
350 s->state = STATE_PAGE_PROGRAM;
351 break;
352 case READ:
353 case FAST_READ:
354 s->state = STATE_READ;
355 break;
356 case ERASE_4K:
357 case ERASE_32K:
358 case ERASE_SECTOR:
359 flash_erase(s, s->cur_addr, s->cmd_in_progress);
360 break;
361 default:
362 break;
363 }
364}
365
366static void decode_new_cmd(Flash *s, uint32_t value)
367{
368 s->cmd_in_progress = value;
369 DB_PRINT("decoded new command:%x\n", value);
370
371 switch (value) {
372
373 case ERASE_4K:
374 case ERASE_32K:
375 case ERASE_SECTOR:
376 case READ:
377 case PP:
378 s->needed_bytes = 3;
379 s->pos = 0;
380 s->len = 0;
381 s->state = STATE_COLLECTING_DATA;
382 break;
383
384 case FAST_READ:
385 s->needed_bytes = 4;
386 s->pos = 0;
387 s->len = 0;
388 s->state = STATE_COLLECTING_DATA;
389 break;
390
391 case WRDI:
392 s->write_enable = false;
393 break;
394 case WREN:
395 s->write_enable = true;
396 break;
397
398 case RDSR:
399 s->data[0] = (!!s->write_enable) << 1;
400 s->pos = 0;
401 s->len = 1;
402 s->state = STATE_READING_DATA;
403 break;
404
405 case JEDEC_READ:
406 DB_PRINT("populated jedec code\n");
407 s->data[0] = (s->pi->jedec >> 16) & 0xff;
408 s->data[1] = (s->pi->jedec >> 8) & 0xff;
409 s->data[2] = s->pi->jedec & 0xff;
410 if (s->pi->ext_jedec) {
411 s->data[3] = (s->pi->ext_jedec >> 8) & 0xff;
412 s->data[4] = s->pi->ext_jedec & 0xff;
413 s->len = 5;
414 } else {
415 s->len = 3;
416 }
417 s->pos = 0;
418 s->state = STATE_READING_DATA;
419 break;
420
421 case BULK_ERASE:
422 if (s->write_enable) {
423 DB_PRINT("chip erase\n");
424 flash_erase(s, 0, BULK_ERASE);
425 } else {
426 DB_PRINT("chip erase with write protect!\n");
427 }
428 break;
429 case NOP:
430 break;
431 default:
432 DB_PRINT("Unknown cmd %x\n", value);
433 break;
434 }
435}
436
437static int m25p80_cs(SSISlave *ss, bool select)
438{
439 Flash *s = FROM_SSI_SLAVE(Flash, ss);
440
441 if (select) {
442 s->len = 0;
443 s->pos = 0;
444 s->state = STATE_IDLE;
445 flash_sync_dirty(s, -1);
446 }
447
448 DB_PRINT("%sselect\n", select ? "de" : "");
449
450 return 0;
451}
452
453static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
454{
455 Flash *s = FROM_SSI_SLAVE(Flash, ss);
456 uint32_t r = 0;
457
458 switch (s->state) {
459
460 case STATE_PAGE_PROGRAM:
461 DB_PRINT("page program cur_addr=%lx data=%x\n", s->cur_addr,
462 (uint8_t)tx);
463 flash_write8(s, s->cur_addr, (uint8_t)tx);
464 s->cur_addr++;
465 break;
466
467 case STATE_READ:
468 r = s->storage[s->cur_addr];
469 DB_PRINT("READ 0x%lx=%x\n", s->cur_addr, r);
470 s->cur_addr = (s->cur_addr + 1) % s->size;
471 break;
472
473 case STATE_COLLECTING_DATA:
474 s->data[s->len] = (uint8_t)tx;
475 s->len++;
476
477 if (s->len == s->needed_bytes) {
478 complete_collecting_data(s);
479 }
480 break;
481
482 case STATE_READING_DATA:
483 r = s->data[s->pos];
