]> git.proxmox.com Git - mirror_qemu.git/blame - hw/m25p80.c
hw: move headers to include/
[mirror_qemu.git] / hw / m25p80.c
CommitLineData
82a24990
PC
1/*
2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
5 *
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
22 */
23
83c9f4ca 24#include "hw/hw.h"
9c17d615 25#include "sysemu/blockdev.h"
83c9f4ca 26#include "hw/ssi.h"
0d09e41a 27#include "hw/arm/devices.h"
82a24990
PC
28
29#ifdef M25P80_ERR_DEBUG
30#define DB_PRINT(...) do { \
31 fprintf(stderr, ": %s: ", __func__); \
32 fprintf(stderr, ## __VA_ARGS__); \
33 } while (0);
34#else
35 #define DB_PRINT(...)
36#endif
37
38/* Fields for FlashPartInfo->flags */
39
40/* erase capabilities */
41#define ER_4K 1
42#define ER_32K 2
43/* set to allow the page program command to write 0s back to 1. Useful for
44 * modelling EEPROM with SPI flash command set
45 */
46#define WR_1 0x100
47
48typedef struct FlashPartInfo {
49 const char *part_name;
50 /* jedec code. (jedec >> 16) & 0xff is the 1st byte, >> 8 the 2nd etc */
51 uint32_t jedec;
52 /* extended jedec code */
53 uint16_t ext_jedec;
54 /* there is confusion between manufacturers as to what a sector is. In this
55 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
56 * command (opcode 0xd8).
57 */
58 uint32_t sector_size;
59 uint32_t n_sectors;
60 uint32_t page_size;
61 uint8_t flags;
62} FlashPartInfo;
63
64/* adapted from linux */
65
66#define INFO(_part_name, _jedec, _ext_jedec, _sector_size, _n_sectors, _flags)\
67 .part_name = (_part_name),\
68 .jedec = (_jedec),\
69 .ext_jedec = (_ext_jedec),\
70 .sector_size = (_sector_size),\
71 .n_sectors = (_n_sectors),\
72 .page_size = 256,\
73 .flags = (_flags),\
74
419336a9
PC
75#define JEDEC_NUMONYX 0x20
76#define JEDEC_WINBOND 0xEF
77#define JEDEC_SPANSION 0x01
78
82a24990
PC
79static const FlashPartInfo known_devices[] = {
80 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
81 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
82 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
83
84 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
85 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
86 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
87
88 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
89 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
90 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
91 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
92
93 /* EON -- en25xxx */
94 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
95 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
96 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
97 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
98
99 /* Intel/Numonyx -- xxxs33b */
100 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
101 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
102 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
103
104 /* Macronix */
105 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
106 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
107 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
108 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
109 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
110 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
111 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
112 { INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) },
113 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
114
115 /* Spansion -- single (large) sector size only, at least
116 * for the chips listed here (without boot sectors).
