]> git.proxmox.com Git - mirror_qemu.git/blame - hw/net/e1000e_core.c
Merge remote-tracking branch 'remotes/armbru/tags/pull-qapi-2016-07-19' into staging
[mirror_qemu.git] / hw / net / e1000e_core.c
CommitLineData
6f3fbe4e
DF
1/*
2* Core code for QEMU e1000e emulation
3*
4* Software developer's manuals:
5* http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
6*
7* Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
8* Developed by Daynix Computing LTD (http://www.daynix.com)
9*
10* Authors:
11* Dmitry Fleytman <dmitry@daynix.com>
12* Leonid Bloch <leonid@daynix.com>
13* Yan Vugenfirer <yan@daynix.com>
14*
15* Based on work done by:
16* Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
17* Copyright (c) 2008 Qumranet
18* Based on work done by:
19* Copyright (c) 2007 Dan Aloni
20* Copyright (c) 2004 Antony T Curtis
21*
22* This library is free software; you can redistribute it and/or
23* modify it under the terms of the GNU Lesser General Public
24* License as published by the Free Software Foundation; either
25* version 2 of the License, or (at your option) any later version.
26*
27* This library is distributed in the hope that it will be useful,
28* but WITHOUT ANY WARRANTY; without even the implied warranty of
29* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
30* Lesser General Public License for more details.
31*
32* You should have received a copy of the GNU Lesser General Public
33* License along with this library; if not, see <http://www.gnu.org/licenses/>.
34*/
35
36#include "qemu/osdep.h"
37#include "sysemu/sysemu.h"
38#include "net/net.h"
39#include "net/tap.h"
40#include "hw/pci/msi.h"
41#include "hw/pci/msix.h"
42
43#include "net_tx_pkt.h"
44#include "net_rx_pkt.h"
45
46#include "e1000x_common.h"
47#include "e1000e_core.h"
48
49#include "trace.h"
50
51#define E1000E_MIN_XITR (500) /* No more then 7813 interrupts per
52 second according to spec 10.2.4.2 */
53#define E1000E_MAX_TX_FRAGS (64)
54
55static void
56e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val);
57
58static inline void
59e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp)
60{
61 if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) {
62 trace_e1000e_wrn_no_ts_support();
63 }
64}
65
66static inline void
67e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length)
68{
69 if (cmd_and_length & E1000_TXD_CMD_SNAP) {
70 trace_e1000e_wrn_no_snap_support();
71 }
72}
73
74static inline void
75e1000e_raise_legacy_irq(E1000ECore *core)
76{
77 trace_e1000e_irq_legacy_notify(true);
78 e1000x_inc_reg_if_not_full(core->mac, IAC);
79 pci_set_irq(core->owner, 1);
80}
81
82static inline void
83e1000e_lower_legacy_irq(E1000ECore *core)
84{
85 trace_e1000e_irq_legacy_notify(false);
86 pci_set_irq(core->owner, 0);
87}
88
89static inline void
90e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer)
91{
92 int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
93 timer->delay_resolution_ns;
94
95 trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
96
97 timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
98
99 timer->running = true;
100}
101
102static void
103e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer)
104{
105 if (timer->running) {
106 e1000e_intrmgr_rearm_timer(timer);
107 }
108}
109
110static void
111e1000e_intmgr_timer_pause(E1000IntrDelayTimer *timer)
112{
113 if (timer->running) {
114 timer_del(timer->timer);
115 }
116}
117
118static inline void
119e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer)
120{
121 if (timer->running) {
122 timer_del(timer->timer);
123 timer->running = false;
124 }
125}
126
127static inline void
128e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core)
129{
130 trace_e1000e_irq_fire_delayed_interrupts();
131 e1000e_set_interrupt_cause(core, 0);
132}
133
134static void
135e1000e_intrmgr_on_timer(void *opaque)
136{
137 E1000IntrDelayTimer *timer = opaque;
138
139 trace_e1000e_irq_throttling_timer(timer->delay_reg << 2);
140
141 timer->running = false;
142 e1000e_intrmgr_fire_delayed_interrupts(timer->core);
143}
144
145static void
146e1000e_intrmgr_on_throttling_timer(void *opaque)
147{
148 E1000IntrDelayTimer *timer = opaque;
149
150 assert(!msix_enabled(timer->core->owner));
151
152 timer->running = false;
153
154 if (!timer->core->itr_intr_pending) {
155 trace_e1000e_irq_throttling_no_pending_interrupts();
156 return;
157 }
158
159 if (msi_enabled(timer->core->owner)) {
160 trace_e1000e_irq_msi_notify_postponed();
161 e1000e_set_interrupt_cause(timer->core, 0);
162 } else {
163 trace_e1000e_irq_legacy_notify_postponed();
164 e1000e_set_interrupt_cause(timer->core, 0);
165 }
166}
167
168static void
169e1000e_intrmgr_on_msix_throttling_timer(void *opaque)
170{
171 E1000IntrDelayTimer *timer = opaque;
172 int idx = timer - &timer->core->eitr[0];
173
174 assert(msix_enabled(timer->core->owner));
175
176 timer->running = false;
177
178 if (!timer->core->eitr_intr_pending[idx]) {
179 trace_e1000e_irq_throttling_no_pending_vec(idx);
180 return;
181 }
182
183 trace_e1000e_irq_msix_notify_postponed_vec(idx);
184 msix_notify(timer->core->owner, idx);
185}
186
187static void
188e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create)
189{
190 int i;
191
192 core->radv.delay_reg = RADV;
193 core->rdtr.delay_reg = RDTR;
194 core->raid.delay_reg = RAID;
195 core->tadv.delay_reg = TADV;
196 core->tidv.delay_reg = TIDV;
197
198 core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
199 core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
200 core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
201 core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
202 core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
203
204 core->radv.core = core;
205 core->rdtr.core = core;
206 core->raid.core = core;
207 core->tadv.core = core;
208 core->tidv.core = core;
209
210 core->itr.core = core;
211 core->itr.delay_reg = ITR;
212 core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
213
214 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
215 core->eitr[i].core = core;
216 core->eitr[i].delay_reg = EITR + i;
217 core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
218 }
219
220 if (!create) {
221 return;
222 }
223
224 core->radv.timer =
225 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv);
226 core->rdtr.timer =
227 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr);
228 core->raid.timer =
229 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid);
230
231 core->tadv.timer =
232 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv);
233 core->tidv.timer =
234 timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv);
235
236 core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
237 e1000e_intrmgr_on_throttling_timer,
238 &core->itr);
239
240 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
241 core->eitr[i].timer =
242 timer_new_ns(QEMU_CLOCK_VIRTUAL,
243 e1000e_intrmgr_on_msix_throttling_timer,
244 &core->eitr[i]);
245 }
246}
247
248static inline void
249e1000e_intrmgr_stop_delay_timers(E1000ECore *core)
250{
251 e1000e_intrmgr_stop_timer(&core->radv);
252 e1000e_intrmgr_stop_timer(&core->rdtr);
253 e1000e_intrmgr_stop_timer(&core->raid);
254 e1000e_intrmgr_stop_timer(&core->tidv);
255 e1000e_intrmgr_stop_timer(&core->tadv);
256}
257
258static bool
259e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes)
260{
261 uint32_t delayable_causes;
262 uint32_t rdtr = core->mac[RDTR];
263 uint32_t radv = core->mac[RADV];
264 uint32_t raid = core->mac[RAID];
265
266 if (msix_enabled(core->owner)) {
267 return false;
268 }
269
270 delayable_causes = E1000_ICR_RXQ0 |
271 E1000_ICR_RXQ1 |
272 E1000_ICR_RXT0;
273
274 if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) {
275 delayable_causes |= E1000_ICR_ACK;
276 }
277
278 /* Clean up all causes that may be delayed */
279 core->delayed_causes |= *causes & delayable_causes;
280 *causes &= ~delayable_causes;
281
282 /* Check if delayed RX interrupts disabled by client
283 or if there are causes that cannot be delayed */
1ac6c07f 284 if ((rdtr == 0) || (*causes != 0)) {
6f3fbe4e
DF
285 return false;
286 }
287
288 /* Check if delayed RX ACK interrupts disabled by client
289 and there is an ACK packet received */
290 if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) {
291 return false;
292 }
293
294 /* All causes delayed */
295 e1000e_intrmgr_rearm_timer(&core->rdtr);
296
297 if (!core->radv.running && (radv != 0)) {
298 e1000e_intrmgr_rearm_timer(&core->radv);
299 }
300
301 if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) {
302 e1000e_intrmgr_rearm_timer(&core->raid);
303 }
304
305 return true;
306}
307
308static bool
309e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes)
310{
311 static const uint32_t delayable_causes = E1000_ICR_TXQ0 |
312 E1000_ICR_TXQ1 |
313 E1000_ICR_TXQE |
314 E1000_ICR_TXDW;
315
316 if (msix_enabled(core->owner)) {
317 return false;
318 }
319
320 /* Clean up all causes that may be delayed */
321 core->delayed_causes |= *causes & delayable_causes;
322 *causes &= ~delayable_causes;
323
324 /* If there are causes that cannot be delayed */
1ac6c07f 325 if (*causes != 0) {
6f3fbe4e
DF
326 return false;
327 }
328
329 /* All causes delayed */
330 e1000e_intrmgr_rearm_timer(&core->tidv);
331
332 if (!core->tadv.running && (core->mac[TADV] != 0)) {
333 e1000e_intrmgr_rearm_timer(&core->tadv);
334 }
335
336 return true;
337}
338
339static uint32_t
340e1000e_intmgr_collect_delayed_causes(E1000ECore *core)
341{
342 uint32_t res;
343
344 if (msix_enabled(core->owner)) {
345 assert(core->delayed_causes == 0);
346 return 0;
347 }
348
349 res = core->delayed_causes;
350 core->delayed_causes = 0;
351
352 e1000e_intrmgr_stop_delay_timers(core);
353
354 return res;
355}
356
357static void
358e1000e_intrmgr_fire_all_timers(E1000ECore *core)
359{
360 int i;
361 uint32_t val = e1000e_intmgr_collect_delayed_causes(core);
362
363 trace_e1000e_irq_adding_delayed_causes(val, core->mac[ICR]);
364 core->mac[ICR] |= val;
365
366 if (core->itr.running) {
367 timer_del(core->itr.timer);
368 e1000e_intrmgr_on_throttling_timer(&core->itr);
369 }
370
371 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
372 if (core->eitr[i].running) {
373 timer_del(core->eitr[i].timer);
374 e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
375 }
376 }
377}
378
379static void
380e1000e_intrmgr_resume(E1000ECore *core)
381{
382 int i;
383
384 e1000e_intmgr_timer_resume(&core->radv);
385 e1000e_intmgr_timer_resume(&core->rdtr);
386 e1000e_intmgr_timer_resume(&core->raid);
387 e1000e_intmgr_timer_resume(&core->tidv);
388 e1000e_intmgr_timer_resume(&core->tadv);
389
390 e1000e_intmgr_timer_resume(&core->itr);
391
392 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
393 e1000e_intmgr_timer_resume(&core->eitr[i]);
394 }
395}
396
397static void
398e1000e_intrmgr_pause(E1000ECore *core)
399{
400 int i;
401
402 e1000e_intmgr_timer_pause(&core->radv);
403 e1000e_intmgr_timer_pause(&core->rdtr);
404 e1000e_intmgr_timer_pause(&core->raid);
405 e1000e_intmgr_timer_pause(&core->tidv);
406 e1000e_intmgr_timer_pause(&core->tadv);
407
408 e1000e_intmgr_timer_pause(&core->itr);
409
410 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
411 e1000e_intmgr_timer_pause(&core->eitr[i]);
412 }
413}
414
415static void
416e1000e_intrmgr_reset(E1000ECore *core)
417{
418 int i;
419
420 core->delayed_causes = 0;
421
422 e1000e_intrmgr_stop_delay_timers(core);
423
424 e1000e_intrmgr_stop_timer(&core->itr);
425
426 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
427 e1000e_intrmgr_stop_timer(&core->eitr[i]);
428 }
429}
430
431static void
432e1000e_intrmgr_pci_unint(E1000ECore *core)
433{
434 int i;
435
436 timer_del(core->radv.timer);
437 timer_free(core->radv.timer);
438 timer_del(core->rdtr.timer);
439 timer_free(core->rdtr.timer);
440 timer_del(core->raid.timer);
441 timer_free(core->raid.timer);
442
443 timer_del(core->tadv.timer);
444 timer_free(core->tadv.timer);
445 timer_del(core->tidv.timer);
446 timer_free(core->tidv.timer);
447
448 timer_del(core->itr.timer);
449 timer_free(core->itr.timer);
450
451 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
452 timer_del(core->eitr[i].timer);
453 timer_free(core->eitr[i].timer);
454 }
455}
456
457static void
458e1000e_intrmgr_pci_realize(E1000ECore *core)
459{
460 e1000e_intrmgr_initialize_all_timers(core, true);
461}
462
463static inline bool
464e1000e_rx_csum_enabled(E1000ECore *core)
465{
466 return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
467}
468
469static inline bool
470e1000e_rx_use_legacy_descriptor(E1000ECore *core)
471{
472 return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true;
473}
474
475static inline bool
476e1000e_rx_use_ps_descriptor(E1000ECore *core)
477{
478 return !e1000e_rx_use_legacy_descriptor(core) &&
479 (core->mac[RCTL] & E1000_RCTL_DTYP_PS);
480}
481
482static inline bool
483e1000e_rss_enabled(E1000ECore *core)
484{
485 return E1000_MRQC_ENABLED(core->mac[MRQC]) &&
486 !e1000e_rx_csum_enabled(core) &&
487 !e1000e_rx_use_legacy_descriptor(core);
488}
489
490typedef struct E1000E_RSSInfo_st {
491 bool enabled;
492 uint32_t hash;
493 uint32_t queue;
494 uint32_t type;
495} E1000E_RSSInfo;
496
497static uint32_t
498e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt)
499{
500 bool isip4, isip6, isudp, istcp;
501
502 assert(e1000e_rss_enabled(core));
503
504 net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
505
506 if (isip4) {
507 bool fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
508
509 trace_e1000e_rx_rss_ip4(fragment, istcp, core->mac[MRQC],
510 E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
511 E1000_MRQC_EN_IPV4(core->mac[MRQC]));
512
513 if (!fragment && istcp && E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
514 return E1000_MRQ_RSS_TYPE_IPV4TCP;
515 }
516
517 if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
518 return E1000_MRQ_RSS_TYPE_IPV4;
519 }
520 } else if (isip6) {
521 eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
522
523 bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
524 bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
525
defbaec1
DF
526 /*
527 * Following two traces must not be combined because resulting
528 * event will have 11 arguments totally and some trace backends
529 * (at least "ust") have limitation of maximum 10 arguments per
530 * event. Events with more arguments fail to compile for
531 * backends like these.
