]> git.proxmox.com Git - mirror_qemu.git/blame - hw/ppc/spapr.c
spapr: move the IRQ server number mapping under the machine
[mirror_qemu.git] / hw / ppc / spapr.c
CommitLineData
9fdf0c29
DG
1/*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
0d75590d 27#include "qemu/osdep.h"
da34e65c 28#include "qapi/error.h"
9c17d615 29#include "sysemu/sysemu.h"
e35704ba 30#include "sysemu/numa.h"
83c9f4ca 31#include "hw/hw.h"
03dd024f 32#include "qemu/log.h"
71461b0f 33#include "hw/fw-path-provider.h"
9fdf0c29 34#include "elf.h"
1422e32d 35#include "net/net.h"
ad440b4a 36#include "sysemu/device_tree.h"
fa1d36df 37#include "sysemu/block-backend.h"
9c17d615 38#include "sysemu/cpus.h"
b3946626 39#include "sysemu/hw_accel.h"
e97c3636 40#include "kvm_ppc.h"
ff14e817 41#include "migration/migration.h"
4be21d56 42#include "mmu-hash64.h"
b4db5413 43#include "mmu-book3s-v3.h"
3794d548 44#include "qom/cpu.h"
9fdf0c29
DG
45
46#include "hw/boards.h"
0d09e41a 47#include "hw/ppc/ppc.h"
9fdf0c29
DG
48#include "hw/loader.h"
49
7804c353 50#include "hw/ppc/fdt.h"
0d09e41a
PB
51#include "hw/ppc/spapr.h"
52#include "hw/ppc/spapr_vio.h"
53#include "hw/pci-host/spapr.h"
54#include "hw/ppc/xics.h"
a2cb15b0 55#include "hw/pci/msi.h"
9fdf0c29 56
83c9f4ca 57#include "hw/pci/pci.h"
71461b0f
AK
58#include "hw/scsi/scsi.h"
59#include "hw/virtio/virtio-scsi.h"
f61b4bed 60
022c62cb 61#include "exec/address-spaces.h"
35139a59 62#include "hw/usb.h"
1de7afc9 63#include "qemu/config-file.h"
135a129a 64#include "qemu/error-report.h"
2a6593cb 65#include "trace.h"
34316482 66#include "hw/nmi.h"
6449da45 67#include "hw/intc/intc.h"
890c2b77 68
68a27b20 69#include "hw/compat.h"
f348b6d1 70#include "qemu/cutils.h"
94a94e4c 71#include "hw/ppc/spapr_cpu_core.h"
2474bfd4 72#include "qmp-commands.h"
68a27b20 73
9fdf0c29
DG
74#include <libfdt.h>
75
4d8d5467
BH
76/* SLOF memory layout:
77 *
78 * SLOF raw image loaded at 0, copies its romfs right below the flat
79 * device-tree, then position SLOF itself 31M below that
80 *
81 * So we set FW_OVERHEAD to 40MB which should account for all of that
82 * and more
83 *
84 * We load our kernel at 4M, leaving space for SLOF initial image
85 */
38b02bd8 86#define FDT_MAX_SIZE 0x100000
39ac8455 87#define RTAS_MAX_SIZE 0x10000
b7d1f77a 88#define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
a9f8ad8f
DG
89#define FW_MAX_SIZE 0x400000
90#define FW_FILE_NAME "slof.bin"
4d8d5467
BH
91#define FW_OVERHEAD 0x2800000
92#define KERNEL_LOAD_ADDR FW_MAX_SIZE
a9f8ad8f 93
4d8d5467 94#define MIN_RMA_SLOF 128UL
9fdf0c29 95
0c103f8e
DG
96#define PHANDLE_XICP 0x00001111
97
7f763a5d
DG
98#define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
99
e6f7e110
CLG
100static int try_create_xics(sPAPRMachineState *spapr, const char *type_ics,
101 const char *type_icp, int nr_servers,
102 int nr_irqs, Error **errp)
c04d6cfa 103{
2cd908d0 104 XICSFabric *xi = XICS_FABRIC(spapr);
4e4169f7 105 Error *err = NULL, *local_err = NULL;
4e4169f7 106 ICSState *ics = NULL;
817bb6a4 107 int i;
4e4169f7 108
4e4169f7 109 ics = ICS_SIMPLE(object_new(type_ics));
681bfade 110 object_property_add_child(OBJECT(spapr), "ics", OBJECT(ics), NULL);
4e4169f7 111 object_property_set_int(OBJECT(ics), nr_irqs, "nr-irqs", &err);
b4f27d71 112 object_property_add_const_link(OBJECT(ics), "xics", OBJECT(xi), NULL);
4e4169f7
CLG
113 object_property_set_bool(OBJECT(ics), true, "realized", &local_err);
114 error_propagate(&err, local_err);
115 if (err) {
116 goto error;
117 }
4e4169f7 118
852ad27e
CLG
119 spapr->icps = g_malloc0(nr_servers * sizeof(ICPState));
120 spapr->nr_servers = nr_servers;
817bb6a4
CLG
121
122 for (i = 0; i < nr_servers; i++) {
852ad27e 123 ICPState *icp = &spapr->icps[i];
817bb6a4
CLG
124
125 object_initialize(icp, sizeof(*icp), type_icp);
852ad27e 126 object_property_add_child(OBJECT(spapr), "icp[*]", OBJECT(icp), NULL);
2cd908d0 127 object_property_add_const_link(OBJECT(icp), "xics", OBJECT(xi), NULL);
817bb6a4
CLG
128 object_property_set_bool(OBJECT(icp), true, "realized", &err);
129 if (err) {
130 goto error;
131 }
132 object_unref(OBJECT(icp));
133 }
134
681bfade 135 spapr->ics = ics;
e6f7e110 136 return 0;
4e4169f7
CLG
137
138error:
139 error_propagate(errp, err);
140 if (ics) {
141 object_unparent(OBJECT(ics));
142 }
e6f7e110 143 return -1;
c04d6cfa
AL
144}
145
e6f7e110
CLG
146static int xics_system_init(MachineState *machine,
147 int nr_servers, int nr_irqs, Error **errp)
c04d6cfa 148{
e6f7e110 149 int rc = -1;
c04d6cfa 150
11ad93f6 151 if (kvm_enabled()) {
34f2af3d
MA
152 Error *err = NULL;
153
2192a930
CLG
154 if (machine_kernel_irqchip_allowed(machine) &&
155 !xics_kvm_init(SPAPR_MACHINE(machine), errp)) {
e6f7e110
CLG
156 rc = try_create_xics(SPAPR_MACHINE(machine), TYPE_ICS_KVM,
157 TYPE_KVM_ICP, nr_servers, nr_irqs, &err);
11ad93f6 158 }
e6f7e110 159 if (machine_kernel_irqchip_required(machine) && rc < 0) {
b83baa60
MA
160 error_reportf_err(err,
161 "kernel_irqchip requested but unavailable: ");
162 } else {
163 error_free(err);
11ad93f6
DG
164 }
165 }
166
e6f7e110 167 if (rc < 0) {
2192a930 168 xics_spapr_init(SPAPR_MACHINE(machine), errp);
e6f7e110 169 rc = try_create_xics(SPAPR_MACHINE(machine), TYPE_ICS_SIMPLE,
681bfade 170 TYPE_ICP, nr_servers, nr_irqs, errp);
c04d6cfa
AL
171 }
172
e6f7e110 173 return rc;
c04d6cfa
AL
174}
175
833d4668
AK
176static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
177 int smt_threads)
178{
179 int i, ret = 0;
180 uint32_t servers_prop[smt_threads];
181 uint32_t gservers_prop[smt_threads * 2];
182 int index = ppc_get_vcpu_dt_id(cpu);
183
d6e166c0
DG
184 if (cpu->compat_pvr) {
185 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
6d9412ea
AK
186 if (ret < 0) {
187 return ret;
188 }
189 }
190
833d4668
AK
191 /* Build interrupt servers and gservers properties */
192 for (i = 0; i < smt_threads; i++) {
193 servers_prop[i] = cpu_to_be32(index + i);
194 /* Hack, direct the group queues back to cpu 0 */
195 gservers_prop[i*2] = cpu_to_be32(index + i);
196 gservers_prop[i*2 + 1] = 0;
197 }
198 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
199 servers_prop, sizeof(servers_prop));
200 if (ret < 0) {
201 return ret;
202 }
203 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
204 gservers_prop, sizeof(gservers_prop));
205
206 return ret;
207}
208
0da6f3fe
BR
209static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
210{
211 int ret = 0;
212 PowerPCCPU *cpu = POWERPC_CPU(cs);
213 int index = ppc_get_vcpu_dt_id(cpu);
214 uint32_t associativity[] = {cpu_to_be32(0x5),
215 cpu_to_be32(0x0),
216 cpu_to_be32(0x0),
217 cpu_to_be32(0x0),
218 cpu_to_be32(cs->numa_node),
219 cpu_to_be32(index)};
220
221 /* Advertise NUMA via ibm,associativity */
222 if (nb_numa_nodes > 1) {
223 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
224 sizeof(associativity));
225 }
226
227 return ret;
228}
229
86d5771a 230/* Populate the "ibm,pa-features" property */
e957f6a9
SB
231static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset,
232 bool legacy_guest)
86d5771a
SB
233{
234 uint8_t pa_features_206[] = { 6, 0,
235 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
236 uint8_t pa_features_207[] = { 24, 0,
237 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
238 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
239 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
240 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
9fb4541f
SB
241 uint8_t pa_features_300[] = { 66, 0,
242 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
243 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
244 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
245 /* 6: DS207 */
246 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
247 /* 16: Vector */
86d5771a 248 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
9fb4541f
SB
249 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
250 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 18 - 23 */
251 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
252 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
253 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
254 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
255 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
256 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
257 /* 42: PM, 44: PC RA, 46: SC vec'd */
258 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
259 /* 48: SIMD, 50: QP BFP, 52: String */
260 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
261 /* 54: DecFP, 56: DecI, 58: SHA */
262 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
263 /* 60: NM atomic, 62: RNG */
264 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
265 };
86d5771a
SB
266 uint8_t *pa_features;
267 size_t pa_size;
268
269 switch (POWERPC_MMU_VER(env->mmu_model)) {
270 case POWERPC_MMU_VER_2_06:
271 pa_features = pa_features_206;
272 pa_size = sizeof(pa_features_206);
273 break;
274 case POWERPC_MMU_VER_2_07:
275 pa_features = pa_features_207;
276 pa_size = sizeof(pa_features_207);
277 break;
278 case POWERPC_MMU_VER_3_00:
279 pa_features = pa_features_300;
280 pa_size = sizeof(pa_features_300);
281 break;
282 default:
283 return;
284 }
285
286 if (env->ci_large_pages) {
287 /*
288 * Note: we keep CI large pages off by default because a 64K capable
289 * guest provisioned with large pages might otherwise try to map a qemu
290 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
291 * even if that qemu runs on a 4k host.