117 */
118 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
119 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
120 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
121 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
122 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
123 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
124 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
125 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
126 { INFO("s25fl512s", 0x010220, 0x4d00, 256 << 10, 256, 0) },
127 { INFO("s70fl01gs", 0x010221, 0x4d00, 256 << 10, 256, 0) },
128 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
129 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
130 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
131 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
132 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
133 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
134
135 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
136 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
137 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
138 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
139 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
140 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
141 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
142 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
143 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
144
145 /* ST Microelectronics -- newer production may have feature updates */
146 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
147 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
148 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
149 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
150 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
151 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
152 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
153 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
154 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
155
156 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
157 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
158 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
159
160 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
161 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
162
163 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
164 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
165 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
166 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
167
168 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
169 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
170 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
171 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
172 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
173 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
174 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
175 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
176 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
177 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
178
179 /* Numonyx -- n25q128 */
180 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
82a24990
PC
181};
182
183typedef enum {
184 NOP = 0,
03ec2f83 185 WRSR = 0x1,
82a24990
PC
186 WRDI = 0x4,
187 RDSR = 0x5,
188 WREN = 0x6,
419336a9
PC
189 JEDEC_READ = 0x9f,
190 BULK_ERASE = 0xc7,
191
192 READ = 0x3,
82a24990 193 FAST_READ = 0xb,
419336a9
PC
194 DOR = 0x3b,
195 QOR = 0x6b,
196 DIOR = 0xbb,
197 QIOR = 0xeb,
198
199 PP = 0x2,
200 DPP = 0xa2,
201 QPP = 0x32,
202
82a24990
PC
