]> git.proxmox.com Git - mirror_qemu.git/blame - hw/musicpal.c
Fix spurious VNC disconnects on Win32 (Hervé Poussineau).
[mirror_qemu.git] / hw / musicpal.c
CommitLineData
24859b68
AZ
1/*
2 * Marvell MV88W8618 / Freecom MusicPal emulation.
3 *
4 * Copyright (c) 2008 Jan Kiszka
5 *
6 * This code is licenced under the GNU GPL v2.
7 */
8
9#include "hw.h"
10#include "arm-misc.h"
11#include "devices.h"
12#include "net.h"
13#include "sysemu.h"
14#include "boards.h"
15#include "pc.h"
16#include "qemu-timer.h"
17#include "block.h"
18#include "flash.h"
19#include "console.h"
20#include "audio/audio.h"
21#include "i2c.h"
22
23#define MP_ETH_BASE 0x80008000
24#define MP_ETH_SIZE 0x00001000
25
26#define MP_UART1_BASE 0x8000C840
27#define MP_UART2_BASE 0x8000C940
28
29#define MP_FLASHCFG_BASE 0x90006000
30#define MP_FLASHCFG_SIZE 0x00001000
31
32#define MP_AUDIO_BASE 0x90007000
33#define MP_AUDIO_SIZE 0x00001000
34
35#define MP_PIC_BASE 0x90008000
36#define MP_PIC_SIZE 0x00001000
37
38#define MP_PIT_BASE 0x90009000
39#define MP_PIT_SIZE 0x00001000
40
41#define MP_LCD_BASE 0x9000c000
42#define MP_LCD_SIZE 0x00001000
43
44#define MP_SRAM_BASE 0xC0000000
45#define MP_SRAM_SIZE 0x00020000
46
47#define MP_RAM_DEFAULT_SIZE 32*1024*1024
48#define MP_FLASH_SIZE_MAX 32*1024*1024
49
50#define MP_TIMER1_IRQ 4
51/* ... */
52#define MP_TIMER4_IRQ 7
53#define MP_EHCI_IRQ 8
54#define MP_ETH_IRQ 9
55#define MP_UART1_IRQ 11
56#define MP_UART2_IRQ 11
57#define MP_GPIO_IRQ 12
58#define MP_RTC_IRQ 28
59#define MP_AUDIO_IRQ 30
60
61static uint32_t gpio_in_state = 0xffffffff;
62static uint32_t gpio_out_state;
63static ram_addr_t sram_off;
64
65/* Address conversion helpers */
66static void *target2host_addr(uint32_t addr)
67{
68 if (addr < MP_SRAM_BASE) {
69 if (addr >= MP_RAM_DEFAULT_SIZE)
70 return NULL;
71 return (void *)(phys_ram_base + addr);
72 } else {
73 if (addr >= MP_SRAM_BASE + MP_SRAM_SIZE)
74 return NULL;
75 return (void *)(phys_ram_base + sram_off + addr - MP_SRAM_BASE);
76 }
77}
78
79static uint32_t host2target_addr(void *addr)
80{
81 if (addr < ((void *)phys_ram_base) + sram_off)
82 return (unsigned long)addr - (unsigned long)phys_ram_base;
83 else
84 return (unsigned long)addr - (unsigned long)phys_ram_base -
85 sram_off + MP_SRAM_BASE;
86}
87
88
89typedef enum i2c_state {
90 STOPPED = 0,
91 INITIALIZING,
92 SENDING_BIT7,
93 SENDING_BIT6,
94 SENDING_BIT5,
95 SENDING_BIT4,
96 SENDING_BIT3,
97 SENDING_BIT2,
98 SENDING_BIT1,
99 SENDING_BIT0,
100 WAITING_FOR_ACK,
101 RECEIVING_BIT7,
102 RECEIVING_BIT6,
103 RECEIVING_BIT5,
104 RECEIVING_BIT4,
105 RECEIVING_BIT3,
106 RECEIVING_BIT2,
107 RECEIVING_BIT1,
108 RECEIVING_BIT0,
109 SENDING_ACK
110} i2c_state;
111
112typedef struct i2c_interface {
113 i2c_bus *bus;
114 i2c_state state;
115 int last_data;
116 int last_clock;
117 uint8_t buffer;
118 int current_addr;
119} i2c_interface;
120
121static void i2c_enter_stop(i2c_interface *i2c)
122{
123 if (i2c->current_addr >= 0)
124 i2c_end_transfer(i2c->bus);
125 i2c->current_addr = -1;
126 i2c->state = STOPPED;
127}
128
129static void i2c_state_update(i2c_interface *i2c, int data, int clock)
130{
131 if (!i2c)
132 return;
133
134 switch (i2c->state) {
135 case STOPPED:
136 if (data == 0 && i2c->last_data == 1 && clock == 1)
137 i2c->state = INITIALIZING;
138 break;
139
140 case INITIALIZING:
141 if (clock == 0 && i2c->last_clock == 1 && data == 0)
142 i2c->state = SENDING_BIT7;
143 else
144 i2c_enter_stop(i2c);
145 break;
146
147 case SENDING_BIT7 ... SENDING_BIT0:
148 if (clock == 0 && i2c->last_clock == 1) {
149 i2c->buffer = (i2c->buffer << 1) | data;
150 i2c->state++; /* will end up in WAITING_FOR_ACK */
151 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
152 i2c_enter_stop(i2c);
153 break;
154
155 case WAITING_FOR_ACK:
156 if (clock == 0 && i2c->last_clock == 1) {
157 if (i2c->current_addr < 0) {
158 i2c->current_addr = i2c->buffer;
159 i2c_start_transfer(i2c->bus, i2c->current_addr & 0xfe,
160 i2c->buffer & 1);
161 } else
162 i2c_send(i2c->bus, i2c->buffer);
163 if (i2c->current_addr & 1) {
164 i2c->state = RECEIVING_BIT7;
165 i2c->buffer = i2c_recv(i2c->bus);
166 } else
167 i2c->state = SENDING_BIT7;
168 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
169 i2c_enter_stop(i2c);
170 break;
171
172 case RECEIVING_BIT7 ... RECEIVING_BIT0:
173 if (clock == 0 && i2c->last_clock == 1) {
174 i2c->state++; /* will end up in SENDING_ACK */
175 i2c->buffer <<= 1;
176 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
177 i2c_enter_stop(i2c);
178 break;
179
180 case SENDING_ACK:
181 if (clock == 0 && i2c->last_clock == 1) {
182 i2c->state = RECEIVING_BIT7;
183 if (data == 0)
184 i2c->buffer = i2c_recv(i2c->bus);
