]> git.proxmox.com Git - mirror_qemu.git/blame - hw/onenand.c
onenand: Handle various ID fields separately
[mirror_qemu.git] / hw / onenand.c
CommitLineData
7e7c5e4c
AZ
1/*
2 * OneNAND flash memories emulation.
3 *
4 * Copyright (C) 2008 Nokia Corporation
5 * Written by Andrzej Zaborowski <andrew@openedhand.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 or
10 * (at your option) version 3 of the License.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
fad6cb1a 17 * You should have received a copy of the GNU General Public License along
8167ee88 18 * with this program; if not, see <http://www.gnu.org/licenses/>.
7e7c5e4c
AZ
19 */
20
21#include "qemu-common.h"
34f9f0b5 22#include "hw.h"
7e7c5e4c
AZ
23#include "flash.h"
24#include "irq.h"
666daa68 25#include "blockdev.h"
7e7c5e4c
AZ
26
27/* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
28#define PAGE_SHIFT 11
29
30/* Fixed */
31#define BLOCK_SHIFT (PAGE_SHIFT + 6)
32
bc24a225 33typedef struct {
5923ba42
JR
34 struct {
35 uint16_t man;
36 uint16_t dev;
37 uint16_t ver;
38 } id;
7e7c5e4c 39 int shift;
c227f099 40 target_phys_addr_t base;
7e7c5e4c
AZ
41 qemu_irq intr;
42 qemu_irq rdy;
43 BlockDriverState *bdrv;
44 BlockDriverState *bdrv_cur;
45 uint8_t *image;
46 uint8_t *otp;
47 uint8_t *current;
c227f099 48 ram_addr_t ram;
7e7c5e4c
AZ
49 uint8_t *boot[2];
50 uint8_t *data[2][2];
51 int iomemtype;
52 int cycle;
53 int otpmode;
54
55 uint16_t addr[8];
56 uint16_t unladdr[8];
57 int bufaddr;
58 int count;
59 uint16_t command;
60 uint16_t config[2];
61 uint16_t status;
62 uint16_t intstatus;
63 uint16_t wpstatus;
64
bc24a225 65 ECCState ecc;
7e7c5e4c
AZ
66
67 int density_mask;
68 int secs;
69 int secs_cur;
70 int blocks;
71 uint8_t *blockwp;
bc24a225 72} OneNANDState;
7e7c5e4c
AZ
73
74enum {
75 ONEN_BUF_BLOCK = 0,
76 ONEN_BUF_BLOCK2 = 1,
77 ONEN_BUF_DEST_BLOCK = 2,
78 ONEN_BUF_DEST_PAGE = 3,
79 ONEN_BUF_PAGE = 7,
80};
81
82enum {
83 ONEN_ERR_CMD = 1 << 10,
84 ONEN_ERR_ERASE = 1 << 11,
85 ONEN_ERR_PROG = 1 << 12,
86 ONEN_ERR_LOAD = 1 << 13,
87};
88
89enum {
90 ONEN_INT_RESET = 1 << 4,
91 ONEN_INT_ERASE = 1 << 5,
92 ONEN_INT_PROG = 1 << 6,
93 ONEN_INT_LOAD = 1 << 7,
94 ONEN_INT = 1 << 15,
95};
96
97enum {
98 ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
99 ONEN_LOCK_LOCKED = 1 << 1,
100 ONEN_LOCK_UNLOCKED = 1 << 2,
101};
102
c227f099 103void onenand_base_update(void *opaque, target_phys_addr_t new)
7e7c5e4c 104{
bc24a225 105 OneNANDState *s = (OneNANDState *) opaque;
7e7c5e4c
AZ
106
107 s->base = new;
108
109 /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
110 * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
111 * write boot commands. Also take note of the BWPS bit. */
112 cpu_register_physical_memory(s->base + (0x0000 << s->shift),
113 0x0200 << s->shift, s->iomemtype);
114 cpu_register_physical_memory(s->base + (0x0200 << s->shift),
115 0xbe00 << s->shift,
116 (s->ram +(0x0200 << s->shift)) | IO_MEM_RAM);
117 if (s->iomemtype)
8da3ff18
PB
118 cpu_register_physical_memory_offset(s->base + (0xc000 << s->shift),
119 0x4000 << s->shift, s->iomemtype, (0xc000 << s->shift));
7e7c5e4c
AZ
120}
121
122void onenand_base_unmap(void *opaque)
123{
bc24a225 124 OneNANDState *s = (OneNANDState *) opaque;
7e7c5e4c
AZ
125
126 cpu_register_physical_memory(s->base,
127 0x10000 << s->shift, IO_MEM_UNASSIGNED);
128}
129
bc24a225 130static void onenand_intr_update(OneNANDState *s)
7e7c5e4c
AZ
131{
132 qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
133}
134
135/* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
bc24a225 136static void onenand_reset(OneNANDState *s, int cold)
7e7c5e4c
AZ
137{
138 memset(&s->addr, 0, sizeof(s->addr));
139 s->command = 0;
140 s->count = 1;
141 s->bufaddr = 0;
142 s->config[0] = 0x40c0;
143 s->config[1] = 0x0000;
144 onenand_intr_update(s);