532 */
533 trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
534 trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, istcp,
6f3fbe4e
DF
535 ip6info->has_ext_hdrs,
536 ip6info->rss_ex_dst_valid,
537 ip6info->rss_ex_src_valid,
538 core->mac[MRQC],
539 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]),
540 E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
541 E1000_MRQC_EN_IPV6(core->mac[MRQC]));
542
543 if ((!ex_dis || !ip6info->has_ext_hdrs) &&
544 (!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
545 ip6info->rss_ex_src_valid))) {
546
547 if (istcp && !ip6info->fragment &&
548 E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) {
549 return E1000_MRQ_RSS_TYPE_IPV6TCP;
550 }
551
552 if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
553 return E1000_MRQ_RSS_TYPE_IPV6EX;
554 }
555
556 }
557
558 if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
559 return E1000_MRQ_RSS_TYPE_IPV6;
560 }
561
562 }
563
564 return E1000_MRQ_RSS_TYPE_NONE;
565}
566
567static uint32_t
568e1000e_rss_calc_hash(E1000ECore *core,
569 struct NetRxPkt *pkt,
570 E1000E_RSSInfo *info)
571{
572 NetRxPktRssType type;
573
574 assert(e1000e_rss_enabled(core));
575
576 switch (info->type) {
577 case E1000_MRQ_RSS_TYPE_IPV4:
578 type = NetPktRssIpV4;
579 break;
580 case E1000_MRQ_RSS_TYPE_IPV4TCP:
581 type = NetPktRssIpV4Tcp;
582 break;
583 case E1000_MRQ_RSS_TYPE_IPV6TCP:
584 type = NetPktRssIpV6Tcp;
585 break;
586 case E1000_MRQ_RSS_TYPE_IPV6:
587 type = NetPktRssIpV6;
588 break;
589 case E1000_MRQ_RSS_TYPE_IPV6EX:
590 type = NetPktRssIpV6Ex;
591 break;
592 default:
593 assert(false);
594 return 0;
595 }
596
597 return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
598}
599
600static void
601e1000e_rss_parse_packet(E1000ECore *core,
602 struct NetRxPkt *pkt,
603 E1000E_RSSInfo *info)
604{
605 trace_e1000e_rx_rss_started();
606
607 if (!e1000e_rss_enabled(core)) {
608 info->enabled = false;
609 info->hash = 0;
610 info->queue = 0;
611 info->type = 0;
612 trace_e1000e_rx_rss_disabled();
613 return;
614 }
615
616 info->enabled = true;
617
618 info->type = e1000e_rss_get_hash_type(core, pkt);
619
620 trace_e1000e_rx_rss_type(info->type);
621
622 if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
623 info->hash = 0;
624 info->queue = 0;
625 return;
626 }
627
628 info->hash = e1000e_rss_calc_hash(core, pkt, info);
629 info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
630}
631
632static void
633e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx)
634{
635 if (tx->props.tse && tx->props.cptse) {
636 net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss);
637 net_tx_pkt_update_ip_checksums(tx->tx_pkt);
638 e1000x_inc_reg_if_not_full(core->mac, TSCTC);
639 return;
640 }
641
642 if (tx->props.sum_needed & E1000_TXD_POPTS_TXSM) {
643 net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0);
644 }
645
646 if (tx->props.sum_needed & E1000_TXD_POPTS_IXSM) {
647 net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
648 }
649}
650
651static bool
652e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index)
653{
654 int target_queue = MIN(core->max_queue_num, queue_index);
655 NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
656
657 e1000e_setup_tx_offloads(core, tx);
658
659 net_tx_pkt_dump(tx->tx_pkt);
660
661 if ((core->phy[0][PHY_CTRL] & MII_CR_LOOPBACK) ||
662 ((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
663 return net_tx_pkt_send_loopback(tx->tx_pkt, queue);
664 } else {
665 return net_tx_pkt_send(tx->tx_pkt, queue);
666 }
667}
668
669static void
670e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt)
671{
672 static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
673 PTC1023, PTC1522 };
674
675 size_t tot_len = net_tx_pkt_get_total_len(tx_pkt);
676
677 e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
678 e1000x_inc_reg_if_not_full(core->mac, TPT);
679 e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
680
681 switch (net_tx_pkt_get_packet_type(tx_pkt)) {
682 case ETH_PKT_BCAST:
683 e1000x_inc_reg_if_not_full(core->mac, BPTC);
684 break;
685 case ETH_PKT_MCAST:
686 e1000x_inc_reg_if_not_full(core->mac, MPTC);
687 break;
688 case ETH_PKT_UCAST:
689 break;
690 default:
691 g_assert_not_reached();
692 }
693
694 core->mac[GPTC] = core->mac[TPT];
695 core->mac[GOTCL] = core->mac[TOTL];
696 core->mac[GOTCH] = core->mac[TOTH];
697}
698
699static void
700e1000e_process_tx_desc(E1000ECore *core,
701 struct e1000e_tx *tx,
702 struct e1000_tx_desc *dp,
703 int queue_index)
704{
705 uint32_t txd_lower = le32_to_cpu(dp->lower.data);
706 uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
707 unsigned int split_size = txd_lower & 0xffff;
708 uint64_t addr;
709 struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
710 bool eop = txd_lower & E1000_TXD_CMD_EOP;
711
712 if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
713 e1000x_read_tx_ctx_descr(xp, &tx->props);
714 e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length));
715 return;
716 } else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
717 /* data descriptor */
718 tx->props.sum_needed = le32_to_cpu(dp->upper.data) >> 8;
719 tx->props.cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
720 e1000e_process_ts_option(core, dp);
721 } else {
722 /* legacy descriptor */
723 e1000e_process_ts_option(core, dp);
724 tx->props.cptse = 0;
725 }
726
727 addr = le64_to_cpu(dp->buffer_addr);
728
729 if (!tx->skip_cp) {
730 if (!net_tx_pkt_add_raw_fragment(tx->tx_pkt, addr, split_size)) {
731 tx->skip_cp = true;
732 }
733 }
734
735 if (eop) {
736 if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
737 if (e1000x_vlan_enabled(core->mac) &&
738 e1000x_is_vlan_txd(txd_lower)) {
739 net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt,
740 le16_to_cpu(dp->upper.fields.special), core->vet);
741 }
742 if (e1000e_tx_pkt_send(core, tx, queue_index)) {
743 e1000e_on_tx_done_update_stats(core, tx->tx_pkt);
744 }
745 }
746
747 tx->skip_cp = false;
748 net_tx_pkt_reset(tx->tx_pkt);
749
750 tx->props.sum_needed = 0;
751 tx->props.cptse = 0;
752 }
753}
754
755static inline uint32_t
756e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx)
757{
758 if (!msix_enabled(core->owner)) {
759 return E1000_ICR_TXDW;
760 }
761
762 return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1;
763}
764
765static inline uint32_t
766e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx,
767 bool min_threshold_hit)
768{
769 if (!msix_enabled(core->owner)) {
770 return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0);
771 }
772
773 return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1;
774}
775
776static uint32_t
777e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base,
778 struct e1000_tx_desc *dp, bool *ide, int queue_idx)
779{
780 uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
781
782 if (!(txd_lower & E1000_TXD_CMD_RS) &&
783 !(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) {
784 return 0;
785 }
786
787 *ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false;
788
789 txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD;
790
791 dp->upper.data = cpu_to_le32(txd_upper);
792 pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp),
793 &dp->upper, sizeof(dp->upper));
794 return e1000e_tx_wb_interrupt_cause(core, queue_idx);
795}
796
797typedef struct E1000E_RingInfo_st {
798 int dbah;
799 int dbal;
800 int dlen;
801 int dh;
802 int dt;
803 int idx;
804} E1000E_RingInfo;
805
806static inline bool
807e1000e_ring_empty(E1000ECore *core, const E1000E_RingInfo *r)
808{
809 return core->mac[r->dh] == core->mac[r->dt];
810}
811
812static inline uint64_t
813e1000e_ring_base(E1000ECore *core, const E1000E_RingInfo *r)
814{
815 uint64_t bah = core->mac[r->dbah];
816 uint64_t bal = core->mac[r->dbal];
817
818 return (bah << 32) + bal;
819}
820
821static inline uint64_t
822e1000e_ring_head_descr(E1000ECore *core, const E1000E_RingInfo *r)
823{
824 return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
825}
826
827static inline void
828e1000e_ring_advance(E1000ECore *core, const E1000E_RingInfo *r, uint32_t count)
829{
830 core->mac[r->dh] += count;
831
832 if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
833 core->mac[r->dh] = 0;
834 }
835}
836
837static inline uint32_t
838e1000e_ring_free_descr_num(E1000ECore *core, const E1000E_RingInfo *r)
839{
840 trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
841 core->mac[r->dh], core->mac[r->dt]);
842
843 if (core->mac[r->dh] <= core->mac[r->dt]) {
844 return core->mac[r->dt] - core->mac[r->dh];
845 }
846
847 if (core->mac[r->dh] > core->mac[r->dt]) {
848 return core->mac[r->dlen] / E1000_RING_DESC_LEN +
849 core->mac[r->dt] - core->mac[r->dh];
850 }
851
852 g_assert_not_reached();
853 return 0;
854}
855
856static inline bool
857e1000e_ring_enabled(E1000ECore *core, const E1000E_RingInfo *r)
858{
859 return core->mac[r->dlen] > 0;
860}
861
862static inline uint32_t
863e1000e_ring_len(E1000ECore *core, const E1000E_RingInfo *r)
864{
865 return core->mac[r->dlen];
866}
867
868typedef struct E1000E_TxRing_st {
869 const E1000E_RingInfo *i;
870 struct e1000e_tx *tx;
871} E1000E_TxRing;
872
873static inline int
874e1000e_mq_queue_idx(int base_reg_idx, int reg_idx)
875{
876 return (reg_idx - base_reg_idx) / (0x100 >> 2);
877}
878
879static inline void
880e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx)
881{
882 static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
883 { TDBAH, TDBAL, TDLEN, TDH, TDT, 0 },
884 { TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }
885 };
886
887 assert(idx < ARRAY_SIZE(i));
888
889 txr->i = &i[idx];
890 txr->tx = &core->tx[idx];
891}
892
893typedef struct E1000E_RxRing_st {
894 const E1000E_RingInfo *i;
895} E1000E_RxRing;
896
897static inline void
898e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx)
899{
900 static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
901 { RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
902 { RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }
903 };
904
905 assert(idx < ARRAY_SIZE(i));
906
907 rxr->i = &i[idx];
908}
909
910static void
911e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr)
912{
913 dma_addr_t base;
914 struct e1000_tx_desc desc;
915 bool ide = false;
916 const E1000E_RingInfo *txi = txr->i;
917 uint32_t cause = E1000_ICS_TXQE;
918
919 if (!(core->mac[TCTL] & E1000_TCTL_EN)) {
920 trace_e1000e_tx_disabled();
921 return;
922 }
923
924 while (!e1000e_ring_empty(core, txi)) {
925 base = e1000e_ring_head_descr(core, txi);
926
927 pci_dma_read(core->owner, base, &desc, sizeof(desc));
928
929 trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr,
930 desc.lower.data, desc.upper.data);
931
932 e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx);
933 cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx);
934
935 e1000e_ring_advance(core, txi, 1);
936 }
937
938 if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) {
939 e1000e_set_interrupt_cause(core, cause);
940 }
941}
942
943static bool
944e1000e_has_rxbufs(E1000ECore *core, const E1000E_RingInfo *r,
945 size_t total_size)
946{
947 uint32_t bufs = e1000e_ring_free_descr_num(core, r);
948
949 trace_e1000e_rx_has_buffers(r->idx, bufs, total_size,
950 core->rx_desc_buf_size);
951
952 return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
953 core->rx_desc_buf_size;
954}
955
956static inline void
957e1000e_start_recv(E1000ECore *core)
958{
959 int i;
960
961 trace_e1000e_rx_start_recv();
962
963 for (i = 0; i <= core->max_queue_num; i++) {
964 qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
965 }
966}
967
968int
969e1000e_can_receive(E1000ECore *core)
970{
971 int i;
972
973 if (!e1000x_rx_ready(core->owner, core->mac)) {
974 return false;
975 }
976
977 for (i = 0; i < E1000E_NUM_QUEUES; i++) {
978 E1000E_RxRing rxr;
979
980 e1000e_rx_ring_init(core, &rxr, i);
981 if (e1000e_ring_enabled(core, rxr.i) &&
982 e1000e_has_rxbufs(core, rxr.i, 1)) {
983 trace_e1000e_rx_can_recv();
984 return true;
985 }
986 }
987
988 trace_e1000e_rx_can_recv_rings_full();
989 return false;
990}
991
