]> git.proxmox.com Git - mirror_qemu.git/blame - hw/mc146818rtc.c
added -startdate option
[mirror_qemu.git] / hw / mc146818rtc.c
CommitLineData
80cabfad
FB
1/*
2 * QEMU MC146818 RTC emulation
5fafdf24 3 *
80cabfad 4 * Copyright (c) 2003-2004 Fabrice Bellard
5fafdf24 5 *
80cabfad
FB
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
80cabfad
FB
24#include "vl.h"
25
26//#define DEBUG_CMOS
27
28#define RTC_SECONDS 0
29#define RTC_SECONDS_ALARM 1
30#define RTC_MINUTES 2
31#define RTC_MINUTES_ALARM 3
32#define RTC_HOURS 4
33#define RTC_HOURS_ALARM 5
34#define RTC_ALARM_DONT_CARE 0xC0
35
36#define RTC_DAY_OF_WEEK 6
37#define RTC_DAY_OF_MONTH 7
38#define RTC_MONTH 8
39#define RTC_YEAR 9
40
41#define RTC_REG_A 10
42#define RTC_REG_B 11
43#define RTC_REG_C 12
44#define RTC_REG_D 13
45
dff38e7b 46#define REG_A_UIP 0x80
80cabfad 47
dff38e7b
FB
48#define REG_B_SET 0x80
49#define REG_B_PIE 0x40
50#define REG_B_AIE 0x20
51#define REG_B_UIE 0x10
52
53struct RTCState {
54 uint8_t cmos_data[128];
55 uint8_t cmos_index;
43f493af 56 struct tm current_tm;
d537cf6c 57 qemu_irq irq;
2ca9d013 58 target_phys_addr_t base;
18c6e2ff 59 int it_shift;
dff38e7b
FB
60 /* periodic timer */
61 QEMUTimer *periodic_timer;
62 int64_t next_periodic_time;
63 /* second update */
64 int64_t next_second_time;
65 QEMUTimer *second_timer;
66 QEMUTimer *second_timer2;
67};
68
69static void rtc_set_time(RTCState *s);
dff38e7b
FB
70static void rtc_copy_date(RTCState *s);
71
72static void rtc_timer_update(RTCState *s, int64_t current_time)
73{
74 int period_code, period;
75 int64_t cur_clock, next_irq_clock;
76
77 period_code = s->cmos_data[RTC_REG_A] & 0x0f;
5fafdf24 78 if (period_code != 0 &&
dff38e7b
FB
79 (s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
80 if (period_code <= 2)
81 period_code += 7;
82 /* period in 32 Khz cycles */
83 period = 1 << (period_code - 1);
84 /* compute 32 khz clock */
85 cur_clock = muldiv64(current_time, 32768, ticks_per_sec);
86 next_irq_clock = (cur_clock & ~(period - 1)) + period;
87 s->next_periodic_time = muldiv64(next_irq_clock, ticks_per_sec, 32768) + 1;
88 qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
89 } else {
90 qemu_del_timer(s->periodic_timer);
91 }
92}
93
94static void rtc_periodic_timer(void *opaque)
95{
96 RTCState *s = opaque;
97
98 rtc_timer_update(s, s->next_periodic_time);
99 s->cmos_data[RTC_REG_C] |= 0xc0;
d537cf6c 100 qemu_irq_raise(s->irq);
dff38e7b 101}
80cabfad 102
b41a2cd1 103static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
80cabfad 104{
b41a2cd1 105 RTCState *s = opaque;
80cabfad
FB
106
107 if ((addr & 1) == 0) {
108 s->cmos_index = data & 0x7f;
109 } else {
110#ifdef DEBUG_CMOS
111 printf("cmos: write index=0x%02x val=0x%02x\n",
112 s->cmos_index, data);
3b46e624 113#endif
dff38e7b 114 switch(s->cmos_index) {
80cabfad
FB
115 case RTC_SECONDS_ALARM:
116 case RTC_MINUTES_ALARM:
117 case RTC_HOURS_ALARM:
118 /* XXX: not supported */
119 s->cmos_data[s->cmos_index] = data;
120 break;
121 case RTC_SECONDS:
122 case RTC_MINUTES:
123 case RTC_HOURS:
124 case RTC_DAY_OF_WEEK:
125 case RTC_DAY_OF_MONTH:
126 case RTC_MONTH:
127 case RTC_YEAR:
128 s->cmos_data[s->cmos_index] = data;
dff38e7b
FB
129 /* if in set mode, do not update the time */
130 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
131 rtc_set_time(s);
132 }
80cabfad
FB
133 break;
134 case RTC_REG_A:
dff38e7b
FB
135 /* UIP bit is read only */