145 qemu_irq_raise(s->rdy);
146 s->status = 0x0000;
147 s->intstatus = cold ? 0x8080 : 0x8010;
148 s->unladdr[0] = 0;
149 s->unladdr[1] = 0;
150 s->wpstatus = 0x0002;
151 s->cycle = 0;
152 s->otpmode = 0;
153 s->bdrv_cur = s->bdrv;
154 s->current = s->image;
155 s->secs_cur = s->secs;
156
157 if (cold) {
158 /* Lock the whole flash */
159 memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
160
161 if (s->bdrv && bdrv_read(s->bdrv, 0, s->boot[0], 8) < 0)
2ac71179 162 hw_error("%s: Loading the BootRAM failed.\n", __FUNCTION__);
7e7c5e4c
AZ
163 }
164}
165
bc24a225 166static inline int onenand_load_main(OneNANDState *s, int sec, int secn,
7e7c5e4c
AZ
167 void *dest)
168{
169 if (s->bdrv_cur)
170 return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0;
171 else if (sec + secn > s->secs_cur)
172 return 1;
173
174 memcpy(dest, s->current + (sec << 9), secn << 9);
175
176 return 0;
177}
178
bc24a225 179static inline int onenand_prog_main(OneNANDState *s, int sec, int secn,
7e7c5e4c
AZ
180 void *src)
181{
182 if (s->bdrv_cur)
183 return bdrv_write(s->bdrv_cur, sec, src, secn) < 0;
184 else if (sec + secn > s->secs_cur)
185 return 1;
186
187 memcpy(s->current + (sec << 9), src, secn << 9);
188
189 return 0;
190}
191
bc24a225 192static inline int onenand_load_spare(OneNANDState *s, int sec, int secn,
7e7c5e4c
AZ
193 void *dest)
194{
195 uint8_t buf[512];
196
197 if (s->bdrv_cur) {
198 if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
199 return 1;
200 memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
201 } else if (sec + secn > s->secs_cur)
202 return 1;
203 else
204 memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
205
206 return 0;
207}
208
bc24a225 209static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn,
7e7c5e4c
AZ
210 void *src)
211{
212 uint8_t buf[512];
213
214 if (s->bdrv_cur) {
215 if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
216 return 1;
217 memcpy(buf + ((sec & 31) << 4), src, secn << 4);
218 return bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0;
219 } else if (sec + secn > s->secs_cur)
220 return 1;
221
222 memcpy(s->current + (s->secs_cur << 9) + (sec << 4), src, secn << 4);
223
224 return 0;
225}
226
bc24a225 227static inline int onenand_erase(OneNANDState *s, int sec, int num)
7e7c5e4c
AZ
228{
229 /* TODO: optimise */
230 uint8_t buf[512];
231
232 memset(buf, 0xff, sizeof(buf));
233 for (; num > 0; num --, sec ++) {
234 if (onenand_prog_main(s, sec, 1, buf))
235 return 1;
236 if (onenand_prog_spare(s, sec, 1, buf))
237 return 1;
238 }
239
240 return 0;
241}
242
bc24a225 243static void onenand_command(OneNANDState *s, int cmd)
7e7c5e4c
AZ
244{
245 int b;
246 int sec;
247 void *buf;
248#define SETADDR(block, page) \
249 sec = (s->addr[page] & 3) + \
250 ((((s->addr[page] >> 2) & 0x3f) + \
251 (((s->addr[block] & 0xfff) | \
252 (s->addr[block] >> 15 ? \
253 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
254#define SETBUF_M() \
255 buf = (s->bufaddr & 8) ? \
256 s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
257 buf += (s->bufaddr & 3) << 9;
258#define SETBUF_S() \
259 buf = (s->bufaddr & 8) ? \
260 s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
261 buf += (s->bufaddr & 3) << 4;
262
263 switch (cmd) {
264 case 0x00: /* Load single/multiple sector data unit into buffer */
265 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
266
267 SETBUF_M()
268 if (onenand_load_main(s, sec, s->count, buf))
269 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
270
271#if 0
272 SETBUF_S()
273 if (onenand_load_spare(s, sec, s->count, buf))
274 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
275#endif
276
277 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
278 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
279 * then we need two split the read/write into two chunks.
