]> git.proxmox.com Git - mirror_qemu.git/blame - hw/mc146818rtc.c
Optimize MIPS timer read/write functions
[mirror_qemu.git] / hw / mc146818rtc.c
CommitLineData
80cabfad
FB
1/*
2 * QEMU MC146818 RTC emulation
5fafdf24 3 *
80cabfad 4 * Copyright (c) 2003-2004 Fabrice Bellard
5fafdf24 5 *
80cabfad
FB
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
87ecb68b
PB
24#include "hw.h"
25#include "qemu-timer.h"
26#include "sysemu.h"
27#include "pc.h"
28#include "isa.h"
80cabfad
FB
29
30//#define DEBUG_CMOS
31
32#define RTC_SECONDS 0
33#define RTC_SECONDS_ALARM 1
34#define RTC_MINUTES 2
35#define RTC_MINUTES_ALARM 3
36#define RTC_HOURS 4
37#define RTC_HOURS_ALARM 5
38#define RTC_ALARM_DONT_CARE 0xC0
39
40#define RTC_DAY_OF_WEEK 6
41#define RTC_DAY_OF_MONTH 7
42#define RTC_MONTH 8
43#define RTC_YEAR 9
44
45#define RTC_REG_A 10
46#define RTC_REG_B 11
47#define RTC_REG_C 12
48#define RTC_REG_D 13
49
dff38e7b 50#define REG_A_UIP 0x80
80cabfad 51
dff38e7b
FB
52#define REG_B_SET 0x80
53#define REG_B_PIE 0x40
54#define REG_B_AIE 0x20
55#define REG_B_UIE 0x10
56
57struct RTCState {
58 uint8_t cmos_data[128];
59 uint8_t cmos_index;
43f493af 60 struct tm current_tm;
d537cf6c 61 qemu_irq irq;
2ca9d013 62 target_phys_addr_t base;
18c6e2ff 63 int it_shift;
dff38e7b
FB
64 /* periodic timer */
65 QEMUTimer *periodic_timer;
66 int64_t next_periodic_time;
67 /* second update */
68 int64_t next_second_time;
69 QEMUTimer *second_timer;
70 QEMUTimer *second_timer2;
71};
72
73static void rtc_set_time(RTCState *s);
dff38e7b
FB
74static void rtc_copy_date(RTCState *s);
75
76static void rtc_timer_update(RTCState *s, int64_t current_time)
77{
78 int period_code, period;
79 int64_t cur_clock, next_irq_clock;
80
81 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
5fafdf24 82 if (period_code != 0 &&
dff38e7b
FB
83 (s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
84 if (period_code <= 2)
85 period_code += 7;
86 /* period in 32 Khz cycles */
87 period = 1 << (period_code - 1);
88 /* compute 32 khz clock */
89 cur_clock = muldiv64(current_time, 32768, ticks_per_sec);
90 next_irq_clock = (cur_clock & ~(period - 1)) + period;
91 s->next_periodic_time = muldiv64(next_irq_clock, ticks_per_sec, 32768) + 1;
92 qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
93 } else {
94 qemu_del_timer(s->periodic_timer);
95 }
96}
97
98static void rtc_periodic_timer(void *opaque)
99{
100 RTCState *s = opaque;
101
102 rtc_timer_update(s, s->next_periodic_time);
103 s->cmos_data[RTC_REG_C] |= 0xc0;
d537cf6c 104 qemu_irq_raise(s->irq);
dff38e7b 105}
80cabfad 106
b41a2cd1 107static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
80cabfad 108{
b41a2cd1 109 RTCState *s = opaque;
80cabfad
FB
110
111 if ((addr & 1) == 0) {
112 s->cmos_index = data & 0x7f;
113 } else {
114#ifdef DEBUG_CMOS
115 printf("cmos: write index=0x%02x val=0x%02x\n",
116 s->cmos_index, data);
3b46e624 117#endif
dff38e7b 118 switch(s->cmos_index) {
80cabfad
FB
119 case RTC_SECONDS_ALARM:
120 case RTC_MINUTES_ALARM:
121 case RTC_HOURS_ALARM:
122 /* XXX: not supported */
123 s->cmos_data[s->cmos_index] = data;
124 break;
125 case RTC_SECONDS:
126 case RTC_MINUTES:
127 case RTC_HOURS:
128 case RTC_DAY_OF_WEEK:
129 case RTC_DAY_OF_MONTH:
130 case RTC_MONTH:
131 case RTC_YEAR:
132 s->cmos_data[s->cmos_index] = data;
dff38e7b
FB
133 /* if in set mode, do not update the time */
134 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
135 rtc_set_time(s);
136 }
80cabfad
FB