185 else
186 i2c_nack(i2c->bus);
187 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
188 i2c_enter_stop(i2c);
189 break;
190 }
191
192 i2c->last_data = data;
193 i2c->last_clock = clock;
194}
195
196static int i2c_get_data(i2c_interface *i2c)
197{
198 if (!i2c)
199 return 0;
200
201 switch (i2c->state) {
202 case RECEIVING_BIT7 ... RECEIVING_BIT0:
203 return (i2c->buffer >> 7);
204
205 case WAITING_FOR_ACK:
206 default:
207 return 0;
208 }
209}
210
211static i2c_interface *mixer_i2c;
212
213#ifdef HAS_AUDIO
214
215/* Audio register offsets */
216#define MP_AUDIO_PLAYBACK_MODE 0x00
217#define MP_AUDIO_CLOCK_DIV 0x18
218#define MP_AUDIO_IRQ_STATUS 0x20
219#define MP_AUDIO_IRQ_ENABLE 0x24
220#define MP_AUDIO_TX_START_LO 0x28
221#define MP_AUDIO_TX_THRESHOLD 0x2C
222#define MP_AUDIO_TX_STATUS 0x38
223#define MP_AUDIO_TX_START_HI 0x40
224
225/* Status register and IRQ enable bits */
226#define MP_AUDIO_TX_HALF (1 << 6)
227#define MP_AUDIO_TX_FULL (1 << 7)
228
229/* Playback mode bits */
230#define MP_AUDIO_16BIT_SAMPLE (1 << 0)
231#define MP_AUDIO_PLAYBACK_EN (1 << 7)
232#define MP_AUDIO_CLOCK_24MHZ (1 << 9)
233
234/* Wolfson 8750 I2C address */
235#define MP_WM_ADDR 0x34
236
237const char audio_name[] = "mv88w8618";
238
239typedef struct musicpal_audio_state {
240 uint32_t base;
241 qemu_irq irq;
242 uint32_t playback_mode;
243 uint32_t status;
244 uint32_t irq_enable;
245 unsigned long phys_buf;
246 void *target_buffer;
247 unsigned int threshold;
248 unsigned int play_pos;
249 unsigned int last_free;
250 uint32_t clock_div;
251 i2c_slave *wm;
252} musicpal_audio_state;
253
254static void audio_callback(void *opaque, int free_out, int free_in)
255{
256 musicpal_audio_state *s = opaque;
257 int16_t channel[2];
258 int pos, block_size;
259
260 if (!(s->playback_mode & MP_AUDIO_PLAYBACK_EN))
261 return;
262
263 if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
264 free_out <<= 2;
265 else
266 free_out <<= 1;
267
268 block_size = s->threshold/2;
269 if (free_out - s->last_free < block_size)
270 return;
271
272 if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
273 for (pos = 0; pos < block_size; pos += 4)
274 wm8750_dac_dat(s->wm,
275 *(uint32_t *)(s->target_buffer + s->play_pos + pos));
276 else
277 for (pos = 0; pos < block_size; pos += 2) {
278 channel[0] = cpu_to_le16(2 *
279 *(int8_t *)(s->target_buffer + s->play_pos + pos));
280 channel[1] = cpu_to_le16(2 *
281 *(int8_t *)(s->target_buffer + s->play_pos + pos + 1));
282 wm8750_dac_dat(s->wm, channel[0] | (channel[1] << 16));
283 }
284
285 s->last_free = free_out - block_size;
286
287 if (s->play_pos == 0) {
288 s->status |= MP_AUDIO_TX_HALF;
289 s->play_pos = block_size;
290 } else {
291 s->status |= MP_AUDIO_TX_FULL;
292 s->play_pos = 0;
293 }
294
295 if (s->status & s->irq_enable)
296 qemu_irq_raise(s->irq);
297}
298
299static uint32_t musicpal_audio_read(void *opaque, target_phys_addr_t offset)
300{
301 musicpal_audio_state *s = opaque;
302
303 offset -= s->base;
304 switch (offset) {
305 case MP_AUDIO_PLAYBACK_MODE:
306 return s->playback_mode;
307
308 case MP_AUDIO_CLOCK_DIV:
309 return s->clock_div;
310
311 case MP_AUDIO_IRQ_STATUS:
312 return s->status;
313
314 case MP_AUDIO_IRQ_ENABLE:
315 return s->irq_enable;
316
317 case MP_AUDIO_TX_STATUS:
318 return s->play_pos >> 2;
319
320 default:
321 return 0;
322 }
323}
324
325static void musicpal_audio_write(void *opaque, target_phys_addr_t offset,
326 uint32_t value)
327{
328 musicpal_audio_state *s = opaque;
329
330 offset -= s->base;
331 switch (offset) {
332 case MP_AUDIO_PLAYBACK_MODE:
333 if (value & MP_AUDIO_PLAYBACK_EN &&
334 !(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) {
335 s->status = 0;
336 s->last_free = 0;
337 s->play_pos = 0;
338 }
339 s->playback_mode = value;
340 break;
341
342 case MP_AUDIO_CLOCK_DIV:
343 s->clock_div = value;
344 s->last_free = 0;
345 s->play_pos = 0;
346 break;
347
348 case MP_AUDIO_IRQ_STATUS:
349 s->status &= ~value;
350 break;
351
352 case MP_AUDIO_IRQ_ENABLE:
353 s->irq_enable = value;
354 if (s->status & s->irq_enable)
355 qemu_irq_raise(s->irq);
356 break;
357
358 case MP_AUDIO_TX_START_LO:
359 s->phys_buf = (s->phys_buf & 0xFFFF0000) | (value & 0xFFFF);
360 s->target_buffer = target2host_addr(s->phys_buf);
361 s->play_pos = 0;
362 s->last_free = 0;
363 break;
364
365 case MP_AUDIO_TX_THRESHOLD:
366 s->threshold = (value + 1) * 4;
367 break;
368
369 case MP_AUDIO_TX_START_HI:
370 s->phys_buf = (s->phys_buf & 0xFFFF) | (value << 16);
371 s->target_buffer = target2host_addr(s->phys_buf);
372 s->play_pos = 0;
373 s->last_free = 0;
374 break;
375 }
376}
377
378static void musicpal_audio_reset(void *opaque)