992ssize_t
993e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size)
994{
995 const struct iovec iov = {
996 .iov_base = (uint8_t *)buf,
997 .iov_len = size
998 };
999
1000 return e1000e_receive_iov(core, &iov, 1);
1001}
1002
1003static inline bool
1004e1000e_rx_l3_cso_enabled(E1000ECore *core)
1005{
1006 return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
1007}
1008
1009static inline bool
1010e1000e_rx_l4_cso_enabled(E1000ECore *core)
1011{
1012 return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
1013}
1014
1015static bool
1016e1000e_receive_filter(E1000ECore *core, const uint8_t *buf, int size)
1017{
1018 uint32_t rctl = core->mac[RCTL];
1019
1020 if (e1000x_is_vlan_packet(buf, core->vet) &&
1021 e1000x_vlan_rx_filter_enabled(core->mac)) {
14e60aae
PM
1022 uint16_t vid = lduw_be_p(buf + 14);
1023 uint32_t vfta = ldl_le_p((uint32_t *)(core->mac + VFTA) +
1024 ((vid >> 5) & 0x7f));
6f3fbe4e
DF
1025 if ((vfta & (1 << (vid & 0x1f))) == 0) {
1026 trace_e1000e_rx_flt_vlan_mismatch(vid);
1027 return false;
1028 } else {
1029 trace_e1000e_rx_flt_vlan_match(vid);
1030 }
1031 }
1032
1033 switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1034 case ETH_PKT_UCAST:
1035 if (rctl & E1000_RCTL_UPE) {
1036 return true; /* promiscuous ucast */
1037 }
1038 break;
1039
1040 case ETH_PKT_BCAST:
1041 if (rctl & E1000_RCTL_BAM) {
1042 return true; /* broadcast enabled */
1043 }
1044 break;
1045
1046 case ETH_PKT_MCAST:
1047 if (rctl & E1000_RCTL_MPE) {
1048 return true; /* promiscuous mcast */
1049 }
1050 break;
1051
1052 default:
1053 g_assert_not_reached();
1054 }
1055
1056 return e1000x_rx_group_filter(core->mac, buf);
1057}
1058
1059static inline void
1060e1000e_read_lgcy_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
1061{
1062 struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
1063 *buff_addr = le64_to_cpu(d->buffer_addr);
1064}
1065
1066static inline void
1067e1000e_read_ext_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
1068{
1069 union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
1070 *buff_addr = le64_to_cpu(d->read.buffer_addr);
1071}
1072
1073static inline void
1074e1000e_read_ps_rx_descr(E1000ECore *core, uint8_t *desc,
1075 hwaddr (*buff_addr)[MAX_PS_BUFFERS])
1076{
1077 int i;
1078 union e1000_rx_desc_packet_split *d =
1079 (union e1000_rx_desc_packet_split *) desc;
1080
1081 for (i = 0; i < MAX_PS_BUFFERS; i++) {
1082 (*buff_addr)[i] = le64_to_cpu(d->read.buffer_addr[i]);
1083 }
1084
1085 trace_e1000e_rx_desc_ps_read((*buff_addr)[0], (*buff_addr)[1],
1086 (*buff_addr)[2], (*buff_addr)[3]);
1087}
1088
1089static inline void
1090e1000e_read_rx_descr(E1000ECore *core, uint8_t *desc,
1091 hwaddr (*buff_addr)[MAX_PS_BUFFERS])
1092{
1093 if (e1000e_rx_use_legacy_descriptor(core)) {
1094 e1000e_read_lgcy_rx_descr(core, desc, &(*buff_addr)[0]);
1095 (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
1096 } else {
1097 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1098 e1000e_read_ps_rx_descr(core, desc, buff_addr);
1099 } else {
1100 e1000e_read_ext_rx_descr(core, desc, &(*buff_addr)[0]);
1101 (*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
1102 }
1103 }
1104}
1105
1106static void
1107e1000e_verify_csum_in_sw(E1000ECore *core,
1108 struct NetRxPkt *pkt,
1109 uint32_t *status_flags,
1110 bool istcp, bool isudp)
1111{
1112 bool csum_valid;
1113 uint32_t csum_error;
1114
1115 if (e1000e_rx_l3_cso_enabled(core)) {
1116 if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
1117 trace_e1000e_rx_metadata_l3_csum_validation_failed();
1118 } else {
1119 csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
1120 *status_flags |= E1000_RXD_STAT_IPCS | csum_error;
1121 }
1122 } else {
1123 trace_e1000e_rx_metadata_l3_cso_disabled();
1124 }
1125
1126 if (!e1000e_rx_l4_cso_enabled(core)) {
1127 trace_e1000e_rx_metadata_l4_cso_disabled();
1128 return;
1129 }
1130
1131 if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
1132 trace_e1000e_rx_metadata_l4_csum_validation_failed();
1133 return;
1134 }
1135
1136 csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
1137
1138 if (istcp) {
1139 *status_flags |= E1000_RXD_STAT_TCPCS |
1140 csum_error;
1141 } else if (isudp) {
1142 *status_flags |= E1000_RXD_STAT_TCPCS |
1143 E1000_RXD_STAT_UDPCS |
1144 csum_error;
1145 }
1146}
1147
1148static inline bool
1149e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt)
1150{
1151 if (!net_rx_pkt_is_tcp_ack(rx_pkt)) {
1152 return false;
1153 }
1154
1155 if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) {
1156 return !net_rx_pkt_has_tcp_data(rx_pkt);
1157 }
1158
1159 return true;
1160}
1161
1162static void
1163e1000e_build_rx_metadata(E1000ECore *core,
1164 struct NetRxPkt *pkt,
1165 bool is_eop,
1166 const E1000E_RSSInfo *rss_info,
1167 uint32_t *rss, uint32_t *mrq,
1168 uint32_t *status_flags,
1169 uint16_t *ip_id,
1170 uint16_t *vlan_tag)
1171{
1172 struct virtio_net_hdr *vhdr;
1173 bool isip4, isip6, istcp, isudp;
1174 uint32_t pkt_type;
1175
1176 *status_flags = E1000_RXD_STAT_DD;
1177
1178 /* No additional metadata needed for non-EOP descriptors */
1179 if (!is_eop) {
1180 goto func_exit;
1181 }
1182
1183 *status_flags |= E1000_RXD_STAT_EOP;
1184
1185 net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
1186 trace_e1000e_rx_metadata_protocols(isip4, isip6, isudp, istcp);
1187
1188 /* VLAN state */
1189 if (net_rx_pkt_is_vlan_stripped(pkt)) {
1190 *status_flags |= E1000_RXD_STAT_VP;
1191 *vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
1192 trace_e1000e_rx_metadata_vlan(*vlan_tag);
1193 }
1194
1195 /* Packet parsing results */
1196 if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
1197 if (rss_info->enabled) {
1198 *rss = cpu_to_le32(rss_info->hash);
1199 *mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8));
1200 trace_e1000e_rx_metadata_rss(*rss, *mrq);
1201 }
1202 } else if (isip4) {
1203 *status_flags |= E1000_RXD_STAT_IPIDV;
1204 *ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
1205 trace_e1000e_rx_metadata_ip_id(*ip_id);
1206 }
1207
1208 if (istcp && e1000e_is_tcp_ack(core, pkt)) {
1209 *status_flags |= E1000_RXD_STAT_ACK;
1210 trace_e1000e_rx_metadata_ack();
1211 }
1212
1213 if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
1214 trace_e1000e_rx_metadata_ipv6_filtering_disabled();
1215 pkt_type = E1000_RXD_PKT_MAC;
1216 } else if (istcp || isudp) {
1217 pkt_type = isip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
1218 } else if (isip4 || isip6) {
1219 pkt_type = isip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
1220 } else {
1221 pkt_type = E1000_RXD_PKT_MAC;
1222 }
1223
1224 *status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
1225 trace_e1000e_rx_metadata_pkt_type(pkt_type);
1226
1227 /* RX CSO information */
1228 if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
1229 trace_e1000e_rx_metadata_ipv6_sum_disabled();
1230 goto func_exit;
1231 }
1232
1233 if (!net_rx_pkt_has_virt_hdr(pkt)) {
1234 trace_e1000e_rx_metadata_no_virthdr();
1235 e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
1236 goto func_exit;
1237 }
1238
1239 vhdr = net_rx_pkt_get_vhdr(pkt);
1240
1241 if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
1242 !(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
1243 trace_e1000e_rx_metadata_virthdr_no_csum_info();
1244 e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
1245 goto func_exit;
1246 }
1247
1248 if (e1000e_rx_l3_cso_enabled(core)) {
1249 *status_flags |= isip4 ? E1000_RXD_STAT_IPCS : 0;
1250 } else {
1251 trace_e1000e_rx_metadata_l3_cso_disabled();
1252 }
1253
1254 if (e1000e_rx_l4_cso_enabled(core)) {
1255 if (istcp) {
1256 *status_flags |= E1000_RXD_STAT_TCPCS;
1257 } else if (isudp) {
1258 *status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
1259 }
1260 } else {
1261 trace_e1000e_rx_metadata_l4_cso_disabled();
1262 }
1263
1264 trace_e1000e_rx_metadata_status_flags(*status_flags);
1265
1266func_exit:
1267 *status_flags = cpu_to_le32(*status_flags);
1268}
1269
1270static inline void
1271e1000e_write_lgcy_rx_descr(E1000ECore *core, uint8_t *desc,
1272 struct NetRxPkt *pkt,
1273 const E1000E_RSSInfo *rss_info,
1274 uint16_t length)
1275{
1276 uint32_t status_flags, rss, mrq;
1277 uint16_t ip_id;
1278
1279 struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
1280
1281 memset(d, 0, sizeof(*d));
1282
1283 assert(!rss_info->enabled);
1284
1285 d->length = cpu_to_le16(length);
1286
1287 e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1288 rss_info,
1289 &rss, &mrq,
1290 &status_flags, &ip_id,
1291 &d->special);
1292 d->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
1293 d->status = (uint8_t) le32_to_cpu(status_flags);
1294}
1295
1296static inline void
1297e1000e_write_ext_rx_descr(E1000ECore *core, uint8_t *desc,
1298 struct NetRxPkt *pkt,
1299 const E1000E_RSSInfo *rss_info,
1300 uint16_t length)
1301{
1302 union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
1303
1304 memset(d, 0, sizeof(*d));
1305
1306 d->wb.upper.length = cpu_to_le16(length);
1307
1308 e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1309 rss_info,
1310 &d->wb.lower.hi_dword.rss,
1311 &d->wb.lower.mrq,
1312 &d->wb.upper.status_error,
1313 &d->wb.lower.hi_dword.csum_ip.ip_id,
1314 &d->wb.upper.vlan);
1315}
1316
1317static inline void
1318e1000e_write_ps_rx_descr(E1000ECore *core, uint8_t *desc,
1319 struct NetRxPkt *pkt,
1320 const E1000E_RSSInfo *rss_info,
1321 size_t ps_hdr_len,
1322 uint16_t(*written)[MAX_PS_BUFFERS])
1323{
1324 int i;
1325 union e1000_rx_desc_packet_split *d =
1326 (union e1000_rx_desc_packet_split *) desc;
1327
1328 memset(d, 0, sizeof(*d));
1329
1330 d->wb.middle.length0 = cpu_to_le16((*written)[0]);
1331
1332 for (i = 0; i < PS_PAGE_BUFFERS; i++) {
1333 d->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]);
1334 }
1335
1336 e1000e_build_rx_metadata(core, pkt, pkt != NULL,
1337 rss_info,
1338 &d->wb.lower.hi_dword.rss,
1339 &d->wb.lower.mrq,
1340 &d->wb.middle.status_error,
1341 &d->wb.lower.hi_dword.csum_ip.ip_id,
1342 &d->wb.middle.vlan);
1343
1344 d->wb.upper.header_status =
1345 cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0));
1346
1347 trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1],
1348 (*written)[2], (*written)[3]);
1349}
1350
1351static inline void
1352e1000e_write_rx_descr(E1000ECore *core, uint8_t *desc,
1353struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info,
1354 size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS])
1355{
1356 if (e1000e_rx_use_legacy_descriptor(core)) {
1357 assert(ps_hdr_len == 0);
1358 e1000e_write_lgcy_rx_descr(core, desc, pkt, rss_info, (*written)[0]);
1359 } else {
1360 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1361 e1000e_write_ps_rx_descr(core, desc, pkt, rss_info,
1362 ps_hdr_len, written);
1363 } else {
1364 assert(ps_hdr_len == 0);
1365 e1000e_write_ext_rx_descr(core, desc, pkt, rss_info,
1366 (*written)[0]);
1367 }
1368 }
1369}
1370
1371typedef struct e1000e_ba_state_st {
1372 uint16_t written[MAX_PS_BUFFERS];
1373 uint8_t cur_idx;
1374} e1000e_ba_state;
1375
1376static inline void
1377e1000e_write_hdr_to_rx_buffers(E1000ECore *core,
1378 hwaddr (*ba)[MAX_PS_BUFFERS],
1379 e1000e_ba_state *bastate,
1380 const char *data,
1381 dma_addr_t data_len)
1382{
1383 assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]);
1384
1385 pci_dma_write(core->owner, (*ba)[0] + bastate->written[0], data, data_len);
1386 bastate->written[0] += data_len;
1387
1388 bastate->cur_idx = 1;
1389}
1390
1391static void
1392e1000e_write_to_rx_buffers(E1000ECore *core,
1393 hwaddr (*ba)[MAX_PS_BUFFERS],
1394 e1000e_ba_state *bastate,
1395 const char *data,
1396 dma_addr_t data_len)
1397{
1398 while (data_len > 0) {
1399 uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx];
1400 uint32_t cur_buf_bytes_left = cur_buf_len -
1401 bastate->written[bastate->cur_idx];
1402 uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left);
1403
1404 trace_e1000e_rx_desc_buff_write(bastate->cur_idx,
1405 (*ba)[bastate->cur_idx],
1406 bastate->written[bastate->cur_idx],
1407 data,
1408 bytes_to_write);
1409