136 s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
137 (s->cmos_data[RTC_REG_A] & REG_A_UIP);
138 rtc_timer_update(s, qemu_get_clock(vm_clock));
139 break;
80cabfad 140 case RTC_REG_B:
dff38e7b
FB
141 if (data & REG_B_SET) {
142 /* set mode: reset UIP mode */
143 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
144 data &= ~REG_B_UIE;
145 } else {
146 /* if disabling set mode, update the time */
147 if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
148 rtc_set_time(s);
149 }
150 }
151 s->cmos_data[RTC_REG_B] = data;
152 rtc_timer_update(s, qemu_get_clock(vm_clock));
80cabfad
FB
153 break;
154 case RTC_REG_C:
155 case RTC_REG_D:
156 /* cannot write to them */
157 break;
158 default:
159 s->cmos_data[s->cmos_index] = data;
160 break;
161 }
162 }
163}
164
dff38e7b 165static inline int to_bcd(RTCState *s, int a)
80cabfad 166{
dff38e7b
FB
167 if (s->cmos_data[RTC_REG_B] & 0x04) {
168 return a;
169 } else {
170 return ((a / 10) << 4) | (a % 10);
171 }
80cabfad
FB
172}
173
dff38e7b 174static inline int from_bcd(RTCState *s, int a)
80cabfad 175{
dff38e7b
FB
176 if (s->cmos_data[RTC_REG_B] & 0x04) {
177 return a;
178 } else {
179 return ((a >> 4) * 10) + (a & 0x0f);
180 }
181}
182
183static void rtc_set_time(RTCState *s)
184{
43f493af 185 struct tm *tm = &s->current_tm;
dff38e7b
FB
186
187 tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]);
188 tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]);
43f493af
FB
189 tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
190 if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
191 (s->cmos_data[RTC_HOURS] & 0x80)) {
192 tm->tm_hour += 12;
193 }
dff38e7b
FB
194 tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]);
195 tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
196 tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
197 tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + 100;
43f493af
FB
198}
199
200static void rtc_copy_date(RTCState *s)
201{
202 const struct tm *tm = &s->current_tm;
dff38e7b 203
43f493af
FB
204 s->cmos_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec);
205 s->cmos_data[RTC_MINUTES] = to_bcd(s, tm->tm_min);
206 if (s->cmos_data[RTC_REG_B] & 0x02) {
207 /* 24 hour format */
208 s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour);
209 } else {
210 /* 12 hour format */
211 s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12);
212 if (tm->tm_hour >= 12)
213 s->cmos_data[RTC_HOURS] |= 0x80;
214 }
215 s->cmos_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday);
216 s->cmos_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday);
217 s->cmos_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1);
218 s->cmos_data[RTC_YEAR] = to_bcd(s, tm->tm_year % 100);
219}
220
221/* month is between 0 and 11. */
222static int get_days_in_month(int month, int year)
223{
5fafdf24
TS
224 static const int days_tab[12] = {
225 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
43f493af
FB
226 };
227 int d;
228 if ((unsigned )month >= 12)
229 return 31;
230 d = days_tab[month];
231 if (month == 1) {
232 if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
233 d++;
234 }
235 return d;
236}
237
238/* update 'tm' to the next second */
239static void rtc_next_second(struct tm *tm)
240{
241 int days_in_month;
242
243 tm->tm_sec++;
244 if ((unsigned)tm->tm_sec >= 60) {
245 tm->tm_sec = 0;
246 tm->tm_min++;
247 if ((unsigned)tm->tm_min >= 60) {
