]> git.proxmox.com Git - mirror_qemu.git/blame - hw/ne2000.c
Enable serial (tty) support on Solaris host, by Marion Hakanson.
[mirror_qemu.git] / hw / ne2000.c
CommitLineData
80cabfad
FB
1/*
2 * QEMU NE2000 emulation
3 *
4 * Copyright (c) 2003-2004 Fabrice Bellard
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
80cabfad
FB
24#include "vl.h"
25
26/* debug NE2000 card */
27//#define DEBUG_NE2000
28
b41a2cd1 29#define MAX_ETH_FRAME_SIZE 1514
80cabfad
FB
30
31#define E8390_CMD 0x00 /* The command register (for all pages) */
32/* Page 0 register offsets. */
33#define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
34#define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
35#define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
36#define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
37#define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
38#define EN0_TSR 0x04 /* Transmit status reg RD */
39#define EN0_TPSR 0x04 /* Transmit starting page WR */
40#define EN0_NCR 0x05 /* Number of collision reg RD */
41#define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
42#define EN0_FIFO 0x06 /* FIFO RD */
43#define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
44#define EN0_ISR 0x07 /* Interrupt status reg RD WR */
45#define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
46#define EN0_RSARLO 0x08 /* Remote start address reg 0 */
47#define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
48#define EN0_RSARHI 0x09 /* Remote start address reg 1 */
49#define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
089af991 50#define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
80cabfad 51#define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
089af991 52#define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
80cabfad
FB
53#define EN0_RSR 0x0c /* rx status reg RD */
54#define EN0_RXCR 0x0c /* RX configuration reg WR */
55#define EN0_TXCR 0x0d /* TX configuration reg WR */
56#define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
57#define EN0_DCFG 0x0e /* Data configuration reg WR */
58#define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
59#define EN0_IMR 0x0f /* Interrupt mask reg WR */
60#define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
61
62#define EN1_PHYS 0x11
63#define EN1_CURPAG 0x17
64#define EN1_MULT 0x18
65
a343df16
FB
66#define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
67#define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
68
089af991
FB
69#define EN3_CONFIG0 0x33
70#define EN3_CONFIG1 0x34
71#define EN3_CONFIG2 0x35
72#define EN3_CONFIG3 0x36
73
80cabfad
FB
74/* Register accessed at EN_CMD, the 8390 base addr. */
75#define E8390_STOP 0x01 /* Stop and reset the chip */
76#define E8390_START 0x02 /* Start the chip, clear reset */
77#define E8390_TRANS 0x04 /* Transmit a frame */
78#define E8390_RREAD 0x08 /* Remote read */
79#define E8390_RWRITE 0x10 /* Remote write */
80#define E8390_NODMA 0x20 /* Remote DMA */
81#define E8390_PAGE0 0x00 /* Select page chip registers */
82#define E8390_PAGE1 0x40 /* using the two high-order bits */
83#define E8390_PAGE2 0x80 /* Page 3 is invalid. */
84
85/* Bits in EN0_ISR - Interrupt status register */
86#define ENISR_RX 0x01 /* Receiver, no error */
87#define ENISR_TX 0x02 /* Transmitter, no error */
88#define ENISR_RX_ERR 0x04 /* Receiver, with error */
89#define ENISR_TX_ERR 0x08 /* Transmitter, with error */
90#define ENISR_OVER 0x10 /* Receiver overwrote the ring */