137 break;
138 case RTC_REG_A:
dff38e7b
FB
139 /* UIP bit is read only */
140 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
141 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
142 rtc_timer_update(s, qemu_get_clock(vm_clock));
143 break;
80cabfad 144 case RTC_REG_B:
dff38e7b
FB
145 if (data & REG_B_SET) {
146 /* set mode: reset UIP mode */
147 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
148 data &= ~REG_B_UIE;
149 } else {
150 /* if disabling set mode, update the time */
151 if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
152 rtc_set_time(s);
153 }
154 }
155 s->cmos_data[RTC_REG_B] = data;
156 rtc_timer_update(s, qemu_get_clock(vm_clock));
80cabfad
FB
157 break;
158 case RTC_REG_C:
159 case RTC_REG_D:
160 /* cannot write to them */
161 break;
162 default:
163 s->cmos_data[s->cmos_index] = data;
164 break;
165 }
166 }
167}
168
dff38e7b 169static inline int to_bcd(RTCState *s, int a)
80cabfad 170{
dff38e7b
FB
171 if (s->cmos_data[RTC_REG_B] & 0x04) {
172 return a;
173 } else {
174 return ((a / 10) << 4) | (a % 10);
175 }
80cabfad
FB
176}
177
dff38e7b 178static inline int from_bcd(RTCState *s, int a)
80cabfad 179{
dff38e7b
FB
180 if (s->cmos_data[RTC_REG_B] & 0x04) {
181 return a;
182 } else {
183 return ((a >> 4) * 10) + (a & 0x0f);
184 }
185}
186
187static void rtc_set_time(RTCState *s)
188{
43f493af 189 struct tm *tm = &s->current_tm;
dff38e7b
FB
190
191 tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]);
192 tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]);
43f493af
FB
193 tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
194 if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
195 (s->cmos_data[RTC_HOURS] & 0x80)) {
196 tm->tm_hour += 12;
197 }
dff38e7b
FB
198 tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]);
199 tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
200 tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
201 tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + 100;
43f493af
FB
202}
203
204static void rtc_copy_date(RTCState *s)
205{
206 const struct tm *tm = &s->current_tm;
dff38e7b 207
43f493af
FB
208 s->cmos_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec);
209 s->cmos_data[RTC_MINUTES] = to_bcd(s, tm->tm_min);
210 if (s->cmos_data[RTC_REG_B] & 0x02) {
211 /* 24 hour format */
212 s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour);
213 } else {
214 /* 12 hour format */
215 s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12);
216 if (tm->tm_hour >= 12)
217 s->cmos_data[RTC_HOURS] |= 0x80;
218 }
219 s->cmos_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday);
220 s->cmos_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday);
221 s->cmos_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1);
222 s->cmos_data[RTC_YEAR] = to_bcd(s, tm->tm_year % 100);
223}
224
225/* month is between 0 and 11. */
226static int get_days_in_month(int month, int year)
227{
5fafdf24
TS
228 static const int days_tab[12] = {
229 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
43f493af
FB
230 };
231 int d;
232 if ((unsigned )month >= 12)
233 return 31;
234 d = days_tab[month];
235 if (month == 1) {
236 if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
237 d++;
238 }
239 return d;
240}
241
242/* update 'tm' to the next second */
243static void rtc_next_second(struct tm *tm)
244{
245 int days_in_month;
246
247 tm->tm_sec++;
248 if ((unsigned)tm->tm_sec >= 60) {
249 tm->tm_sec = 0;
250 tm->tm_min++;