248 tm->tm_min = 0;
249 tm->tm_hour++;
250 if ((unsigned)tm->tm_hour >= 24) {
251 tm->tm_hour = 0;
252 /* next day */
253 tm->tm_wday++;
254 if ((unsigned)tm->tm_wday >= 7)
255 tm->tm_wday = 0;
5fafdf24 256 days_in_month = get_days_in_month(tm->tm_mon,
43f493af
FB
257 tm->tm_year + 1900);
258 tm->tm_mday++;
259 if (tm->tm_mday < 1) {
260 tm->tm_mday = 1;
261 } else if (tm->tm_mday > days_in_month) {
262 tm->tm_mday = 1;
263 tm->tm_mon++;
264 if (tm->tm_mon >= 12) {
265 tm->tm_mon = 0;
266 tm->tm_year++;
267 }
268 }
269 }
270 }
271 }
dff38e7b
FB
272}
273
43f493af 274
dff38e7b
FB
275static void rtc_update_second(void *opaque)
276{
277 RTCState *s = opaque;
4721c457 278 int64_t delay;
dff38e7b
FB
279
280 /* if the oscillator is not in normal operation, we do not update */
281 if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
282 s->next_second_time += ticks_per_sec;
283 qemu_mod_timer(s->second_timer, s->next_second_time);
284 } else {
43f493af 285 rtc_next_second(&s->current_tm);
3b46e624 286
dff38e7b
FB
287 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
288 /* update in progress bit */
289 s->cmos_data[RTC_REG_A] |= REG_A_UIP;
290 }
4721c457
FB
291 /* should be 244 us = 8 / 32768 seconds, but currently the
292 timers do not have the necessary resolution. */
293 delay = (ticks_per_sec * 1) / 100;
294 if (delay < 1)
295 delay = 1;
5fafdf24 296 qemu_mod_timer(s->second_timer2,
4721c457 297 s->next_second_time + delay);
dff38e7b
FB
298 }
299}
300
301static void rtc_update_second2(void *opaque)
302{
303 RTCState *s = opaque;
dff38e7b
FB
304
305 if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
306 rtc_copy_date(s);
307 }
308
309 /* check alarm */
310 if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
311 if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
43f493af 312 s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
dff38e7b 313 ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
43f493af 314 s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
dff38e7b 315 ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
43f493af 316 s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {
dff38e7b 317
5fafdf24 318 s->cmos_data[RTC_REG_C] |= 0xa0;
d537cf6c 319 qemu_irq_raise(s->irq);
dff38e7b
FB
320 }
321 }
322
323 /* update ended interrupt */
324 if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
5fafdf24 325 s->cmos_data[RTC_REG_C] |= 0x90;
d537cf6c 326 qemu_irq_raise(s->irq);
dff38e7b
FB
327 }
328
329 /* clear update in progress bit */
330 s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
331
332 s->next_second_time += ticks_per_sec;
333 qemu_mod_timer(s->second_timer, s->next_second_time);
80cabfad
FB
334}
335
b41a2cd1 336static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
80cabfad 337{
b41a2cd1 338 RTCState *s = opaque;
80cabfad
FB
339 int ret;
340 if ((addr & 1) == 0) {
341 return 0xff;
342 } else {
343 switch(s->cmos_index) {
344 case RTC_SECONDS:
345 case RTC_MINUTES:
346 case RTC_HOURS:
347 case RTC_DAY_OF_WEEK:
348 case RTC_DAY_OF_MONTH:
349 case RTC_MONTH:
350 case RTC_YEAR:
80cabfad
FB
351 ret = s->cmos_data[s->cmos_index];
352 break;
353 case RTC_REG_A:
354 ret = s->cmos_data[s->cmos_index];
80cabfad
FB
355 break;
356 case RTC_REG_C:
357 ret = s->cmos_data[s->cmos_index];
d537cf6c 358 qemu_irq_lower(s->irq);
5fafdf24 359 s->cmos_data[RTC_REG_C] = 0x00;
80cabfad
FB
360 break;
361 default:
362 ret = s->cmos_data[s->cmos_index];