379{
380 musicpal_audio_state *s = opaque;
381
382 s->playback_mode = 0;
383 s->status = 0;
384 s->irq_enable = 0;
385}
386
387static CPUReadMemoryFunc *musicpal_audio_readfn[] = {
388 musicpal_audio_read,
389 musicpal_audio_read,
390 musicpal_audio_read
391};
392
393static CPUWriteMemoryFunc *musicpal_audio_writefn[] = {
394 musicpal_audio_write,
395 musicpal_audio_write,
396 musicpal_audio_write
397};
398
399static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
400{
401 AudioState *audio;
402 musicpal_audio_state *s;
403 i2c_interface *i2c;
404 int iomemtype;
405
406 audio = AUD_init();
407 if (!audio) {
408 AUD_log(audio_name, "No audio state\n");
409 return NULL;
410 }
411
412 s = qemu_mallocz(sizeof(musicpal_audio_state));
413 if (!s)
414 return NULL;
415 s->base = base;
416 s->irq = irq;
417
418 i2c = qemu_mallocz(sizeof(i2c_interface));
419 if (!i2c)
420 return NULL;
421 i2c->bus = i2c_init_bus();
422 i2c->current_addr = -1;
423
424 s->wm = wm8750_init(i2c->bus, audio);
425 if (!s->wm)
426 return NULL;
427 i2c_set_slave_address(s->wm, MP_WM_ADDR);
428 wm8750_data_req_set(s->wm, audio_callback, s);
429
430 iomemtype = cpu_register_io_memory(0, musicpal_audio_readfn,
431 musicpal_audio_writefn, s);
432 cpu_register_physical_memory(base, MP_AUDIO_SIZE, iomemtype);
433
434 qemu_register_reset(musicpal_audio_reset, s);
435
436 return i2c;
437}
438#else /* !HAS_AUDIO */
439static i2c_interface *musicpal_audio_init(uint32_t base, qemu_irq irq)
440{
441 return NULL;
442}
443#endif /* !HAS_AUDIO */
444
445/* Ethernet register offsets */
446#define MP_ETH_SMIR 0x010
447#define MP_ETH_PCXR 0x408
448#define MP_ETH_SDCMR 0x448
449#define MP_ETH_ICR 0x450
450#define MP_ETH_IMR 0x458
451#define MP_ETH_FRDP0 0x480
452#define MP_ETH_FRDP1 0x484
453#define MP_ETH_FRDP2 0x488
454#define MP_ETH_FRDP3 0x48C
455#define MP_ETH_CRDP0 0x4A0
456#define MP_ETH_CRDP1 0x4A4
457#define MP_ETH_CRDP2 0x4A8
458#define MP_ETH_CRDP3 0x4AC
459#define MP_ETH_CTDP0 0x4E0
460#define MP_ETH_CTDP1 0x4E4
461#define MP_ETH_CTDP2 0x4E8
462#define MP_ETH_CTDP3 0x4EC
463
464/* MII PHY access */
465#define MP_ETH_SMIR_DATA 0x0000FFFF
466#define MP_ETH_SMIR_ADDR 0x03FF0000
467#define MP_ETH_SMIR_OPCODE (1 << 26) /* Read value */
468#define MP_ETH_SMIR_RDVALID (1 << 27)
469
470/* PHY registers */
471#define MP_ETH_PHY1_BMSR 0x00210000
472#define MP_ETH_PHY1_PHYSID1 0x00410000
473#define MP_ETH_PHY1_PHYSID2 0x00610000
474
475#define MP_PHY_BMSR_LINK 0x0004
476#define MP_PHY_BMSR_AUTONEG 0x0008
477
478#define MP_PHY_88E3015 0x01410E20
479
480/* TX descriptor status */
481#define MP_ETH_TX_OWN (1 << 31)
482
483/* RX descriptor status */
484#define MP_ETH_RX_OWN (1 << 31)
485
486/* Interrupt cause/mask bits */
487#define MP_ETH_IRQ_RX_BIT 0
488#define MP_ETH_IRQ_RX (1 << MP_ETH_IRQ_RX_BIT)
489#define MP_ETH_IRQ_TXHI_BIT 2
490#define MP_ETH_IRQ_TXLO_BIT 3
491
492/* Port config bits */
493#define MP_ETH_PCXR_2BSM_BIT 28 /* 2-byte incoming suffix */
494
495/* SDMA command bits */
496#define MP_ETH_CMD_TXHI (1 << 23)
497#define MP_ETH_CMD_TXLO (1 << 22)
498
499typedef struct mv88w8618_tx_desc {
500 uint32_t cmdstat;
501 uint16_t res;
502 uint16_t bytes;
503 uint32_t buffer;
504 uint32_t next;
505} mv88w8618_tx_desc;
506
507typedef struct mv88w8618_rx_desc {
508 uint32_t cmdstat;
509 uint16_t bytes;
510 uint16_t buffer_size;
511 uint32_t buffer;
512 uint32_t next;
513} mv88w8618_rx_desc;
514
515typedef struct mv88w8618_eth_state {
516 uint32_t base;
517 qemu_irq irq;
518 uint32_t smir;
519 uint32_t icr;
520 uint32_t imr;
521 int vlan_header;
522 mv88w8618_tx_desc *tx_queue[2];
523 mv88w8618_rx_desc *rx_queue[4];
524 mv88w8618_rx_desc *frx_queue[4];
525 mv88w8618_rx_desc *cur_rx[4];
526 VLANClientState *vc;
527} mv88w8618_eth_state;
528
529static int eth_can_receive(void *opaque)
530{
531 return 1;
532}
533
534static void eth_receive(void *opaque, const uint8_t *buf, int size)
535{
536 mv88w8618_eth_state *s = opaque;
537 mv88w8618_rx_desc *desc;
538 int i;
539
540 for (i = 0; i < 4; i++) {
541 desc = s->cur_rx[i];
542 if (!desc)
543 continue;
544 do {
545 if (le32_to_cpu(desc->cmdstat) & MP_ETH_RX_OWN &&
546 le16_to_cpu(desc->buffer_size) >= size) {
547 memcpy(target2host_addr(le32_to_cpu(desc->buffer) +
548 s->vlan_header),
549 buf, size);
550 desc->bytes = cpu_to_le16(size + s->vlan_header);
551 desc->cmdstat &= cpu_to_le32(~MP_ETH_RX_OWN);
552 s->cur_rx[i] = target2host_addr(le32_to_cpu(desc->next));
553
554 s->icr |= MP_ETH_IRQ_RX;
555 if (s->icr & s->imr)
556 qemu_irq_raise(s->irq);
557 return;
558 }
559 desc = target2host_addr(le32_to_cpu(desc->next));
560 } while (desc != s->rx_queue[i]);
561 }