251 if ((unsigned)tm->tm_min >= 60) {
252 tm->tm_min = 0;
253 tm->tm_hour++;
254 if ((unsigned)tm->tm_hour >= 24) {
255 tm->tm_hour = 0;
256 /* next day */
257 tm->tm_wday++;
258 if ((unsigned)tm->tm_wday >= 7)
259 tm->tm_wday = 0;
5fafdf24 260 days_in_month = get_days_in_month(tm->tm_mon,
43f493af
FB
261 tm->tm_year + 1900);
262 tm->tm_mday++;
263 if (tm->tm_mday < 1) {
264 tm->tm_mday = 1;
265 } else if (tm->tm_mday > days_in_month) {
266 tm->tm_mday = 1;
267 tm->tm_mon++;
268 if (tm->tm_mon >= 12) {
269 tm->tm_mon = 0;
270 tm->tm_year++;
271 }
272 }
273 }
274 }
275 }
dff38e7b
FB
276}
277
43f493af 278
dff38e7b
FB
279static void rtc_update_second(void *opaque)
280{
281 RTCState *s = opaque;
4721c457 282 int64_t delay;
dff38e7b
FB
283
284 /* if the oscillator is not in normal operation, we do not update */
285 if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
286 s->next_second_time += ticks_per_sec;
287 qemu_mod_timer(s->second_timer, s->next_second_time);
288 } else {
43f493af 289 rtc_next_second(&s->current_tm);
3b46e624 290
dff38e7b
FB
291 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
292 /* update in progress bit */
293 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
294 }
4721c457
FB
295 /* should be 244 us = 8 / 32768 seconds, but currently the
296 timers do not have the necessary resolution. */
297 delay = (ticks_per_sec * 1) / 100;
298 if (delay < 1)
299 delay = 1;
5fafdf24 300 qemu_mod_timer(s->second_timer2,
4721c457 301 s->next_second_time + delay);
dff38e7b
FB
302 }
303}
304
305static void rtc_update_second2(void *opaque)
306{
307 RTCState *s = opaque;
dff38e7b
FB
308
309 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
310 rtc_copy_date(s);
311 }
312
313 /* check alarm */
314 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
315 if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
43f493af 316 s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
dff38e7b 317 ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
43f493af 318 s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
dff38e7b 319 ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
43f493af 320 s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {
dff38e7b 321
5fafdf24 322 s->cmos_data[RTC_REG_C] |= 0xa0;
d537cf6c 323 qemu_irq_raise(s->irq);
dff38e7b
FB
324 }
325 }
326
327 /* update ended interrupt */
328 if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
5fafdf24 329 s->cmos_data[RTC_REG_C] |= 0x90;
d537cf6c 330 qemu_irq_raise(s->irq);
dff38e7b
FB
331 }
332
333 /* clear update in progress bit */
334 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
335
336 s->next_second_time += ticks_per_sec;
337 qemu_mod_timer(s->second_timer, s->next_second_time);
80cabfad
FB
338}
339
b41a2cd1 340static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
80cabfad 341{
b41a2cd1 342 RTCState *s = opaque;
80cabfad
FB
343 int ret;
344 if ((addr & 1) == 0) {
345 return 0xff;
346 } else {
347 switch(s->cmos_index) {
348 case RTC_SECONDS:
349 case RTC_MINUTES:
350 case RTC_HOURS:
351 case RTC_DAY_OF_WEEK:
352 case RTC_DAY_OF_MONTH:
353 case RTC_MONTH:
354 case RTC_YEAR:
80cabfad
FB
355 ret = s->cmos_data[s->cmos_index];
356 break;
357 case RTC_REG_A:
358 ret = s->cmos_data[s->cmos_index];
80cabfad
FB
359 break;
360 case RTC_REG_C:
361 ret = s->cmos_data[s->cmos_index];
d537cf6c 362 qemu_irq_lower(s->irq);
5fafdf24 363 s->cmos_data[RTC_REG_C] = 0x00;
80cabfad
FB
364 break;
365 default:
366 ret = s->cmos_data[s->cmos_index];
367 break;
368 }
369#ifdef DEBUG_CMOS
370 printf("cmos: read index=0x%02x val=0x%02x\n",
371 s->cmos_index, ret);
372#endif
373 return ret;
374 }
375}
376
dff38e7b
FB
377void rtc_set_memory(RTCState *s, int addr, int val)
378{
379 if (addr >= 0 && addr <= 127)
380 s->cmos_data[addr] = val;
381}
382
383void rtc_set_date(RTCState *s, const struct tm *tm)
384{
43f493af 385 s->current_tm = *tm;
dff38e7b
FB
386 rtc_copy_date(s);
387}
388
ea55ffb3
TS
389/* PC cmos mappings */
390#define REG_IBM_CENTURY_BYTE 0x32
391#define REG_IBM_PS2_CENTURY_BYTE 0x37
392
9596ebb7 393static void rtc_set_date_from_host(RTCState *s)
ea55ffb3 394{
f6503059 395 struct tm tm;
ea55ffb3
TS
396 int val;
397
398 /* set the CMOS date */
f6503059
AZ
399 qemu_get_timedate(&tm, 0);
400 rtc_set_date(s, &tm);
ea55ffb3 401
f6503059 402 val = to_bcd(s, (tm.tm_year / 100) + 19);
ea55ffb3
TS
403 rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val);
404 rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val);
405}
406
dff38e7b
FB
407static void rtc_save(QEMUFile *f, void *opaque)
408{
409 RTCState *s = opaque;
410
411 qemu_put_buffer(f, s->cmos_data, 128);
412 qemu_put_8s(f, &s->cmos_index);
3b46e624 413
bee8d684
TS
414 qemu_put_be32(f, s->current_tm.tm_sec);
415 qemu_put_be32(f, s->current_tm.tm_min);
416 qemu_put_be32(f, s->current_tm.tm_hour);
417 qemu_put_be32(f, s->current_tm.tm_wday);
418 qemu_put_be32(f, s->current_tm.tm_mday);
419 qemu_put_be32(f, s->current_tm.tm_mon);
420 qemu_put_be32(f, s->current_tm.tm_year);
dff38e7b
FB
421
422 qemu_put_timer(f, s->periodic_timer);
bee8d684 423 qemu_put_be64(f, s->next_periodic_time);
dff38e7b 424
bee8d684 425 qemu_put_be64(f, s->next_second_time);
dff38e7b
FB
426 qemu_put_timer(f, s->second_timer);
427 qemu_put_timer(f, s->second_timer2);
80cabfad
FB
428}
429
dff38e7b 430static int rtc_load(QEMUFile *f, void *opaque, int version_id)
80cabfad 431{
dff38e7b
FB
432 RTCState *s = opaque;
433
434 if (version_id != 1)
435 return -EINVAL;
80cabfad 436
dff38e7b
FB
437 qemu_get_buffer(f, s->cmos_data, 128);
438 qemu_get_8s(f, &s->cmos_index);
43f493af 439
bee8d684
TS
440 s->current_tm.tm_sec=qemu_get_be32(f);
441 s->current_tm.tm_min=qemu_get_be32(f);
442 s->current_tm.tm_hour=qemu_get_be32(f);
443 s->current_tm.tm_wday=qemu_get_be32(f);
444 s->current_tm.tm_mday=qemu_get_be32(f);
445 s->current_tm.tm_mon=qemu_get_be32(f);
446 s->current_tm.tm_year=qemu_get_be32(f);
dff38e7b
FB
447
448 qemu_get_timer(f, s->periodic_timer);
bee8d684 449 s->next_periodic_time=qemu_get_be64(f);
dff38e7b 450
bee8d684 451 s->next_second_time=qemu_get_be64(f);
dff38e7b
FB
452 qemu_get_timer(f, s->second_timer);
453 qemu_get_timer(f, s->second_timer2);
454 return 0;
455}
456
d537cf6c 457RTCState *rtc_init(int base, qemu_irq irq)
dff38e7b
FB
458{
459 RTCState *s;
460
461 s = qemu_mallocz(sizeof(RTCState));
462 if (!s)
463 return NULL;
80cabfad
FB
464
465 s->irq = irq;
466 s->cmos_data[RTC_REG_A] = 0x26;
467 s->cmos_data[RTC_REG_B] = 0x02;
468 s->cmos_data[RTC_REG_C] = 0x00;
469 s->cmos_data[RTC_REG_D] = 0x80;
470
ea55ffb3
TS
471 rtc_set_date_from_host(s);
472
5fafdf24 473 s->periodic_timer = qemu_new_timer(vm_clock,
dff38e7b 474 rtc_periodic_timer, s);
5fafdf24 475 s->second_timer = qemu_new_timer(vm_clock,
dff38e7b 476 rtc_update_second, s);
5fafdf24 477 s->second_timer2 = qemu_new_timer(vm_clock,
dff38e7b
FB
478 rtc_update_second2, s);
479
480 s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