1410 pci_dma_write(core->owner,
1411 (*ba)[bastate->cur_idx] + bastate->written[bastate->cur_idx],
1412 data, bytes_to_write);
1413
1414 bastate->written[bastate->cur_idx] += bytes_to_write;
1415 data += bytes_to_write;
1416 data_len -= bytes_to_write;
1417
1418 if (bastate->written[bastate->cur_idx] == cur_buf_len) {
1419 bastate->cur_idx++;
1420 }
1421
1422 assert(bastate->cur_idx < MAX_PS_BUFFERS);
1423 }
1424}
1425
1426static void
1427e1000e_update_rx_stats(E1000ECore *core,
1428 size_t data_size,
1429 size_t data_fcs_size)
1430{
1431 e1000x_update_rx_total_stats(core->mac, data_size, data_fcs_size);
1432
1433 switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
1434 case ETH_PKT_BCAST:
1435 e1000x_inc_reg_if_not_full(core->mac, BPRC);
1436 break;
1437
1438 case ETH_PKT_MCAST:
1439 e1000x_inc_reg_if_not_full(core->mac, MPRC);
1440 break;
1441
1442 default:
1443 break;
1444 }
1445}
1446
1447static inline bool
1448e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000E_RingInfo *rxi)
1449{
1450 return e1000e_ring_free_descr_num(core, rxi) ==
1451 e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift;
1452}
1453
1454static bool
1455e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len)
1456{
1457 bool isip4, isip6, isudp, istcp;
1458 bool fragment;
1459
1460 if (!e1000e_rx_use_ps_descriptor(core)) {
1461 return false;
1462 }
1463
1464 net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
1465
1466 if (isip4) {
1467 fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
1468 } else if (isip6) {
1469 fragment = net_rx_pkt_get_ip6_info(pkt)->fragment;
1470 } else {
1471 return false;
1472 }
1473
1474 if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) {
1475 return false;
1476 }
1477
1478 if (!fragment && (isudp || istcp)) {
1479 *hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt);
1480 } else {
1481 *hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt);
1482 }
1483
1484 if ((*hdr_len > core->rxbuf_sizes[0]) ||
1485 (*hdr_len > net_rx_pkt_get_total_len(pkt))) {
1486 return false;
1487 }
1488
1489 return true;
1490}
1491
1492static void
1493e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt,
1494 const E1000E_RxRing *rxr,
1495 const E1000E_RSSInfo *rss_info)
1496{
1497 PCIDevice *d = core->owner;
1498 dma_addr_t base;
1499 uint8_t desc[E1000_MAX_RX_DESC_LEN];
1500 size_t desc_size;
1501 size_t desc_offset = 0;
1502 size_t iov_ofs = 0;
1503
1504 struct iovec *iov = net_rx_pkt_get_iovec(pkt);
1505 size_t size = net_rx_pkt_get_total_len(pkt);
1506 size_t total_size = size + e1000x_fcs_len(core->mac);
1507 const E1000E_RingInfo *rxi;
1508 size_t ps_hdr_len = 0;
1509 bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len);
1510
1511 rxi = rxr->i;
1512
1513 do {
1514 hwaddr ba[MAX_PS_BUFFERS];
1515 e1000e_ba_state bastate = { { 0 } };
1516 bool is_last = false;
1517 bool is_first = true;
1518
1519 desc_size = total_size - desc_offset;
1520
1521 if (desc_size > core->rx_desc_buf_size) {
1522 desc_size = core->rx_desc_buf_size;
1523 }
1524
1525 base = e1000e_ring_head_descr(core, rxi);
1526
1527 pci_dma_read(d, base, &desc, core->rx_desc_len);
1528
1529 trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
1530
1531 e1000e_read_rx_descr(core, desc, &ba);
1532
1533 if (ba[0]) {
1534 if (desc_offset < size) {
1535 static const uint32_t fcs_pad;
1536 size_t iov_copy;
1537 size_t copy_size = size - desc_offset;
1538 if (copy_size > core->rx_desc_buf_size) {
1539 copy_size = core->rx_desc_buf_size;
1540 }
1541
1542 /* For PS mode copy the packet header first */
1543 if (do_ps) {
1544 if (is_first) {
1545 size_t ps_hdr_copied = 0;
1546 do {
1547 iov_copy = MIN(ps_hdr_len - ps_hdr_copied,
1548 iov->iov_len - iov_ofs);
1549
1550 e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
1551 iov->iov_base, iov_copy);
1552
1553 copy_size -= iov_copy;
1554 ps_hdr_copied += iov_copy;
1555
1556 iov_ofs += iov_copy;
1557 if (iov_ofs == iov->iov_len) {
1558 iov++;
1559 iov_ofs = 0;
1560 }
1561 } while (ps_hdr_copied < ps_hdr_len);
1562
1563 is_first = false;
1564 } else {
1565 /* Leave buffer 0 of each descriptor except first */
1566 /* empty as per spec 7.1.5.1 */
1567 e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
1568 NULL, 0);
1569 }
1570 }
1571
1572 /* Copy packet payload */
1573 while (copy_size) {
1574 iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
1575
1576 e1000e_write_to_rx_buffers(core, &ba, &bastate,
1577 iov->iov_base + iov_ofs, iov_copy);
1578
1579 copy_size -= iov_copy;
1580 iov_ofs += iov_copy;
1581 if (iov_ofs == iov->iov_len) {
1582 iov++;
1583 iov_ofs = 0;
1584 }
1585 }
1586
1587 if (desc_offset + desc_size >= total_size) {
1588 /* Simulate FCS checksum presence in the last descriptor */
1589 e1000e_write_to_rx_buffers(core, &ba, &bastate,
1590 (const char *) &fcs_pad, e1000x_fcs_len(core->mac));
1591 }
1592 }
1593 desc_offset += desc_size;
1594 if (desc_offset >= total_size) {
1595 is_last = true;
1596 }
1597 } else { /* as per intel docs; skip descriptors with null buf addr */
1598 trace_e1000e_rx_null_descriptor();
1599 }
1600
1601 e1000e_write_rx_descr(core, desc, is_last ? core->rx_pkt : NULL,
1602 rss_info, do_ps ? ps_hdr_len : 0, &bastate.written);
1603 pci_dma_write(d, base, &desc, core->rx_desc_len);
1604
1605 e1000e_ring_advance(core, rxi,
1606 core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
1607
1608 } while (desc_offset < total_size);
1609
1610 e1000e_update_rx_stats(core, size, total_size);
1611}
1612
1613static inline void
1614e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt)
1615{
1616 if (net_rx_pkt_has_virt_hdr(pkt)) {
1617 struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
1618
1619 if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
1620 net_rx_pkt_fix_l4_csum(pkt);
1621 }
1622 }
1623}
1624
1625ssize_t
1626e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt)
1627{
1628 static const int maximum_ethernet_hdr_len = (14 + 4);
1629 /* Min. octets in an ethernet frame sans FCS */
1630 static const int min_buf_size = 60;
1631
1632 uint32_t n = 0;
1633 uint8_t min_buf[min_buf_size];
1634 struct iovec min_iov;
1635 uint8_t *filter_buf;
1636 size_t size, orig_size;
1637 size_t iov_ofs = 0;
1638 E1000E_RxRing rxr;
1639 E1000E_RSSInfo rss_info;
1640 size_t total_size;
1641 ssize_t retval;
1642 bool rdmts_hit;
1643
1644 trace_e1000e_rx_receive_iov(iovcnt);
1645
1646 if (!e1000x_hw_rx_enabled(core->mac)) {
1647 return -1;
1648 }
1649
1650 /* Pull virtio header in */
1651 if (core->has_vnet) {
1652 net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
1653 iov_ofs = sizeof(struct virtio_net_hdr);
1654 }
1655
1656 filter_buf = iov->iov_base + iov_ofs;
1657 orig_size = iov_size(iov, iovcnt);
1658 size = orig_size - iov_ofs;
1659
1660 /* Pad to minimum Ethernet frame length */
1661 if (size < sizeof(min_buf)) {
1662 iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size);
1663 memset(&min_buf[size], 0, sizeof(min_buf) - size);
1664 e1000x_inc_reg_if_not_full(core->mac, RUC);
1665 min_iov.iov_base = filter_buf = min_buf;
1666 min_iov.iov_len = size = sizeof(min_buf);
1667 iovcnt = 1;
1668 iov = &min_iov;
1669 iov_ofs = 0;
1670 } else if (iov->iov_len < maximum_ethernet_hdr_len) {
1671 /* This is very unlikely, but may happen. */
1672 iov_to_buf(iov, iovcnt, iov_ofs, min_buf, maximum_ethernet_hdr_len);
1673 filter_buf = min_buf;
1674 }
1675
1676 /* Discard oversized packets if !LPE and !SBP. */
1677 if (e1000x_is_oversized(core->mac, size)) {
1678 return orig_size;
1679 }
1680
1681 net_rx_pkt_set_packet_type(core->rx_pkt,
1682 get_eth_packet_type(PKT_GET_ETH_HDR(filter_buf)));
1683
1684 if (!e1000e_receive_filter(core, filter_buf, size)) {
1685 trace_e1000e_rx_flt_dropped();
1686 return orig_size;
1687 }
1688
1689 net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
1690 e1000x_vlan_enabled(core->mac), core->vet);
1691
1692 e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info);
1693 e1000e_rx_ring_init(core, &rxr, rss_info.queue);
1694
1695 trace_e1000e_rx_rss_dispatched_to_queue(rxr.i->idx);
1696
1697 total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
1698 e1000x_fcs_len(core->mac);
1699
1700 if (e1000e_has_rxbufs(core, rxr.i, total_size)) {
1701 e1000e_rx_fix_l4_csum(core, core->rx_pkt);
1702
1703 e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
1704
1705 retval = orig_size;
1706
1707 /* Perform small receive detection (RSRPD) */
1708 if (total_size < core->mac[RSRPD]) {
1709 n |= E1000_ICS_SRPD;
1710 }
1711
1712 /* Perform ACK receive detection */
1713 if (e1000e_is_tcp_ack(core, core->rx_pkt)) {
1714 n |= E1000_ICS_ACK;
1715 }
1716
1717 /* Check if receive descriptor minimum threshold hit */
1718 rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i);
1719 n |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit);
1720
1721 trace_e1000e_rx_written_to_guest(n);
1722 } else {
1723 n |= E1000_ICS_RXO;
1724 retval = 0;
1725
1726 trace_e1000e_rx_not_written_to_guest(n);
1727 }
1728
1729 if (!e1000e_intrmgr_delay_rx_causes(core, &n)) {
1730 trace_e1000e_rx_interrupt_set(n);
1731 e1000e_set_interrupt_cause(core, n);
1732 } else {
1733 trace_e1000e_rx_interrupt_delayed(n);
1734 }
1735
1736 return retval;
1737}
1738
1739static inline bool
1740e1000e_have_autoneg(E1000ECore *core)
1741{
1742 return core->phy[0][PHY_CTRL] & MII_CR_AUTO_NEG_EN;
1743}
1744
1745static void e1000e_update_flowctl_status(E1000ECore *core)
1746{
1747 if (e1000e_have_autoneg(core) &&
1748 core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE) {
1749 trace_e1000e_link_autoneg_flowctl(true);
1750 core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
1751 } else {
1752 trace_e1000e_link_autoneg_flowctl(false);
1753 }
1754}
1755
1756static inline void
1757e1000e_link_down(E1000ECore *core)
1758{
1759 e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1760 e1000e_update_flowctl_status(core);
1761}
1762
1763static inline void
1764e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val)
1765{
1766 /* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */
1767 core->phy[0][PHY_CTRL] = val & ~(0x3f |
1768 MII_CR_RESET |
1769 MII_CR_RESTART_AUTO_NEG);
1770
1771 if ((val & MII_CR_RESTART_AUTO_NEG) &&
1772 e1000e_have_autoneg(core)) {
1773 e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1774 }
1775}
1776
1777static void
1778e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val)
1779{
1780 core->phy[0][PHY_OEM_BITS] = val & ~BIT(10);
1781
1782 if (val & BIT(10)) {
1783 e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
1784 }
1785}
1786
1787static void
1788e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val)
1789{
1790 core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK;
1791}
1792
1793void
1794e1000e_core_set_link_status(E1000ECore *core)
1795{
1796 NetClientState *nc = qemu_get_queue(core->owner_nic);
1797 uint32_t old_status = core->mac[STATUS];
1798
1799 trace_e1000e_link_status_changed(nc->link_down ? false : true);
1800
1801 if (nc->link_down) {
1802 e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
1803 } else {
1804 if (e1000e_have_autoneg(core) &&
1805 !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
1806 e1000x_restart_autoneg(core->mac, core->phy[0],
1807 core->autoneg_timer);
1808 } else {
1809 e1000x_update_regs_on_link_up(core->mac, core->phy[0]);
1810 }
1811 }
1812
1813 if (core->mac[STATUS] != old_status) {
1814 e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
1815 }
1816}
1817
1818static void
1819e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val)
1820{
1821 trace_e1000e_core_ctrl_write(index, val);
1822
1823 /* RST is self clearing */
1824 core->mac[CTRL] = val & ~E1000_CTRL_RST;
1825 core->mac[CTRL_DUP] = core->mac[CTRL];
1826
1827 trace_e1000e_link_set_params(
1828 !!(val & E1000_CTRL_ASDE),
1829 (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
1830 !!(val & E1000_CTRL_FRCSPD),
1831 !!(val & E1000_CTRL_FRCDPX),
1832 !!(val & E1000_CTRL_RFCE),
1833 !!(val & E1000_CTRL_TFCE));
1834
1835 if (val & E1000_CTRL_RST) {
1836 trace_e1000e_core_ctrl_sw_reset();
1837 e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