562}
563
564static void eth_send(mv88w8618_eth_state *s, int queue_index)
565{
566 mv88w8618_tx_desc *desc = s->tx_queue[queue_index];
567
568 do {
569 if (le32_to_cpu(desc->cmdstat) & MP_ETH_TX_OWN) {
570 qemu_send_packet(s->vc,
571 target2host_addr(le32_to_cpu(desc->buffer)),
572 le16_to_cpu(desc->bytes));
573 desc->cmdstat &= cpu_to_le32(~MP_ETH_TX_OWN);
574 s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index);
575 }
576 desc = target2host_addr(le32_to_cpu(desc->next));
577 } while (desc != s->tx_queue[queue_index]);
578}
579
580static uint32_t mv88w8618_eth_read(void *opaque, target_phys_addr_t offset)
581{
582 mv88w8618_eth_state *s = opaque;
583
584 offset -= s->base;
585 switch (offset) {
586 case MP_ETH_SMIR:
587 if (s->smir & MP_ETH_SMIR_OPCODE) {
588 switch (s->smir & MP_ETH_SMIR_ADDR) {
589 case MP_ETH_PHY1_BMSR:
590 return MP_PHY_BMSR_LINK | MP_PHY_BMSR_AUTONEG |
591 MP_ETH_SMIR_RDVALID;
592 case MP_ETH_PHY1_PHYSID1:
593 return (MP_PHY_88E3015 >> 16) | MP_ETH_SMIR_RDVALID;
594 case MP_ETH_PHY1_PHYSID2:
595 return (MP_PHY_88E3015 & 0xFFFF) | MP_ETH_SMIR_RDVALID;
596 default:
597 return MP_ETH_SMIR_RDVALID;
598 }
599 }
600 return 0;
601
602 case MP_ETH_ICR:
603 return s->icr;
604
605 case MP_ETH_IMR:
606 return s->imr;
607
608 case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
609 return host2target_addr(s->frx_queue[(offset - MP_ETH_FRDP0)/4]);
610
611 case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
612 return host2target_addr(s->rx_queue[(offset - MP_ETH_CRDP0)/4]);
613
614 case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
615 return host2target_addr(s->tx_queue[(offset - MP_ETH_CTDP0)/4]);
616
617 default:
618 return 0;
619 }
620}
621
622static void mv88w8618_eth_write(void *opaque, target_phys_addr_t offset,
623 uint32_t value)
624{
625 mv88w8618_eth_state *s = opaque;
626
627 offset -= s->base;
628 switch (offset) {
629 case MP_ETH_SMIR:
630 s->smir = value;
631 break;
632
633 case MP_ETH_PCXR:
634 s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2;
635 break;
636
637 case MP_ETH_SDCMR:
638 if (value & MP_ETH_CMD_TXHI)
639 eth_send(s, 1);
640 if (value & MP_ETH_CMD_TXLO)
641 eth_send(s, 0);
642 if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr)
643 qemu_irq_raise(s->irq);
644 break;
645
646 case MP_ETH_ICR:
647 s->icr &= value;
648 break;
649
650 case MP_ETH_IMR:
651 s->imr = value;
652 if (s->icr & s->imr)
653 qemu_irq_raise(s->irq);
654 break;
655
656 case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
657 s->frx_queue[(offset - MP_ETH_FRDP0)/4] = target2host_addr(value);
658 break;
659
660 case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
661 s->rx_queue[(offset - MP_ETH_CRDP0)/4] =
662 s->cur_rx[(offset - MP_ETH_CRDP0)/4] = target2host_addr(value);
663 break;
664
665 case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
666 s->tx_queue[(offset - MP_ETH_CTDP0)/4] = target2host_addr(value);
667 break;
668 }
669}
670
671static CPUReadMemoryFunc *mv88w8618_eth_readfn[] = {
672 mv88w8618_eth_read,
673 mv88w8618_eth_read,
674 mv88w8618_eth_read
675};
676
677static CPUWriteMemoryFunc *mv88w8618_eth_writefn[] = {
678 mv88w8618_eth_write,
679 mv88w8618_eth_write,
680 mv88w8618_eth_write
681};
682
683static void mv88w8618_eth_init(NICInfo *nd, uint32_t base, qemu_irq irq)
684{
685 mv88w8618_eth_state *s;
686 int iomemtype;
687
688 s = qemu_mallocz(sizeof(mv88w8618_eth_state));
689 if (!s)
690 return;
691 s->base = base;
692 s->irq = irq;
693 s->vc = qemu_new_vlan_client(nd->vlan, eth_receive, eth_can_receive, s);
694 iomemtype = cpu_register_io_memory(0, mv88w8618_eth_readfn,
695 mv88w8618_eth_writefn, s);
696 cpu_register_physical_memory(base, MP_ETH_SIZE, iomemtype);
697}
698
699/* LCD register offsets */
700#define MP_LCD_IRQCTRL 0x180
701#define MP_LCD_IRQSTAT 0x184
702#define MP_LCD_SPICTRL 0x1ac
703#define MP_LCD_INST 0x1bc
704#define MP_LCD_DATA 0x1c0
705
706/* Mode magics */
707#define MP_LCD_SPI_DATA 0x00100011
708#define MP_LCD_SPI_CMD 0x00104011
709#define MP_LCD_SPI_INVALID 0x00000000
710
711/* Commmands */
712#define MP_LCD_INST_SETPAGE0 0xB0
713/* ... */
714#define MP_LCD_INST_SETPAGE7 0xB7
715
716#define MP_LCD_TEXTCOLOR 0xe0e0ff /* RRGGBB */
717
718typedef struct musicpal_lcd_state {
719 uint32_t base;
720 uint32_t mode;
721 uint32_t irqctrl;
722 int page;
723 int page_off;
724 DisplayState *ds;
725 uint8_t video_ram[128*64/8];
726} musicpal_lcd_state;
727
728static uint32_t lcd_brightness;
729
730static uint8_t scale_lcd_color(uint8_t col)
731{
732 int tmp = col;
733
734 switch (lcd_brightness) {
735 case 0x00000007: /* 0 */
736 return 0;
737
738 case 0x00020000: /* 1 */
739 return (tmp * 1) / 7;