481 qemu_mod_timer(s->second_timer2, s->next_second_time);
482
b41a2cd1
FB
483 register_ioport_write(base, 2, 1, cmos_ioport_write, s);
484 register_ioport_read(base, 2, 1, cmos_ioport_read, s);
dff38e7b
FB
485
486 register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
487 return s;
80cabfad
FB
488}
489
2ca9d013 490/* Memory mapped interface */
9596ebb7 491static uint32_t cmos_mm_readb (void *opaque, target_phys_addr_t addr)
2ca9d013
TS
492{
493 RTCState *s = opaque;
494
18c6e2ff 495 return cmos_ioport_read(s, (addr - s->base) >> s->it_shift) & 0xFF;
2ca9d013
TS
496}
497
9596ebb7
PB
498static void cmos_mm_writeb (void *opaque,
499 target_phys_addr_t addr, uint32_t value)
2ca9d013
TS
500{
501 RTCState *s = opaque;
502
18c6e2ff 503 cmos_ioport_write(s, (addr - s->base) >> s->it_shift, value & 0xFF);
2ca9d013
TS
504}
505
9596ebb7 506static uint32_t cmos_mm_readw (void *opaque, target_phys_addr_t addr)
2ca9d013
TS
507{
508 RTCState *s = opaque;
18c6e2ff 509 uint32_t val;
2ca9d013 510
18c6e2ff
TS
511 val = cmos_ioport_read(s, (addr - s->base) >> s->it_shift) & 0xFFFF;
512#ifdef TARGET_WORDS_BIGENDIAN
513 val = bswap16(val);
514#endif
515 return val;
2ca9d013
TS
516}
517
9596ebb7
PB
518static void cmos_mm_writew (void *opaque,
519 target_phys_addr_t addr, uint32_t value)
2ca9d013
TS
520{
521 RTCState *s = opaque;
18c6e2ff
TS
522#ifdef TARGET_WORDS_BIGENDIAN
523 value = bswap16(value);
524#endif
525 cmos_ioport_write(s, (addr - s->base) >> s->it_shift, value & 0xFFFF);
2ca9d013
TS
526}
527
9596ebb7 528static uint32_t cmos_mm_readl (void *opaque, target_phys_addr_t addr)
2ca9d013
TS
529{
530 RTCState *s = opaque;
18c6e2ff 531 uint32_t val;
2ca9d013 532
18c6e2ff
TS
533 val = cmos_ioport_read(s, (addr - s->base) >> s->it_shift);
534#ifdef TARGET_WORDS_BIGENDIAN
535 val = bswap32(val);
536#endif
537 return val;
2ca9d013
TS
538}
539
9596ebb7
PB
540static void cmos_mm_writel (void *opaque,
541 target_phys_addr_t addr, uint32_t value)
2ca9d013
TS
542{
543 RTCState *s = opaque;
18c6e2ff
TS
544#ifdef TARGET_WORDS_BIGENDIAN
545 value = bswap32(value);
546#endif
547 cmos_ioport_write(s, (addr - s->base) >> s->it_shift, value);
2ca9d013
TS
548}
549
550static CPUReadMemoryFunc *rtc_mm_read[] = {
551 &cmos_mm_readb,
552 &cmos_mm_readw,
553 &cmos_mm_readl,
554};
555
556static CPUWriteMemoryFunc *rtc_mm_write[] = {
557 &cmos_mm_writeb,
558 &cmos_mm_writew,
559 &cmos_mm_writel,
560};
561
18c6e2ff 562RTCState *rtc_mm_init(target_phys_addr_t base, int it_shift, qemu_irq irq)
2ca9d013
TS
563{
564 RTCState *s;
565 int io_memory;
566
567 s = qemu_mallocz(sizeof(RTCState));
568 if (!s)
569 return NULL;
570
571 s->irq = irq;
572 s->cmos_data[RTC_REG_A] = 0x26;
573 s->cmos_data[RTC_REG_B] = 0x02;
574 s->cmos_data[RTC_REG_C] = 0x00;
575 s->cmos_data[RTC_REG_D] = 0x80;
576 s->base = base;
577
578 rtc_set_date_from_host(s);
579
580 s->periodic_timer = qemu_new_timer(vm_clock,
581 rtc_periodic_timer, s);
582 s->second_timer = qemu_new_timer(vm_clock,
583 rtc_update_second, s);
584 s->second_timer2 = qemu_new_timer(vm_clock,
585 rtc_update_second2, s);
586
587 s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
588 qemu_mod_timer(s->second_timer2, s->next_second_time);
589
590 io_memory = cpu_register_io_memory(0, rtc_mm_read, rtc_mm_write, s);
18c6e2ff 591 cpu_register_physical_memory(base, 2 << it_shift, io_memory);
2ca9d013
TS
592
593 register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
594 return s;
595}