1838 }
1839
1840 if (val & E1000_CTRL_PHY_RST) {
1841 trace_e1000e_core_ctrl_phy_reset();
1842 core->mac[STATUS] |= E1000_STATUS_PHYRA;
1843 }
1844}
1845
1846static void
1847e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val)
1848{
1849 trace_e1000e_rx_set_rfctl(val);
1850
1851 if (!(val & E1000_RFCTL_ISCSI_DIS)) {
1852 trace_e1000e_wrn_iscsi_filtering_not_supported();
1853 }
1854
1855 if (!(val & E1000_RFCTL_NFSW_DIS)) {
1856 trace_e1000e_wrn_nfsw_filtering_not_supported();
1857 }
1858
1859 if (!(val & E1000_RFCTL_NFSR_DIS)) {
1860 trace_e1000e_wrn_nfsr_filtering_not_supported();
1861 }
1862
1863 core->mac[RFCTL] = val;
1864}
1865
1866static void
1867e1000e_calc_per_desc_buf_size(E1000ECore *core)
1868{
1869 int i;
1870 core->rx_desc_buf_size = 0;
1871
1872 for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) {
1873 core->rx_desc_buf_size += core->rxbuf_sizes[i];
1874 }
1875}
1876
1877static void
1878e1000e_parse_rxbufsize(E1000ECore *core)
1879{
1880 uint32_t rctl = core->mac[RCTL];
1881
1882 memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes));
1883
1884 if (rctl & E1000_RCTL_DTYP_MASK) {
1885 uint32_t bsize;
1886
1887 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK;
1888 core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128;
1889
1890 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK;
1891 core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024;
1892
1893 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK;
1894 core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024;
1895
1896 bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK;
1897 core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024;
1898 } else if (rctl & E1000_RCTL_FLXBUF_MASK) {
1899 int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK;
1900 core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024;
1901 } else {
1902 core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl);
1903 }
1904
1905 trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1],
1906 core->rxbuf_sizes[2], core->rxbuf_sizes[3]);
1907
1908 e1000e_calc_per_desc_buf_size(core);
1909}
1910
1911static void
1912e1000e_calc_rxdesclen(E1000ECore *core)
1913{
1914 if (e1000e_rx_use_legacy_descriptor(core)) {
1915 core->rx_desc_len = sizeof(struct e1000_rx_desc);
1916 } else {
1917 if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
1918 core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split);
1919 } else {
1920 core->rx_desc_len = sizeof(union e1000_rx_desc_extended);
1921 }
1922 }
1923 trace_e1000e_rx_desc_len(core->rx_desc_len);
1924}
1925
1926static void
1927e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val)
1928{
1929 core->mac[RCTL] = val;
1930 trace_e1000e_rx_set_rctl(core->mac[RCTL]);
1931
1932 if (val & E1000_RCTL_EN) {
1933 e1000e_parse_rxbufsize(core);
1934 e1000e_calc_rxdesclen(core);
1935 core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 +
1936 E1000_RING_DESC_LEN_SHIFT;
1937
1938 e1000e_start_recv(core);
1939 }
1940}
1941
1942static
1943void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE])
1944(E1000ECore *, int, uint16_t) = {
1945 [0] = {
1946 [PHY_CTRL] = e1000e_set_phy_ctrl,
1947 [PHY_PAGE] = e1000e_set_phy_page,
1948 [PHY_OEM_BITS] = e1000e_set_phy_oem_bits
1949 }
1950};
1951
1952static inline void
1953e1000e_clear_ims_bits(E1000ECore *core, uint32_t bits)
1954{
1955 trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits);
1956 core->mac[IMS] &= ~bits;
1957}
1958
1959static inline bool
1960e1000e_postpone_interrupt(bool *interrupt_pending,
1961 E1000IntrDelayTimer *timer)
1962{
1963 if (timer->running) {
1964 trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
1965
1966 *interrupt_pending = true;
1967 return true;
1968 }
1969
1970 if (timer->core->mac[timer->delay_reg] != 0) {
1971 e1000e_intrmgr_rearm_timer(timer);
1972 }
1973
1974 return false;
1975}
1976
1977static inline bool
1978e1000e_itr_should_postpone(E1000ECore *core)
1979{
1980 return e1000e_postpone_interrupt(&core->itr_intr_pending, &core->itr);
1981}
1982
1983static inline bool
1984e1000e_eitr_should_postpone(E1000ECore *core, int idx)
1985{
1986 return e1000e_postpone_interrupt(&core->eitr_intr_pending[idx],
1987 &core->eitr[idx]);
1988}
1989
1990static void
1991e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
1992{
1993 uint32_t effective_eiac;
1994
1995 if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
1996 uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
1997 if (vec < E1000E_MSIX_VEC_NUM) {
1998 if (!e1000e_eitr_should_postpone(core, vec)) {
1999 trace_e1000e_irq_msix_notify_vec(vec);
2000 msix_notify(core->owner, vec);
2001 }
2002 } else {
2003 trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2004 }
2005 } else {
2006 trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2007 }
2008
2009 if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) {
2010 trace_e1000e_irq_ims_clear_eiame(core->mac[IAM], cause);
2011 e1000e_clear_ims_bits(core, core->mac[IAM] & cause);
2012 }
2013
2014 trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]);
2015
2016 if (core->mac[EIAC] & E1000_ICR_OTHER) {
2017 effective_eiac = (core->mac[EIAC] & E1000_EIAC_MASK) |
2018 E1000_ICR_OTHER_CAUSES;
2019 } else {
2020 effective_eiac = core->mac[EIAC] & E1000_EIAC_MASK;
2021 }
2022 core->mac[ICR] &= ~effective_eiac;
2023}
2024
2025static void
2026e1000e_msix_notify(E1000ECore *core, uint32_t causes)
2027{
2028 if (causes & E1000_ICR_RXQ0) {
2029 e1000e_msix_notify_one(core, E1000_ICR_RXQ0,
2030 E1000_IVAR_RXQ0(core->mac[IVAR]));
2031 }
2032
2033 if (causes & E1000_ICR_RXQ1) {
2034 e1000e_msix_notify_one(core, E1000_ICR_RXQ1,
2035 E1000_IVAR_RXQ1(core->mac[IVAR]));
2036 }
2037
2038 if (causes & E1000_ICR_TXQ0) {
2039 e1000e_msix_notify_one(core, E1000_ICR_TXQ0,
2040 E1000_IVAR_TXQ0(core->mac[IVAR]));
2041 }
2042
2043 if (causes & E1000_ICR_TXQ1) {
2044 e1000e_msix_notify_one(core, E1000_ICR_TXQ1,
2045 E1000_IVAR_TXQ1(core->mac[IVAR]));
2046 }
2047
2048 if (causes & E1000_ICR_OTHER) {
2049 e1000e_msix_notify_one(core, E1000_ICR_OTHER,
2050 E1000_IVAR_OTHER(core->mac[IVAR]));
2051 }
2052}
2053
2054static void
2055e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
2056{
2057 if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
2058 uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
2059 if (vec < E1000E_MSIX_VEC_NUM) {
2060 trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec);
2061 msix_clr_pending(core->owner, vec);
2062 } else {
2063 trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
2064 }
2065 } else {
2066 trace_e1000e_wrn_msix_invalid(cause, int_cfg);
2067 }
2068}
2069
2070static void
2071e1000e_msix_clear(E1000ECore *core, uint32_t causes)
2072{
2073 if (causes & E1000_ICR_RXQ0) {
2074 e1000e_msix_clear_one(core, E1000_ICR_RXQ0,
2075 E1000_IVAR_RXQ0(core->mac[IVAR]));
2076 }
2077
2078 if (causes & E1000_ICR_RXQ1) {
2079 e1000e_msix_clear_one(core, E1000_ICR_RXQ1,
2080 E1000_IVAR_RXQ1(core->mac[IVAR]));
2081 }
2082
2083 if (causes & E1000_ICR_TXQ0) {
2084 e1000e_msix_clear_one(core, E1000_ICR_TXQ0,
2085 E1000_IVAR_TXQ0(core->mac[IVAR]));
2086 }
2087
2088 if (causes & E1000_ICR_TXQ1) {
2089 e1000e_msix_clear_one(core, E1000_ICR_TXQ1,
2090 E1000_IVAR_TXQ1(core->mac[IVAR]));
2091 }
2092
2093 if (causes & E1000_ICR_OTHER) {
2094 e1000e_msix_clear_one(core, E1000_ICR_OTHER,
2095 E1000_IVAR_OTHER(core->mac[IVAR]));
2096 }
2097}
2098
2099static inline void
2100e1000e_fix_icr_asserted(E1000ECore *core)
2101{
2102 core->mac[ICR] &= ~E1000_ICR_ASSERTED;
2103 if (core->mac[ICR]) {
2104 core->mac[ICR] |= E1000_ICR_ASSERTED;
2105 }
2106
2107 trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
2108}
2109
2110static void
2111e1000e_send_msi(E1000ECore *core, bool msix)
2112{
2113 uint32_t causes = core->mac[ICR] & core->mac[IMS] & ~E1000_ICR_ASSERTED;
2114
2115 if (msix) {
2116 e1000e_msix_notify(core, causes);
2117 } else {
2118 if (!e1000e_itr_should_postpone(core)) {
2119 trace_e1000e_irq_msi_notify(causes);
2120 msi_notify(core->owner, 0);
2121 }
2122 }
2123}
2124
2125static void
2126e1000e_update_interrupt_state(E1000ECore *core)
2127{
2128 bool interrupts_pending;
2129 bool is_msix = msix_enabled(core->owner);
2130
2131 /* Set ICR[OTHER] for MSI-X */
2132 if (is_msix) {
2133 if (core->mac[ICR] & core->mac[IMS] & E1000_ICR_OTHER_CAUSES) {
2134 core->mac[ICR] |= E1000_ICR_OTHER;
2135 trace_e1000e_irq_add_msi_other(core->mac[ICR]);
2136 }
2137 }
2138
2139 e1000e_fix_icr_asserted(core);
2140
2141 /*
2142 * Make sure ICR and ICS registers have the same value.
2143 * The spec says that the ICS register is write-only. However in practice,
2144 * on real hardware ICS is readable, and for reads it has the same value as
2145 * ICR (except that ICS does not have the clear on read behaviour of ICR).
2146 *
2147 * The VxWorks PRO/1000 driver uses this behaviour.
2148 */
2149 core->mac[ICS] = core->mac[ICR];
2150
2151 interrupts_pending = (core->mac[IMS] & core->mac[ICR]) ? true : false;
2152
2153 trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
2154 core->mac[ICR], core->mac[IMS]);
2155
2156 if (is_msix || msi_enabled(core->owner)) {
2157 if (interrupts_pending) {
2158 e1000e_send_msi(core, is_msix);
2159 }
2160 } else {
2161 if (interrupts_pending) {
2162 if (!e1000e_itr_should_postpone(core)) {
2163 e1000e_raise_legacy_irq(core);
2164 }
2165 } else {
2166 e1000e_lower_legacy_irq(core);
2167 }
2168 }
2169}
2170
2171static inline void
2172e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val)
2173{
2174 trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]);
2175
2176 val |= e1000e_intmgr_collect_delayed_causes(core);
2177 core->mac[ICR] |= val;
2178
2179 trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]);
2180
2181 e1000e_update_interrupt_state(core);
2182}
2183
2184static inline void
2185e1000e_autoneg_timer(void *opaque)
2186{
2187 E1000ECore *core = opaque;
2188 if (!qemu_get_queue(core->owner_nic)->link_down) {
2189 e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]);
2190 e1000e_update_flowctl_status(core);
2191 /* signal link status change to the guest */
2192 e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
2193 }
2194}
2195
2196static inline uint16_t
2197e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
2198{
2199 uint16_t index = (addr & 0x1ffff) >> 2;
2200 return index + (mac_reg_access[index] & 0xfffe);
2201}
2202
2203static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = {
2204 [0] = {
2205 [PHY_CTRL] = PHY_ANYPAGE | PHY_RW,
2206 [PHY_STATUS] = PHY_ANYPAGE | PHY_R,
2207 [PHY_ID1] = PHY_ANYPAGE | PHY_R,
2208 [PHY_ID2] = PHY_ANYPAGE | PHY_R,
2209 [PHY_AUTONEG_ADV] = PHY_ANYPAGE | PHY_RW,
2210 [PHY_LP_ABILITY] = PHY_ANYPAGE | PHY_R,
2211 [PHY_AUTONEG_EXP] = PHY_ANYPAGE | PHY_R,
2212 [PHY_NEXT_PAGE_TX] = PHY_ANYPAGE | PHY_RW,
2213 [PHY_LP_NEXT_PAGE] = PHY_ANYPAGE | PHY_R,
2214 [PHY_1000T_CTRL] = PHY_ANYPAGE | PHY_RW,
2215 [PHY_1000T_STATUS] = PHY_ANYPAGE | PHY_R,
2216 [PHY_EXT_STATUS] = PHY_ANYPAGE | PHY_R,
2217 [PHY_PAGE] = PHY_ANYPAGE | PHY_RW,
2218
2219 [PHY_COPPER_CTRL1] = PHY_RW,
2220 [PHY_COPPER_STAT1] = PHY_R,
2221 [PHY_COPPER_CTRL3] = PHY_RW,
2222 [PHY_RX_ERR_CNTR] = PHY_R,
2223 [PHY_OEM_BITS] = PHY_RW,
2224 [PHY_BIAS_1] = PHY_RW,
2225 [PHY_BIAS_2] = PHY_RW,
2226 [PHY_COPPER_INT_ENABLE] = PHY_RW,
2227 [PHY_COPPER_STAT2] = PHY_R,
2228 [PHY_COPPER_CTRL2] = PHY_RW
2229 },
2230 [2] = {
2231 [PHY_MAC_CTRL1] = PHY_RW,
2232 [PHY_MAC_INT_ENABLE] = PHY_RW,
2233 [PHY_MAC_STAT] = PHY_R,
2234 [PHY_MAC_CTRL2] = PHY_RW
2235 },
2236 [3] = {
2237 [PHY_LED_03_FUNC_CTRL1] = PHY_RW,
2238 [PHY_LED_03_POL_CTRL] = PHY_RW,
2239 [PHY_LED_TIMER_CTRL] = PHY_RW,
2240 [PHY_LED_45_CTRL] = PHY_RW
2241 },
2242 [5] = {
2243 [PHY_1000T_SKEW] = PHY_R,
2244 [PHY_1000T_SWAP] = PHY_R
2245 },
2246 [6] = {
2247 [PHY_CRC_COUNTERS] = PHY_R
2248 }
2249};
2250
2251static bool
2252e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr,
2253 char cap, uint8_t *page)
2254{
2255 *page =
2256 (e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0
2257 : core->phy[0][PHY_PAGE];
2258