292 * We dd this bit back here if we are confident this is not an issue
293 */
294 pa_features[3] |= 0x20;
295 }
296 if (kvmppc_has_cap_htm() && pa_size > 24) {
297 pa_features[24] |= 0x80; /* Transactional memory support */
298 }
e957f6a9
SB
299 if (legacy_guest && pa_size > 40) {
300 /* Workaround for broken kernels that attempt (guest) radix
301 * mode when they can't handle it, if they see the radix bit set
302 * in pa-features. So hide it from them. */
303 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
304 }
86d5771a
SB
305
306 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
307}
308
28e02042 309static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
6e806cc3 310{
82677ed2
AK
311 int ret = 0, offset, cpus_offset;
312 CPUState *cs;
6e806cc3
BR
313 char cpu_model[32];
314 int smt = kvmppc_smt_threads();
7f763a5d 315 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
6e806cc3 316
82677ed2
AK
317 CPU_FOREACH(cs) {
318 PowerPCCPU *cpu = POWERPC_CPU(cs);
e957f6a9 319 CPUPPCState *env = &cpu->env;
82677ed2
AK
320 DeviceClass *dc = DEVICE_GET_CLASS(cs);
321 int index = ppc_get_vcpu_dt_id(cpu);
12dbeb16 322 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
6e806cc3 323
0f20ba62 324 if ((index % smt) != 0) {
6e806cc3
BR
325 continue;
326 }
327
82677ed2 328 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
6e806cc3 329
82677ed2
AK
330 cpus_offset = fdt_path_offset(fdt, "/cpus");
331 if (cpus_offset < 0) {
332 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
333 "cpus");
334 if (cpus_offset < 0) {
335 return cpus_offset;
336 }
337 }
338 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
6e806cc3 339 if (offset < 0) {
82677ed2
AK
340 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
341 if (offset < 0) {
342 return offset;
343 }
6e806cc3
BR
344 }
345
7f763a5d
DG
346 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
347 pft_size_prop, sizeof(pft_size_prop));
6e806cc3
BR
348 if (ret < 0) {
349 return ret;
350 }
833d4668 351
0da6f3fe
BR
352 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
353 if (ret < 0) {
354 return ret;
355 }
356
12dbeb16 357 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
833d4668
AK
358 if (ret < 0) {
359 return ret;
360 }
e957f6a9
SB
361
362 spapr_populate_pa_features(env, fdt, offset,
363 spapr->cas_legacy_guest_workaround);
6e806cc3
BR
364 }
365 return ret;
366}
367
b082d65a
AK
368static hwaddr spapr_node0_size(void)
369{
fb164994
DG
370 MachineState *machine = MACHINE(qdev_get_machine());
371
b082d65a
AK
372 if (nb_numa_nodes) {
373 int i;
374 for (i = 0; i < nb_numa_nodes; ++i) {
375 if (numa_info[i].node_mem) {
fb164994
DG
376 return MIN(pow2floor(numa_info[i].node_mem),
377 machine->ram_size);
b082d65a
AK
378 }
379 }
380 }
fb164994 381 return machine->ram_size;
b082d65a
AK
382}
383
a1d59c0f
AK
384static void add_str(GString *s, const gchar *s1)
385{
386 g_string_append_len(s, s1, strlen(s1) + 1);
387}
7f763a5d 388
03d196b7 389static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
26a8c353
AK
390 hwaddr size)
391{
392 uint32_t associativity[] = {
393 cpu_to_be32(0x4), /* length */
394 cpu_to_be32(0x0), cpu_to_be32(0x0),
c3b4f589 395 cpu_to_be32(0x0), cpu_to_be32(nodeid)
26a8c353
AK
396 };
397 char mem_name[32];
398 uint64_t mem_reg_property[2];
399 int off;
400
401 mem_reg_property[0] = cpu_to_be64(start);
402 mem_reg_property[1] = cpu_to_be64(size);
403
404 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
405 off = fdt_add_subnode(fdt, 0, mem_name);
406 _FDT(off);
407 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
408 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
409 sizeof(mem_reg_property))));
410 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
411 sizeof(associativity))));
03d196b7 412 return off;
26a8c353
AK
413}
414
28e02042 415static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
7f763a5d 416{
fb164994 417 MachineState *machine = MACHINE(spapr);
7db8a127
AK
418 hwaddr mem_start, node_size;
419 int i, nb_nodes = nb_numa_nodes;
420 NodeInfo *nodes = numa_info;
421 NodeInfo ramnode;
422
423 /* No NUMA nodes, assume there is just one node with whole RAM */
424 if (!nb_numa_nodes) {
425 nb_nodes = 1;
fb164994 426 ramnode.node_mem = machine->ram_size;
7db8a127 427 nodes = &ramnode;
5fe269b1 428 }
7f763a5d 429
7db8a127
AK
430 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
431 if (!nodes[i].node_mem) {
432 continue;
433 }
fb164994 434 if (mem_start >= machine->ram_size) {
5fe269b1
PM
435 node_size = 0;
436 } else {
7db8a127 437 node_size = nodes[i].node_mem;
fb164994
DG
438 if (node_size > machine->ram_size - mem_start) {
439 node_size = machine->ram_size - mem_start;
5fe269b1
PM
440 }
441 }
7db8a127
AK
442 if (!mem_start) {
443 /* ppc_spapr_init() checks for rma_size <= node0_size already */
e8f986fc 444 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
7db8a127
AK
445 mem_start += spapr->rma_size;
446 node_size -= spapr->rma_size;
447 }
6010818c
AK
448 for ( ; node_size; ) {
449 hwaddr sizetmp = pow2floor(node_size);
450
451 /* mem_start != 0 here */
452 if (ctzl(mem_start) < ctzl(sizetmp)) {
453 sizetmp = 1ULL << ctzl(mem_start);
454 }
455
456 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
457 node_size -= sizetmp;
458 mem_start += sizetmp;
459 }
7f763a5d
DG
460 }
461
462 return 0;
463}
464
0da6f3fe
BR
465static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
466 sPAPRMachineState *spapr)
467{
468 PowerPCCPU *cpu = POWERPC_CPU(cs);
469 CPUPPCState *env = &cpu->env;
470 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
471 int index = ppc_get_vcpu_dt_id(cpu);
472 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
473 0xffffffff, 0xffffffff};
afd10a0f
BR
474 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
475 : SPAPR_TIMEBASE_FREQ;
0da6f3fe
BR
476 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
477 uint32_t page_sizes_prop[64];
478 size_t page_sizes_prop_size;
22419c2a 479 uint32_t vcpus_per_socket = smp_threads * smp_cores;
0da6f3fe 480 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
12dbeb16 481 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
af81cf32
BR
482 sPAPRDRConnector *drc;
483 sPAPRDRConnectorClass *drck;
484 int drc_index;
c64abd1f
SB
485 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
486 int i;
af81cf32
BR
487
488 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
489 if (drc) {
490 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
491 drc_index = drck->get_index(drc);
492 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
493 }
0da6f3fe
BR
494
495 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
496 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
497
498 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
499 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
500 env->dcache_line_size)));
501 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
502 env->dcache_line_size)));
503 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
504 env->icache_line_size)));
505 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
506 env->icache_line_size)));
507
508 if (pcc->l1_dcache_size) {
509 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
510 pcc->l1_dcache_size)));
511 } else {
ce9863b7 512 error_report("Warning: Unknown L1 dcache size for cpu");
0da6f3fe
BR
513 }
514 if (pcc->l1_icache_size) {
515 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
516 pcc->l1_icache_size)));
517 } else {
ce9863b7 518 error_report("Warning: Unknown L1 icache size for cpu");
0da6f3fe
BR
519 }
520
521 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
522 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
fd5da5c4 523 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
0da6f3fe
BR
524 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
525 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
526 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
527
528 if (env->spr_cb[SPR_PURR].oea_read) {
529 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
530 }
531
532 if (env->mmu_model & POWERPC_MMU_1TSEG) {
533 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
534 segs, sizeof(segs))));
535 }
536
537 /* Advertise VMX/VSX (vector extensions) if available
538 * 0 / no property == no vector extensions
539 * 1 == VMX / Altivec available
540 * 2 == VSX available */
541 if (env->insns_flags & PPC_ALTIVEC) {
542 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
543
544 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
545 }
546
547 /* Advertise DFP (Decimal Floating Point) if available
548 * 0 / no property == no DFP
549 * 1 == DFP available */
550 if (env->insns_flags2 & PPC2_DFP) {
551 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
552 }
553
3654fa95 554 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
0da6f3fe
BR
555 sizeof(page_sizes_prop));
556 if (page_sizes_prop_size) {
557 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
558 page_sizes_prop, page_sizes_prop_size)));
559 }
560
e957f6a9 561 spapr_populate_pa_features(env, fdt, offset, false);
90da0d5a 562
0da6f3fe 563 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
22419c2a 564 cs->cpu_index / vcpus_per_socket)));
0da6f3fe
BR
565
566 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
567 pft_size_prop, sizeof(pft_size_prop))));
568
569 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
570
12dbeb16 571 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
c64abd1f
SB
572
573 if (pcc->radix_page_info) {
574 for (i = 0; i < pcc->radix_page_info->count; i++) {
575 radix_AP_encodings[i] =
576 cpu_to_be32(pcc->radix_page_info->entries[i]);
577 }
578 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
579 radix_AP_encodings,
580 pcc->radix_page_info->count *
581 sizeof(radix_AP_encodings[0]))));
582 }
0da6f3fe
BR
583}
584
585static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
586{
587 CPUState *cs;
588 int cpus_offset;
589 char *nodename;
590 int smt = kvmppc_smt_threads();
591
592 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
593 _FDT(cpus_offset);
594 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
595 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
596
597 /*
598 * We walk the CPUs in reverse order to ensure that CPU DT nodes
599 * created by fdt_add_subnode() end up in the right order in FDT
600 * for the guest kernel the enumerate the CPUs correctly.
601 */
602 CPU_FOREACH_REVERSE(cs) {
603 PowerPCCPU *cpu = POWERPC_CPU(cs);
604 int index = ppc_get_vcpu_dt_id(cpu);
605 DeviceClass *dc = DEVICE_GET_CLASS(cs);
606 int offset;
607
608 if ((index % smt) != 0) {
609 continue;
610 }
611
612 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
613 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
614 g_free(nodename);
615 _FDT(offset);
616 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
617 }
618
619}
620
03d196b7
BR
621/*
622 * Adds ibm,dynamic-reconfiguration-memory node.
623 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
624 * of this device tree node.
625 */
626static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
627{
628 MachineState *machine = MACHINE(spapr);
629 int ret, i, offset;
630 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
631 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
d0e5a8f2
BR
632 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
633 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
634 memory_region_size(&spapr->hotplug_memory.mr)) /
635 lmb_size;
03d196b7 636 uint32_t *int_buf, *cur_index, buf_len;
6663864e 637 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
03d196b7 638
16c25aef 639 /*
d0e5a8f2 640 * Don't create the node if there is no hotpluggable memory
16c25aef 641 */
d0e5a8f2 642 if (machine->ram_size == machine->maxram_size) {
16c25aef
BR
643 return 0;
644 }
645
ef001f06
TH
646 /*
647 * Allocate enough buffer size to fit in ibm,dynamic-memory
648 * or ibm,associativity-lookup-arrays
649 */
650 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
651 * sizeof(uint32_t);
03d196b7
BR
652 cur_index = int_buf = g_malloc0(buf_len);
653
654 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
655
656 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
657 sizeof(prop_lmb_size));
658 if (ret < 0) {
659 goto out;
660 }
661
662 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
663 if (ret < 0) {
664 goto out;
665 }
666
667 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
668 if (ret < 0) {
669 goto out;
670 }
671
672 /* ibm,dynamic-memory */
673 int_buf[0] = cpu_to_be32(nr_lmbs);
674 cur_index++;
675 for (i = 0; i < nr_lmbs; i++) {
d0e5a8f2 676 uint64_t addr = i * lmb_size;
03d196b7
BR
677 uint32_t *dynamic_memory = cur_index;
678
d0e5a8f2
BR
679 if (i >= hotplug_lmb_start) {
680 sPAPRDRConnector *drc;
681 sPAPRDRConnectorClass *drck;
682
683 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
684 g_assert(drc);
685 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
686
687 dynamic_memory[0] = cpu_to_be32(addr >> 32);
688 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
689 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
690 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
691 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
692 if (memory_region_present(get_system_memory(), addr)) {
693 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
694 } else {
695 dynamic_memory[5] = cpu_to_be32(0);
696 }
03d196b7 697 } else {
d0e5a8f2
BR
698 /*
699 * LMB information for RMA, boot time RAM and gap b/n RAM and
700 * hotplug memory region -- all these are marked as reserved
701 * and as having no valid DRC.