740
741 case 0x00020001: /* 2 */
742 return (tmp * 2) / 7;
743
744 case 0x00040000: /* 3 */
745 return (tmp * 3) / 7;
746
747 case 0x00010006: /* 4 */
748 return (tmp * 4) / 7;
749
750 case 0x00020005: /* 5 */
751 return (tmp * 5) / 7;
752
753 case 0x00040003: /* 6 */
754 return (tmp * 6) / 7;
755
756 case 0x00030004: /* 7 */
757 default:
758 return col;
759 }
760}
761
762static void set_lcd_pixel(musicpal_lcd_state *s, int x, int y, int col)
763{
764 int dx, dy;
765
766 for (dy = 0; dy < 3; dy++)
767 for (dx = 0; dx < 3; dx++) {
768 s->ds->data[(x*3 + dx + (y*3 + dy) * 128*3) * 4 + 0] =
769 scale_lcd_color(col);
770 s->ds->data[(x*3 + dx + (y*3 + dy) * 128*3) * 4 + 1] =
771 scale_lcd_color(col >> 8);
772 s->ds->data[(x*3 + dx + (y*3 + dy) * 128*3) * 4 + 2] =
773 scale_lcd_color(col >> 16);
774 }
775}
776
777static void lcd_refresh(void *opaque)
778{
779 musicpal_lcd_state *s = opaque;
780 int x, y;
781
782 for (x = 0; x < 128; x++)
783 for (y = 0; y < 64; y++)
784 if (s->video_ram[x + (y/8)*128] & (1 << (y % 8)))
785 set_lcd_pixel(s, x, y, MP_LCD_TEXTCOLOR);
786 else
787 set_lcd_pixel(s, x, y, 0);
788
789 dpy_update(s->ds, 0, 0, 128*3, 64*3);
790}
791
792static uint32_t musicpal_lcd_read(void *opaque, target_phys_addr_t offset)
793{
794 musicpal_lcd_state *s = opaque;
795
796 offset -= s->base;
797 switch (offset) {
798 case MP_LCD_IRQCTRL:
799 return s->irqctrl;
800
801 default:
802 return 0;
803 }
804}
805
806static void musicpal_lcd_write(void *opaque, target_phys_addr_t offset,
807 uint32_t value)
808{
809 musicpal_lcd_state *s = opaque;
810
811 offset -= s->base;
812 switch (offset) {
813 case MP_LCD_IRQCTRL:
814 s->irqctrl = value;
815 break;
816
817 case MP_LCD_SPICTRL:
818 if (value == MP_LCD_SPI_DATA || value == MP_LCD_SPI_CMD)
819 s->mode = value;
820 else
821 s->mode = MP_LCD_SPI_INVALID;
822 break;
823
824 case MP_LCD_INST:
825 if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) {
826 s->page = value - MP_LCD_INST_SETPAGE0;
827 s->page_off = 0;
828 }
829 break;
830
831 case MP_LCD_DATA:
832 if (s->mode == MP_LCD_SPI_CMD) {
833 if (value >= MP_LCD_INST_SETPAGE0 &&
834 value <= MP_LCD_INST_SETPAGE7) {
835 s->page = value - MP_LCD_INST_SETPAGE0;
836 s->page_off = 0;
837 }
838 } else if (s->mode == MP_LCD_SPI_DATA) {
839 s->video_ram[s->page*128 + s->page_off] = value;
840 s->page_off = (s->page_off + 1) & 127;
841 }
842 break;
843 }
844}
845
846static CPUReadMemoryFunc *musicpal_lcd_readfn[] = {
847 musicpal_lcd_read,
848 musicpal_lcd_read,
849 musicpal_lcd_read
850};
851
852static CPUWriteMemoryFunc *musicpal_lcd_writefn[] = {
853 musicpal_lcd_write,
854 musicpal_lcd_write,
855 musicpal_lcd_write
856};
857
858static void musicpal_lcd_init(DisplayState *ds, uint32_t base)
859{
860 musicpal_lcd_state *s;
861 int iomemtype;
862
863 s = qemu_mallocz(sizeof(musicpal_lcd_state));
864 if (!s)
865 return;
866 s->base = base;
867 s->ds = ds;
868 iomemtype = cpu_register_io_memory(0, musicpal_lcd_readfn,
869 musicpal_lcd_writefn, s);
870 cpu_register_physical_memory(base, MP_LCD_SIZE, iomemtype);
871
872 graphic_console_init(ds, lcd_refresh, NULL, NULL, NULL, s);
873 dpy_resize(ds, 128*3, 64*3);
874}
875
876/* PIC register offsets */
877#define MP_PIC_STATUS 0x00
878#define MP_PIC_ENABLE_SET 0x08
879#define MP_PIC_ENABLE_CLR 0x0C
880
881typedef struct mv88w8618_pic_state
882{
883 uint32_t base;
884 uint32_t level;
885 uint32_t enabled;
886 qemu_irq parent_irq;
887} mv88w8618_pic_state;
888
889static void mv88w8618_pic_update(mv88w8618_pic_state *s)
890{
891 qemu_set_irq(s->parent_irq, (s->level & s->enabled));
892}
893
894static void mv88w8618_pic_set_irq(void *opaque, int irq, int level)
895{
896 mv88w8618_pic_state *s = opaque;
897
898 if (level)
899 s->level |= 1 << irq;
900 else
901 s->level &= ~(1 << irq);
902 mv88w8618_pic_update(s);
903}
904
905static uint32_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset)
906{
907 mv88w8618_pic_state *s = opaque;
908
909 offset -= s->base;
910 switch (offset) {
911 case MP_PIC_STATUS:
912 return s->level & s->enabled;
913
914 default:
915 return 0;
916 }
917}
918
919static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset,
920 uint32_t value)
921{
922 mv88w8618_pic_state *s = opaque;
923
924 offset -= s->base;
925 switch (offset) {
926 case MP_PIC_ENABLE_SET:
927 s->enabled |= value;
928 break;
929
930 case MP_PIC_ENABLE_CLR:
931 s->enabled &= ~value;
932 s->level &= ~value;
933 break;
934 }
935 mv88w8618_pic_update(s);
936}
937
938static void mv88w8618_pic_reset(void *opaque)
939{
940 mv88w8618_pic_state *s = opaque;
941
942 s->level = 0;
943 s->enabled = 0;
944}
945
946static CPUReadMemoryFunc *mv88w8618_pic_readfn[] = {