2259 if (*page >= E1000E_PHY_PAGES) {
2260 return false;
2261 }
2262
2263 return e1000e_phy_regcap[*page][addr] & cap;
2264}
2265
2266static void
2267e1000e_phy_reg_write(E1000ECore *core, uint8_t page,
2268 uint32_t addr, uint16_t data)
2269{
2270 assert(page < E1000E_PHY_PAGES);
2271 assert(addr < E1000E_PHY_PAGE_SIZE);
2272
2273 if (e1000e_phyreg_writeops[page][addr]) {
2274 e1000e_phyreg_writeops[page][addr](core, addr, data);
2275 } else {
2276 core->phy[page][addr] = data;
2277 }
2278}
2279
2280static void
2281e1000e_set_mdic(E1000ECore *core, int index, uint32_t val)
2282{
2283 uint32_t data = val & E1000_MDIC_DATA_MASK;
2284 uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
2285 uint8_t page;
2286
2287 if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
2288 val = core->mac[MDIC] | E1000_MDIC_ERROR;
2289 } else if (val & E1000_MDIC_OP_READ) {
2290 if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) {
2291 trace_e1000e_core_mdic_read_unhandled(page, addr);
2292 val |= E1000_MDIC_ERROR;
2293 } else {
2294 val = (val ^ data) | core->phy[page][addr];
2295 trace_e1000e_core_mdic_read(page, addr, val);
2296 }
2297 } else if (val & E1000_MDIC_OP_WRITE) {
2298 if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) {
2299 trace_e1000e_core_mdic_write_unhandled(page, addr);
2300 val |= E1000_MDIC_ERROR;
2301 } else {
2302 trace_e1000e_core_mdic_write(page, addr, data);
2303 e1000e_phy_reg_write(core, page, addr, data);
2304 }
2305 }
2306 core->mac[MDIC] = val | E1000_MDIC_READY;
2307
2308 if (val & E1000_MDIC_INT_EN) {
2309 e1000e_set_interrupt_cause(core, E1000_ICR_MDAC);
2310 }
2311}
2312
2313static void
2314e1000e_set_rdt(E1000ECore *core, int index, uint32_t val)
2315{
2316 core->mac[index] = val & 0xffff;
2317 trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val);
2318 e1000e_start_recv(core);
2319}
2320
2321static void
2322e1000e_set_status(E1000ECore *core, int index, uint32_t val)
2323{
2324 if ((val & E1000_STATUS_PHYRA) == 0) {
2325 core->mac[index] &= ~E1000_STATUS_PHYRA;
2326 }
2327}
2328
2329static void
2330e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val)
2331{
2332 trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
2333 !!(val & E1000_CTRL_EXT_SPD_BYPS));
2334
2335 /* Zero self-clearing bits */
2336 val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
2337 core->mac[CTRL_EXT] = val;
2338}
2339
2340static void
2341e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val)
2342{
2343 int i;
2344
2345 core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
2346
2347 if (msix_enabled(core->owner)) {
2348 return;
2349 }
2350
2351 for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
2352 if (core->mac[PBACLR] & BIT(i)) {
2353 msix_clr_pending(core->owner, i);
2354 }
2355 }
2356}
2357
2358static void
2359e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val)
2360{
2361 core->mac[FCRTH] = val & 0xFFF8;
2362}
2363
2364static void
2365e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val)
2366{
2367 core->mac[FCRTL] = val & 0x8000FFF8;
2368}
2369
2370static inline void
2371e1000e_set_16bit(E1000ECore *core, int index, uint32_t val)
2372{
2373 core->mac[index] = val & 0xffff;
2374}
2375
2376static void
2377e1000e_set_12bit(E1000ECore *core, int index, uint32_t val)
2378{
2379 core->mac[index] = val & 0xfff;
2380}
2381
2382static void
2383e1000e_set_vet(E1000ECore *core, int index, uint32_t val)
2384{
2385 core->mac[VET] = val & 0xffff;
2386 core->vet = le16_to_cpu(core->mac[VET]);
2387 trace_e1000e_vlan_vet(core->vet);
2388}
2389
2390static void
2391e1000e_set_dlen(E1000ECore *core, int index, uint32_t val)
2392{
2393 core->mac[index] = val & E1000_XDLEN_MASK;
2394}
2395
2396static void
2397e1000e_set_dbal(E1000ECore *core, int index, uint32_t val)
2398{
2399 core->mac[index] = val & E1000_XDBAL_MASK;
2400}
2401
2402static void
2403e1000e_set_tctl(E1000ECore *core, int index, uint32_t val)
2404{
2405 E1000E_TxRing txr;
2406 core->mac[index] = val;
2407
2408 if (core->mac[TARC0] & E1000_TARC_ENABLE) {
2409 e1000e_tx_ring_init(core, &txr, 0);
2410 e1000e_start_xmit(core, &txr);
2411 }
2412
2413 if (core->mac[TARC1] & E1000_TARC_ENABLE) {
2414 e1000e_tx_ring_init(core, &txr, 1);
2415 e1000e_start_xmit(core, &txr);
2416 }
2417}
2418
2419static void
2420e1000e_set_tdt(E1000ECore *core, int index, uint32_t val)
2421{
2422 E1000E_TxRing txr;
2423 int qidx = e1000e_mq_queue_idx(TDT, index);
2424 uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1;
2425
2426 core->mac[index] = val & 0xffff;
2427
2428 if (core->mac[tarc_reg] & E1000_TARC_ENABLE) {
2429 e1000e_tx_ring_init(core, &txr, qidx);
2430 e1000e_start_xmit(core, &txr);
2431 }
2432}
2433
2434static void
2435e1000e_set_ics(E1000ECore *core, int index, uint32_t val)
2436{
2437 trace_e1000e_irq_write_ics(val);
2438 e1000e_set_interrupt_cause(core, val);
2439}
2440
2441static void
2442e1000e_set_icr(E1000ECore *core, int index, uint32_t val)
2443{
2444 if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2445 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2446 trace_e1000e_irq_icr_process_iame();
2447 e1000e_clear_ims_bits(core, core->mac[IAM]);
2448 }
2449
2450 trace_e1000e_irq_icr_write(val, core->mac[ICR], core->mac[ICR] & ~val);
2451 core->mac[ICR] &= ~val;
2452 e1000e_update_interrupt_state(core);
2453}
2454
2455static void
2456e1000e_set_imc(E1000ECore *core, int index, uint32_t val)
2457{
2458 trace_e1000e_irq_ims_clear_set_imc(val);
2459 e1000e_clear_ims_bits(core, val);
2460 e1000e_update_interrupt_state(core);
2461}
2462
2463static void
2464e1000e_set_ims(E1000ECore *core, int index, uint32_t val)
2465{
2466 static const uint32_t ims_ext_mask =
2467 E1000_IMS_RXQ0 | E1000_IMS_RXQ1 |
2468 E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2469 E1000_IMS_OTHER;
2470
2471 static const uint32_t ims_valid_mask =
2472 E1000_IMS_TXDW | E1000_IMS_TXQE | E1000_IMS_LSC |
2473 E1000_IMS_RXDMT0 | E1000_IMS_RXO | E1000_IMS_RXT0 |
2474 E1000_IMS_MDAC | E1000_IMS_TXD_LOW | E1000_IMS_SRPD |
2475 E1000_IMS_ACK | E1000_IMS_MNG | E1000_IMS_RXQ0 |
2476 E1000_IMS_RXQ1 | E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
2477 E1000_IMS_OTHER;
2478
2479 uint32_t valid_val = val & ims_valid_mask;
2480
2481 trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val);
2482 core->mac[IMS] |= valid_val;
2483
2484 if ((valid_val & ims_ext_mask) &&
2485 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) &&
2486 msix_enabled(core->owner)) {
2487 e1000e_msix_clear(core, valid_val);
2488 }
2489
2490 if ((valid_val == ims_valid_mask) &&
2491 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) {
2492 trace_e1000e_irq_fire_all_timers(val);
2493 e1000e_intrmgr_fire_all_timers(core);
2494 }
2495
2496 e1000e_update_interrupt_state(core);
2497}
2498
2499static void
2500e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val)
2501{
2502 e1000e_set_16bit(core, index, val);
2503
2504 if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) {
2505 trace_e1000e_irq_rdtr_fpd_running();
2506 e1000e_intrmgr_fire_delayed_interrupts(core);
2507 } else {
2508 trace_e1000e_irq_rdtr_fpd_not_running();
2509 }
2510}
2511
2512static void
2513e1000e_set_tidv(E1000ECore *core, int index, uint32_t val)
2514{
2515 e1000e_set_16bit(core, index, val);
2516
2517 if ((val & E1000_TIDV_FPD) && (core->tidv.running)) {
2518 trace_e1000e_irq_tidv_fpd_running();
2519 e1000e_intrmgr_fire_delayed_interrupts(core);
2520 } else {
2521 trace_e1000e_irq_tidv_fpd_not_running();
2522 }
2523}
2524
2525static uint32_t
2526e1000e_mac_readreg(E1000ECore *core, int index)
2527{
2528 return core->mac[index];
2529}
2530
2531static uint32_t
2532e1000e_mac_ics_read(E1000ECore *core, int index)
2533{
2534 trace_e1000e_irq_read_ics(core->mac[ICS]);
2535 return core->mac[ICS];
2536}
2537
2538static uint32_t
2539e1000e_mac_ims_read(E1000ECore *core, int index)
2540{
2541 trace_e1000e_irq_read_ims(core->mac[IMS]);
2542 return core->mac[IMS];
2543}
2544
2545#define E1000E_LOW_BITS_READ_FUNC(num) \
2546 static uint32_t \
2547 e1000e_mac_low##num##_read(E1000ECore *core, int index) \
2548 { \
2549 return core->mac[index] & (BIT(num) - 1); \
2550 } \
2551
2552#define E1000E_LOW_BITS_READ(num) \
2553 e1000e_mac_low##num##_read
2554
2555E1000E_LOW_BITS_READ_FUNC(4);
2556E1000E_LOW_BITS_READ_FUNC(6);
2557E1000E_LOW_BITS_READ_FUNC(11);
2558E1000E_LOW_BITS_READ_FUNC(13);
2559E1000E_LOW_BITS_READ_FUNC(16);
2560
2561static uint32_t
2562e1000e_mac_swsm_read(E1000ECore *core, int index)
2563{
2564 uint32_t val = core->mac[SWSM];
2565 core->mac[SWSM] = val | 1;
2566 return val;
2567}
2568
2569static uint32_t
2570e1000e_mac_itr_read(E1000ECore *core, int index)
2571{
2572 return core->itr_guest_value;
2573}
2574
2575static uint32_t
2576e1000e_mac_eitr_read(E1000ECore *core, int index)
2577{
2578 return core->eitr_guest_value[index - EITR];
2579}
2580
2581static uint32_t
2582e1000e_mac_icr_read(E1000ECore *core, int index)
2583{
2584 uint32_t ret = core->mac[ICR];
2585 trace_e1000e_irq_icr_read_entry(ret);
2586
2587 if (core->mac[IMS] == 0) {
2588 trace_e1000e_irq_icr_clear_zero_ims();
2589 core->mac[ICR] = 0;
2590 }
2591
2592 if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
2593 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
2594 trace_e1000e_irq_icr_clear_iame();
2595 core->mac[ICR] = 0;
2596 trace_e1000e_irq_icr_process_iame();
2597 e1000e_clear_ims_bits(core, core->mac[IAM]);
2598 }
2599
2600 trace_e1000e_irq_icr_read_exit(core->mac[ICR]);
2601 e1000e_update_interrupt_state(core);
2602 return ret;
2603}
2604
2605static uint32_t
2606e1000e_mac_read_clr4(E1000ECore *core, int index)
2607{
2608 uint32_t ret = core->mac[index];
2609
2610 core->mac[index] = 0;
2611 return ret;
2612}
2613
2614static uint32_t
2615e1000e_mac_read_clr8(E1000ECore *core, int index)
2616{
2617 uint32_t ret = core->mac[index];
2618
2619 core->mac[index] = 0;
2620 core->mac[index - 1] = 0;
2621 return ret;
2622}
2623
2624static uint32_t
2625e1000e_get_ctrl(E1000ECore *core, int index)
2626{
2627 uint32_t val = core->mac[CTRL];
2628
2629 trace_e1000e_link_read_params(
2630 !!(val & E1000_CTRL_ASDE),
2631 (val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
2632 !!(val & E1000_CTRL_FRCSPD),
2633 !!(val & E1000_CTRL_FRCDPX),
2634 !!(val & E1000_CTRL_RFCE),
2635 !!(val & E1000_CTRL_TFCE));
2636
2637 return val;
2638}
2639
2640static uint32_t
2641e1000e_get_status(E1000ECore *core, int index)
2642{
2643 uint32_t res = core->mac[STATUS];
2644
2645 if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) {
2646 res |= E1000_STATUS_GIO_MASTER_ENABLE;
2647 }
2648
2649 if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
2650 res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
2651 } else {
2652 res |= E1000_STATUS_FD;
2653 }
2654
2655 if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
2656 (core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
2657 switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
2658 case E1000_CTRL_SPD_10:
2659 res |= E1000_STATUS_SPEED_10;
2660 break;
2661 case E1000_CTRL_SPD_100:
2662 res |= E1000_STATUS_SPEED_100;
2663 break;
2664 case E1000_CTRL_SPD_1000:
2665 default:
2666 res |= E1000_STATUS_SPEED_1000;
2667 break;
2668 }
2669 } else {
2670 res |= E1000_STATUS_SPEED_1000;
2671 }
2672
2673 trace_e1000e_link_status(
2674 !!(res & E1000_STATUS_LU),
2675 !!(res & E1000_STATUS_FD),
2676 (res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT,
2677 (res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT);
2678
2679 return res;
2680}
2681
2682static uint32_t
2683e1000e_get_tarc(E1000ECore *core, int index)
2684{
2685 return core->mac[index] & ((BIT(11) - 1) |
2686 BIT(27) |
2687 BIT(28) |
2688 BIT(29) |
2689 BIT(30));
2690}
2691
2692static void
2693e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val)
2694{
2695 core->mac[index] = val;
2696}
2697
2698static void
2699e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val)
2700{
2701 uint32_t macaddr[2];
2702
2703 core->mac[index] = val;
2704
2705 macaddr[0] = cpu_to_le32(core->mac[RA]);
2706 macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