91#define ENISR_COUNTERS 0x20 /* Counters need emptying */
92#define ENISR_RDC 0x40 /* remote dma complete */
93#define ENISR_RESET 0x80 /* Reset completed */
94#define ENISR_ALL 0x3f /* Interrupts we will enable */
95
96/* Bits in received packet status byte and EN0_RSR*/
97#define ENRSR_RXOK 0x01 /* Received a good packet */
98#define ENRSR_CRC 0x02 /* CRC error */
99#define ENRSR_FAE 0x04 /* frame alignment error */
100#define ENRSR_FO 0x08 /* FIFO overrun */
101#define ENRSR_MPA 0x10 /* missed pkt */
102#define ENRSR_PHY 0x20 /* physical/multicast address */
103#define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
104#define ENRSR_DEF 0x80 /* deferring */
105
106/* Transmitted packet status, EN0_TSR. */
107#define ENTSR_PTX 0x01 /* Packet transmitted without error */
108#define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
109#define ENTSR_COL 0x04 /* The transmit collided at least once. */
110#define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
111#define ENTSR_CRS 0x10 /* The carrier sense was lost. */
112#define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
113#define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
114#define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
115
ee9dbb29
FB
116#define NE2000_PMEM_SIZE (32*1024)
117#define NE2000_PMEM_START (16*1024)
118#define NE2000_PMEM_END (NE2000_PMEM_SIZE+NE2000_PMEM_START)
119#define NE2000_MEM_SIZE NE2000_PMEM_END
80cabfad
FB
120
121typedef struct NE2000State {
122 uint8_t cmd;
123 uint32_t start;
124 uint32_t stop;
125 uint8_t boundary;
126 uint8_t tsr;
127 uint8_t tpsr;
128 uint16_t tcnt;
129 uint16_t rcnt;
130 uint32_t rsar;
8d6c7eb8 131 uint8_t rsr;
7c9d8e07 132 uint8_t rxcr;
80cabfad
FB
133 uint8_t isr;
134 uint8_t dcfg;
135 uint8_t imr;
136 uint8_t phys[6]; /* mac address */
137 uint8_t curpag;
138 uint8_t mult[8]; /* multicast mask array */
d537cf6c 139 qemu_irq irq;
4a9c9687 140 PCIDevice *pci_dev;
7c9d8e07
FB
141 VLANClientState *vc;
142 uint8_t macaddr[6];
80cabfad
FB
143 uint8_t mem[NE2000_MEM_SIZE];
144} NE2000State;
145
80cabfad
FB
146static void ne2000_reset(NE2000State *s)
147{
148 int i;
149
150 s->isr = ENISR_RESET;
7c9d8e07 151 memcpy(s->mem, s->macaddr, 6);
80cabfad
FB
152 s->mem[14] = 0x57;
153 s->mem[15] = 0x57;
154
155 /* duplicate prom data */
156 for(i = 15;i >= 0; i--) {
157 s->mem[2 * i] = s->mem[i];
158 s->mem[2 * i + 1] = s->mem[i];
159 }
160}
161
162static void ne2000_update_irq(NE2000State *s)
163{
164 int isr;
a343df16 165 isr = (s->isr & s->imr) & 0x7f;
a541f297 166#if defined(DEBUG_NE2000)
d537cf6c
PB
167 printf("NE2000: Set IRQ to %d (%02x %02x)\n",
168 isr ? 1 : 0, s->isr, s->imr);
a541f297 169#endif
d537cf6c 170 qemu_set_irq(s->irq, (isr != 0));
80cabfad
FB
171}
172
7c9d8e07
FB
173#define POLYNOMIAL 0x04c11db6
174
175/* From FreeBSD */
176/* XXX: optimize */
177static int compute_mcast_idx(const uint8_t *ep)
178{
179 uint32_t crc;
180 int carry, i, j;
181 uint8_t b;
182
183 crc = 0xffffffff;
184 for (i = 0; i < 6; i++) {
185 b = *ep++;
186 for (j = 0; j < 8; j++) {
187 carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
188 crc <<= 1;
189 b >>= 1;
190 if (carry)
191 crc = ((crc ^ POLYNOMIAL) | carry);
192 }
193 }
194 return (crc >> 26);
195}
196
d861b05e 197static int ne2000_buffer_full(NE2000State *s)
80cabfad 198{
80cabfad 199 int avail, index, boundary;
d861b05e 200
80cabfad
FB
201 index = s->curpag << 8;
202 boundary = s->boundary << 8;
28c1c656 203 if (index < boundary)
80cabfad