280 */
281 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
282 break;
283 case 0x13: /* Load single/multiple spare sector into buffer */
284 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
285
286 SETBUF_S()
287 if (onenand_load_spare(s, sec, s->count, buf))
288 s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
289
290 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
291 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
292 * then we need two split the read/write into two chunks.
293 */
294 s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
295 break;
296 case 0x80: /* Program single/multiple sector data unit from buffer */
297 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
298
299 SETBUF_M()
300 if (onenand_prog_main(s, sec, s->count, buf))
301 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
302
303#if 0
304 SETBUF_S()
305 if (onenand_prog_spare(s, sec, s->count, buf))
306 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
307#endif
308
309 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
310 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
311 * then we need two split the read/write into two chunks.
312 */
313 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
314 break;
315 case 0x1a: /* Program single/multiple spare area sector from buffer */
316 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
317
318 SETBUF_S()
319 if (onenand_prog_spare(s, sec, s->count, buf))
320 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
321
322 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
323 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
324 * then we need two split the read/write into two chunks.
325 */
326 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
327 break;
328 case 0x1b: /* Copy-back program */
329 SETBUF_S()
330
331 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
332 if (onenand_load_main(s, sec, s->count, buf))
333 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
334
335 SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
336 if (onenand_prog_main(s, sec, s->count, buf))
337 s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
338
339 /* TODO: spare areas */
340
341 s->intstatus |= ONEN_INT | ONEN_INT_PROG;
342 break;
343
344 case 0x23: /* Unlock NAND array block(s) */
345 s->intstatus |= ONEN_INT;
346
347 /* XXX the previous (?) area should be locked automatically */
348 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
349 if (b >= s->blocks) {
350 s->status |= ONEN_ERR_CMD;
351 break;
352 }
353 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
354 break;
355
356 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
357 }
358 break;
89588a4b
AZ
359 case 0x27: /* Unlock All NAND array blocks */
360 s->intstatus |= ONEN_INT;
361
362 for (b = 0; b < s->blocks; b ++) {
363 if (b >= s->blocks) {
364 s->status |= ONEN_ERR_CMD;
365 break;
366 }
367 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
368 break;
369
370 s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
371 }
372 break;
373
7e7c5e4c
AZ
374 case 0x2a: /* Lock NAND array block(s) */
375 s->intstatus |= ONEN_INT;
376
377 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
378 if (b >= s->blocks) {
379 s->status |= ONEN_ERR_CMD;
380 break;
381 }
382 if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
383 break;
384
385 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
386 }
387 break;
388 case 0x2c: /* Lock-tight NAND array block(s) */
389 s->intstatus |= ONEN_INT;
390
391 for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
392 if (b >= s->blocks) {
393 s->status |= ONEN_ERR_CMD;
394 break;
395 }
396 if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
397 continue;
398
399 s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
400 }
401 break;
402
403 case 0x71: /* Erase-Verify-Read */
404 s->intstatus |= ONEN_INT;
405 break;
406 case 0x95: /* Multi-block erase */
407 qemu_irq_pulse(s->intr);
408 /* Fall through. */