2707 qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
2708 (uint8_t *) macaddr);
2709
2710 trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
2711}
2712
2713static void
2714e1000e_set_eecd(E1000ECore *core, int index, uint32_t val)
2715{
2716 static const uint32_t ro_bits = E1000_EECD_PRES |
2717 E1000_EECD_AUTO_RD |
2718 E1000_EECD_SIZE_EX_MASK;
2719
2720 core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
2721}
2722
2723static void
2724e1000e_set_eerd(E1000ECore *core, int index, uint32_t val)
2725{
2726 uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2727 uint32_t flags = 0;
2728 uint32_t data = 0;
2729
2730 if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2731 data = core->eeprom[addr];
2732 flags = E1000_EERW_DONE;
2733 }
2734
2735 core->mac[EERD] = flags |
2736 (addr << E1000_EERW_ADDR_SHIFT) |
2737 (data << E1000_EERW_DATA_SHIFT);
2738}
2739
2740static void
2741e1000e_set_eewr(E1000ECore *core, int index, uint32_t val)
2742{
2743 uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
2744 uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK;
2745 uint32_t flags = 0;
2746
2747 if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
2748 core->eeprom[addr] = data;
2749 flags = E1000_EERW_DONE;
2750 }
2751
2752 core->mac[EERD] = flags |
2753 (addr << E1000_EERW_ADDR_SHIFT) |
2754 (data << E1000_EERW_DATA_SHIFT);
2755}
2756
2757static void
2758e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val)
2759{
2760 core->mac[RXDCTL] = core->mac[RXDCTL1] = val;
2761}
2762
2763static void
2764e1000e_set_itr(E1000ECore *core, int index, uint32_t val)
2765{
2766 uint32_t interval = val & 0xffff;
2767
2768 trace_e1000e_irq_itr_set(val);
2769
2770 core->itr_guest_value = interval;
2771 core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2772}
2773
2774static void
2775e1000e_set_eitr(E1000ECore *core, int index, uint32_t val)
2776{
2777 uint32_t interval = val & 0xffff;
2778 uint32_t eitr_num = index - EITR;
2779
2780 trace_e1000e_irq_eitr_set(eitr_num, val);
2781
2782 core->eitr_guest_value[eitr_num] = interval;
2783 core->mac[index] = MAX(interval, E1000E_MIN_XITR);
2784}
2785
2786static void
2787e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val)
2788{
2789 if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) {
2790 hw_error("e1000e: PSRCTL.BSIZE0 cannot be zero");
2791 }
2792
2793 if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) {
2794 hw_error("e1000e: PSRCTL.BSIZE1 cannot be zero");
2795 }
2796
2797 core->mac[PSRCTL] = val;
2798}
2799
2800static void
2801e1000e_update_rx_offloads(E1000ECore *core)
2802{
2803 int cso_state = e1000e_rx_l4_cso_enabled(core);
2804
2805 trace_e1000e_rx_set_cso(cso_state);
2806
2807 if (core->has_vnet) {
2808 qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
2809 cso_state, 0, 0, 0, 0);
2810 }
2811}
2812
2813static void
2814e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val)
2815{
2816 core->mac[RXCSUM] = val;
2817 e1000e_update_rx_offloads(core);
2818}
2819
2820static void
2821e1000e_set_gcr(E1000ECore *core, int index, uint32_t val)
2822{
2823 uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
2824 core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
2825}
2826
2827#define e1000e_getreg(x) [x] = e1000e_mac_readreg
2828static uint32_t (*e1000e_macreg_readops[])(E1000ECore *, int) = {
2829 e1000e_getreg(PBA),
2830 e1000e_getreg(WUFC),
2831 e1000e_getreg(MANC),
2832 e1000e_getreg(TOTL),
2833 e1000e_getreg(RDT0),
2834 e1000e_getreg(RDBAH0),
2835 e1000e_getreg(TDBAL1),
2836 e1000e_getreg(RDLEN0),
2837 e1000e_getreg(RDH1),
2838 e1000e_getreg(LATECOL),
2839 e1000e_getreg(SEC),
2840 e1000e_getreg(XONTXC),
2841 e1000e_getreg(WUS),
2842 e1000e_getreg(GORCL),
2843 e1000e_getreg(MGTPRC),
2844 e1000e_getreg(EERD),
2845 e1000e_getreg(EIAC),
2846 e1000e_getreg(PSRCTL),
2847 e1000e_getreg(MANC2H),
2848 e1000e_getreg(RXCSUM),
2849 e1000e_getreg(GSCL_3),
2850 e1000e_getreg(GSCN_2),
2851 e1000e_getreg(RSRPD),
2852 e1000e_getreg(RDBAL1),
2853 e1000e_getreg(FCAH),
2854 e1000e_getreg(FCRTH),
2855 e1000e_getreg(FLOP),
2856 e1000e_getreg(FLASHT),
2857 e1000e_getreg(RXSTMPH),
2858 e1000e_getreg(TXSTMPL),
2859 e1000e_getreg(TIMADJL),
2860 e1000e_getreg(TXDCTL),
2861 e1000e_getreg(RDH0),
2862 e1000e_getreg(TDT1),
2863 e1000e_getreg(TNCRS),
2864 e1000e_getreg(RJC),
2865 e1000e_getreg(IAM),
2866 e1000e_getreg(GSCL_2),
2867 e1000e_getreg(RDBAH1),
2868 e1000e_getreg(FLSWDATA),
2869 e1000e_getreg(RXSATRH),
2870 e1000e_getreg(TIPG),
2871 e1000e_getreg(FLMNGCTL),
2872 e1000e_getreg(FLMNGCNT),
2873 e1000e_getreg(TSYNCTXCTL),
2874 e1000e_getreg(EXTCNF_SIZE),
2875 e1000e_getreg(EXTCNF_CTRL),
2876 e1000e_getreg(EEMNGDATA),
2877 e1000e_getreg(CTRL_EXT),
2878 e1000e_getreg(SYSTIMH),
2879 e1000e_getreg(EEMNGCTL),
2880 e1000e_getreg(FLMNGDATA),
2881 e1000e_getreg(TSYNCRXCTL),
2882 e1000e_getreg(TDH),
2883 e1000e_getreg(LEDCTL),
2884 e1000e_getreg(STATUS),
2885 e1000e_getreg(TCTL),
2886 e1000e_getreg(TDBAL),
2887 e1000e_getreg(TDLEN),
2888 e1000e_getreg(TDH1),
2889 e1000e_getreg(RADV),
2890 e1000e_getreg(ECOL),
2891 e1000e_getreg(DC),
2892 e1000e_getreg(RLEC),
2893 e1000e_getreg(XOFFTXC),
2894 e1000e_getreg(RFC),
2895 e1000e_getreg(RNBC),
2896 e1000e_getreg(MGTPTC),
2897 e1000e_getreg(TIMINCA),
2898 e1000e_getreg(RXCFGL),
2899 e1000e_getreg(MFUTP01),
2900 e1000e_getreg(FACTPS),
2901 e1000e_getreg(GSCL_1),
2902 e1000e_getreg(GSCN_0),
2903 e1000e_getreg(GCR2),
2904 e1000e_getreg(RDT1),
2905 e1000e_getreg(PBACLR),
2906 e1000e_getreg(FCTTV),
2907 e1000e_getreg(EEWR),
2908 e1000e_getreg(FLSWCTL),
2909 e1000e_getreg(RXDCTL1),
2910 e1000e_getreg(RXSATRL),
2911 e1000e_getreg(SYSTIML),
2912 e1000e_getreg(RXUDP),
2913 e1000e_getreg(TORL),
2914 e1000e_getreg(TDLEN1),
2915 e1000e_getreg(MCC),
2916 e1000e_getreg(WUC),
2917 e1000e_getreg(EECD),
2918 e1000e_getreg(MFUTP23),
2919 e1000e_getreg(RAID),
2920 e1000e_getreg(FCRTV),
2921 e1000e_getreg(TXDCTL1),
2922 e1000e_getreg(RCTL),
2923 e1000e_getreg(TDT),
2924 e1000e_getreg(MDIC),
2925 e1000e_getreg(FCRUC),
2926 e1000e_getreg(VET),
2927 e1000e_getreg(RDBAL0),
2928 e1000e_getreg(TDBAH1),
2929 e1000e_getreg(RDTR),
2930 e1000e_getreg(SCC),
2931 e1000e_getreg(COLC),
2932 e1000e_getreg(CEXTERR),
2933 e1000e_getreg(XOFFRXC),
2934 e1000e_getreg(IPAV),
2935 e1000e_getreg(GOTCL),
2936 e1000e_getreg(MGTPDC),
2937 e1000e_getreg(GCR),
2938 e1000e_getreg(IVAR),
2939 e1000e_getreg(POEMB),
2940 e1000e_getreg(MFVAL),
2941 e1000e_getreg(FUNCTAG),
2942 e1000e_getreg(GSCL_4),
2943 e1000e_getreg(GSCN_3),
2944 e1000e_getreg(MRQC),
2945 e1000e_getreg(RDLEN1),
2946 e1000e_getreg(FCT),
2947 e1000e_getreg(FLA),
2948 e1000e_getreg(FLOL),
2949 e1000e_getreg(RXDCTL),
2950 e1000e_getreg(RXSTMPL),
2951 e1000e_getreg(TXSTMPH),
2952 e1000e_getreg(TIMADJH),
2953 e1000e_getreg(FCRTL),
2954 e1000e_getreg(TDBAH),
2955 e1000e_getreg(TADV),
2956 e1000e_getreg(XONRXC),
2957 e1000e_getreg(TSCTFC),
2958 e1000e_getreg(RFCTL),
2959 e1000e_getreg(GSCN_1),
2960 e1000e_getreg(FCAL),
2961 e1000e_getreg(FLSWCNT),
2962
2963 [TOTH] = e1000e_mac_read_clr8,
2964 [GOTCH] = e1000e_mac_read_clr8,
2965 [PRC64] = e1000e_mac_read_clr4,
2966 [PRC255] = e1000e_mac_read_clr4,
2967 [PRC1023] = e1000e_mac_read_clr4,
2968 [PTC64] = e1000e_mac_read_clr4,
2969 [PTC255] = e1000e_mac_read_clr4,
2970 [PTC1023] = e1000e_mac_read_clr4,
2971 [GPRC] = e1000e_mac_read_clr4,
2972 [TPT] = e1000e_mac_read_clr4,
2973 [RUC] = e1000e_mac_read_clr4,
2974 [BPRC] = e1000e_mac_read_clr4,
2975 [MPTC] = e1000e_mac_read_clr4,
2976 [IAC] = e1000e_mac_read_clr4,
2977 [ICR] = e1000e_mac_icr_read,
2978 [RDFH] = E1000E_LOW_BITS_READ(13),
2979 [RDFHS] = E1000E_LOW_BITS_READ(13),
2980 [RDFPC] = E1000E_LOW_BITS_READ(13),
2981 [TDFH] = E1000E_LOW_BITS_READ(13),
2982 [TDFHS] = E1000E_LOW_BITS_READ(13),
2983 [STATUS] = e1000e_get_status,
2984 [TARC0] = e1000e_get_tarc,
2985 [PBS] = E1000E_LOW_BITS_READ(6),
2986 [ICS] = e1000e_mac_ics_read,
2987 [AIT] = E1000E_LOW_BITS_READ(16),
2988 [TORH] = e1000e_mac_read_clr8,
2989 [GORCH] = e1000e_mac_read_clr8,
2990 [PRC127] = e1000e_mac_read_clr4,
2991 [PRC511] = e1000e_mac_read_clr4,
2992 [PRC1522] = e1000e_mac_read_clr4,
2993 [PTC127] = e1000e_mac_read_clr4,
2994 [PTC511] = e1000e_mac_read_clr4,
2995 [PTC1522] = e1000e_mac_read_clr4,
2996 [GPTC] = e1000e_mac_read_clr4,
2997 [TPR] = e1000e_mac_read_clr4,
2998 [ROC] = e1000e_mac_read_clr4,
2999 [MPRC] = e1000e_mac_read_clr4,
3000 [BPTC] = e1000e_mac_read_clr4,
3001 [TSCTC] = e1000e_mac_read_clr4,
3002 [ITR] = e1000e_mac_itr_read,
3003 [RDFT] = E1000E_LOW_BITS_READ(13),
3004 [RDFTS] = E1000E_LOW_BITS_READ(13),
3005 [TDFPC] = E1000E_LOW_BITS_READ(13),
3006 [TDFT] = E1000E_LOW_BITS_READ(13),
3007 [TDFTS] = E1000E_LOW_BITS_READ(13),
3008 [CTRL] = e1000e_get_ctrl,
3009 [TARC1] = e1000e_get_tarc,
3010 [SWSM] = e1000e_mac_swsm_read,
3011 [IMS] = e1000e_mac_ims_read,
3012
3013 [CRCERRS ... MPC] = e1000e_mac_readreg,
3014 [IP6AT ... IP6AT + 3] = e1000e_mac_readreg,
3015 [IP4AT ... IP4AT + 6] = e1000e_mac_readreg,
3016 [RA ... RA + 31] = e1000e_mac_readreg,
3017 [WUPM ... WUPM + 31] = e1000e_mac_readreg,
3018 [MTA ... MTA + 127] = e1000e_mac_readreg,
3019 [VFTA ... VFTA + 127] = e1000e_mac_readreg,
3020 [FFMT ... FFMT + 254] = E1000E_LOW_BITS_READ(4),
3021 [FFVT ... FFVT + 254] = e1000e_mac_readreg,
3022 [MDEF ... MDEF + 7] = e1000e_mac_readreg,
3023 [FFLT ... FFLT + 10] = E1000E_LOW_BITS_READ(11),
3024 [FTFT ... FTFT + 254] = e1000e_mac_readreg,
3025 [PBM ... PBM + 10239] = e1000e_mac_readreg,
3026 [RETA ... RETA + 31] = e1000e_mac_readreg,
3027 [RSSRK ... RSSRK + 31] = e1000e_mac_readreg,
3028 [MAVTV0 ... MAVTV3] = e1000e_mac_readreg,
3029 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read
3030};
3031enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) };
3032
3033#define e1000e_putreg(x) [x] = e1000e_mac_writereg
3034static void (*e1000e_macreg_writeops[])(E1000ECore *, int, uint32_t) = {
3035 e1000e_putreg(PBA),
3036 e1000e_putreg(SWSM),
3037 e1000e_putreg(WUFC),
3038 e1000e_putreg(RDBAH1),
3039 e1000e_putreg(TDBAH),
3040 e1000e_putreg(TXDCTL),
3041 e1000e_putreg(RDBAH0),
3042 e1000e_putreg(LEDCTL),
3043 e1000e_putreg(FCAL),
3044 e1000e_putreg(FCRUC),
3045 e1000e_putreg(AIT),
3046 e1000e_putreg(TDFH),
3047 e1000e_putreg(TDFT),
3048 e1000e_putreg(TDFHS),
3049 e1000e_putreg(TDFTS),
3050 e1000e_putreg(TDFPC),
3051 e1000e_putreg(WUC),
3052 e1000e_putreg(WUS),
3053 e1000e_putreg(RDFH),
3054 e1000e_putreg(RDFT),
3055 e1000e_putreg(RDFHS),
3056 e1000e_putreg(RDFTS),
3057 e1000e_putreg(RDFPC),
3058 e1000e_putreg(IPAV),
3059 e1000e_putreg(TDBAH1),
3060 e1000e_putreg(TIMINCA),
3061 e1000e_putreg(IAM),
3062 e1000e_putreg(EIAC),
3063 e1000e_putreg(IVAR),
3064 e1000e_putreg(TARC0),
3065 e1000e_putreg(TARC1),
3066 e1000e_putreg(FLSWDATA),
3067 e1000e_putreg(POEMB),
3068 e1000e_putreg(PBS),
3069 e1000e_putreg(MFUTP01),
3070 e1000e_putreg(MFUTP23),
3071 e1000e_putreg(MANC),
3072 e1000e_putreg(MANC2H),
3073 e1000e_putreg(MFVAL),
3074 e1000e_putreg(EXTCNF_CTRL),
3075 e1000e_putreg(FACTPS),
3076 e1000e_putreg(FUNCTAG),
3077 e1000e_putreg(GSCL_1),
3078 e1000e_putreg(GSCL_2),
3079 e1000e_putreg(GSCL_3),
3080 e1000e_putreg(GSCL_4),
3081 e1000e_putreg(GSCN_0),
3082 e1000e_putreg(GSCN_1),
3083 e1000e_putreg(GSCN_2),
3084 e1000e_putreg(GSCN_3),
3085 e1000e_putreg(GCR2),
3086 e1000e_putreg(MRQC),
3087 e1000e_putreg(FLOP),
3088 e1000e_putreg(FLOL),
3089 e1000e_putreg(FLSWCTL),
3090 e1000e_putreg(FLSWCNT),
3091 e1000e_putreg(FLA),
3092 e1000e_putreg(RXDCTL1),
3093 e1000e_putreg(TXDCTL1),
3094 e1000e_putreg(TIPG),
3095 e1000e_putreg(RXSTMPH),
3096 e1000e_putreg(RXSTMPL),
3097 e1000e_putreg(RXSATRL),
3098 e1000e_putreg(RXSATRH),
3099 e1000e_putreg(TXSTMPL),
3100 e1000e_putreg(TXSTMPH),
3101 e1000e_putreg(SYSTIML),
3102 e1000e_putreg(SYSTIMH),
3103 e1000e_putreg(TIMADJL),
3104 e1000e_putreg(TIMADJH),
3105 e1000e_putreg(RXUDP),
3106 e1000e_putreg(RXCFGL),
3107 e1000e_putreg(TSYNCRXCTL),
3108 e1000e_putreg(TSYNCTXCTL),
3109 e1000e_putreg(FLSWDATA),
3110 e1000e_putreg(EXTCNF_SIZE),
3111 e1000e_putreg(EEMNGCTL),
3112 e1000e_putreg(RA),
3113
3114 [TDH1] = e1000e_set_16bit,