FB
204 avail = boundary - index;
205 else
206 avail = (s->stop - s->start) - (index - boundary);
207 if (avail < (MAX_ETH_FRAME_SIZE + 4))
d861b05e
PB
208 return 1;
209 return 0;
210}
211
212static int ne2000_can_receive(void *opaque)
213{
214 NE2000State *s = opaque;
215
216 if (s->cmd & E8390_STOP)
217 return 1;
218 return !ne2000_buffer_full(s);
80cabfad
FB
219}
220
b41a2cd1
FB
221#define MIN_BUF_SIZE 60
222
223static void ne2000_receive(void *opaque, const uint8_t *buf, int size)
80cabfad 224{
b41a2cd1 225 NE2000State *s = opaque;
80cabfad 226 uint8_t *p;
7c9d8e07 227 int total_len, next, avail, len, index, mcast_idx;
b41a2cd1 228 uint8_t buf1[60];
7c9d8e07
FB
229 static const uint8_t broadcast_macaddr[6] =
230 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
b41a2cd1 231
80cabfad
FB
232#if defined(DEBUG_NE2000)
233 printf("NE2000: received len=%d\n", size);
234#endif
235
d861b05e 236 if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
7c9d8e07
FB
237 return;
238
239 /* XXX: check this */
240 if (s->rxcr & 0x10) {
241 /* promiscuous: receive all */
242 } else {
243 if (!memcmp(buf, broadcast_macaddr, 6)) {
244 /* broadcast address */
245 if (!(s->rxcr & 0x04))
246 return;
247 } else if (buf[0] & 0x01) {
248 /* multicast */
249 if (!(s->rxcr & 0x08))
250 return;
251 mcast_idx = compute_mcast_idx(buf);
252 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
253 return;
254 } else if (s->mem[0] == buf[0] &&
255 s->mem[2] == buf[1] &&
256 s->mem[4] == buf[2] &&
257 s->mem[6] == buf[3] &&
258 s->mem[8] == buf[4] &&
259 s->mem[10] == buf[5]) {
260 /* match */
261 } else {
262 return;
263 }
264 }
265
266
b41a2cd1
FB
267 /* if too small buffer, then expand it */
268 if (size < MIN_BUF_SIZE) {
269 memcpy(buf1, buf, size);
270 memset(buf1 + size, 0, MIN_BUF_SIZE - size);
271 buf = buf1;
272 size = MIN_BUF_SIZE;
273 }
274
80cabfad
FB
275 index = s->curpag << 8;
276 /* 4 bytes for header */
277 total_len = size + 4;
278 /* address for next packet (4 bytes for CRC) */
279 next = index + ((total_len + 4 + 255) & ~0xff);
280 if (next >= s->stop)
281 next -= (s->stop - s->start);
282 /* prepare packet header */
283 p = s->mem + index;
8d6c7eb8
FB
284 s->rsr = ENRSR_RXOK; /* receive status */
285 /* XXX: check this */
286 if (buf[0] & 0x01)
287 s->rsr |= ENRSR_PHY;
288 p[0] = s->rsr;
80cabfad
FB
289 p[1] = next >> 8;
290 p[2] = total_len;
291 p[3] = total_len >> 8;
292 index += 4;
293
294 /* write packet data */
295 while (size > 0) {
296 avail = s->stop - index;
297 len = size;
298 if (len > avail)
299 len = avail;
300 memcpy(s->mem + index, buf, len);
301 buf += len;
302 index += len;
303 if (index == s->stop)
304 index = s->start;
305 size -= len;
306 }
307 s->curpag = next >> 8;
8d6c7eb8 308
9f083493 309 /* now we can signal we have received something */
80cabfad
FB
310 s->isr |= ENISR_RX;
311 ne2000_update_irq(s);
312}
313
b41a2cd1 314static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad 315{
b41a2cd1 316 NE2000State *s = opaque;
40545f84 317 int offset, page, index;
80cabfad
FB
318
319 addr &= 0xf;
320#ifdef DEBUG_NE2000
321 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
322#endif
323 if (addr == E8390_CMD) {
324 /* control register */
325 s->cmd = val;
a343df16 326 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
ee9dbb29 327 s->isr &= ~ENISR_RESET;
e91c8a77 328 /* test specific case: zero length transfer */
80cabfad
FB
329 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
330 s->rcnt == 0) {