409 case 0x94: /* Block erase */
410 sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
411 (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
412 << (BLOCK_SHIFT - 9);
413 if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
414 s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
415
416 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
417 break;
418 case 0xb0: /* Erase suspend */
419 break;
420 case 0x30: /* Erase resume */
421 s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
422 break;
423
424 case 0xf0: /* Reset NAND Flash core */
425 onenand_reset(s, 0);
426 break;
427 case 0xf3: /* Reset OneNAND */
428 onenand_reset(s, 0);
429 break;
430
431 case 0x65: /* OTP Access */
432 s->intstatus |= ONEN_INT;
b9d38e95 433 s->bdrv_cur = NULL;
7e7c5e4c
AZ
434 s->current = s->otp;
435 s->secs_cur = 1 << (BLOCK_SHIFT - 9);
436 s->addr[ONEN_BUF_BLOCK] = 0;
437 s->otpmode = 1;
438 break;
439
440 default:
441 s->status |= ONEN_ERR_CMD;
442 s->intstatus |= ONEN_INT;
443 fprintf(stderr, "%s: unknown OneNAND command %x\n",
444 __FUNCTION__, cmd);
445 }
446
447 onenand_intr_update(s);
448}
449
c227f099 450static uint32_t onenand_read(void *opaque, target_phys_addr_t addr)
7e7c5e4c 451{
bc24a225 452 OneNANDState *s = (OneNANDState *) opaque;
8da3ff18 453 int offset = addr >> s->shift;
7e7c5e4c
AZ
454
455 switch (offset) {
456 case 0x0000 ... 0xc000:
8da3ff18 457 return lduw_le_p(s->boot[0] + addr);
7e7c5e4c
AZ
458
459 case 0xf000: /* Manufacturer ID */
5923ba42 460 return s->id.man;
7e7c5e4c 461 case 0xf001: /* Device ID */
5923ba42 462 return s->id.dev;
7e7c5e4c 463 case 0xf002: /* Version ID */
5923ba42
JR
464 return s->id.ver;
465 /* TODO: get the following values from a real chip! */
7e7c5e4c
AZ
466 case 0xf003: /* Data Buffer size */
467 return 1 << PAGE_SHIFT;
468 case 0xf004: /* Boot Buffer size */
469 return 0x200;
470 case 0xf005: /* Amount of buffers */
471 return 1 | (2 << 8);
472 case 0xf006: /* Technology */
473 return 0;
474
475 case 0xf100 ... 0xf107: /* Start addresses */
476 return s->addr[offset - 0xf100];
477
478 case 0xf200: /* Start buffer */
479 return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
480
481 case 0xf220: /* Command */
482 return s->command;
483 case 0xf221: /* System Configuration 1 */
484 return s->config[0] & 0xffe0;
485 case 0xf222: /* System Configuration 2 */
486 return s->config[1];
487
488 case 0xf240: /* Controller Status */
489 return s->status;
490 case 0xf241: /* Interrupt */
491 return s->intstatus;
492 case 0xf24c: /* Unlock Start Block Address */
493 return s->unladdr[0];
494 case 0xf24d: /* Unlock End Block Address */
495 return s->unladdr[1];
496 case 0xf24e: /* Write Protection Status */
497 return s->wpstatus;
498
499 case 0xff00: /* ECC Status */
500 return 0x00;
501 case 0xff01: /* ECC Result of main area data */
502 case 0xff02: /* ECC Result of spare area data */
503 case 0xff03: /* ECC Result of main area data */
504 case 0xff04: /* ECC Result of spare area data */
2ac71179 505 hw_error("%s: imeplement ECC\n", __FUNCTION__);
7e7c5e4c
AZ
506 return 0x0000;
507 }
508
509 fprintf(stderr, "%s: unknown OneNAND register %x\n",
510 __FUNCTION__, offset);
511 return 0;
512}
513
c227f099 514static void onenand_write(void *opaque, target_phys_addr_t addr,
7e7c5e4c
AZ
515 uint32_t value)
516{
bc24a225 517 OneNANDState *s = (OneNANDState *) opaque;
8da3ff18 518 int offset = addr >> s->shift;
7e7c5e4c
AZ
519 int sec;
520
521 switch (offset) {
522 case 0x0000 ... 0x01ff:
523 case 0x8000 ... 0x800f:
524 if (s->cycle) {
525 s->cycle = 0;
526
527 if (value == 0x0000) {
528 SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
529 onenand_load_main(s, sec,
530 1 << (PAGE_SHIFT - 9), s->data[0][0]);
531 s->addr[ONEN_BUF_PAGE] += 4;
532 s->addr[ONEN_BUF_PAGE] &= 0xff;
533 }
534 break;
535 }
536
537 switch (value) {
538 case 0x00f0: /* Reset OneNAND */
539 onenand_reset(s, 0);
540 break;
541
542 case 0x00e0: /* Load Data into Buffer */