363 break;
364 }
365#ifdef DEBUG_CMOS
366 printf("cmos: read index=0x%02x val=0x%02x\n",
367 s->cmos_index, ret);
368#endif
369 return ret;
370 }
371}
372
dff38e7b
FB
373void rtc_set_memory(RTCState *s, int addr, int val)
374{
375 if (addr >= 0 && addr <= 127)
376 s->cmos_data[addr] = val;
377}
378
379void rtc_set_date(RTCState *s, const struct tm *tm)
380{
43f493af 381 s->current_tm = *tm;
dff38e7b
FB
382 rtc_copy_date(s);
383}
384
ea55ffb3
TS
385/* PC cmos mappings */
386#define REG_IBM_CENTURY_BYTE 0x32
387#define REG_IBM_PS2_CENTURY_BYTE 0x37
388
389void rtc_set_date_from_host(RTCState *s)
390{
391 time_t ti;
392 struct tm *tm;
393 int val;
394
395 /* set the CMOS date */
7e0af5d0
FB
396 if (rtc_start_date == -1) {
397 time(&ti);
398 if (rtc_utc)
399 tm = gmtime(&ti);
400 else
401 tm = localtime(&ti);
402 } else {
403 ti = rtc_start_date;
ea55ffb3 404 tm = gmtime(&ti);
7e0af5d0 405 }
ea55ffb3
TS
406 rtc_set_date(s, tm);
407
408 val = to_bcd(s, (tm->tm_year / 100) + 19);
409 rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val);
410 rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val);
411}
412
dff38e7b
FB
413static void rtc_save(QEMUFile *f, void *opaque)
414{
415 RTCState *s = opaque;
416
417 qemu_put_buffer(f, s->cmos_data, 128);
418 qemu_put_8s(f, &s->cmos_index);
3b46e624 419
43f493af
FB
420 qemu_put_be32s(f, &s->current_tm.tm_sec);
421 qemu_put_be32s(f, &s->current_tm.tm_min);
422 qemu_put_be32s(f, &s->current_tm.tm_hour);
423 qemu_put_be32s(f, &s->current_tm.tm_wday);
424 qemu_put_be32s(f, &s->current_tm.tm_mday);
425 qemu_put_be32s(f, &s->current_tm.tm_mon);
426 qemu_put_be32s(f, &s->current_tm.tm_year);
dff38e7b
FB
427
428 qemu_put_timer(f, s->periodic_timer);
429 qemu_put_be64s(f, &s->next_periodic_time);
430
431 qemu_put_be64s(f, &s->next_second_time);
432 qemu_put_timer(f, s->second_timer);
433 qemu_put_timer(f, s->second_timer2);
80cabfad
FB
434}
435
dff38e7b 436static int rtc_load(QEMUFile *f, void *opaque, int version_id)
80cabfad 437{
dff38e7b
FB
438 RTCState *s = opaque;
439
440 if (version_id != 1)
441 return -EINVAL;
80cabfad 442
dff38e7b
FB
443 qemu_get_buffer(f, s->cmos_data, 128);
444 qemu_get_8s(f, &s->cmos_index);
43f493af
FB
445
446 qemu_get_be32s(f, &s->current_tm.tm_sec);
447 qemu_get_be32s(f, &s->current_tm.tm_min);
448 qemu_get_be32s(f, &s->current_tm.tm_hour);
449 qemu_get_be32s(f, &s->current_tm.tm_wday);
450 qemu_get_be32s(f, &s->current_tm.tm_mday);
451 qemu_get_be32s(f, &s->current_tm.tm_mon);
452 qemu_get_be32s(f, &s->current_tm.tm_year);
dff38e7b
FB
453
454 qemu_get_timer(f, s->periodic_timer);
455 qemu_get_be64s(f, &s->next_periodic_time);
456
457 qemu_get_be64s(f, &s->next_second_time);
458 qemu_get_timer(f, s->second_timer);
459 qemu_get_timer(f, s->second_timer2);
460 return 0;
461}
462
d537cf6c 463RTCState *rtc_init(int base, qemu_irq irq)
dff38e7b
FB
464{
465 RTCState *s;
466
467 s = qemu_mallocz(sizeof(RTCState));
468 if (!s)
469 return NULL;
80cabfad
FB
470
471 s->irq = irq;
472 s->cmos_data[RTC_REG_A] = 0x26;
473 s->cmos_data[RTC_REG_B] = 0x02;
474 s->cmos_data[RTC_REG_C] = 0x00;
475 s->cmos_data[RTC_REG_D] = 0x80;
476
ea55ffb3
TS
477 rtc_set_date_from_host(s);
478
5fafdf24 479 s->periodic_timer = qemu_new_timer(vm_clock,
dff38e7b 480 rtc_periodic_timer, s);
5fafdf24 481 s->second_timer = qemu_new_timer(vm_clock,
dff38e7b 482 rtc_update_second, s);