331 s->isr |= ENISR_RDC;
332 ne2000_update_irq(s);
333 }
334 if (val & E8390_TRANS) {
40545f84
FB
335 index = (s->tpsr << 8);
336 /* XXX: next 2 lines are a hack to make netware 3.11 work */
337 if (index >= NE2000_PMEM_END)
338 index -= NE2000_PMEM_SIZE;
339 /* fail safe: check range on the transmitted length */
340 if (index + s->tcnt <= NE2000_PMEM_END) {
7c9d8e07 341 qemu_send_packet(s->vc, s->mem + index, s->tcnt);
40545f84 342 }
e91c8a77 343 /* signal end of transfer */
80cabfad
FB
344 s->tsr = ENTSR_PTX;
345 s->isr |= ENISR_TX;
40545f84 346 s->cmd &= ~E8390_TRANS;
80cabfad
FB
347 ne2000_update_irq(s);
348 }
349 }
350 } else {
351 page = s->cmd >> 6;
352 offset = addr | (page << 4);
353 switch(offset) {
354 case EN0_STARTPG:
355 s->start = val << 8;
356 break;
357 case EN0_STOPPG:
358 s->stop = val << 8;
359 break;
360 case EN0_BOUNDARY:
361 s->boundary = val;
362 break;
363 case EN0_IMR:
364 s->imr = val;
365 ne2000_update_irq(s);
366 break;
367 case EN0_TPSR:
368 s->tpsr = val;
369 break;
370 case EN0_TCNTLO:
371 s->tcnt = (s->tcnt & 0xff00) | val;
372 break;
373 case EN0_TCNTHI:
374 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
375 break;
376 case EN0_RSARLO:
377 s->rsar = (s->rsar & 0xff00) | val;
378 break;
379 case EN0_RSARHI:
380 s->rsar = (s->rsar & 0x00ff) | (val << 8);
381 break;
382 case EN0_RCNTLO:
383 s->rcnt = (s->rcnt & 0xff00) | val;
384 break;
385 case EN0_RCNTHI:
386 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
387 break;
7c9d8e07
FB
388 case EN0_RXCR:
389 s->rxcr = val;
390 break;
80cabfad
FB
391 case EN0_DCFG:
392 s->dcfg = val;
393 break;
394 case EN0_ISR:
ee9dbb29 395 s->isr &= ~(val & 0x7f);
80cabfad
FB
396 ne2000_update_irq(s);
397 break;
398 case EN1_PHYS ... EN1_PHYS + 5:
399 s->phys[offset - EN1_PHYS] = val;
400 break;
401 case EN1_CURPAG:
402 s->curpag = val;
403 break;
404 case EN1_MULT ... EN1_MULT + 7:
405 s->mult[offset - EN1_MULT] = val;
406 break;
407 }
408 }
409}
410
b41a2cd1 411static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
80cabfad 412{
b41a2cd1 413 NE2000State *s = opaque;
80cabfad
FB
414 int offset, page, ret;
415
416 addr &= 0xf;
417 if (addr == E8390_CMD) {
418 ret = s->cmd;
419 } else {
420 page = s->cmd >> 6;
421 offset = addr | (page << 4);
422 switch(offset) {
423 case EN0_TSR:
424 ret = s->tsr;
425 break;
426 case EN0_BOUNDARY:
427 ret = s->boundary;
428 break;
429 case EN0_ISR:
430 ret = s->isr;
431 break;
ee9dbb29
FB
432 case EN0_RSARLO:
433 ret = s->rsar & 0x00ff;
434 break;
435 case EN0_RSARHI:
436 ret = s->rsar >> 8;
437 break;
80cabfad
FB
438 case EN1_PHYS ... EN1_PHYS + 5:
439 ret = s->phys[offset - EN1_PHYS];
440 break;
441 case EN1_CURPAG:
442 ret = s->curpag;
443 break;
444 case EN1_MULT ... EN1_MULT + 7:
445 ret = s->mult[offset - EN1_MULT];
446 break;
8d6c7eb8
FB
447 case EN0_RSR:
448 ret = s->rsr;
449 break;
a343df16
FB
450 case EN2_STARTPG:
451 ret = s->start >> 8;
452 break;
453 case EN2_STOPPG:
454 ret = s->stop >> 8;
455 break;
089af991
FB
456 case EN0_RTL8029ID0:
457 ret = 0x50;
458 break;
459 case EN0_RTL8029ID1:
460 ret = 0x43;
461 break;
462 case EN3_CONFIG0:
463 ret = 0; /* 10baseT media */
464 break;
465 case EN3_CONFIG2:
466 ret = 0x40; /* 10baseT active */
467 break;
468 case EN3_CONFIG3:
469 ret = 0x40; /* Full duplex */
470 break;
80cabfad
FB
471 default:
472 ret = 0x00;
473 break;
474 }
475 }
476#ifdef DEBUG_NE2000
477 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
478#endif
479 return ret;