484 s->pos++;
485 if (s->pos == s->len) {
486 s->pos = 0;
487 s->state = STATE_IDLE;
488 }
489 break;
490
491 default:
492 case STATE_IDLE:
493 decode_new_cmd(s, (uint8_t)tx);
494 break;
495 }
496
497 return r;
498}
499
500static int m25p80_init(SSISlave *ss)
501{
502 DriveInfo *dinfo;
503 Flash *s = FROM_SSI_SLAVE(Flash, ss);
504 const FlashPartInfo *i;
505
506 if (!s->part_name) { /* default to actual m25p80 if no partname given */
507 s->part_name = (char *)"m25p80";
508 }
509
510 i = known_devices;
511 for (i = known_devices;; i++) {
512 assert(i);
513 if (!i->part_name) {
514 fprintf(stderr, "Unknown SPI flash part: \"%s\"\n", s->part_name);
515 return 1;
516 } else if (!strcmp(i->part_name, s->part_name)) {
517 s->pi = i;
518 break;
519 }
520 }
521
522 s->size = s->pi->sector_size * s->pi->n_sectors;
523 s->dirty_page = -1;
524 s->storage = qemu_blockalign(s->bdrv, s->size);
525
526 dinfo = drive_get_next(IF_MTD);
527
528 if (dinfo && dinfo->bdrv) {
529 DB_PRINT("Binding to IF_MTD drive\n");
530 s->bdrv = dinfo->bdrv;
531 /* FIXME: Move to late init */
532 if (bdrv_read(s->bdrv, 0, s->storage, DIV_ROUND_UP(s->size,
533 BDRV_SECTOR_SIZE))) {
534 fprintf(stderr, "Failed to initialize SPI flash!\n");
535 return 1;
536 }
537 } else {
538 memset(s->storage, 0xFF, s->size);
539 }
540
541 return 0;
542}
543
544static void m25p80_pre_save(void *opaque)
545{
546 flash_sync_dirty((Flash *)opaque, -1);
547}
548
549static const VMStateDescription vmstate_m25p80 = {
550 .name = "xilinx_spi",
551 .version_id = 1,
552 .minimum_version_id = 1,
553 .minimum_version_id_old = 1,
554 .pre_save = m25p80_pre_save,
555 .fields = (VMStateField[]) {
556 VMSTATE_UINT8(state, Flash),
557 VMSTATE_UINT8_ARRAY(data, Flash, 16),
558 VMSTATE_UINT32(len, Flash),
559 VMSTATE_UINT32(pos, Flash),
560 VMSTATE_UINT8(needed_bytes, Flash),
561 VMSTATE_UINT8(cmd_in_progress, Flash),
562 VMSTATE_UINT64(cur_addr, Flash),
563 VMSTATE_BOOL(write_enable, Flash),
564 VMSTATE_END_OF_LIST()
565 }
566};
567
568static Property m25p80_properties[] = {
569 DEFINE_PROP_STRING("partname", Flash, part_name),
570 DEFINE_PROP_END_OF_LIST(),
571};
572
573static void m25p80_class_init(ObjectClass *klass, void *data)
574{
575 DeviceClass *dc = DEVICE_CLASS(klass);
576 SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
577
578 k->init = m25p80_init;
579 k->transfer = m25p80_transfer8;
580 k->set_cs = m25p80_cs;
581 k->cs_polarity = SSI_CS_LOW;
582 dc->props = m25p80_properties;
583 dc->vmsd = &vmstate_m25p80;
584}
585
586static const TypeInfo m25p80_info = {
587 .name = "m25p80",
588 .parent = TYPE_SSI_SLAVE,
589 .instance_size = sizeof(Flash),
590 .class_init = m25p80_class_init,
591};
592
593static void m25p80_register_types(void)
594{
595 type_register_static(&m25p80_info);
596}
597
598type_init(m25p80_register_types)