203 ERASE_4K = 0x20,
204 ERASE_32K = 0x52,
205 ERASE_SECTOR = 0xd8,
82a24990
PC
206} FlashCMD;
207
208typedef enum {
209 STATE_IDLE,
210 STATE_PAGE_PROGRAM,
211 STATE_READ,
212 STATE_COLLECTING_DATA,
213 STATE_READING_DATA,
214} CMDState;
215
216typedef struct Flash {
217 SSISlave ssidev;
218 uint32_t r;
219
220 BlockDriverState *bdrv;
221
222 uint8_t *storage;
223 uint32_t size;
224 int page_size;
225
226 uint8_t state;
227 uint8_t data[16];
228 uint32_t len;
229 uint32_t pos;
230 uint8_t needed_bytes;
231 uint8_t cmd_in_progress;
232 uint64_t cur_addr;
233 bool write_enable;
234
235 int64_t dirty_page;
236
82a24990
PC
237 const FlashPartInfo *pi;
238
239} Flash;
240
a7fd6915
PC
241typedef struct M25P80Class {
242 SSISlaveClass parent_class;
243 FlashPartInfo *pi;
244} M25P80Class;
245
246#define TYPE_M25P80 "m25p80-generic"
247#define M25P80(obj) \
248 OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
249#define M25P80_CLASS(klass) \
250 OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
251#define M25P80_GET_CLASS(obj) \
252 OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
253
82a24990
PC
254static void bdrv_sync_complete(void *opaque, int ret)
255{
256 /* do nothing. Masters do not directly interact with the backing store,
257 * only the working copy so no mutexing required.
258 */
259}
260
261static void flash_sync_page(Flash *s, int page)
262{
263 if (s->bdrv) {
264 int bdrv_sector, nb_sectors;
265 QEMUIOVector iov;
266
267 bdrv_sector = (page * s->pi->page_size) / BDRV_SECTOR_SIZE;
268 nb_sectors = DIV_ROUND_UP(s->pi->page_size, BDRV_SECTOR_SIZE);
269 qemu_iovec_init(&iov, 1);
270 qemu_iovec_add(&iov, s->storage + bdrv_sector * BDRV_SECTOR_SIZE,
271 nb_sectors * BDRV_SECTOR_SIZE);
272 bdrv_aio_writev(s->bdrv, bdrv_sector, &iov, nb_sectors,
273 bdrv_sync_complete, NULL);
274 }
275}
276
277static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
278{
279 int64_t start, end, nb_sectors;
280 QEMUIOVector iov;
281
282 if (!s->bdrv) {
283 return;
284 }
285
286 assert(!(len % BDRV_SECTOR_SIZE));
287 start = off / BDRV_SECTOR_SIZE;
288 end = (off + len) / BDRV_SECTOR_SIZE;
289 nb_sectors = end - start;
290 qemu_iovec_init(&iov, 1);
291 qemu_iovec_add(&iov, s->storage + (start * BDRV_SECTOR_SIZE),
292 nb_sectors * BDRV_SECTOR_SIZE);
293 bdrv_aio_writev(s->bdrv, start, &iov, nb_sectors, bdrv_sync_complete, NULL);
294}
295
296static void flash_erase(Flash *s, int offset, FlashCMD cmd)
297{
298 uint32_t len;
299 uint8_t capa_to_assert = 0;
300
301 switch (cmd) {
302 case ERASE_4K:
303 len = 4 << 10;
304 capa_to_assert = ER_4K;
305 break;
306 case ERASE_32K:
307 len = 32 << 10;
308 capa_to_assert = ER_32K;
309 break;
310 case ERASE_SECTOR:
311 len = s->pi->sector_size;
312 break;
313 case BULK_ERASE:
314 len = s->size;
315 break;
316 default:
317 abort();
318 }
319
320 DB_PRINT("offset = %#x, len = %d\n", offset, len);
321 if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
322 hw_error("m25p80: %dk erase size not supported by device\n", len);
323 }
324
325 if (!s->write_enable) {
326 DB_PRINT("erase with write protect!\n");
327 return;
328 }
329 memset(s->storage + offset, 0xff, len);
330 flash_sync_area(s, offset, len);
331}
332
333static inline void flash_sync_dirty(Flash *s, int64_t newpage)
334{
335 if (s->dirty_page >= 0 && s->dirty_page != newpage) {
336 flash_sync_page(s, s->dirty_page);
337 s->dirty_page = newpage;
338 }
339}
340
341static inline
342void flash_write8(Flash *s, uint64_t addr, uint8_t data)
343{
344 int64_t page = addr / s->pi->page_size;
345 uint8_t prev = s->storage[s->cur_addr];
346
347 if (!s->write_enable) {
348 DB_PRINT("write with write protect!\n");
349 }
350