480}
481
ee9dbb29 482static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
69b91039 483 uint32_t val)
ee9dbb29
FB
484{
485 if (addr < 32 ||
486 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
487 s->mem[addr] = val;
488 }
489}
490
491static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
492 uint32_t val)
493{
494 addr &= ~1; /* XXX: check exact behaviour if not even */
495 if (addr < 32 ||
496 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
69b91039
FB
497 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
498 }
499}
500
501static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
502 uint32_t val)
503{
57ccbabe 504 addr &= ~1; /* XXX: check exact behaviour if not even */
69b91039
FB
505 if (addr < 32 ||
506 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
57ccbabe 507 cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
ee9dbb29
FB
508 }
509}
510
511static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
512{
513 if (addr < 32 ||
514 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
515 return s->mem[addr];
516 } else {
517 return 0xff;
518 }
519}
520
521static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
522{
523 addr &= ~1; /* XXX: check exact behaviour if not even */
524 if (addr < 32 ||
525 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
69b91039 526 return le16_to_cpu(*(uint16_t *)(s->mem + addr));
ee9dbb29
FB
527 } else {
528 return 0xffff;
529 }
530}
531
69b91039
FB
532static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
533{
57ccbabe 534 addr &= ~1; /* XXX: check exact behaviour if not even */
69b91039
FB
535 if (addr < 32 ||
536 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
57ccbabe 537 return le32_to_cpupu((uint32_t *)(s->mem + addr));
69b91039
FB
538 } else {
539 return 0xffffffff;
540 }
541}
542
3df3f6fd
FB
543static inline void ne2000_dma_update(NE2000State *s, int len)
544{
545 s->rsar += len;
546 /* wrap */
547 /* XXX: check what to do if rsar > stop */
548 if (s->rsar == s->stop)
549 s->rsar = s->start;
550
551 if (s->rcnt <= len) {
552 s->rcnt = 0;
e91c8a77 553 /* signal end of transfer */
3df3f6fd
FB
554 s->isr |= ENISR_RDC;
555 ne2000_update_irq(s);
556 } else {
557 s->rcnt -= len;
558 }
559}
560
b41a2cd1 561static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad 562{
b41a2cd1 563 NE2000State *s = opaque;
80cabfad
FB
564
565#ifdef DEBUG_NE2000
566 printf("NE2000: asic write val=0x%04x\n", val);
567#endif
ee9dbb29 568 if (s->rcnt == 0)
3df3f6fd 569 return;
80cabfad
FB
570 if (s->dcfg & 0x01) {
571 /* 16 bit access */
ee9dbb29 572 ne2000_mem_writew(s, s->rsar, val);
3df3f6fd 573 ne2000_dma_update(s, 2);
80cabfad
FB
574 } else {
575 /* 8 bit access */
ee9dbb29 576 ne2000_mem_writeb(s, s->rsar, val);
3df3f6fd 577 ne2000_dma_update(s, 1);
80cabfad
FB
578 }
579}
580
b41a2cd1 581static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
80cabfad 582{
b41a2cd1 583 NE2000State *s = opaque;
80cabfad
FB
584 int ret;
585
80cabfad
FB
586 if (s->dcfg & 0x01) {
587 /* 16 bit access */
ee9dbb29 588 ret = ne2000_mem_readw(s, s->rsar);
3df3f6fd 589 ne2000_dma_update(s, 2);
80cabfad
FB
590 } else {
591 /* 8 bit access */
ee9dbb29 592 ret = ne2000_mem_readb(s, s->rsar);
3df3f6fd 593 ne2000_dma_update(s, 1);
80cabfad
FB
594 }
595#ifdef DEBUG_NE2000
596 printf("NE2000: asic read val=0x%04x\n", ret);
597#endif
598 return ret;
599}
600
69b91039
FB
601static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
602{
603 NE2000State *s = opaque;