702 */
703 dynamic_memory[0] = cpu_to_be32(addr >> 32);
704 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
705 dynamic_memory[2] = cpu_to_be32(0);
706 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
707 dynamic_memory[4] = cpu_to_be32(-1);
708 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
709 SPAPR_LMB_FLAGS_DRC_INVALID);
03d196b7
BR
710 }
711
712 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
713 }
714 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
715 if (ret < 0) {
716 goto out;
717 }
718
719 /* ibm,associativity-lookup-arrays */
720 cur_index = int_buf;
6663864e 721 int_buf[0] = cpu_to_be32(nr_nodes);
03d196b7
BR
722 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
723 cur_index += 2;
6663864e 724 for (i = 0; i < nr_nodes; i++) {
03d196b7
BR
725 uint32_t associativity[] = {
726 cpu_to_be32(0x0),
727 cpu_to_be32(0x0),
728 cpu_to_be32(0x0),
729 cpu_to_be32(i)
730 };
731 memcpy(cur_index, associativity, sizeof(associativity));
732 cur_index += 4;
733 }
734 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
735 (cur_index - int_buf) * sizeof(uint32_t));
736out:
737 g_free(int_buf);
738 return ret;
739}
740
6787d27b
MR
741static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
742 sPAPROptionVector *ov5_updates)
743{
744 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
417ece33 745 int ret = 0, offset;
6787d27b
MR
746
747 /* Generate ibm,dynamic-reconfiguration-memory node if required */
748 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
749 g_assert(smc->dr_lmb_enabled);
750 ret = spapr_populate_drconf_memory(spapr, fdt);
417ece33
MR
751 if (ret) {
752 goto out;
753 }
6787d27b
MR
754 }
755
417ece33
MR
756 offset = fdt_path_offset(fdt, "/chosen");
757 if (offset < 0) {
758 offset = fdt_add_subnode(fdt, 0, "chosen");
759 if (offset < 0) {
760 return offset;
761 }
762 }
763 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
764 "ibm,architecture-vec-5");
765
766out:
6787d27b
MR
767 return ret;
768}
769
03d196b7
BR
770int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
771 target_ulong addr, target_ulong size,
6787d27b 772 sPAPROptionVector *ov5_updates)
03d196b7
BR
773{
774 void *fdt, *fdt_skel;
775 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
03d196b7
BR
776
777 size -= sizeof(hdr);
778
779 /* Create sceleton */
780 fdt_skel = g_malloc0(size);
781 _FDT((fdt_create(fdt_skel, size)));
782 _FDT((fdt_begin_node(fdt_skel, "")));
783 _FDT((fdt_end_node(fdt_skel)));
784 _FDT((fdt_finish(fdt_skel)));
785 fdt = g_malloc0(size);
786 _FDT((fdt_open_into(fdt_skel, fdt, size)));
787 g_free(fdt_skel);
788
789 /* Fixup cpu nodes */
5b120785 790 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
03d196b7 791
6787d27b
MR
792 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
793 return -1;
03d196b7
BR
794 }
795
796 /* Pack resulting tree */
797 _FDT((fdt_pack(fdt)));
798
799 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
800 trace_spapr_cas_failed(size);
801 return -1;
802 }
803
804 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
805 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
806 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
807 g_free(fdt);
808
809 return 0;
810}
811
3f5dabce
DG
812static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
813{
814 int rtas;
815 GString *hypertas = g_string_sized_new(256);
816 GString *qemu_hypertas = g_string_sized_new(256);
817 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
818 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
819 memory_region_size(&spapr->hotplug_memory.mr);
820 uint32_t lrdr_capacity[] = {
821 cpu_to_be32(max_hotplug_addr >> 32),
822 cpu_to_be32(max_hotplug_addr & 0xffffffff),
823 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
824 cpu_to_be32(max_cpus / smp_threads),
825 };
826
827 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
828
829 /* hypertas */
830 add_str(hypertas, "hcall-pft");
831 add_str(hypertas, "hcall-term");
832 add_str(hypertas, "hcall-dabr");
833 add_str(hypertas, "hcall-interrupt");
834 add_str(hypertas, "hcall-tce");
835 add_str(hypertas, "hcall-vio");
836 add_str(hypertas, "hcall-splpar");
837 add_str(hypertas, "hcall-bulk");
838 add_str(hypertas, "hcall-set-mode");
839 add_str(hypertas, "hcall-sprg0");
840 add_str(hypertas, "hcall-copy");
841 add_str(hypertas, "hcall-debug");
842 add_str(qemu_hypertas, "hcall-memop1");
843
844 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
845 add_str(hypertas, "hcall-multi-tce");
846 }
847 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
848 hypertas->str, hypertas->len));
849 g_string_free(hypertas, TRUE);
850 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
851 qemu_hypertas->str, qemu_hypertas->len));
852 g_string_free(qemu_hypertas, TRUE);
853
854 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
855 refpoints, sizeof(refpoints)));
856
857 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
858 RTAS_ERROR_LOG_MAX));
859 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
860 RTAS_EVENT_SCAN_RATE));
861
862 if (msi_nonbroken) {
863 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
864 }
865
866 /*
867 * According to PAPR, rtas ibm,os-term does not guarantee a return
868 * back to the guest cpu.
869 *
870 * While an additional ibm,extended-os-term property indicates
871 * that rtas call return will always occur. Set this property.
872 */
873 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
874
875 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
876 lrdr_capacity, sizeof(lrdr_capacity)));
877
878 spapr_dt_rtas_tokens(fdt, rtas);
879}
880
9fb4541f
SB
881/* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
882 * that the guest may request and thus the valid values for bytes 24..26 of
883 * option vector 5: */
884static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
885{
886 char val[2 * 3] = {
887 24, 0x00, /* Hash/Radix, filled in below. */
888 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
889 26, 0x40, /* Radix options: GTSE == yes. */
890 };
891
892 if (kvm_enabled()) {
893 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
894 val[1] = 0x80; /* OV5_MMU_BOTH */
895 } else if (kvmppc_has_cap_mmu_radix()) {
896 val[1] = 0x40; /* OV5_MMU_RADIX_300 */
897 } else {
898 val[1] = 0x00; /* Hash */
899 }
900 } else {
901 /* TODO: TCG case, hash */
902 val[1] = 0x00;
903 }
904 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
905 val, sizeof(val)));
906}
907
7c866c6a
DG
908static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
909{
910 MachineState *machine = MACHINE(spapr);
911 int chosen;
912 const char *boot_device = machine->boot_order;
913 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
914 size_t cb = 0;
915 char *bootlist = get_boot_devices_list(&cb, true);
7c866c6a
DG
916
917 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
918
7c866c6a
DG
919 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
920 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
921 spapr->initrd_base));
922 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
923 spapr->initrd_base + spapr->initrd_size));
924
925 if (spapr->kernel_size) {
926 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
927 cpu_to_be64(spapr->kernel_size) };
928
929 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
930 &kprop, sizeof(kprop)));
931 if (spapr->kernel_le) {
932 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
933 }
934 }
935 if (boot_menu) {
936 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
937 }
938 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
939 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
940 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
941
942 if (cb && bootlist) {
943 int i;
944
945 for (i = 0; i < cb; i++) {
946 if (bootlist[i] == '\n') {
947 bootlist[i] = ' ';
948 }
949 }
950 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
951 }
952
953 if (boot_device && strlen(boot_device)) {
954 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
955 }
956
957 if (!spapr->has_graphics && stdout_path) {
958 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
959 }
960
9fb4541f
SB
961 spapr_dt_ov5_platform_support(fdt, chosen);
962
7c866c6a
DG
963 g_free(stdout_path);
964 g_free(bootlist);
965}
966
fca5f2dc
DG
967static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
968{
969 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
970 * KVM to work under pHyp with some guest co-operation */
971 int hypervisor;
972 uint8_t hypercall[16];
973
974 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
975 /* indicate KVM hypercall interface */
976 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
977 if (kvmppc_has_cap_fixup_hcalls()) {
978 /*
979 * Older KVM versions with older guest kernels were broken
980 * with the magic page, don't allow the guest to map it.
981 */
982 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
983 sizeof(hypercall))) {
984 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
985 hypercall, sizeof(hypercall)));
986 }
987 }
988}
989
997b6cfc
DG
990static void *spapr_build_fdt(sPAPRMachineState *spapr,
991 hwaddr rtas_addr,
992 hwaddr rtas_size)
a3467baa 993{
5b2128d2 994 MachineState *machine = MACHINE(qdev_get_machine());
3c0c47e3 995 MachineClass *mc = MACHINE_GET_CLASS(machine);
c20d332a 996 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
7c866c6a 997 int ret;
a3467baa 998 void *fdt;
3384f95c 999 sPAPRPHBState *phb;
398a0bd5 1000 char *buf;
a3467baa 1001
398a0bd5
DG
1002 fdt = g_malloc0(FDT_MAX_SIZE);
1003 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
a3467baa 1004
398a0bd5
DG
1005 /* Root node */
1006 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1007 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1008 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1009
1010 /*
1011 * Add info to guest to indentify which host is it being run on
1012 * and what is the uuid of the guest
1013 */
1014 if (kvmppc_get_host_model(&buf)) {
1015 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1016 g_free(buf);
1017 }
1018 if (kvmppc_get_host_serial(&buf)) {
1019 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1020 g_free(buf);
1021 }
1022
1023 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1024
1025 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1026 if (qemu_uuid_set) {
1027 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1028 }
1029 g_free(buf);
1030
1031 if (qemu_get_vm_name()) {
1032 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1033 qemu_get_vm_name()));
1034 }
1035
1036 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1037 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
4040ab72 1038
9b9a1908 1039 /* /interrupt controller */
852ad27e 1040 spapr_dt_xics(spapr->nr_servers, fdt, PHANDLE_XICP);
9b9a1908 1041
e8f986fc
BR
1042 ret = spapr_populate_memory(spapr, fdt);
1043 if (ret < 0) {
ce9863b7 1044 error_report("couldn't setup memory nodes in fdt");
e8f986fc 1045 exit(1);
7f763a5d
DG
1046 }
1047
bf5a6696
DG
1048 /* /vdevice */
1049 spapr_dt_vdevice(spapr->vio_bus, fdt);
4040ab72 1050
4d9392be
TH
1051 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1052 ret = spapr_rng_populate_dt(fdt);
1053 if (ret < 0) {
ce9863b7 1054 error_report("could not set up rng device in the fdt");
4d9392be
TH
1055 exit(1);
1056 }
1057 }
1058
3384f95c 1059 QLIST_FOREACH(phb, &spapr->phbs, list) {
e0fdbd7c 1060 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
da34fed7
TH
1061 if (ret < 0) {
1062 error_report("couldn't setup PCI devices in fdt");
1063 exit(1);
1064 }
3384f95c
DG
1065 }
1066
0da6f3fe
BR
1067 /* cpus */
1068 spapr_populate_cpus_dt_node(fdt, spapr);
6e806cc3 1069
c20d332a
BR
1070 if (smc->dr_lmb_enabled) {
1071 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1072 }
1073
c5514d0e 1074 if (mc->has_hotpluggable_cpus) {
af81cf32
BR
1075 int offset = fdt_path_offset(fdt, "/cpus");
1076 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1077 SPAPR_DR_CONNECTOR_TYPE_CPU);
1078 if (ret < 0) {
1079 error_report("Couldn't set up CPU DR device tree properties");
1080 exit(1);
1081 }
1082 }
1083
ffb1e275 1084 /* /event-sources */
ffbb1705 1085 spapr_dt_events(spapr, fdt);
ffb1e275 1086
3f5dabce
DG
1087 /* /rtas */
1088 spapr_dt_rtas(spapr, fdt);
1089
7c866c6a
DG
1090 /* /chosen */
1091 spapr_dt_chosen(spapr, fdt);
cf6e5223 1092
fca5f2dc
DG
1093 /* /hypervisor */
1094 if (kvm_enabled()) {
1095 spapr_dt_hypervisor(spapr, fdt);
1096 }
1097
cf6e5223
DG
1098 /* Build memory reserve map */
1099 if (spapr->kernel_size) {
1100 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1101 }
1102 if (spapr->initrd_size) {
1103 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1104 }
1105
6787d27b
MR
1106 /* ibm,client-architecture-support updates */
1107 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1108 if (ret < 0) {
1109 error_report("couldn't setup CAS properties fdt");
1110 exit(1);
1111 }
1112
997b6cfc 1113 return fdt;
9fdf0c29
DG
1114}
1115
1116static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1117{
1118 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1119}
1120
1d1be34d
DG
1121static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1122 PowerPCCPU *cpu)
9fdf0c29 1123{
1b14670a
AF
1124 CPUPPCState *env = &cpu->env;
1125
8d04fb55
JK
1126 /* The TCG path should also be holding the BQL at this point */
1127 g_assert(qemu_mutex_iothread_locked());
1128
efcb9383
DG
1129 if (msr_pr) {
1130 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1131 env->gpr[3] = H_PRIVILEGE;
1132 } else {
aa100fa4 1133 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
efcb9383 1134 }
9fdf0c29
DG
1135}
1136
9861bb3e
SJS
1137static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1138{
1139 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1140
1141 return spapr->patb_entry;
1142}
1143
e6b8fd24
SMJ
1144#define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1145#define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1146#define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1147#define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1148#define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1149
715c5407
DG
1150/*
1151 * Get the fd to access the kernel htab, re-opening it if necessary
1152 */
1153static int get_htab_fd(sPAPRMachineState *spapr)
1154{
1155 if (spapr->htab_fd >= 0) {
1156 return spapr->htab_fd;
1157 }
1158
1159 spapr->htab_fd = kvmppc_get_htab_fd(false);
1160 if (spapr->htab_fd < 0) {
1161 error_report("Unable to open fd for reading hash table from KVM: %s",
1162 strerror(errno));
1163 }
1164
1165 return spapr->htab_fd;
1166}
1167
b4db5413 1168void close_htab_fd(sPAPRMachineState *spapr)
715c5407
DG
1169{
1170 if (spapr->htab_fd >= 0) {
1171 close(spapr->htab_fd);
1172 }
1173 spapr->htab_fd = -1;
1174}
1175
e57ca75c
DG
1176static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1177{
1178 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1179
1180 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1181}
1182
1183static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1184 hwaddr ptex, int n)
1185{
1186 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1187 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1188
1189 if (!spapr->htab) {
1190 /*
1191 * HTAB is controlled by KVM. Fetch into temporary buffer
1192 */
1193 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1194 kvmppc_read_hptes(hptes, ptex, n);
1195 return hptes;
1196 }
1197
1198 /*
1199 * HTAB is controlled by QEMU. Just point to the internally
1200 * accessible PTEG.