351 if ((prev ^ data) & data) {
352 DB_PRINT("programming zero to one! addr=%lx %x -> %x\n",
353 addr, prev, data);
354 }
355
356 if (s->pi->flags & WR_1) {
357 s->storage[s->cur_addr] = data;
358 } else {
359 s->storage[s->cur_addr] &= data;
360 }
361
362 flash_sync_dirty(s, page);
363 s->dirty_page = page;
364}
365
366static void complete_collecting_data(Flash *s)
367{
368 s->cur_addr = s->data[0] << 16;
369 s->cur_addr |= s->data[1] << 8;
370 s->cur_addr |= s->data[2];
371
a56d305a
PC
372 s->state = STATE_IDLE;
373
82a24990 374 switch (s->cmd_in_progress) {
419336a9
PC
375 case DPP:
376 case QPP:
82a24990
PC
377 case PP:
378 s->state = STATE_PAGE_PROGRAM;
379 break;
380 case READ:
381 case FAST_READ:
419336a9
PC
382 case DOR:
383 case QOR:
384 case DIOR:
385 case QIOR:
82a24990
PC
386 s->state = STATE_READ;
387 break;
388 case ERASE_4K:
389 case ERASE_32K:
390 case ERASE_SECTOR:
391 flash_erase(s, s->cur_addr, s->cmd_in_progress);
392 break;
03ec2f83
KJS
393 case WRSR:
394 if (s->write_enable) {
395 s->write_enable = false;
396 }
397 break;
82a24990
PC
398 default:
399 break;
400 }
401}
402
403static void decode_new_cmd(Flash *s, uint32_t value)
404{
405 s->cmd_in_progress = value;
406 DB_PRINT("decoded new command:%x\n", value);
407
408 switch (value) {
409
410 case ERASE_4K:
411 case ERASE_32K:
412 case ERASE_SECTOR:
413 case READ:
419336a9
PC
414 case DPP:
415 case QPP:
82a24990
PC
416 case PP:
417 s->needed_bytes = 3;
418 s->pos = 0;
419 s->len = 0;
420 s->state = STATE_COLLECTING_DATA;
421 break;
422
423 case FAST_READ:
419336a9
PC
424 case DOR:
425 case QOR:
82a24990
PC
426 s->needed_bytes = 4;
427 s->pos = 0;
428 s->len = 0;
429 s->state = STATE_COLLECTING_DATA;
430 break;
431
419336a9
PC
432 case DIOR:
433 switch ((s->pi->jedec >> 16) & 0xFF) {
434 case JEDEC_WINBOND:
435 case JEDEC_SPANSION:
436 s->needed_bytes = 4;
437 break;
438 case JEDEC_NUMONYX:
439 default:
440 s->needed_bytes = 5;
441 }
442 s->pos = 0;
443 s->len = 0;
444 s->state = STATE_COLLECTING_DATA;
445 break;
446
447 case QIOR:
448 switch ((s->pi->jedec >> 16) & 0xFF) {
449 case JEDEC_WINBOND:
450 case JEDEC_SPANSION:
451 s->needed_bytes = 6;
452 break;
453 case JEDEC_NUMONYX:
454 default:
455 s->needed_bytes = 8;
456 }
457 s->pos = 0;
458 s->len = 0;
459 s->state = STATE_COLLECTING_DATA;
460 break;
461
03ec2f83
KJS
462 case WRSR:
463 if (s->write_enable) {
464 s->needed_bytes = 1;
465 s->pos = 0;
466 s->len = 0;
467 s->state = STATE_COLLECTING_DATA;
468 }
469 break;
470
82a24990
PC
471 case WRDI:
472 s->write_enable = false;
473 break;
474 case WREN:
475 s->write_enable = true;
476 break;
477
478 case RDSR:
479 s->data[0] = (!!s->write_enable) << 1;
480 s->pos = 0;
481 s->len = 1;
482 s->state = STATE_READING_DATA;
483 break;
484
485 case JEDEC_READ:
486 DB_PRINT("populated jedec code\n");
487 s->data[0] = (s->pi->jedec >> 16) & 0xff;
488 s->data[1] = (s->pi->jedec >> 8) & 0xff;
489 s->data[2] = s->pi->jedec & 0xff;
490 if (s->pi->ext_jedec) {
491 s->data[3] = (s->pi->ext_jedec >> 8) & 0xff;
492 s->data[4] = s->pi->ext_jedec & 0xff;
493 s->len = 5;
494 } else {
495 s->len = 3;
496 }
497 s->pos = 0;
498 s->state = STATE_READING_DATA;
499 break;
500
501 case BULK_ERASE:
502 if (s->write_enable) {
503 DB_PRINT("chip erase\n");
504 flash_erase(s, 0, BULK_ERASE);
505 } else {
506 DB_PRINT("chip erase with write protect!\n");
507 }
508 break;
509 case NOP:
510 break;
511 default:
512 DB_PRINT("Unknown cmd %x\n", value);
513 break;
514 }
515}
516
517static int m25p80_cs(SSISlave *ss, bool select)
518{
519 Flash *s = FROM_SSI_SLAVE(Flash, ss);
520
521 if (select) {
522 s->len = 0;
523 s->pos = 0;
524 s->state = STATE_IDLE;
525 flash_sync_dirty(s, -1);