604
605#ifdef DEBUG_NE2000
606 printf("NE2000: asic writel val=0x%04x\n", val);
607#endif
608 if (s->rcnt == 0)
3df3f6fd 609 return;
69b91039
FB
610 /* 32 bit access */
611 ne2000_mem_writel(s, s->rsar, val);
3df3f6fd 612 ne2000_dma_update(s, 4);
69b91039
FB
613}
614
615static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
616{
617 NE2000State *s = opaque;
618 int ret;
619
620 /* 32 bit access */
621 ret = ne2000_mem_readl(s, s->rsar);
3df3f6fd 622 ne2000_dma_update(s, 4);
69b91039
FB
623#ifdef DEBUG_NE2000
624 printf("NE2000: asic readl val=0x%04x\n", ret);
625#endif
626 return ret;
627}
628
b41a2cd1 629static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
80cabfad
FB
630{
631 /* nothing to do (end of reset pulse) */
632}
633
b41a2cd1 634static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
80cabfad 635{
b41a2cd1 636 NE2000State *s = opaque;
80cabfad
FB
637 ne2000_reset(s);
638 return 0;
639}
640
30ca2aab
FB
641static void ne2000_save(QEMUFile* f,void* opaque)
642{
643 NE2000State* s=(NE2000State*)opaque;
d537cf6c 644 int tmp;
30ca2aab 645
1941d19c
FB
646 if (s->pci_dev)
647 pci_device_save(s->pci_dev, f);
648
acff9df6
FB
649 qemu_put_8s(f, &s->rxcr);
650
30ca2aab
FB
651 qemu_put_8s(f, &s->cmd);
652 qemu_put_be32s(f, &s->start);
653 qemu_put_be32s(f, &s->stop);
654 qemu_put_8s(f, &s->boundary);
655 qemu_put_8s(f, &s->tsr);
656 qemu_put_8s(f, &s->tpsr);
657 qemu_put_be16s(f, &s->tcnt);
658 qemu_put_be16s(f, &s->rcnt);
659 qemu_put_be32s(f, &s->rsar);
660 qemu_put_8s(f, &s->rsr);
661 qemu_put_8s(f, &s->isr);
662 qemu_put_8s(f, &s->dcfg);
663 qemu_put_8s(f, &s->imr);
664 qemu_put_buffer(f, s->phys, 6);
665 qemu_put_8s(f, &s->curpag);
666 qemu_put_buffer(f, s->mult, 8);
d537cf6c
PB
667 tmp = 0;
668 qemu_put_be32s(f, &tmp); /* ignored, was irq */
30ca2aab
FB
669 qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
670}
671
672static int ne2000_load(QEMUFile* f,void* opaque,int version_id)
673{
674 NE2000State* s=(NE2000State*)opaque;
1941d19c 675 int ret;
d537cf6c 676 int tmp;
1941d19c
FB
677
678 if (version_id > 3)
679 return -EINVAL;
680
681 if (s->pci_dev && version_id >= 3) {
682 ret = pci_device_load(s->pci_dev, f);
683 if (ret < 0)
684 return ret;
685 }
30ca2aab 686
1941d19c 687 if (version_id >= 2) {
acff9df6 688 qemu_get_8s(f, &s->rxcr);
acff9df6 689 } else {
1941d19c 690 s->rxcr = 0x0c;
acff9df6 691 }
30ca2aab
FB
692
693 qemu_get_8s(f, &s->cmd);
694 qemu_get_be32s(f, &s->start);
695 qemu_get_be32s(f, &s->stop);
696 qemu_get_8s(f, &s->boundary);
697 qemu_get_8s(f, &s->tsr);
698 qemu_get_8s(f, &s->tpsr);
699 qemu_get_be16s(f, &s->tcnt);
700 qemu_get_be16s(f, &s->rcnt);
701 qemu_get_be32s(f, &s->rsar);
702 qemu_get_8s(f, &s->rsr);
703 qemu_get_8s(f, &s->isr);
704 qemu_get_8s(f, &s->dcfg);
705 qemu_get_8s(f, &s->imr);
706 qemu_get_buffer(f, s->phys, 6);
707 qemu_get_8s(f, &s->curpag);
708 qemu_get_buffer(f, s->mult, 8);
d537cf6c 709 qemu_get_be32s(f, &tmp); /* ignored */
30ca2aab
FB
710 qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
711
712 return 0;
713}
714
d537cf6c 715void isa_ne2000_init(int base, qemu_irq irq, NICInfo *nd)
80cabfad 716{
b41a2cd1 717 NE2000State *s;
7c9d8e07 718
b41a2cd1
FB
719 s = qemu_mallocz(sizeof(NE2000State));
720 if (!s)
721 return;
722
723 register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
724 register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
80cabfad 725
b41a2cd1
FB
726 register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