1201 */
1202 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1203}
1204
1205static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1206 const ppc_hash_pte64_t *hptes,
1207 hwaddr ptex, int n)
1208{
1209 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1210
1211 if (!spapr->htab) {
1212 g_free((void *)hptes);
1213 }
1214
1215 /* Nothing to do for qemu managed HPT */
1216}
1217
1218static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1219 uint64_t pte0, uint64_t pte1)
1220{
1221 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1222 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1223
1224 if (!spapr->htab) {
1225 kvmppc_write_hpte(ptex, pte0, pte1);
1226 } else {
1227 stq_p(spapr->htab + offset, pte0);
1228 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1229 }
1230}
1231
8dfe8e7f
DG
1232static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1233{
1234 int shift;
1235
1236 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1237 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1238 * that's much more than is needed for Linux guests */
1239 shift = ctz64(pow2ceil(ramsize)) - 7;
1240 shift = MAX(shift, 18); /* Minimum architected size */
1241 shift = MIN(shift, 46); /* Maximum architected size */
1242 return shift;
1243}
1244
c5f54f3e
DG
1245static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1246 Error **errp)
7f763a5d 1247{
c5f54f3e
DG
1248 long rc;
1249
1250 /* Clean up any HPT info from a previous boot */
1251 g_free(spapr->htab);
1252 spapr->htab = NULL;
1253 spapr->htab_shift = 0;
1254 close_htab_fd(spapr);
1255
1256 rc = kvmppc_reset_htab(shift);
1257 if (rc < 0) {
1258 /* kernel-side HPT needed, but couldn't allocate one */
1259 error_setg_errno(errp, errno,
1260 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1261 shift);
1262 /* This is almost certainly fatal, but if the caller really
1263 * wants to carry on with shift == 0, it's welcome to try */
1264 } else if (rc > 0) {
1265 /* kernel-side HPT allocated */
1266 if (rc != shift) {
1267 error_setg(errp,
1268 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1269 shift, rc);
7735feda
BR
1270 }
1271
7f763a5d 1272 spapr->htab_shift = shift;
c18ad9a5 1273 spapr->htab = NULL;
b817772a 1274 } else {
c5f54f3e
DG
1275 /* kernel-side HPT not needed, allocate in userspace instead */
1276 size_t size = 1ULL << shift;
1277 int i;
b817772a 1278
c5f54f3e
DG
1279 spapr->htab = qemu_memalign(size, size);
1280 if (!spapr->htab) {
1281 error_setg_errno(errp, errno,
1282 "Could not allocate HPT of order %d", shift);
1283 return;
7735feda
BR
1284 }
1285
c5f54f3e
DG
1286 memset(spapr->htab, 0, size);
1287 spapr->htab_shift = shift;
e6b8fd24 1288
c5f54f3e
DG
1289 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1290 DIRTY_HPTE(HPTE(spapr->htab, i));
e6b8fd24 1291 }
7f763a5d 1292 }
9fdf0c29
DG
1293}
1294
b4db5413
SJS
1295void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1296{
1297 spapr_reallocate_hpt(spapr,
1298 spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size),
1299 &error_fatal);
1300 if (spapr->vrma_adjust) {
1301 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1302 spapr->htab_shift);
1303 }
1304 /* We're setting up a hash table, so that means we're not radix */
1305 spapr->patb_entry = 0;
1306}
1307
4f01a637 1308static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
9e3f9733
AG
1309{
1310 bool matched = false;
1311
1312 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1313 matched = true;
1314 }
1315
1316 if (!matched) {
1317 error_report("Device %s is not supported by this machine yet.",
1318 qdev_fw_name(DEVICE(sbdev)));
1319 exit(1);
1320 }
9e3f9733
AG
1321}
1322
c8787ad4 1323static void ppc_spapr_reset(void)
a3467baa 1324{
c5f54f3e
DG
1325 MachineState *machine = MACHINE(qdev_get_machine());
1326 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
182735ef 1327 PowerPCCPU *first_ppc_cpu;
b7d1f77a 1328 uint32_t rtas_limit;
cae172ab 1329 hwaddr rtas_addr, fdt_addr;
997b6cfc
DG
1330 void *fdt;
1331 int rc;
259186a7 1332
9e3f9733
AG
1333 /* Check for unknown sysbus devices */
1334 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1335
b4db5413
SJS
1336 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1337 /* If using KVM with radix mode available, VCPUs can be started
1338 * without a HPT because KVM will start them in radix mode.
1339 * Set the GR bit in PATB so that we know there is no HPT. */
1340 spapr->patb_entry = PATBE1_GR;
1341 } else {
1342 spapr->patb_entry = 0;
1343 spapr_setup_hpt_and_vrma(spapr);
c5f54f3e 1344 }
a3467baa 1345
c8787ad4 1346 qemu_devices_reset();
a3467baa 1347
b7d1f77a
BH
1348 /*
1349 * We place the device tree and RTAS just below either the top of the RMA,
1350 * or just below 2GB, whichever is lowere, so that it can be
1351 * processed with 32-bit real mode code if necessary
1352 */
1353 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
cae172ab
DG
1354 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1355 fdt_addr = rtas_addr - FDT_MAX_SIZE;
b7d1f77a 1356
6787d27b
MR
1357 /* if this reset wasn't generated by CAS, we should reset our
1358 * negotiated options and start from scratch */
1359 if (!spapr->cas_reboot) {
1360 spapr_ovec_cleanup(spapr->ov5_cas);
1361 spapr->ov5_cas = spapr_ovec_new();
1362 }
1363
cae172ab 1364 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
a3467baa 1365
2cac78c1 1366 spapr_load_rtas(spapr, fdt, rtas_addr);
b7d1f77a 1367
997b6cfc
DG
1368 rc = fdt_pack(fdt);
1369
1370 /* Should only fail if we've built a corrupted tree */
1371 assert(rc == 0);
1372
1373 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1374 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1375 fdt_totalsize(fdt), FDT_MAX_SIZE);
1376 exit(1);
1377 }
1378
1379 /* Load the fdt */
1380 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
cae172ab 1381 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
997b6cfc
DG
1382 g_free(fdt);
1383
a3467baa 1384 /* Set up the entry state */
182735ef 1385 first_ppc_cpu = POWERPC_CPU(first_cpu);
cae172ab 1386 first_ppc_cpu->env.gpr[3] = fdt_addr;
182735ef
AF
1387 first_ppc_cpu->env.gpr[5] = 0;
1388 first_cpu->halted = 0;
1b718907 1389 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
a3467baa 1390
6787d27b 1391 spapr->cas_reboot = false;
a3467baa
DG
1392}
1393
28e02042 1394static void spapr_create_nvram(sPAPRMachineState *spapr)
639e8102 1395{
2ff3de68 1396 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
3978b863 1397 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
639e8102 1398
3978b863 1399 if (dinfo) {
6231a6da
MA
1400 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1401 &error_fatal);
639e8102
DG
1402 }
1403
1404 qdev_init_nofail(dev);
1405
1406 spapr->nvram = (struct sPAPRNVRAM *)dev;
1407}
1408
28e02042 1409static void spapr_rtc_create(sPAPRMachineState *spapr)
28df36a1 1410{
147ff807
CLG
1411 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1412 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1413 &error_fatal);
1414 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1415 &error_fatal);
1416 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1417 "date", &error_fatal);
28df36a1
DG
1418}
1419
8c57b867 1420/* Returns whether we want to use VGA or not */
14c6a894 1421static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
f28359d8 1422{
8c57b867 1423 switch (vga_interface_type) {
8c57b867 1424 case VGA_NONE:
7effdaa3
MW
1425 return false;
1426 case VGA_DEVICE:
1427 return true;
1ddcae82 1428 case VGA_STD:
b798c190 1429 case VGA_VIRTIO:
1ddcae82 1430 return pci_vga_init(pci_bus) != NULL;
8c57b867 1431 default:
14c6a894
DG
1432 error_setg(errp,
1433 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1434 return false;
f28359d8 1435 }
f28359d8
LZ
1436}
1437
880ae7de
DG
1438static int spapr_post_load(void *opaque, int version_id)
1439{
28e02042 1440 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
880ae7de
DG
1441 int err = 0;
1442
a7ff1212
CLG
1443 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1444 int i;
1445 for (i = 0; i < spapr->nr_servers; i++) {
1446 icp_resend(&spapr->icps[i]);
1447 }
1448 }
1449
631b22ea 1450 /* In earlier versions, there was no separate qdev for the PAPR
880ae7de
DG
1451 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1452 * So when migrating from those versions, poke the incoming offset
1453 * value into the RTC device */
1454 if (version_id < 3) {
147ff807 1455 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
880ae7de
DG
1456 }
1457
1458 return err;
1459}
1460
1461static bool version_before_3(void *opaque, int version_id)
1462{
1463 return version_id < 3;
1464}
1465
62ef3760
MR
1466static bool spapr_ov5_cas_needed(void *opaque)
1467{
1468 sPAPRMachineState *spapr = opaque;
1469 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1470 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1471 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1472 bool cas_needed;
1473
1474 /* Prior to the introduction of sPAPROptionVector, we had two option
1475 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1476 * Both of these options encode machine topology into the device-tree
1477 * in such a way that the now-booted OS should still be able to interact
1478 * appropriately with QEMU regardless of what options were actually
1479 * negotiatied on the source side.
1480 *
1481 * As such, we can avoid migrating the CAS-negotiated options if these
1482 * are the only options available on the current machine/platform.
1483 * Since these are the only options available for pseries-2.7 and
1484 * earlier, this allows us to maintain old->new/new->old migration
1485 * compatibility.
1486 *
1487 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1488 * via default pseries-2.8 machines and explicit command-line parameters.
1489 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1490 * of the actual CAS-negotiated values to continue working properly. For
1491 * example, availability of memory unplug depends on knowing whether
1492 * OV5_HP_EVT was negotiated via CAS.
1493 *
1494 * Thus, for any cases where the set of available CAS-negotiatable
1495 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1496 * include the CAS-negotiated options in the migration stream.
1497 */
1498 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1499 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1500
1501 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1502 * the mask itself since in the future it's possible "legacy" bits may be
1503 * removed via machine options, which could generate a false positive
1504 * that breaks migration.