5fafdf24 483 s->second_timer2 = qemu_new_timer(vm_clock,
dff38e7b
FB
484 rtc_update_second2, s);
485
486 s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
487 qemu_mod_timer(s->second_timer2, s->next_second_time);
488
b41a2cd1
FB
489 register_ioport_write(base, 2, 1, cmos_ioport_write, s);
490 register_ioport_read(base, 2, 1, cmos_ioport_read, s);
dff38e7b
FB
491
492 register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
493 return s;
80cabfad
FB
494}
495
2ca9d013
TS
496/* Memory mapped interface */
497uint32_t cmos_mm_readb (void *opaque, target_phys_addr_t addr)
498{
499 RTCState *s = opaque;
500
18c6e2ff 501 return cmos_ioport_read(s, (addr - s->base) >> s->it_shift) & 0xFF;
2ca9d013
TS
502}
503
504void cmos_mm_writeb (void *opaque,
505 target_phys_addr_t addr, uint32_t value)
506{
507 RTCState *s = opaque;
508
18c6e2ff 509 cmos_ioport_write(s, (addr - s->base) >> s->it_shift, value & 0xFF);
2ca9d013
TS
510}
511
512uint32_t cmos_mm_readw (void *opaque, target_phys_addr_t addr)
513{
514 RTCState *s = opaque;
18c6e2ff 515 uint32_t val;
2ca9d013 516
18c6e2ff
TS
517 val = cmos_ioport_read(s, (addr - s->base) >> s->it_shift) & 0xFFFF;
518#ifdef TARGET_WORDS_BIGENDIAN
519 val = bswap16(val);
520#endif
521 return val;
2ca9d013
TS
522}
523
524void cmos_mm_writew (void *opaque,
525 target_phys_addr_t addr, uint32_t value)
526{
527 RTCState *s = opaque;
18c6e2ff
TS
528#ifdef TARGET_WORDS_BIGENDIAN
529 value = bswap16(value);
530#endif
531 cmos_ioport_write(s, (addr - s->base) >> s->it_shift, value & 0xFFFF);
2ca9d013
TS
532}
533
534uint32_t cmos_mm_readl (void *opaque, target_phys_addr_t addr)
535{
536 RTCState *s = opaque;
18c6e2ff 537 uint32_t val;
2ca9d013 538
18c6e2ff
TS
539 val = cmos_ioport_read(s, (addr - s->base) >> s->it_shift);
540#ifdef TARGET_WORDS_BIGENDIAN
541 val = bswap32(val);
542#endif
543 return val;
2ca9d013
TS
544}
545
546void cmos_mm_writel (void *opaque,
547 target_phys_addr_t addr, uint32_t value)
548{
549 RTCState *s = opaque;
18c6e2ff
TS
550#ifdef TARGET_WORDS_BIGENDIAN
551 value = bswap32(value);
552#endif
553 cmos_ioport_write(s, (addr - s->base) >> s->it_shift, value);
2ca9d013
TS
554}
555
556static CPUReadMemoryFunc *rtc_mm_read[] = {
557 &cmos_mm_readb,
558 &cmos_mm_readw,
559 &cmos_mm_readl,
560};
561
562static CPUWriteMemoryFunc *rtc_mm_write[] = {
563 &cmos_mm_writeb,
564 &cmos_mm_writew,
565 &cmos_mm_writel,
566};
567
18c6e2ff 568RTCState *rtc_mm_init(target_phys_addr_t base, int it_shift, qemu_irq irq)
2ca9d013
TS
569{
570 RTCState *s;
571 int io_memory;
572
573 s = qemu_mallocz(sizeof(RTCState));
574 if (!s)
575 return NULL;
576
577 s->irq = irq;
578 s->cmos_data[RTC_REG_A] = 0x26;
579 s->cmos_data[RTC_REG_B] = 0x02;
580 s->cmos_data[RTC_REG_C] = 0x00;
581 s->cmos_data[RTC_REG_D] = 0x80;
582 s->base = base;
583
584 rtc_set_date_from_host(s);
585
586 s->periodic_timer = qemu_new_timer(vm_clock,
587 rtc_periodic_timer, s);
588 s->second_timer = qemu_new_timer(vm_clock,
589 rtc_update_second, s);
590 s->second_timer2 = qemu_new_timer(vm_clock,
591 rtc_update_second2, s);
592
593 s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
594 qemu_mod_timer(s->second_timer2, s->next_second_time);
595
596 io_memory = cpu_register_io_memory(0, rtc_mm_read, rtc_mm_write, s);
18c6e2ff 597 cpu_register_physical_memory(base, 2 << it_shift, io_memory);
2ca9d013
TS
598
599 register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
600 return s;
601}