947 mv88w8618_pic_read,
948 mv88w8618_pic_read,
949 mv88w8618_pic_read
950};
951
952static CPUWriteMemoryFunc *mv88w8618_pic_writefn[] = {
953 mv88w8618_pic_write,
954 mv88w8618_pic_write,
955 mv88w8618_pic_write
956};
957
958static qemu_irq *mv88w8618_pic_init(uint32_t base, qemu_irq parent_irq)
959{
960 mv88w8618_pic_state *s;
961 int iomemtype;
962 qemu_irq *qi;
963
964 s = qemu_mallocz(sizeof(mv88w8618_pic_state));
965 if (!s)
966 return NULL;
967 qi = qemu_allocate_irqs(mv88w8618_pic_set_irq, s, 32);
968 s->base = base;
969 s->parent_irq = parent_irq;
970 iomemtype = cpu_register_io_memory(0, mv88w8618_pic_readfn,
971 mv88w8618_pic_writefn, s);
972 cpu_register_physical_memory(base, MP_PIC_SIZE, iomemtype);
973
974 qemu_register_reset(mv88w8618_pic_reset, s);
975
976 return qi;
977}
978
979/* PIT register offsets */
980#define MP_PIT_TIMER1_LENGTH 0x00
981/* ... */
982#define MP_PIT_TIMER4_LENGTH 0x0C
983#define MP_PIT_CONTROL 0x10
984#define MP_PIT_TIMER1_VALUE 0x14
985/* ... */
986#define MP_PIT_TIMER4_VALUE 0x20
987#define MP_BOARD_RESET 0x34
988
989/* Magic board reset value (probably some watchdog behind it) */
990#define MP_BOARD_RESET_MAGIC 0x10000
991
992typedef struct mv88w8618_timer_state {
993 ptimer_state *timer;
994 uint32_t limit;
995 int freq;
996 qemu_irq irq;
997} mv88w8618_timer_state;
998
999typedef struct mv88w8618_pit_state {
1000 void *timer[4];
1001 uint32_t control;
1002 uint32_t base;
1003} mv88w8618_pit_state;
1004
1005static void mv88w8618_timer_tick(void *opaque)
1006{
1007 mv88w8618_timer_state *s = opaque;
1008
1009 qemu_irq_raise(s->irq);
1010}
1011
1012static void *mv88w8618_timer_init(uint32_t freq, qemu_irq irq)
1013{
1014 mv88w8618_timer_state *s;
1015 QEMUBH *bh;
1016
1017 s = qemu_mallocz(sizeof(mv88w8618_timer_state));
1018 s->irq = irq;
1019 s->freq = freq;
1020
1021 bh = qemu_bh_new(mv88w8618_timer_tick, s);
1022 s->timer = ptimer_init(bh);
1023
1024 return s;
1025}
1026
1027static uint32_t mv88w8618_pit_read(void *opaque, target_phys_addr_t offset)
1028{
1029 mv88w8618_pit_state *s = opaque;
1030 mv88w8618_timer_state *t;
1031
1032 offset -= s->base;
1033 switch (offset) {
1034 case MP_PIT_TIMER1_VALUE ... MP_PIT_TIMER4_VALUE:
1035 t = s->timer[(offset-MP_PIT_TIMER1_VALUE) >> 2];
1036 return ptimer_get_count(t->timer);
1037
1038 default:
1039 return 0;
1040 }
1041}
1042
1043static void mv88w8618_pit_write(void *opaque, target_phys_addr_t offset,
1044 uint32_t value)
1045{
1046 mv88w8618_pit_state *s = opaque;
1047 mv88w8618_timer_state *t;
1048 int i;
1049
1050 offset -= s->base;
1051 switch (offset) {
1052 case MP_PIT_TIMER1_LENGTH ... MP_PIT_TIMER4_LENGTH:
1053 t = s->timer[offset >> 2];
1054 t->limit = value;
1055 ptimer_set_limit(t->timer, t->limit, 1);
1056 break;
1057
1058 case MP_PIT_CONTROL:
1059 for (i = 0; i < 4; i++) {
1060 if (value & 0xf) {
1061 t = s->timer[i];
1062 ptimer_set_limit(t->timer, t->limit, 0);
1063 ptimer_set_freq(t->timer, t->freq);
1064 ptimer_run(t->timer, 0);
1065 }
1066 value >>= 4;
1067 }
1068 break;
1069
1070 case MP_BOARD_RESET:
1071 if (value == MP_BOARD_RESET_MAGIC)
1072 qemu_system_reset_request();
1073 break;
1074 }
1075}
1076
1077static CPUReadMemoryFunc *mv88w8618_pit_readfn[] = {
1078 mv88w8618_pit_read,
1079 mv88w8618_pit_read,
1080 mv88w8618_pit_read
1081};
1082
1083static CPUWriteMemoryFunc *mv88w8618_pit_writefn[] = {
1084 mv88w8618_pit_write,
1085 mv88w8618_pit_write,
1086 mv88w8618_pit_write
1087};
1088
1089static void mv88w8618_pit_init(uint32_t base, qemu_irq *pic, int irq)
1090{
1091 int iomemtype;
1092 mv88w8618_pit_state *s;
1093
1094 s = qemu_mallocz(sizeof(mv88w8618_pit_state));
1095 if (!s)
1096 return;
1097
1098 s->base = base;
1099 /* Letting them all run at 1 MHz is likely just a pragmatic
1100 * simplification. */
1101 s->timer[0] = mv88w8618_timer_init(1000000, pic[irq]);
1102 s->timer[1] = mv88w8618_timer_init(1000000, pic[irq + 1]);
1103 s->timer[2] = mv88w8618_timer_init(1000000, pic[irq + 2]);
1104 s->timer[3] = mv88w8618_timer_init(1000000, pic[irq + 3]);
1105
1106 iomemtype = cpu_register_io_memory(0, mv88w8618_pit_readfn,
1107 mv88w8618_pit_writefn, s);
1108 cpu_register_physical_memory(base, MP_PIT_SIZE, iomemtype);
1109}
1110
1111/* Flash config register offsets */
1112#define MP_FLASHCFG_CFGR0 0x04
1113
1114typedef struct mv88w8618_flashcfg_state {
1115 uint32_t base;
1116 uint32_t cfgr0;
1117} mv88w8618_flashcfg_state;
1118
1119static uint32_t mv88w8618_flashcfg_read(void *opaque,
1120 target_phys_addr_t offset)
1121{
1122 mv88w8618_flashcfg_state *s = opaque;
1123
1124 offset -= s->base;
1125 switch (offset) {
1126 case MP_FLASHCFG_CFGR0:
1127 return s->cfgr0;
1128
1129 default:
1130 return 0;
1131 }
1132}
1133
1134static void mv88w8618_flashcfg_write(void *opaque, target_phys_addr_t offset,
1135 uint32_t value)
1136{
1137 mv88w8618_flashcfg_state *s = opaque;
1138
1139 offset -= s->base;
1140 switch (offset) {
1141 case MP_FLASHCFG_CFGR0:
1142 s->cfgr0 = value;
1143 break;
1144 }
1145}
1146
1147static CPUReadMemoryFunc *mv88w8618_flashcfg_readfn[] = {
1148 mv88w8618_flashcfg_read,
1149 mv88w8618_flashcfg_read,
1150 mv88w8618_flashcfg_read
1151};
1152
1153static CPUWriteMemoryFunc *mv88w8618_flashcfg_writefn[] = {
1154 mv88w8618_flashcfg_write,
1155 mv88w8618_flashcfg_write,
1156 mv88w8618_flashcfg_write
1157};
1158
1159static void mv88w8618_flashcfg_init(uint32_t base)
1160{
1161 int iomemtype;
1162 mv88w8618_flashcfg_state *s;
1163
1164 s = qemu_mallocz(sizeof(mv88w8618_flashcfg_state));
1165 if (!s)
1166 return;
1167
1168 s->base = base;
1169 s->cfgr0 = 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
1170 iomemtype = cpu_register_io_memory(0, mv88w8618_flashcfg_readfn,
1171 mv88w8618_flashcfg_writefn, s);
1172 cpu_register_physical_memory(base, MP_FLASHCFG_SIZE, iomemtype);
1173}
1174
1175/* Various registers in the 0x80000000 domain */
1176#define MP_BOARD_REVISION 0x2018
1177
1178#define MP_WLAN_MAGIC1 0xc11c
1179#define MP_WLAN_MAGIC2 0xc124
1180
1181#define MP_GPIO_OE_LO 0xd008
1182#define MP_GPIO_OUT_LO 0xd00c
1183#define MP_GPIO_IN_LO 0xd010
1184#define MP_GPIO_ISR_LO 0xd020
1185#define MP_GPIO_OE_HI 0xd508
1186#define MP_GPIO_OUT_HI 0xd50c
1187#define MP_GPIO_IN_HI 0xd510
1188#define MP_GPIO_ISR_HI 0xd520
1189
1190/* GPIO bits & masks */
1191#define MP_GPIO_WHEEL_VOL (1 << 8)
1192#define MP_GPIO_WHEEL_VOL_INV (1 << 9)
1193#define MP_GPIO_WHEEL_NAV (1 << 10)
1194#define MP_GPIO_WHEEL_NAV_INV (1 << 11)
1195#define MP_GPIO_LCD_BRIGHTNESS 0x00070000
1196#define MP_GPIO_BTN_FAVORITS (1 << 19)
1197#define MP_GPIO_BTN_MENU (1 << 20)
1198#define MP_GPIO_BTN_VOLUME (1 << 21)
1199#define MP_GPIO_BTN_NAVIGATION (1 << 22)
1200#define MP_GPIO_I2C_DATA_BIT 29
1201#define MP_GPIO_I2C_DATA (1 << MP_GPIO_I2C_DATA_BIT)
1202#define MP_GPIO_I2C_CLOCK_BIT 30
1203
1204/* LCD brightness bits in GPIO_OE_HI */
1205#define MP_OE_LCD_BRIGHTNESS 0x0007
1206
1207static uint32_t musicpal_read(void *opaque, target_phys_addr_t offset)
1208{
1209 offset -= 0x80000000;
1210 switch (offset) {
1211 case MP_BOARD_REVISION:
1212 return 0x0031;
1213
1214 case MP_GPIO_OE_HI: /* used for LCD brightness control */
1215 return lcd_brightness & MP_OE_LCD_BRIGHTNESS;
1216
1217 case MP_GPIO_OUT_LO:
1218 return gpio_out_state & 0xFFFF;
1219 case MP_GPIO_OUT_HI:
1220 return gpio_out_state >> 16;
1221
1222 case MP_GPIO_IN_LO:
1223 return gpio_in_state & 0xFFFF;
1224 case MP_GPIO_IN_HI:
1225 /* Update received I2C data */
1226 gpio_in_state = (gpio_in_state & ~MP_GPIO_I2C_DATA) |
1227 (i2c_get_data(mixer_i2c) << MP_GPIO_I2C_DATA_BIT);
1228 return gpio_in_state >> 16;
1229
1230 /* This is a simplification of reality */
1231 case MP_GPIO_ISR_LO:
1232 return ~gpio_in_state & 0xFFFF;
1233 case MP_GPIO_ISR_HI:
1234 return ~gpio_in_state >> 16;
1235
1236 /* Workaround to allow loading the binary-only wlandrv.ko crap
1237 * from the original Freecom firmware. */
1238 case MP_WLAN_MAGIC1:
1239 return ~3;
1240 case MP_WLAN_MAGIC2:
1241 return -1;
1242
1243 default:
1244 return 0;
1245 }
1246}
1247
1248static void musicpal_write(void *opaque, target_phys_addr_t offset,
1249 uint32_t value)
1250{
1251 offset -= 0x80000000;
1252 switch (offset) {
1253 case MP_GPIO_OE_HI: /* used for LCD brightness control */
1254 lcd_brightness = (lcd_brightness & MP_GPIO_LCD_BRIGHTNESS) |
1255 (value & MP_OE_LCD_BRIGHTNESS);
1256 break;
1257
1258 case MP_GPIO_OUT_LO:
1259 gpio_out_state = (gpio_out_state & 0xFFFF0000) | (value & 0xFFFF);
1260 break;
1261 case MP_GPIO_OUT_HI:
1262 gpio_out_state = (gpio_out_state & 0xFFFF) | (value << 16);
1263 lcd_brightness = (lcd_brightness & 0xFFFF) |
1264 (gpio_out_state & MP_GPIO_LCD_BRIGHTNESS);
1265 i2c_state_update(mixer_i2c,
1266 (gpio_out_state >> MP_GPIO_I2C_DATA_BIT) & 1,
1267 (gpio_out_state >> MP_GPIO_I2C_CLOCK_BIT) & 1);
1268 break;
1269
1270 }
1271}
1272
1273/* Keyboard codes & masks */
1274#define KEY_PRESSED 0x80
1275#define KEY_CODE 0x7f
1276
1277#define KEYCODE_TAB 0x0f
1278#define KEYCODE_ENTER 0x1c
1279#define KEYCODE_F 0x21
1280#define KEYCODE_M 0x32
1281
1282#define KEYCODE_EXTENDED 0xe0
1283#define KEYCODE_UP 0x48
1284#define KEYCODE_DOWN 0x50
1285#define KEYCODE_LEFT 0x4b
1286#define KEYCODE_RIGHT 0x4d
1287
1288static void musicpal_key_event(void *opaque, int keycode)
1289{
1290 qemu_irq irq = opaque;