1505 */
1506 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1507 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1508
1509 spapr_ovec_cleanup(ov5_mask);
1510 spapr_ovec_cleanup(ov5_legacy);
1511 spapr_ovec_cleanup(ov5_removed);
1512
1513 return cas_needed;
1514}
1515
1516static const VMStateDescription vmstate_spapr_ov5_cas = {
1517 .name = "spapr_option_vector_ov5_cas",
1518 .version_id = 1,
1519 .minimum_version_id = 1,
1520 .needed = spapr_ov5_cas_needed,
1521 .fields = (VMStateField[]) {
1522 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1523 vmstate_spapr_ovec, sPAPROptionVector),
1524 VMSTATE_END_OF_LIST()
1525 },
1526};
1527
9861bb3e
SJS
1528static bool spapr_patb_entry_needed(void *opaque)
1529{
1530 sPAPRMachineState *spapr = opaque;
1531
1532 return !!spapr->patb_entry;
1533}
1534
1535static const VMStateDescription vmstate_spapr_patb_entry = {
1536 .name = "spapr_patb_entry",
1537 .version_id = 1,
1538 .minimum_version_id = 1,
1539 .needed = spapr_patb_entry_needed,
1540 .fields = (VMStateField[]) {
1541 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1542 VMSTATE_END_OF_LIST()
1543 },
1544};
1545
4be21d56
DG
1546static const VMStateDescription vmstate_spapr = {
1547 .name = "spapr",
880ae7de 1548 .version_id = 3,
4be21d56 1549 .minimum_version_id = 1,
880ae7de 1550 .post_load = spapr_post_load,
3aff6c2f 1551 .fields = (VMStateField[]) {
880ae7de
DG
1552 /* used to be @next_irq */
1553 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
4be21d56
DG
1554
1555 /* RTC offset */
28e02042 1556 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
880ae7de 1557
28e02042 1558 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
4be21d56
DG
1559 VMSTATE_END_OF_LIST()
1560 },
62ef3760
MR
1561 .subsections = (const VMStateDescription*[]) {
1562 &vmstate_spapr_ov5_cas,
9861bb3e 1563 &vmstate_spapr_patb_entry,
62ef3760
MR
1564 NULL
1565 }
4be21d56
DG
1566};
1567
4be21d56
DG
1568static int htab_save_setup(QEMUFile *f, void *opaque)
1569{
28e02042 1570 sPAPRMachineState *spapr = opaque;
4be21d56 1571
4be21d56
DG
1572 /* "Iteration" header */
1573 qemu_put_be32(f, spapr->htab_shift);
1574
e68cb8b4
AK
1575 if (spapr->htab) {
1576 spapr->htab_save_index = 0;
1577 spapr->htab_first_pass = true;
1578 } else {
1579 assert(kvm_enabled());
e68cb8b4
AK
1580 }
1581
1582
4be21d56
DG
1583 return 0;
1584}
1585
28e02042 1586static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
4be21d56
DG
1587 int64_t max_ns)
1588{
378bc217 1589 bool has_timeout = max_ns != -1;
4be21d56
DG
1590 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1591 int index = spapr->htab_save_index;
bc72ad67 1592 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1593
1594 assert(spapr->htab_first_pass);
1595
1596 do {
1597 int chunkstart;
1598
1599 /* Consume invalid HPTEs */
1600 while ((index < htabslots)
1601 && !HPTE_VALID(HPTE(spapr->htab, index))) {
4be21d56 1602 CLEAN_HPTE(HPTE(spapr->htab, index));
24ec2863 1603 index++;
4be21d56
DG
1604 }
1605
1606 /* Consume valid HPTEs */
1607 chunkstart = index;
338c25b6 1608 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56 1609 && HPTE_VALID(HPTE(spapr->htab, index))) {
4be21d56 1610 CLEAN_HPTE(HPTE(spapr->htab, index));
24ec2863 1611 index++;
4be21d56
DG
1612 }
1613
1614 if (index > chunkstart) {
1615 int n_valid = index - chunkstart;
1616
1617 qemu_put_be32(f, chunkstart);
1618 qemu_put_be16(f, n_valid);
1619 qemu_put_be16(f, 0);
1620 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1621 HASH_PTE_SIZE_64 * n_valid);
1622
378bc217
DG
1623 if (has_timeout &&
1624 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1625 break;
1626 }
1627 }
1628 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1629
1630 if (index >= htabslots) {
1631 assert(index == htabslots);
1632 index = 0;
1633 spapr->htab_first_pass = false;
1634 }
1635 spapr->htab_save_index = index;
1636}
1637
28e02042 1638static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
e68cb8b4 1639 int64_t max_ns)
4be21d56
DG
1640{
1641 bool final = max_ns < 0;
1642 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1643 int examined = 0, sent = 0;
1644 int index = spapr->htab_save_index;
bc72ad67 1645 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1646
1647 assert(!spapr->htab_first_pass);
1648
1649 do {
1650 int chunkstart, invalidstart;
1651
1652 /* Consume non-dirty HPTEs */
1653 while ((index < htabslots)
1654 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1655 index++;
1656 examined++;
1657 }
1658
1659 chunkstart = index;
1660 /* Consume valid dirty HPTEs */
338c25b6 1661 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56
DG
1662 && HPTE_DIRTY(HPTE(spapr->htab, index))
1663 && HPTE_VALID(HPTE(spapr->htab, index))) {
1664 CLEAN_HPTE(HPTE(spapr->htab, index));
1665 index++;
1666 examined++;
1667 }
1668
1669 invalidstart = index;
1670 /* Consume invalid dirty HPTEs */
338c25b6 1671 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
4be21d56
DG
1672 && HPTE_DIRTY(HPTE(spapr->htab, index))
1673 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1674 CLEAN_HPTE(HPTE(spapr->htab, index));
1675 index++;
1676 examined++;
1677 }
1678
1679 if (index > chunkstart) {
1680 int n_valid = invalidstart - chunkstart;
1681 int n_invalid = index - invalidstart;
1682
1683 qemu_put_be32(f, chunkstart);
1684 qemu_put_be16(f, n_valid);
1685 qemu_put_be16(f, n_invalid);
1686 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1687 HASH_PTE_SIZE_64 * n_valid);
1688 sent += index - chunkstart;
1689
bc72ad67 1690 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1691 break;
1692 }
1693 }
1694
1695 if (examined >= htabslots) {
1696 break;
1697 }
1698
1699 if (index >= htabslots) {
1700 assert(index == htabslots);
1701 index = 0;
1702 }
1703 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1704
1705 if (index >= htabslots) {
1706 assert(index == htabslots);
1707 index = 0;
1708 }
1709
1710 spapr->htab_save_index = index;
1711
e68cb8b4 1712 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
4be21d56
DG
1713}
1714
e68cb8b4
AK
1715#define MAX_ITERATION_NS 5000000 /* 5 ms */
1716#define MAX_KVM_BUF_SIZE 2048
1717
4be21d56
DG
1718static int htab_save_iterate(QEMUFile *f, void *opaque)
1719{
28e02042 1720 sPAPRMachineState *spapr = opaque;
715c5407 1721 int fd;
e68cb8b4 1722 int rc = 0;
4be21d56
DG
1723
1724 /* Iteration header */
1725 qemu_put_be32(f, 0);
1726
e68cb8b4
AK
1727 if (!spapr->htab) {
1728 assert(kvm_enabled());
1729
715c5407
DG
1730 fd = get_htab_fd(spapr);
1731 if (fd < 0) {
1732 return fd;
01a57972
SMJ
1733 }
1734
715c5407 1735 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
e68cb8b4
AK
1736 if (rc < 0) {
1737 return rc;
1738 }
1739 } else if (spapr->htab_first_pass) {
4be21d56
DG
1740 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1741 } else {
e68cb8b4 1742 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
4be21d56
DG
1743 }
1744
1745 /* End marker */
1746 qemu_put_be32(f, 0);
1747 qemu_put_be16(f, 0);
1748 qemu_put_be16(f, 0);
1749
e68cb8b4 1750 return rc;
4be21d56
DG
1751}
1752
1753static int htab_save_complete(QEMUFile *f, void *opaque)
1754{
28e02042 1755 sPAPRMachineState *spapr = opaque;
715c5407 1756 int fd;
4be21d56
DG
1757
1758 /* Iteration header */
1759 qemu_put_be32(f, 0);
1760
e68cb8b4
AK
1761 if (!spapr->htab) {
1762 int rc;
1763
1764 assert(kvm_enabled());
1765
715c5407
DG
1766 fd = get_htab_fd(spapr);
1767 if (fd < 0) {
1768 return fd;
01a57972
SMJ
1769 }
1770
715c5407 1771 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
e68cb8b4
AK
1772 if (rc < 0) {
1773 return rc;
1774 }
e68cb8b4 1775 } else {
378bc217
DG
1776 if (spapr->htab_first_pass) {
1777 htab_save_first_pass(f, spapr, -1);
1778 }
e68cb8b4
AK
1779 htab_save_later_pass(f, spapr, -1);
1780 }
4be21d56
DG
1781
1782 /* End marker */
1783 qemu_put_be32(f, 0);
1784 qemu_put_be16(f, 0);
1785 qemu_put_be16(f, 0);
1786
1787 return 0;
1788}
1789
1790static int htab_load(QEMUFile *f, void *opaque, int version_id)
1791{
28e02042 1792 sPAPRMachineState *spapr = opaque;
4be21d56 1793 uint32_t section_hdr;
e68cb8b4 1794 int fd = -1;
4be21d56
DG
1795
1796 if (version_id < 1 || version_id > 1) {
98a5d100 1797 error_report("htab_load() bad version");
4be21d56
DG
1798 return -EINVAL;
1799 }
1800
1801 section_hdr = qemu_get_be32(f);
1802
1803 if (section_hdr) {
9897e462 1804 Error *local_err = NULL;
c5f54f3e
DG
1805
1806 /* First section gives the htab size */
1807 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1808 if (local_err) {
1809 error_report_err(local_err);
4be21d56
DG
1810 return -EINVAL;
1811 }
1812 return 0;
1813 }
1814
e68cb8b4
AK
1815 if (!spapr->htab) {
1816 assert(kvm_enabled());
1817
1818 fd = kvmppc_get_htab_fd(true);
1819 if (fd < 0) {
98a5d100
DG
1820 error_report("Unable to open fd to restore KVM hash table: %s",
1821 strerror(errno));
e68cb8b4
AK
1822 }
1823 }
1824
4be21d56
DG
1825 while (true) {
1826 uint32_t index;
1827 uint16_t n_valid, n_invalid;
1828
1829 index = qemu_get_be32(f);
1830 n_valid = qemu_get_be16(f);
1831 n_invalid = qemu_get_be16(f);
1832
1833 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1834 /* End of Stream */
1835 break;
1836 }
1837
e68cb8b4 1838 if ((index + n_valid + n_invalid) >
4be21d56
DG
1839 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1840 /* Bad index in stream */
98a5d100
DG
1841 error_report(
1842 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1843 index, n_valid, n_invalid, spapr->htab_shift);
4be21d56
DG
1844 return -EINVAL;
1845 }
1846
e68cb8b4
AK
1847 if (spapr->htab) {
1848 if (n_valid) {
1849 qemu_get_buffer(f, HPTE(spapr->htab, index),
1850 HASH_PTE_SIZE_64 * n_valid);
1851 }
1852 if (n_invalid) {
1853 memset(HPTE(spapr->htab, index + n_valid), 0,
1854 HASH_PTE_SIZE_64 * n_invalid);
1855 }
1856 } else {
1857 int rc;
1858
1859 assert(fd >= 0);
1860
1861 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1862 if (rc < 0) {
1863 return rc;
1864 }
4be21d56
DG
1865 }
1866 }
1867
e68cb8b4
AK
1868 if (!spapr->htab) {
1869 assert(fd >= 0);
1870 close(fd);
1871 }
1872
4be21d56
DG
1873 return 0;
1874}
1875
c573fc03
TH
1876static void htab_cleanup(void *opaque)
1877{
1878 sPAPRMachineState *spapr = opaque;
1879
1880 close_htab_fd(spapr);
1881}
1882
4be21d56
DG
1883static SaveVMHandlers savevm_htab_handlers = {
1884 .save_live_setup = htab_save_setup,
1885 .save_live_iterate = htab_save_iterate,
a3e06c3d 1886 .save_live_complete_precopy = htab_save_complete,
c573fc03 1887 .cleanup = htab_cleanup,
4be21d56
DG
1888 .load_state = htab_load,
1889};
1890
5b2128d2
AG
1891static void spapr_boot_set(void *opaque, const char *boot_device,
1892 Error **errp)
1893{
1894 MachineState *machine = MACHINE(qdev_get_machine());
1895 machine->boot_order = g_strdup(boot_device);
1896}
1897
224245bf
DG
1898/*
1899 * Reset routine for LMB DR devices.
1900 *
1901 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1902 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1903 * when it walks all its children devices. LMB devices reset occurs
1904 * as part of spapr_ppc_reset().