543 s->cycle = 1;
544 break;
545
546 case 0x0090: /* Read Identification Data */
547 memset(s->boot[0], 0, 3 << s->shift);
5923ba42
JR
548 s->boot[0][0 << s->shift] = s->id.man & 0xff;
549 s->boot[0][1 << s->shift] = s->id.dev & 0xff;
7e7c5e4c
AZ
550 s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
551 break;
552
553 default:
554 fprintf(stderr, "%s: unknown OneNAND boot command %x\n",
555 __FUNCTION__, value);
556 }
557 break;
558
559 case 0xf100 ... 0xf107: /* Start addresses */
560 s->addr[offset - 0xf100] = value;
561 break;
562
563 case 0xf200: /* Start buffer */
564 s->bufaddr = (value >> 8) & 0xf;
565 if (PAGE_SHIFT == 11)
566 s->count = (value & 3) ?: 4;
567 else if (PAGE_SHIFT == 10)
568 s->count = (value & 1) ?: 2;
569 break;
570
571 case 0xf220: /* Command */
572 if (s->intstatus & (1 << 15))
573 break;
574 s->command = value;
575 onenand_command(s, s->command);
576 break;
577 case 0xf221: /* System Configuration 1 */
578 s->config[0] = value;
579 onenand_intr_update(s);
580 qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
581 break;
582 case 0xf222: /* System Configuration 2 */
583 s->config[1] = value;
584 break;
585
586 case 0xf241: /* Interrupt */
587 s->intstatus &= value;
588 if ((1 << 15) & ~s->intstatus)
589 s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
590 ONEN_ERR_PROG | ONEN_ERR_LOAD);
591 onenand_intr_update(s);
592 break;
593 case 0xf24c: /* Unlock Start Block Address */
594 s->unladdr[0] = value & (s->blocks - 1);
595 /* For some reason we have to set the end address to by default
596 * be same as start because the software forgets to write anything
597 * in there. */
598 s->unladdr[1] = value & (s->blocks - 1);
599 break;
600 case 0xf24d: /* Unlock End Block Address */
601 s->unladdr[1] = value & (s->blocks - 1);
602 break;
603
604 default:
605 fprintf(stderr, "%s: unknown OneNAND register %x\n",
606 __FUNCTION__, offset);
607 }
608}
609
d60efc6b 610static CPUReadMemoryFunc * const onenand_readfn[] = {
7e7c5e4c
AZ
611 onenand_read, /* TODO */
612 onenand_read,
613 onenand_read,
614};
615
d60efc6b 616static CPUWriteMemoryFunc * const onenand_writefn[] = {
7e7c5e4c
AZ
617 onenand_write, /* TODO */
618 onenand_write,
619 onenand_write,
620};
621
5923ba42
JR
622void *onenand_init(BlockDriverState *bdrv,
623 uint16_t man_id, uint16_t dev_id, uint16_t ver_id,
af5a75f4 624 int regshift, qemu_irq irq)
7e7c5e4c 625{
bc24a225 626 OneNANDState *s = (OneNANDState *) qemu_mallocz(sizeof(*s));
5923ba42 627 uint32_t size = 1 << (24 + ((dev_id >> 4) & 7));
7e7c5e4c
AZ
628 void *ram;
629
630 s->shift = regshift;
631 s->intr = irq;
b9d38e95 632 s->rdy = NULL;
5923ba42
JR
633 s->id.man = man_id;
634 s->id.dev = dev_id;
635 s->id.ver = ver_id;
7e7c5e4c
AZ
636 s->blocks = size >> BLOCK_SHIFT;
637 s->secs = size >> 9;
638 s->blockwp = qemu_malloc(s->blocks);
5923ba42 639 s->density_mask = (dev_id & 0x08) ? (1 << (6 + ((dev_id >> 4) & 7))) : 0;
1eed09cb 640 s->iomemtype = cpu_register_io_memory(onenand_readfn,
2507c12a 641 onenand_writefn, s, DEVICE_NATIVE_ENDIAN);
af5a75f4
PM
642 s->bdrv = bdrv;
643 if (!s->bdrv) {
7e7c5e4c
AZ
644 s->image = memset(qemu_malloc(size + (size >> 5)),
645 0xff, size + (size >> 5));
7e7c5e4c
AZ
646 s->otp = memset(qemu_malloc((64 + 2) << PAGE_SHIFT),
647 0xff, (64 + 2) << PAGE_SHIFT);
1724f049 648 s->ram = qemu_ram_alloc(NULL, "onenand.ram", 0xc000 << s->shift);
5c130f65 649 ram = qemu_get_ram_ptr(s->ram);
7e7c5e4c
AZ
650 s->boot[0] = ram + (0x0000 << s->shift);
651 s->boot[1] = ram + (0x8000 << s->shift);
652 s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
653 s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
654 s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
655 s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
656
657 onenand_reset(s, 1);
658
659 return s;
660}
c580d92b
AZ
661
662void *onenand_raw_otp(void *opaque)
663{
bc24a225 664 OneNANDState *s = (OneNANDState *) opaque;
c580d92b
AZ
665
666 return s->otp;
667}