1291 uint32_t event = 0;
1292 static int kbd_extended;
1293
1294 if (keycode == KEYCODE_EXTENDED) {
1295 kbd_extended = 1;
1296 return;
1297 }
1298
1299 if (kbd_extended)
1300 switch (keycode & KEY_CODE) {
1301 case KEYCODE_UP:
1302 event = MP_GPIO_WHEEL_NAV | MP_GPIO_WHEEL_NAV_INV;
1303 break;
1304
1305 case KEYCODE_DOWN:
1306 event = MP_GPIO_WHEEL_NAV;
1307 break;
1308
1309 case KEYCODE_LEFT:
1310 event = MP_GPIO_WHEEL_VOL | MP_GPIO_WHEEL_VOL_INV;
1311 break;
1312
1313 case KEYCODE_RIGHT:
1314 event = MP_GPIO_WHEEL_VOL;
1315 break;
1316 }
1317 else
1318 switch (keycode & KEY_CODE) {
1319 case KEYCODE_F:
1320 event = MP_GPIO_BTN_FAVORITS;
1321 break;
1322
1323 case KEYCODE_TAB:
1324 event = MP_GPIO_BTN_VOLUME;
1325 break;
1326
1327 case KEYCODE_ENTER:
1328 event = MP_GPIO_BTN_NAVIGATION;
1329 break;
1330
1331 case KEYCODE_M:
1332 event = MP_GPIO_BTN_MENU;
1333 break;
1334 }
1335
1336 if (keycode & KEY_PRESSED)
1337 gpio_in_state |= event;
1338 else if (gpio_in_state & event) {
1339 gpio_in_state &= ~event;
1340 qemu_irq_raise(irq);
1341 }
1342
1343 kbd_extended = 0;
1344}
1345
1346static CPUReadMemoryFunc *musicpal_readfn[] = {
1347 musicpal_read,
1348 musicpal_read,
1349 musicpal_read,
1350};
1351
1352static CPUWriteMemoryFunc *musicpal_writefn[] = {
1353 musicpal_write,
1354 musicpal_write,
1355 musicpal_write,
1356};
1357
1358static struct arm_boot_info musicpal_binfo = {
1359 .loader_start = 0x0,
1360 .board_id = 0x20e,
1361};
1362
1363static void musicpal_init(int ram_size, int vga_ram_size,
1364 const char *boot_device, DisplayState *ds,
1365 const char *kernel_filename, const char *kernel_cmdline,
1366 const char *initrd_filename, const char *cpu_model)
1367{
1368 CPUState *env;
1369 qemu_irq *pic;
1370 int index;
1371 int iomemtype;
1372 unsigned long flash_size;
1373
1374 if (!cpu_model)
1375 cpu_model = "arm926";
1376
1377 env = cpu_init(cpu_model);
1378 if (!env) {
1379 fprintf(stderr, "Unable to find CPU definition\n");
1380 exit(1);
1381 }
1382 pic = arm_pic_init_cpu(env);
1383
1384 /* For now we use a fixed - the original - RAM size */
1385 cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE,
1386 qemu_ram_alloc(MP_RAM_DEFAULT_SIZE));
1387
1388 sram_off = qemu_ram_alloc(MP_SRAM_SIZE);
1389 cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off);
1390
1391 /* Catch various stuff not handled by separate subsystems */
1392 iomemtype = cpu_register_io_memory(0, musicpal_readfn,
1393 musicpal_writefn, first_cpu);
1394 cpu_register_physical_memory(0x80000000, 0x10000, iomemtype);
1395
1396 pic = mv88w8618_pic_init(MP_PIC_BASE, pic[ARM_PIC_CPU_IRQ]);
1397 mv88w8618_pit_init(MP_PIT_BASE, pic, MP_TIMER1_IRQ);
1398
1399 if (serial_hds[0])
1400 serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], /*1825000,*/
1401 serial_hds[0], 1);
1402 if (serial_hds[1])
1403 serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], /*1825000,*/
1404 serial_hds[1], 1);
1405
1406 /* Register flash */
1407 index = drive_get_index(IF_PFLASH, 0, 0);
1408 if (index != -1) {
1409 flash_size = bdrv_getlength(drives_table[index].bdrv);
1410 if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 &&
1411 flash_size != 32*1024*1024) {
1412 fprintf(stderr, "Invalid flash image size\n");
1413 exit(1);
1414 }
1415
1416 /*
1417 * The original U-Boot accesses the flash at 0xFE000000 instead of
1418 * 0xFF800000 (if there is 8 MB flash). So remap flash access if the
1419 * image is smaller than 32 MB.
1420 */
1421 pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size),
1422 drives_table[index].bdrv, 0x10000,
1423 (flash_size + 0xffff) >> 16,
1424 MP_FLASH_SIZE_MAX / flash_size,
1425 2, 0x00BF, 0x236D, 0x0000, 0x0000,
1426 0x5555, 0x2AAA);
1427 }
1428 mv88w8618_flashcfg_init(MP_FLASHCFG_BASE);
1429
1430 musicpal_lcd_init(ds, MP_LCD_BASE);
1431
1432 qemu_add_kbd_event_handler(musicpal_key_event, pic[MP_GPIO_IRQ]);
1433
1434 /*
1435 * Wait a bit to catch menu button during U-Boot start-up
1436 * (to trigger emergency update).
1437 */
1438 sleep(1);
1439
1440 mv88w8618_eth_init(&nd_table[0], MP_ETH_BASE, pic[MP_ETH_IRQ]);
1441
1442 mixer_i2c = musicpal_audio_init(MP_AUDIO_BASE, pic[MP_AUDIO_IRQ]);
1443
1444 musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE;
1445 musicpal_binfo.kernel_filename = kernel_filename;
1446 musicpal_binfo.kernel_cmdline = kernel_cmdline;
1447 musicpal_binfo.initrd_filename = initrd_filename;
1448 arm_load_kernel(first_cpu, &musicpal_binfo);
1449}
1450
1451QEMUMachine musicpal_machine = {
1452 "musicpal",
1453 "Marvell 88w8618 / MusicPal (ARM926EJ-S)",
1454 musicpal_init,
1455 MP_RAM_DEFAULT_SIZE + MP_SRAM_SIZE + MP_FLASH_SIZE_MAX + RAMSIZE_FIXED
1456};