1905 */
1906static void spapr_drc_reset(void *opaque)
1907{
1908 sPAPRDRConnector *drc = opaque;
1909 DeviceState *d = DEVICE(drc);
1910
1911 if (d) {
1912 device_reset(d);
1913 }
1914}
1915
1916static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1917{
1918 MachineState *machine = MACHINE(spapr);
1919 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
e8f986fc 1920 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
224245bf
DG
1921 int i;
1922
1923 for (i = 0; i < nr_lmbs; i++) {
1924 sPAPRDRConnector *drc;
1925 uint64_t addr;
1926
e8f986fc 1927 addr = i * lmb_size + spapr->hotplug_memory.base;
224245bf
DG
1928 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1929 addr/lmb_size);
1930 qemu_register_reset(spapr_drc_reset, drc);
1931 }
1932}
1933
1934/*
1935 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1936 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1937 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1938 */
7c150d6f 1939static void spapr_validate_node_memory(MachineState *machine, Error **errp)
224245bf
DG
1940{
1941 int i;
1942
7c150d6f
DG
1943 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1944 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1945 " is not aligned to %llu MiB",
1946 machine->ram_size,
1947 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1948 return;
1949 }
1950
1951 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1952 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1953 " is not aligned to %llu MiB",
1954 machine->ram_size,
1955 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1956 return;
224245bf
DG
1957 }
1958
1959 for (i = 0; i < nb_numa_nodes; i++) {
1960 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
7c150d6f
DG
1961 error_setg(errp,
1962 "Node %d memory size 0x%" PRIx64
1963 " is not aligned to %llu MiB",
1964 i, numa_info[i].node_mem,
1965 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1966 return;
224245bf
DG
1967 }
1968 }
1969}
1970
535455fd
IM
1971/* find cpu slot in machine->possible_cpus by core_id */
1972static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1973{
1974 int index = id / smp_threads;
1975
1976 if (index >= ms->possible_cpus->len) {
1977 return NULL;
1978 }
1979 if (idx) {
1980 *idx = index;
1981 }
1982 return &ms->possible_cpus->cpus[index];
1983}
1984
0c86d0fd
DG
1985static void spapr_init_cpus(sPAPRMachineState *spapr)
1986{
1987 MachineState *machine = MACHINE(spapr);
1988 MachineClass *mc = MACHINE_GET_CLASS(machine);
1989 char *type = spapr_get_cpu_core_type(machine->cpu_model);
1990 int smt = kvmppc_smt_threads();
535455fd
IM
1991 const CPUArchIdList *possible_cpus;
1992 int boot_cores_nr = smp_cpus / smp_threads;
0c86d0fd
DG
1993 int i;
1994
1995 if (!type) {
1996 error_report("Unable to find sPAPR CPU Core definition");
1997 exit(1);
1998 }
1999
535455fd 2000 possible_cpus = mc->possible_cpu_arch_ids(machine);
c5514d0e 2001 if (mc->has_hotpluggable_cpus) {
0c86d0fd
DG
2002 if (smp_cpus % smp_threads) {
2003 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2004 smp_cpus, smp_threads);
2005 exit(1);
2006 }
2007 if (max_cpus % smp_threads) {
2008 error_report("max_cpus (%u) must be multiple of threads (%u)",
2009 max_cpus, smp_threads);
2010 exit(1);
2011 }
0c86d0fd
DG
2012 } else {
2013 if (max_cpus != smp_cpus) {
2014 error_report("This machine version does not support CPU hotplug");
2015 exit(1);
2016 }
535455fd 2017 boot_cores_nr = possible_cpus->len;
0c86d0fd
DG
2018 }
2019
535455fd 2020 for (i = 0; i < possible_cpus->len; i++) {
0c86d0fd
DG
2021 int core_id = i * smp_threads;
2022
c5514d0e 2023 if (mc->has_hotpluggable_cpus) {
0c86d0fd
DG
2024 sPAPRDRConnector *drc =
2025 spapr_dr_connector_new(OBJECT(spapr),
2026 SPAPR_DR_CONNECTOR_TYPE_CPU,
2027 (core_id / smp_threads) * smt);
2028
2029 qemu_register_reset(spapr_drc_reset, drc);
2030 }
2031
535455fd 2032 if (i < boot_cores_nr) {
0c86d0fd
DG
2033 Object *core = object_new(type);
2034 int nr_threads = smp_threads;
2035
2036 /* Handle the partially filled core for older machine types */
2037 if ((i + 1) * smp_threads >= smp_cpus) {
2038 nr_threads = smp_cpus - i * smp_threads;
2039 }
2040
2041 object_property_set_int(core, nr_threads, "nr-threads",
2042 &error_fatal);
2043 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2044 &error_fatal);
2045 object_property_set_bool(core, true, "realized", &error_fatal);
2046 }
2047 }
2048 g_free(type);
2049}
2050
9fdf0c29 2051/* pSeries LPAR / sPAPR hardware init */
3ef96221 2052static void ppc_spapr_init(MachineState *machine)
9fdf0c29 2053{
28e02042 2054 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
224245bf 2055 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
3ef96221 2056 const char *kernel_filename = machine->kernel_filename;
3ef96221 2057 const char *initrd_filename = machine->initrd_filename;
8c9f64df 2058 PCIHostState *phb;
9fdf0c29 2059 int i;
890c2b77
AK
2060 MemoryRegion *sysmem = get_system_memory();
2061 MemoryRegion *ram = g_new(MemoryRegion, 1);
658fa66b
AK
2062 MemoryRegion *rma_region;
2063 void *rma = NULL;
a8170e5e 2064 hwaddr rma_alloc_size;
b082d65a 2065 hwaddr node0_size = spapr_node0_size();
b7d1f77a 2066 long load_limit, fw_size;
39ac8455 2067 char *filename;
94a94e4c 2068 int smt = kvmppc_smt_threads();
9fdf0c29 2069
226419d6 2070 msi_nonbroken = true;
0ee2c058 2071
d43b45e2
DG
2072 QLIST_INIT(&spapr->phbs);
2073
354ac20a 2074 /* Allocate RMA if necessary */
658fa66b 2075 rma_alloc_size = kvmppc_alloc_rma(&rma);
354ac20a
DG
2076
2077 if (rma_alloc_size == -1) {
730fce59 2078 error_report("Unable to create RMA");
354ac20a
DG
2079 exit(1);
2080 }
7f763a5d 2081
c4177479 2082 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
7f763a5d 2083 spapr->rma_size = rma_alloc_size;
354ac20a 2084 } else {
c4177479 2085 spapr->rma_size = node0_size;
7f763a5d
DG
2086
2087 /* With KVM, we don't actually know whether KVM supports an
2088 * unbounded RMA (PR KVM) or is limited by the hash table size
2089 * (HV KVM using VRMA), so we always assume the latter
2090 *
2091 * In that case, we also limit the initial allocations for RTAS
2092 * etc... to 256M since we have no way to know what the VRMA size
2093 * is going to be as it depends on the size of the hash table
2094 * isn't determined yet.
2095 */
2096 if (kvm_enabled()) {
2097 spapr->vrma_adjust = 1;
2098 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2099 }
912acdf4
BH
2100
2101 /* Actually we don't support unbounded RMA anymore since we
2102 * added proper emulation of HV mode. The max we can get is
2103 * 16G which also happens to be what we configure for PAPR
2104 * mode so make sure we don't do anything bigger than that
2105 */
2106 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
354ac20a
DG
2107 }
2108
c4177479 2109 if (spapr->rma_size > node0_size) {
d54e4d76
DG
2110 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2111 spapr->rma_size);
c4177479
AK
2112 exit(1);
2113 }
2114
b7d1f77a
BH
2115 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2116 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
9fdf0c29 2117
7b565160 2118 /* Set up Interrupt Controller before we create the VCPUs */
e6f7e110
CLG
2119 xics_system_init(machine, DIV_ROUND_UP(max_cpus * smt, smp_threads),
2120 XICS_IRQS_SPAPR, &error_fatal);
7b565160 2121
facdb8b6
MR
2122 /* Set up containers for ibm,client-set-architecture negotiated options */
2123 spapr->ov5 = spapr_ovec_new();
2124 spapr->ov5_cas = spapr_ovec_new();
2125
224245bf 2126 if (smc->dr_lmb_enabled) {
facdb8b6 2127 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
7c150d6f 2128 spapr_validate_node_memory(machine, &error_fatal);
224245bf
DG
2129 }
2130
417ece33 2131 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
9fb4541f
SB
2132 if (kvmppc_has_cap_mmu_radix()) {
2133 /* KVM always allows GTSE with radix... */
2134 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2135 }
2136 /* ... but not with hash (currently). */
417ece33 2137
ffbb1705
MR
2138 /* advertise support for dedicated HP event source to guests */
2139 if (spapr->use_hotplug_event_source) {
2140 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2141 }
2142
9fdf0c29 2143 /* init CPUs */
19fb2c36 2144 if (machine->cpu_model == NULL) {
3daa4a9f 2145 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
9fdf0c29 2146 }
94a94e4c 2147
e703d2f7
GK
2148 ppc_cpu_parse_features(machine->cpu_model);
2149
0c86d0fd 2150 spapr_init_cpus(spapr);
9fdf0c29 2151
026bfd89
DG
2152 if (kvm_enabled()) {
2153 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2154 kvmppc_enable_logical_ci_hcalls();
ef9971dd 2155 kvmppc_enable_set_mode_hcall();
5145ad4f
NW
2156
2157 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2158 kvmppc_enable_clear_ref_mod_hcalls();
026bfd89
DG
2159 }
2160
9fdf0c29 2161 /* allocate RAM */
f92f5da1 2162 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
fb164994 2163 machine->ram_size);
f92f5da1 2164 memory_region_add_subregion(sysmem, 0, ram);
9fdf0c29 2165
658fa66b
AK
2166 if (rma_alloc_size && rma) {
2167 rma_region = g_new(MemoryRegion, 1);
2168 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2169 rma_alloc_size, rma);
2170 vmstate_register_ram_global(rma_region);
2171 memory_region_add_subregion(sysmem, 0, rma_region);
2172 }
2173
4a1c9cf0
BR
2174 /* initialize hotplug memory address space */
2175 if (machine->ram_size < machine->maxram_size) {
2176 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
71c9a3dd
BR
2177 /*
2178 * Limit the number of hotpluggable memory slots to half the number
2179 * slots that KVM supports, leaving the other half for PCI and other
2180 * devices. However ensure that number of slots doesn't drop below 32.