727 register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
728 register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
729 register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
80cabfad 730
b41a2cd1
FB
731 register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
732 register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
80cabfad 733 s->irq = irq;
7c9d8e07 734 memcpy(s->macaddr, nd->macaddr, 6);
80cabfad
FB
735
736 ne2000_reset(s);
b41a2cd1 737
d861b05e
PB
738 s->vc = qemu_new_vlan_client(nd->vlan, ne2000_receive,
739 ne2000_can_receive, s);
7c9d8e07
FB
740
741 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
742 "ne2000 macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
743 s->macaddr[0],
744 s->macaddr[1],
745 s->macaddr[2],
746 s->macaddr[3],
747 s->macaddr[4],
748 s->macaddr[5]);
749
acff9df6 750 register_savevm("ne2000", 0, 2, ne2000_save, ne2000_load, s);
80cabfad 751}
69b91039
FB
752
753/***********************************************************/
754/* PCI NE2000 definitions */
755
756typedef struct PCINE2000State {
757 PCIDevice dev;
758 NE2000State ne2000;
759} PCINE2000State;
760
69b91039
FB
761static void ne2000_map(PCIDevice *pci_dev, int region_num,
762 uint32_t addr, uint32_t size, int type)
763{
764 PCINE2000State *d = (PCINE2000State *)pci_dev;
765 NE2000State *s = &d->ne2000;
766
767 register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
768 register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
769
770 register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
771 register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
772 register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
773 register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
774 register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
775 register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
776
777 register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
778 register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
779}
780
abcebc7e 781void pci_ne2000_init(PCIBus *bus, NICInfo *nd, int devfn)
69b91039
FB
782{
783 PCINE2000State *d;
784 NE2000State *s;
785 uint8_t *pci_conf;
786
46e50e9d
FB
787 d = (PCINE2000State *)pci_register_device(bus,
788 "NE2000", sizeof(PCINE2000State),
abcebc7e 789 devfn,
4a9c9687 790 NULL, NULL);
69b91039
FB
791 pci_conf = d->dev.config;
792 pci_conf[0x00] = 0xec; // Realtek 8029
793 pci_conf[0x01] = 0x10;
794 pci_conf[0x02] = 0x29;
795 pci_conf[0x03] = 0x80;
796 pci_conf[0x0a] = 0x00; // ethernet network controller
797 pci_conf[0x0b] = 0x02;
798 pci_conf[0x0e] = 0x00; // header_type
4a9c9687 799 pci_conf[0x3d] = 1; // interrupt pin 0
69b91039 800
30ca2aab 801 pci_register_io_region(&d->dev, 0, 0x100,
69b91039
FB
802 PCI_ADDRESS_SPACE_IO, ne2000_map);
803 s = &d->ne2000;
d537cf6c 804 s->irq = d->dev.irq[0];
4a9c9687 805 s->pci_dev = (PCIDevice *)d;
7c9d8e07 806 memcpy(s->macaddr, nd->macaddr, 6);
69b91039 807 ne2000_reset(s);
d861b05e
PB
808 s->vc = qemu_new_vlan_client(nd->vlan, ne2000_receive,
809 ne2000_can_receive, s);
7c9d8e07
FB
810
811 snprintf(s->vc->info_str, sizeof(s->vc->info_str),
812 "ne2000 pci macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
813 s->macaddr[0],
814 s->macaddr[1],
815 s->macaddr[2],
816 s->macaddr[3],
817 s->macaddr[4],
818 s->macaddr[5]);
819
30ca2aab 820 /* XXX: instance number ? */
1941d19c 821 register_savevm("ne2000", 0, 3, ne2000_save, ne2000_load, s);
69b91039 822}