526 }
527
528 DB_PRINT("%sselect\n", select ? "de" : "");
529
530 return 0;
531}
532
533static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
534{
535 Flash *s = FROM_SSI_SLAVE(Flash, ss);
536 uint32_t r = 0;
537
538 switch (s->state) {
539
540 case STATE_PAGE_PROGRAM:
541 DB_PRINT("page program cur_addr=%lx data=%x\n", s->cur_addr,
542 (uint8_t)tx);
543 flash_write8(s, s->cur_addr, (uint8_t)tx);
544 s->cur_addr++;
545 break;
546
547 case STATE_READ:
548 r = s->storage[s->cur_addr];
549 DB_PRINT("READ 0x%lx=%x\n", s->cur_addr, r);
550 s->cur_addr = (s->cur_addr + 1) % s->size;
551 break;
552
553 case STATE_COLLECTING_DATA:
554 s->data[s->len] = (uint8_t)tx;
555 s->len++;
556
557 if (s->len == s->needed_bytes) {
558 complete_collecting_data(s);
559 }
560 break;
561
562 case STATE_READING_DATA:
563 r = s->data[s->pos];
564 s->pos++;
565 if (s->pos == s->len) {
566 s->pos = 0;
567 s->state = STATE_IDLE;
568 }
569 break;
570
571 default:
572 case STATE_IDLE:
573 decode_new_cmd(s, (uint8_t)tx);
574 break;
575 }
576
577 return r;
578}
579
580static int m25p80_init(SSISlave *ss)
581{
582 DriveInfo *dinfo;
583 Flash *s = FROM_SSI_SLAVE(Flash, ss);
a7fd6915 584 M25P80Class *mc = M25P80_GET_CLASS(s);
82a24990 585
a7fd6915 586 s->pi = mc->pi;
82a24990
PC
587
588 s->size = s->pi->sector_size * s->pi->n_sectors;
589 s->dirty_page = -1;
590 s->storage = qemu_blockalign(s->bdrv, s->size);
591
592 dinfo = drive_get_next(IF_MTD);
593
594 if (dinfo && dinfo->bdrv) {
595 DB_PRINT("Binding to IF_MTD drive\n");
596 s->bdrv = dinfo->bdrv;
597 /* FIXME: Move to late init */
598 if (bdrv_read(s->bdrv, 0, s->storage, DIV_ROUND_UP(s->size,
599 BDRV_SECTOR_SIZE))) {
600 fprintf(stderr, "Failed to initialize SPI flash!\n");
601 return 1;
602 }
603 } else {
604 memset(s->storage, 0xFF, s->size);
605 }
606
607 return 0;
608}
609
610static void m25p80_pre_save(void *opaque)
611{
612 flash_sync_dirty((Flash *)opaque, -1);
613}
614
615static const VMStateDescription vmstate_m25p80 = {
616 .name = "xilinx_spi",
617 .version_id = 1,
618 .minimum_version_id = 1,
619 .minimum_version_id_old = 1,
620 .pre_save = m25p80_pre_save,
621 .fields = (VMStateField[]) {
622 VMSTATE_UINT8(state, Flash),
623 VMSTATE_UINT8_ARRAY(data, Flash, 16),
624 VMSTATE_UINT32(len, Flash),
625 VMSTATE_UINT32(pos, Flash),
626 VMSTATE_UINT8(needed_bytes, Flash),
627 VMSTATE_UINT8(cmd_in_progress, Flash),
628 VMSTATE_UINT64(cur_addr, Flash),
629 VMSTATE_BOOL(write_enable, Flash),
630 VMSTATE_END_OF_LIST()
631 }
632};
633
82a24990
PC
634static void m25p80_class_init(ObjectClass *klass, void *data)
635{
636 DeviceClass *dc = DEVICE_CLASS(klass);
637 SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
a7fd6915 638 M25P80Class *mc = M25P80_CLASS(klass);
82a24990
PC
639
640 k->init = m25p80_init;
641 k->transfer = m25p80_transfer8;
642 k->set_cs = m25p80_cs;
643 k->cs_polarity = SSI_CS_LOW;
82a24990 644 dc->vmsd = &vmstate_m25p80;
a7fd6915 645 mc->pi = data;
82a24990
PC
646}
647
648static const TypeInfo m25p80_info = {
a7fd6915 649 .name = TYPE_M25P80,
82a24990
PC
650 .parent = TYPE_SSI_SLAVE,
651 .instance_size = sizeof(Flash),
a7fd6915
PC
652 .class_size = sizeof(M25P80Class),
653 .abstract = true,
82a24990
PC
654};
655
656static void m25p80_register_types(void)
657{
a7fd6915
PC
658 int i;
659
82a24990 660 type_register_static(&m25p80_info);
a7fd6915
PC
661 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
662 TypeInfo ti = {
663 .name = known_devices[i].part_name,
664 .parent = TYPE_M25P80,
665 .class_init = m25p80_class_init,
666 .class_data = (void *)&known_devices[i],
667 };
668 type_register(&ti);
669 }
82a24990
PC
670}
671
672type_init(m25p80_register_types)