2181 */
2182 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2183 SPAPR_MAX_RAM_SLOTS;
4a1c9cf0 2184
71c9a3dd
BR
2185 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2186 max_memslots = SPAPR_MAX_RAM_SLOTS;
2187 }
2188 if (machine->ram_slots > max_memslots) {
d54e4d76
DG
2189 error_report("Specified number of memory slots %"
2190 PRIu64" exceeds max supported %d",
71c9a3dd 2191 machine->ram_slots, max_memslots);
d54e4d76 2192 exit(1);
4a1c9cf0
BR
2193 }
2194
2195 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2196 SPAPR_HOTPLUG_MEM_ALIGN);
2197 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2198 "hotplug-memory", hotplug_mem_size);
2199 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2200 &spapr->hotplug_memory.mr);
2201 }
2202
224245bf
DG
2203 if (smc->dr_lmb_enabled) {
2204 spapr_create_lmb_dr_connectors(spapr);
2205 }
2206
39ac8455 2207 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
4c56440d 2208 if (!filename) {
730fce59 2209 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
4c56440d
SW
2210 exit(1);
2211 }
b7d1f77a 2212 spapr->rtas_size = get_image_size(filename);
8afc22a2
ZJ
2213 if (spapr->rtas_size < 0) {
2214 error_report("Could not get size of LPAR rtas '%s'", filename);
2215 exit(1);
2216 }
b7d1f77a
BH
2217 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2218 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
730fce59 2219 error_report("Could not load LPAR rtas '%s'", filename);
39ac8455
DG
2220 exit(1);
2221 }
4d8d5467 2222 if (spapr->rtas_size > RTAS_MAX_SIZE) {
730fce59
TH
2223 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2224 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
4d8d5467
BH
2225 exit(1);
2226 }
7267c094 2227 g_free(filename);
39ac8455 2228
ffbb1705 2229 /* Set up RTAS event infrastructure */
74d042e5
DG
2230 spapr_events_init(spapr);
2231
12f42174 2232 /* Set up the RTC RTAS interfaces */
28df36a1 2233 spapr_rtc_create(spapr);
12f42174 2234
b5cec4c5 2235 /* Set up VIO bus */
4040ab72
DG
2236 spapr->vio_bus = spapr_vio_bus_init();
2237
277f9acf 2238 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
4040ab72 2239 if (serial_hds[i]) {
d601fac4 2240 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
4040ab72
DG
2241 }
2242 }
9fdf0c29 2243
639e8102
DG
2244 /* We always have at least the nvram device on VIO */
2245 spapr_create_nvram(spapr);
2246
3384f95c 2247 /* Set up PCI */
fa28f71b
AK
2248 spapr_pci_rtas_init();
2249
89dfd6e1 2250 phb = spapr_create_phb(spapr, 0);
3384f95c 2251
277f9acf 2252 for (i = 0; i < nb_nics; i++) {
8d90ad90
DG
2253 NICInfo *nd = &nd_table[i];
2254
2255 if (!nd->model) {
7267c094 2256 nd->model = g_strdup("ibmveth");
8d90ad90
DG
2257 }
2258
2259 if (strcmp(nd->model, "ibmveth") == 0) {
d601fac4 2260 spapr_vlan_create(spapr->vio_bus, nd);
8d90ad90 2261 } else {
29b358f9 2262 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
8d90ad90
DG
2263 }
2264 }
2265
6e270446 2266 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
d601fac4 2267 spapr_vscsi_create(spapr->vio_bus);
6e270446
BH
2268 }
2269
f28359d8 2270 /* Graphics */
14c6a894 2271 if (spapr_vga_init(phb->bus, &error_fatal)) {
3fc5acde 2272 spapr->has_graphics = true;
c6e76503 2273 machine->usb |= defaults_enabled() && !machine->usb_disabled;
f28359d8
LZ
2274 }
2275
4ee9ced9 2276 if (machine->usb) {
57040d45
TH
2277 if (smc->use_ohci_by_default) {
2278 pci_create_simple(phb->bus, -1, "pci-ohci");
2279 } else {
2280 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2281 }
c86580b8 2282
35139a59 2283 if (spapr->has_graphics) {
c86580b8
MA
2284 USBBus *usb_bus = usb_bus_find(-1);
2285
2286 usb_create_simple(usb_bus, "usb-kbd");
2287 usb_create_simple(usb_bus, "usb-mouse");
35139a59
DG
2288 }
2289 }
2290
7f763a5d 2291 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
d54e4d76
DG
2292 error_report(
2293 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2294 MIN_RMA_SLOF);
4d8d5467
BH
2295 exit(1);
2296 }
2297
9fdf0c29
DG
2298 if (kernel_filename) {
2299 uint64_t lowaddr = 0;
2300
a19f7fb0
DG
2301 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2302 NULL, NULL, &lowaddr, NULL, 1,
2303 PPC_ELF_MACHINE, 0, 0);
2304 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2305 spapr->kernel_size = load_elf(kernel_filename,
2306 translate_kernel_address, NULL, NULL,
2307 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2308 0, 0);
2309 spapr->kernel_le = spapr->kernel_size > 0;
16457e7f 2310 }
a19f7fb0
DG
2311 if (spapr->kernel_size < 0) {
2312 error_report("error loading %s: %s", kernel_filename,
2313 load_elf_strerror(spapr->kernel_size));
9fdf0c29
DG
2314 exit(1);
2315 }
2316
2317 /* load initrd */
2318 if (initrd_filename) {
4d8d5467
BH
2319 /* Try to locate the initrd in the gap between the kernel
2320 * and the firmware. Add a bit of space just in case
2321 */
a19f7fb0
DG
2322 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2323 + 0x1ffff) & ~0xffff;
2324 spapr->initrd_size = load_image_targphys(initrd_filename,
2325 spapr->initrd_base,
2326 load_limit
2327 - spapr->initrd_base);
2328 if (spapr->initrd_size < 0) {
d54e4d76
DG
2329 error_report("could not load initial ram disk '%s'",
2330 initrd_filename);
9fdf0c29
DG
2331 exit(1);
2332 }
9fdf0c29 2333 }
4d8d5467 2334 }
a3467baa 2335
8e7ea787
AF
2336 if (bios_name == NULL) {
2337 bios_name = FW_FILE_NAME;
2338 }
2339 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
4c56440d 2340 if (!filename) {
68fea5a0 2341 error_report("Could not find LPAR firmware '%s'", bios_name);
4c56440d
SW
2342 exit(1);
2343 }
4d8d5467 2344 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
68fea5a0
TH
2345 if (fw_size <= 0) {
2346 error_report("Could not load LPAR firmware '%s'", filename);
4d8d5467
BH
2347 exit(1);
2348 }
2349 g_free(filename);
4d8d5467 2350
28e02042
DG
2351 /* FIXME: Should register things through the MachineState's qdev
2352 * interface, this is a legacy from the sPAPREnvironment structure
2353 * which predated MachineState but had a similar function */
4be21d56
DG
2354 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2355 register_savevm_live(NULL, "spapr/htab", -1, 1,
2356 &savevm_htab_handlers, spapr);
2357
46503c2b
MR
2358 /* used by RTAS */
2359 QTAILQ_INIT(&spapr->ccs_list);
2360 qemu_register_reset(spapr_ccs_reset_hook, spapr);
2361
5b2128d2 2362 qemu_register_boot_set(spapr_boot_set, spapr);
42043e4f 2363
42043e4f 2364 if (kvm_enabled()) {
3dc410ae 2365 /* to stop and start vmclock */
42043e4f
LV
2366 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2367 &spapr->tb);
3dc410ae
AK
2368
2369 kvmppc_spapr_enable_inkernel_multitce();
42043e4f 2370 }
9fdf0c29
DG
2371}
2372
135a129a
AK
2373static int spapr_kvm_type(const char *vm_type)
2374{
2375 if (!vm_type) {
2376 return 0;
2377 }
2378
2379 if (!strcmp(vm_type, "HV")) {
2380 return 1;
2381 }
2382
2383 if (!strcmp(vm_type, "PR")) {
2384 return 2;
2385 }
2386
2387 error_report("Unknown kvm-type specified '%s'", vm_type);
2388 exit(1);
2389}
2390
71461b0f 2391/*
627b84f4 2392 * Implementation of an interface to adjust firmware path
71461b0f
AK
2393 * for the bootindex property handling.
2394 */
2395static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2396 DeviceState *dev)
2397{
2398#define CAST(type, obj, name) \
2399 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2400 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2401 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2402
2403 if (d) {
2404 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2405 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2406 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2407
2408 if (spapr) {
2409 /*
2410 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2411 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2412 * in the top 16 bits of the 64-bit LUN
2413 */
2414 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2415 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2416 (uint64_t)id << 48);
2417 } else if (virtio) {
2418 /*
2419 * We use SRP luns of the form 01000000 | (target << 8) | lun
2420 * in the top 32 bits of the 64-bit LUN
2421 * Note: the quote above is from SLOF and it is wrong,
2422 * the actual binding is:
2423 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2424 */
2425 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2426 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2427 (uint64_t)id << 32);
2428 } else if (usb) {
2429 /*
2430 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2431 * in the top 32 bits of the 64-bit LUN
2432 */
2433 unsigned usb_port = atoi(usb->port->path);
2434 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2435 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2436 (uint64_t)id << 32);
2437 }
2438 }
2439
b99260eb
TH
2440 /*
2441 * SLOF probes the USB devices, and if it recognizes that the device is a
2442 * storage device, it changes its name to "storage" instead of "usb-host",
2443 * and additionally adds a child node for the SCSI LUN, so the correct
2444 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2445 */
2446 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2447 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2448 if (usb_host_dev_is_scsi_storage(usbdev)) {
2449 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2450 }
2451 }
2452
71461b0f
AK
2453 if (phb) {
2454 /* Replace "pci" with "pci@800000020000000" */
2455 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2456 }
2457
2458 return NULL;
2459}
2460
23825581
EH
2461static char *spapr_get_kvm_type(Object *obj, Error **errp)
2462{
28e02042 2463 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2464
28e02042 2465 return g_strdup(spapr->kvm_type);
23825581
EH
2466}
2467
2468static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2469{
28e02042 2470 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2471
28e02042
DG
2472 g_free(spapr->kvm_type);
2473 spapr->kvm_type = g_strdup(value);
23825581
EH
2474}
2475
f6229214
MR
2476static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2477{
2478 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2479
2480 return spapr->use_hotplug_event_source;
2481}
2482
2483static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2484 Error **errp)
2485{
2486 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2487
2488 spapr->use_hotplug_event_source = value;
2489}
2490
23825581
EH
2491static void spapr_machine_initfn(Object *obj)
2492{
715c5407
DG
2493 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2494
2495 spapr->htab_fd = -1;
f6229214 2496 spapr->use_hotplug_event_source = true;
23825581
EH
2497 object_property_add_str(obj, "kvm-type",
2498 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
49d2e648
MA
2499 object_property_set_description(obj, "kvm-type",
2500 "Specifies the KVM virtualization mode (HV, PR)",
2501 NULL);
f6229214
MR
2502 object_property_add_bool(obj, "modern-hotplug-events",
2503 spapr_get_modern_hotplug_events,
2504 spapr_set_modern_hotplug_events,
2505 NULL);
2506 object_property_set_description(obj, "modern-hotplug-events",
2507 "Use dedicated hotplug event mechanism in"
2508 " place of standard EPOW events when possible"
2509 " (required for memory hot-unplug support)",
2510 NULL);
23825581
EH
2511}
2512
87bbdd9c
DG
2513static void spapr_machine_finalizefn(Object *obj)
2514{
2515 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2516
2517 g_free(spapr->kvm_type);
2518}
2519
1c7ad77e 2520void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
34316482 2521{
34316482
AK
2522 cpu_synchronize_state(cs);
2523 ppc_cpu_do_system_reset(cs);
2524}
2525
2526static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2527{
2528 CPUState *cs;
2529
2530 CPU_FOREACH(cs) {
1c7ad77e 2531 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
34316482
AK
2532 }
2533}
2534
79b78a6b
MR
2535static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2536 uint32_t node, bool dedicated_hp_event_source,
2537 Error **errp)
c20d332a
BR
2538{
2539 sPAPRDRConnector *drc;
2540 sPAPRDRConnectorClass *drck;
2541 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2542 int i, fdt_offset, fdt_size;
2543 void *fdt;
79b78a6b 2544 uint64_t addr = addr_start;
c20d332a 2545
c20d332a
BR
2546 for (i = 0; i < nr_lmbs; i++) {
2547 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2548 addr/SPAPR_MEMORY_BLOCK_SIZE);
2549 g_assert(drc);
2550
2551 fdt = create_device_tree(&fdt_size);
2552 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2553 SPAPR_MEMORY_BLOCK_SIZE);
2554
2555 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2556 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
c20d332a 2557 addr += SPAPR_MEMORY_BLOCK_SIZE;
5c0139a8
MR
2558 if (!dev->hotplugged) {
2559 /* guests expect coldplugged LMBs to be pre-allocated */
2560 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2561 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2562 }
c20d332a 2563 }
5dd5238c
JD
2564 /* send hotplug notification to the
2565 * guest only in case of hotplugged memory
2566 */
2567 if (dev->hotplugged) {
79b78a6b
MR
2568 if (dedicated_hp_event_source) {
2569 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2570 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2571 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2572 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2573 nr_lmbs,
2574 drck->get_index(drc));
2575 } else {
2576 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2577 nr_lmbs);
2578 }
5dd5238c 2579 }
c20d332a
BR
2580}
2581
2582static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2583 uint32_t node, Error **errp)
2584{
2585 Error *local_err = NULL;
2586 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2587 PCDIMMDevice *dimm = PC_DIMM(dev);
2588 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2589 MemoryRegion *mr = ddc->get_memory_region(dimm);
2590 uint64_t align = memory_region_get_alignment(mr);
2591 uint64_t size = memory_region_size(mr);
2592 uint64_t addr;
df587133 2593 char *mem_dev;
c20d332a
BR
2594
2595 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2596 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2597 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2598 goto out;
2599 }
2600
df587133
TH
2601 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2602 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2603 error_setg(&local_err, "Memory backend has bad page size. "
2604 "Use 'memory-backend-file' with correct mem-path.");
2605 goto out;
2606 }
2607
d6a9b0b8 2608 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
c20d332a
BR
2609 if (local_err) {
2610 goto out;
2611 }
2612
2613 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2614 if (local_err) {
2615 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2616 goto out;
2617 }
2618
79b78a6b
MR
2619 spapr_add_lmbs(dev, addr, size, node,
2620 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2621 &error_abort);
c20d332a
BR
2622
2623out:
2624 error_propagate(errp, local_err);
2625}
2626
cf632463
BR
2627typedef struct sPAPRDIMMState {
2628 uint32_t nr_lmbs;
2629} sPAPRDIMMState;
2630
2631static void spapr_lmb_release(DeviceState *dev, void *opaque)
2632{
2633 sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque;
2634 HotplugHandler *hotplug_ctrl;
2635
2636 if (--ds->nr_lmbs) {
2637 return;
2638 }
2639
2640 g_free(ds);
2641
2642 /*
2643 * Now that all the LMBs have been removed by the guest, call the
2644 * pc-dimm unplug handler to cleanup up the pc-dimm device.