3115 [TDT1] = e1000e_set_tdt,
3116 [TCTL] = e1000e_set_tctl,
3117 [TDT] = e1000e_set_tdt,
3118 [MDIC] = e1000e_set_mdic,
3119 [ICS] = e1000e_set_ics,
3120 [TDH] = e1000e_set_16bit,
3121 [RDH0] = e1000e_set_16bit,
3122 [RDT0] = e1000e_set_rdt,
3123 [IMC] = e1000e_set_imc,
3124 [IMS] = e1000e_set_ims,
3125 [ICR] = e1000e_set_icr,
3126 [EECD] = e1000e_set_eecd,
3127 [RCTL] = e1000e_set_rx_control,
3128 [CTRL] = e1000e_set_ctrl,
3129 [RDTR] = e1000e_set_rdtr,
3130 [RADV] = e1000e_set_16bit,
3131 [TADV] = e1000e_set_16bit,
3132 [ITR] = e1000e_set_itr,
3133 [EERD] = e1000e_set_eerd,
3134 [GCR] = e1000e_set_gcr,
3135 [PSRCTL] = e1000e_set_psrctl,
3136 [RXCSUM] = e1000e_set_rxcsum,
3137 [RAID] = e1000e_set_16bit,
3138 [RSRPD] = e1000e_set_12bit,
3139 [TIDV] = e1000e_set_tidv,
3140 [TDLEN1] = e1000e_set_dlen,
3141 [TDLEN] = e1000e_set_dlen,
3142 [RDLEN0] = e1000e_set_dlen,
3143 [RDLEN1] = e1000e_set_dlen,
3144 [TDBAL] = e1000e_set_dbal,
3145 [TDBAL1] = e1000e_set_dbal,
3146 [RDBAL0] = e1000e_set_dbal,
3147 [RDBAL1] = e1000e_set_dbal,
3148 [RDH1] = e1000e_set_16bit,
3149 [RDT1] = e1000e_set_rdt,
3150 [STATUS] = e1000e_set_status,
3151 [PBACLR] = e1000e_set_pbaclr,
3152 [CTRL_EXT] = e1000e_set_ctrlext,
3153 [FCAH] = e1000e_set_16bit,
3154 [FCT] = e1000e_set_16bit,
3155 [FCTTV] = e1000e_set_16bit,
3156 [FCRTV] = e1000e_set_16bit,
3157 [FCRTH] = e1000e_set_fcrth,
3158 [FCRTL] = e1000e_set_fcrtl,
3159 [VET] = e1000e_set_vet,
3160 [RXDCTL] = e1000e_set_rxdctl,
3161 [FLASHT] = e1000e_set_16bit,
3162 [EEWR] = e1000e_set_eewr,
3163 [CTRL_DUP] = e1000e_set_ctrl,
3164 [RFCTL] = e1000e_set_rfctl,
3165 [RA + 1] = e1000e_mac_setmacaddr,
3166
3167 [IP6AT ... IP6AT + 3] = e1000e_mac_writereg,
3168 [IP4AT ... IP4AT + 6] = e1000e_mac_writereg,
3169 [RA + 2 ... RA + 31] = e1000e_mac_writereg,
3170 [WUPM ... WUPM + 31] = e1000e_mac_writereg,
3171 [MTA ... MTA + 127] = e1000e_mac_writereg,
3172 [VFTA ... VFTA + 127] = e1000e_mac_writereg,
3173 [FFMT ... FFMT + 254] = e1000e_mac_writereg,
3174 [FFVT ... FFVT + 254] = e1000e_mac_writereg,
3175 [PBM ... PBM + 10239] = e1000e_mac_writereg,
3176 [MDEF ... MDEF + 7] = e1000e_mac_writereg,
3177 [FFLT ... FFLT + 10] = e1000e_mac_writereg,
3178 [FTFT ... FTFT + 254] = e1000e_mac_writereg,
3179 [RETA ... RETA + 31] = e1000e_mac_writereg,
3180 [RSSRK ... RSSRK + 31] = e1000e_mac_writereg,
3181 [MAVTV0 ... MAVTV3] = e1000e_mac_writereg,
3182 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr
3183};
3184enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) };
3185
3186enum { MAC_ACCESS_PARTIAL = 1 };
3187
3188/* The array below combines alias offsets of the index values for the
3189 * MAC registers that have aliases, with the indication of not fully
3190 * implemented registers (lowest bit). This combination is possible
3191 * because all of the offsets are even. */
3192static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
3193 /* Alias index offsets */
3194 [FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802,
3195 [RDH0_A] = 0x09bc, [RDT0_A] = 0x09bc, [RDTR_A] = 0x09c6,
3196 [RDFH_A] = 0xe904, [RDFT_A] = 0xe904,
3197 [TDH_A] = 0x0cf8, [TDT_A] = 0x0cf8, [TIDV_A] = 0x0cf8,
3198 [TDFH_A] = 0xed00, [TDFT_A] = 0xed00,
3199 [RA_A ... RA_A + 31] = 0x14f0,
3200 [VFTA_A ... VFTA_A + 127] = 0x1400,
3201 [RDBAL0_A ... RDLEN0_A] = 0x09bc,
3202 [TDBAL_A ... TDLEN_A] = 0x0cf8,
3203 /* Access options */
3204 [RDFH] = MAC_ACCESS_PARTIAL, [RDFT] = MAC_ACCESS_PARTIAL,
3205 [RDFHS] = MAC_ACCESS_PARTIAL, [RDFTS] = MAC_ACCESS_PARTIAL,
3206 [RDFPC] = MAC_ACCESS_PARTIAL,
3207 [TDFH] = MAC_ACCESS_PARTIAL, [TDFT] = MAC_ACCESS_PARTIAL,
3208 [TDFHS] = MAC_ACCESS_PARTIAL, [TDFTS] = MAC_ACCESS_PARTIAL,
3209 [TDFPC] = MAC_ACCESS_PARTIAL, [EECD] = MAC_ACCESS_PARTIAL,
3210 [PBM] = MAC_ACCESS_PARTIAL, [FLA] = MAC_ACCESS_PARTIAL,
3211 [FCAL] = MAC_ACCESS_PARTIAL, [FCAH] = MAC_ACCESS_PARTIAL,
3212 [FCT] = MAC_ACCESS_PARTIAL, [FCTTV] = MAC_ACCESS_PARTIAL,
3213 [FCRTV] = MAC_ACCESS_PARTIAL, [FCRTL] = MAC_ACCESS_PARTIAL,
3214 [FCRTH] = MAC_ACCESS_PARTIAL, [TXDCTL] = MAC_ACCESS_PARTIAL,
3215 [TXDCTL1] = MAC_ACCESS_PARTIAL,
3216 [MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
3217};
3218
3219void
3220e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size)
3221{
3222 uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3223
3224 if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) {
3225 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3226 trace_e1000e_wrn_regs_write_trivial(index << 2);
3227 }
3228 trace_e1000e_core_write(index << 2, size, val);
3229 e1000e_macreg_writeops[index](core, index, val);
3230 } else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3231 trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
3232 } else {
3233 trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
3234 }
3235}
3236
3237uint64_t
3238e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size)
3239{
3240 uint64_t val;
3241 uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
3242
3243 if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
3244 if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
3245 trace_e1000e_wrn_regs_read_trivial(index << 2);
3246 }
3247 val = e1000e_macreg_readops[index](core, index);
3248 trace_e1000e_core_read(index << 2, size, val);
3249 return val;
3250 } else {
3251 trace_e1000e_wrn_regs_read_unknown(index << 2, size);
3252 }
3253 return 0;
3254}
3255
3256static inline void
3257e1000e_autoneg_pause(E1000ECore *core)
3258{
3259 timer_del(core->autoneg_timer);
3260}
3261
3262static void
3263e1000e_autoneg_resume(E1000ECore *core)
3264{
3265 if (e1000e_have_autoneg(core) &&
3266 !(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
3267 qemu_get_queue(core->owner_nic)->link_down = false;
3268 timer_mod(core->autoneg_timer,
3269 qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
3270 }
3271}
3272
3273static void
3274e1000e_vm_state_change(void *opaque, int running, RunState state)
3275{
3276 E1000ECore *core = opaque;
3277
3278 if (running) {
3279 trace_e1000e_vm_state_running();
3280 e1000e_intrmgr_resume(core);
3281 e1000e_autoneg_resume(core);
3282 } else {
3283 trace_e1000e_vm_state_stopped();
3284 e1000e_autoneg_pause(core);
3285 e1000e_intrmgr_pause(core);
3286 }
3287}
3288
3289void
3290e1000e_core_pci_realize(E1000ECore *core,
3291 const uint16_t *eeprom_templ,
3292 uint32_t eeprom_size,
3293 const uint8_t *macaddr)
3294{
3295 int i;
3296
3297 core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
3298 e1000e_autoneg_timer, core);
3299 e1000e_intrmgr_pci_realize(core);
3300
3301 core->vmstate =
3302 qemu_add_vm_change_state_handler(e1000e_vm_state_change, core);
3303
3304 for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3305 net_tx_pkt_init(&core->tx[i].tx_pkt, core->owner,
3306 E1000E_MAX_TX_FRAGS, core->has_vnet);
3307 }
3308
3309 net_rx_pkt_init(&core->rx_pkt, core->has_vnet);
3310
3311 e1000x_core_prepare_eeprom(core->eeprom,
3312 eeprom_templ,
3313 eeprom_size,
3314 PCI_DEVICE_GET_CLASS(core->owner)->device_id,
3315 macaddr);
3316 e1000e_update_rx_offloads(core);
3317}
3318
3319void
3320e1000e_core_pci_uninit(E1000ECore *core)
3321{
3322 int i;
3323
3324 timer_del(core->autoneg_timer);
3325 timer_free(core->autoneg_timer);
3326
3327 e1000e_intrmgr_pci_unint(core);
3328
3329 qemu_del_vm_change_state_handler(core->vmstate);
3330
3331 for (i = 0; i < E1000E_NUM_QUEUES; i++) {
3332 net_tx_pkt_reset(core->tx[i].tx_pkt);
3333 net_tx_pkt_uninit(core->tx[i].tx_pkt);
3334 }
3335
3336 net_rx_pkt_uninit(core->rx_pkt);
3337}
3338
3339static const uint16_t
3340e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = {
3341 [0] = {
3342 [PHY_CTRL] = MII_CR_SPEED_SELECT_MSB |
3343 MII_CR_FULL_DUPLEX |
3344 MII_CR_AUTO_NEG_EN,
3345
3346 [PHY_STATUS] = MII_SR_EXTENDED_CAPS |
3347 MII_SR_LINK_STATUS |
3348 MII_SR_AUTONEG_CAPS |
3349 MII_SR_PREAMBLE_SUPPRESS |
3350 MII_SR_EXTENDED_STATUS |
3351 MII_SR_10T_HD_CAPS |
3352 MII_SR_10T_FD_CAPS |
3353 MII_SR_100X_HD_CAPS |
3354 MII_SR_100X_FD_CAPS,
3355
3356 [PHY_ID1] = 0x141,
3357 [PHY_ID2] = E1000_PHY_ID2_82574x,
3358 [PHY_AUTONEG_ADV] = 0xde1,
3359 [PHY_LP_ABILITY] = 0x7e0,
3360 [PHY_AUTONEG_EXP] = BIT(2),
3361 [PHY_NEXT_PAGE_TX] = BIT(0) | BIT(13),
3362 [PHY_1000T_CTRL] = BIT(8) | BIT(9) | BIT(10) | BIT(11),
3363 [PHY_1000T_STATUS] = 0x3c00,
3364 [PHY_EXT_STATUS] = BIT(12) | BIT(13),
3365
3366 [PHY_COPPER_CTRL1] = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
3367 BIT(12) | BIT(13),
3368 [PHY_COPPER_STAT1] = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
3369 },
3370 [2] = {
3371 [PHY_MAC_CTRL1] = BIT(3) | BIT(7),
3372 [PHY_MAC_CTRL2] = BIT(1) | BIT(2) | BIT(6) | BIT(12)
3373 },
3374 [3] = {
3375 [PHY_LED_TIMER_CTRL] = BIT(0) | BIT(2) | BIT(14)
3376 }
3377};
3378
3379static const uint32_t e1000e_mac_reg_init[] = {
3380 [PBA] = 0x00140014,
3381 [LEDCTL] = BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
3382 [EXTCNF_CTRL] = BIT(3),
3383 [EEMNGCTL] = BIT(31),
3384 [FLASHT] = 0x2,
3385 [FLSWCTL] = BIT(30) | BIT(31),
3386 [FLOL] = BIT(0),
3387 [RXDCTL] = BIT(16),
3388 [RXDCTL1] = BIT(16),
3389 [TIPG] = 0x8 | (0x8 << 10) | (0x6 << 20),
3390 [RXCFGL] = 0x88F7,
3391 [RXUDP] = 0x319,
3392 [CTRL] = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
3393 E1000_CTRL_SPD_1000 | E1000_CTRL_SLU |
3394 E1000_CTRL_ADVD3WUC,
3395 [STATUS] = E1000_STATUS_ASDV_1000 | E1000_STATUS_LU,
3396 [PSRCTL] = (2 << E1000_PSRCTL_BSIZE0_SHIFT) |
3397 (4 << E1000_PSRCTL_BSIZE1_SHIFT) |
3398 (4 << E1000_PSRCTL_BSIZE2_SHIFT),
3399 [TARC0] = 0x3 | E1000_TARC_ENABLE,
3400 [TARC1] = 0x3 | E1000_TARC_ENABLE,
3401 [EECD] = E1000_EECD_AUTO_RD | E1000_EECD_PRES,
3402 [EERD] = E1000_EERW_DONE,
3403 [EEWR] = E1000_EERW_DONE,
3404 [GCR] = E1000_L0S_ADJUST |
3405 E1000_L1_ENTRY_LATENCY_MSB |
3406 E1000_L1_ENTRY_LATENCY_LSB,
3407 [TDFH] = 0x600,
3408 [TDFT] = 0x600,
3409 [TDFHS] = 0x600,
3410 [TDFTS] = 0x600,
3411 [POEMB] = 0x30D,
3412 [PBS] = 0x028,
3413 [MANC] = E1000_MANC_DIS_IP_CHK_ARP,
3414 [FACTPS] = E1000_FACTPS_LAN0_ON | 0x20000000,
3415 [SWSM] = 1,
3416 [RXCSUM] = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
3417 [ITR] = E1000E_MIN_XITR,
3418 [EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR,
3419};
3420
3421void
3422e1000e_core_reset(E1000ECore *core)
3423{
3424 int i;
3425
3426 timer_del(core->autoneg_timer);
3427
3428 e1000e_intrmgr_reset(core);
3429
3430 memset(core->phy, 0, sizeof core->phy);
3431 memmove(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init);
3432 memset(core->mac, 0, sizeof core->mac);
3433 memmove(core->mac, e1000e_mac_reg_init, sizeof e1000e_mac_reg_init);
3434
3435 core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT;
3436
3437 if (qemu_get_queue(core->owner_nic)->link_down) {
3438 e1000e_link_down(core);
3439 }
3440
3441 e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
3442
3443 for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3444 net_tx_pkt_reset(core->tx[i].tx_pkt);
3445 memset(&core->tx[i].props, 0, sizeof(core->tx[i].props));
3446 core->tx[i].skip_cp = false;
3447 }
3448}
3449
3450void e1000e_core_pre_save(E1000ECore *core)
3451{
3452 int i;
3453 NetClientState *nc = qemu_get_queue(core->owner_nic);
3454
3455 /*
3456 * If link is down and auto-negotiation is supported and ongoing,
3457 * complete auto-negotiation immediately. This allows us to look
3458 * at MII_SR_AUTONEG_COMPLETE to infer link status on load.
3459 */
3460 if (nc->link_down && e1000e_have_autoneg(core)) {
3461 core->phy[0][PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
3462 e1000e_update_flowctl_status(core);
3463 }
3464
3465 for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
3466 if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
3467 core->tx[i].skip_cp = true;
3468 }
3469 }
3470}
3471
3472int
3473e1000e_core_post_load(E1000ECore *core)
3474{
3475 NetClientState *nc = qemu_get_queue(core->owner_nic);
3476
3477 /* nc.link_down can't be migrated, so infer link_down according
3478 * to link status bit in core.mac[STATUS].
3479 */
3480 nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
3481
3482 return 0;
3483}