2645 */
2646 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2647 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2648}
2649
2650static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2651 Error **errp)
2652{
2653 sPAPRDRConnector *drc;
2654 sPAPRDRConnectorClass *drck;
2655 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2656 int i;
2657 sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState));
2658 uint64_t addr = addr_start;
2659
2660 ds->nr_lmbs = nr_lmbs;
2661 for (i = 0; i < nr_lmbs; i++) {
2662 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2663 addr / SPAPR_MEMORY_BLOCK_SIZE);
2664 g_assert(drc);
2665
2666 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2667 drck->detach(drc, dev, spapr_lmb_release, ds, errp);
2668 addr += SPAPR_MEMORY_BLOCK_SIZE;
2669 }
2670
2671 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2672 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2673 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2674 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2675 nr_lmbs,
2676 drck->get_index(drc));
2677}
2678
2679static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2680 Error **errp)
2681{
2682 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2683 PCDIMMDevice *dimm = PC_DIMM(dev);
2684 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2685 MemoryRegion *mr = ddc->get_memory_region(dimm);
2686
2687 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2688 object_unparent(OBJECT(dev));
2689}
2690
2691static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2692 DeviceState *dev, Error **errp)
2693{
2694 Error *local_err = NULL;
2695 PCDIMMDevice *dimm = PC_DIMM(dev);
2696 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2697 MemoryRegion *mr = ddc->get_memory_region(dimm);
2698 uint64_t size = memory_region_size(mr);
2699 uint64_t addr;
2700
2701 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2702 if (local_err) {
2703 goto out;
2704 }
2705
2706 spapr_del_lmbs(dev, addr, size, &error_abort);
2707out:
2708 error_propagate(errp, local_err);
2709}
2710
af81cf32
BR
2711void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2712 sPAPRMachineState *spapr)
2713{
2714 PowerPCCPU *cpu = POWERPC_CPU(cs);
2715 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2716 int id = ppc_get_vcpu_dt_id(cpu);
2717 void *fdt;
2718 int offset, fdt_size;
2719 char *nodename;
2720
2721 fdt = create_device_tree(&fdt_size);
2722 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2723 offset = fdt_add_subnode(fdt, 0, nodename);
2724
2725 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2726 g_free(nodename);
2727
2728 *fdt_offset = offset;
2729 return fdt;
2730}
2731
115debf2
IM
2732static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2733 Error **errp)
ff9006dd 2734{
535455fd 2735 MachineState *ms = MACHINE(qdev_get_machine());
ff9006dd 2736 CPUCore *cc = CPU_CORE(dev);
535455fd 2737 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
ff9006dd 2738
535455fd 2739 core_slot->cpu = NULL;
ff9006dd
IM
2740 object_unparent(OBJECT(dev));
2741}
2742
115debf2
IM
2743static void spapr_core_release(DeviceState *dev, void *opaque)
2744{
2745 HotplugHandler *hotplug_ctrl;
2746
2747 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2748 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2749}
2750
2751static
2752void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
2753 Error **errp)
ff9006dd 2754{
535455fd
IM
2755 int index;
2756 sPAPRDRConnector *drc;
ff9006dd
IM
2757 sPAPRDRConnectorClass *drck;
2758 Error *local_err = NULL;
535455fd
IM
2759 CPUCore *cc = CPU_CORE(dev);
2760 int smt = kvmppc_smt_threads();
ff9006dd 2761
535455fd
IM
2762 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
2763 error_setg(errp, "Unable to find CPU core with core-id: %d",
2764 cc->core_id);
2765 return;
2766 }
ff9006dd
IM
2767 if (index == 0) {
2768 error_setg(errp, "Boot CPU core may not be unplugged");
2769 return;
2770 }
2771
535455fd 2772 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
ff9006dd
IM
2773 g_assert(drc);
2774
2775 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2776 drck->detach(drc, dev, spapr_core_release, NULL, &local_err);
2777 if (local_err) {
2778 error_propagate(errp, local_err);
2779 return;
2780 }
2781
2782 spapr_hotplug_req_remove_by_index(drc);
2783}
2784
2785static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2786 Error **errp)
2787{
2788 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
2789 MachineClass *mc = MACHINE_GET_CLASS(spapr);
2790 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
2791 CPUCore *cc = CPU_CORE(dev);
2792 CPUState *cs = CPU(core->threads);
2793 sPAPRDRConnector *drc;
2794 Error *local_err = NULL;
2795 void *fdt = NULL;
2796 int fdt_offset = 0;
ff9006dd 2797 int smt = kvmppc_smt_threads();
535455fd
IM
2798 CPUArchId *core_slot;
2799 int index;
ff9006dd 2800
535455fd
IM
2801 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2802 if (!core_slot) {
2803 error_setg(errp, "Unable to find CPU core with core-id: %d",
2804 cc->core_id);
2805 return;
2806 }
ff9006dd 2807 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
ff9006dd 2808
c5514d0e 2809 g_assert(drc || !mc->has_hotpluggable_cpus);
ff9006dd
IM
2810
2811 /*
2812 * Setup CPU DT entries only for hotplugged CPUs. For boot time or
2813 * coldplugged CPUs DT entries are setup in spapr_build_fdt().
2814 */
2815 if (dev->hotplugged) {
2816 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
2817 }
2818
2819 if (drc) {
2820 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2821 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err);
2822 if (local_err) {
2823 g_free(fdt);
ff9006dd
IM
2824 error_propagate(errp, local_err);
2825 return;
2826 }
2827 }
2828
2829 if (dev->hotplugged) {
2830 /*
2831 * Send hotplug notification interrupt to the guest only in case
2832 * of hotplugged CPUs.
2833 */
2834 spapr_hotplug_req_add_by_index(drc);
2835 } else {
2836 /*
2837 * Set the right DRC states for cold plugged CPU.
2838 */
2839 if (drc) {
2840 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2841 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2842 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2843 }
2844 }
535455fd 2845 core_slot->cpu = OBJECT(dev);
ff9006dd
IM
2846}
2847
2848static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2849 Error **errp)
2850{
2851 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
2852 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
ff9006dd
IM
2853 Error *local_err = NULL;
2854 CPUCore *cc = CPU_CORE(dev);
2855 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
2856 const char *type = object_get_typename(OBJECT(dev));
535455fd
IM
2857 CPUArchId *core_slot;
2858 int index;
ff9006dd 2859
c5514d0e 2860 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
ff9006dd
IM
2861 error_setg(&local_err, "CPU hotplug not supported for this machine");
2862 goto out;
2863 }
2864
2865 if (strcmp(base_core_type, type)) {
2866 error_setg(&local_err, "CPU core type should be %s", base_core_type);
2867 goto out;
2868 }
2869
2870 if (cc->core_id % smp_threads) {
2871 error_setg(&local_err, "invalid core id %d", cc->core_id);
2872 goto out;
2873 }
2874
8149e299
DG
2875 if (cc->nr_threads != smp_threads) {
2876 error_setg(errp, "invalid nr-threads %d, must be %d",
2877 cc->nr_threads, smp_threads);
2878 return;
2879 }
2880
535455fd
IM
2881 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2882 if (!core_slot) {
ff9006dd
IM
2883 error_setg(&local_err, "core id %d out of range", cc->core_id);
2884 goto out;
2885 }
2886
535455fd 2887 if (core_slot->cpu) {
ff9006dd
IM
2888 error_setg(&local_err, "core %d already populated", cc->core_id);
2889 goto out;
2890 }
2891
2892out:
2893 g_free(base_core_type);
2894 error_propagate(errp, local_err);
2895}
2896
c20d332a
BR
2897static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2898 DeviceState *dev, Error **errp)
2899{
2900 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2901
2902 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
b556854b 2903 int node;
c20d332a
BR
2904
2905 if (!smc->dr_lmb_enabled) {
2906 error_setg(errp, "Memory hotplug not supported for this machine");
2907 return;
2908 }
2909 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2910 if (*errp) {
2911 return;
2912 }
1a5512bb
GA
2913 if (node < 0 || node >= MAX_NODES) {
2914 error_setg(errp, "Invaild node %d", node);
2915 return;
2916 }
c20d332a 2917
b556854b
BR
2918 /*
2919 * Currently PowerPC kernel doesn't allow hot-adding memory to
2920 * memory-less node, but instead will silently add the memory
2921 * to the first node that has some memory. This causes two
2922 * unexpected behaviours for the user.
2923 *
2924 * - Memory gets hotplugged to a different node than what the user
2925 * specified.
2926 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2927 * to memory-less node, a reboot will set things accordingly
2928 * and the previously hotplugged memory now ends in the right node.
2929 * This appears as if some memory moved from one node to another.
2930 *
2931 * So until kernel starts supporting memory hotplug to memory-less
2932 * nodes, just prevent such attempts upfront in QEMU.
2933 */
2934 if (nb_numa_nodes && !numa_info[node].node_mem) {
2935 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2936 node);
2937 return;
2938 }
2939
c20d332a 2940 spapr_memory_plug(hotplug_dev, dev, node, errp);
af81cf32
BR
2941 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2942 spapr_core_plug(hotplug_dev, dev, errp);
c20d332a
BR
2943 }
2944}
2945
2946static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2947 DeviceState *dev, Error **errp)
2948{
cf632463 2949 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
3c0c47e3 2950 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
6f4b5c3e 2951
c20d332a 2952 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
cf632463
BR
2953 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2954 spapr_memory_unplug(hotplug_dev, dev, errp);
2955 } else {
2956 error_setg(errp, "Memory hot unplug not supported for this guest");
2957 }
2958 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
c5514d0e 2959 if (!mc->has_hotpluggable_cpus) {
cf632463
BR
2960 error_setg(errp, "CPU hot unplug not supported on this machine");
2961 return;
2962 }
2963 spapr_core_unplug(hotplug_dev, dev, errp);
2964 }
2965}
2966
2967static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
2968 DeviceState *dev, Error **errp)
2969{
2970 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2971 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2972
2973 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2974 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2975 spapr_memory_unplug_request(hotplug_dev, dev, errp);
2976 } else {
2977 /* NOTE: this means there is a window after guest reset, prior to
2978 * CAS negotiation, where unplug requests will fail due to the
2979 * capability not being detected yet. This is a bit different than
2980 * the case with PCI unplug, where the events will be queued and
2981 * eventually handled by the guest after boot
2982 */
2983 error_setg(errp, "Memory hot unplug not supported for this guest");
2984 }
6f4b5c3e 2985 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
c5514d0e 2986 if (!mc->has_hotpluggable_cpus) {
6f4b5c3e
BR
2987 error_setg(errp, "CPU hot unplug not supported on this machine");
2988 return;
2989 }
115debf2 2990 spapr_core_unplug_request(hotplug_dev, dev, errp);
c20d332a
BR
2991 }
2992}
2993
94a94e4c
BR
2994static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2995 DeviceState *dev, Error **errp)
2996{
2997 if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2998 spapr_core_pre_plug(hotplug_dev, dev, errp);
2999 }
3000}
3001
7ebaf795
BR
3002static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3003 DeviceState *dev)
c20d332a 3004{
94a94e4c
BR
3005 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3006 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
c20d332a
BR
3007 return HOTPLUG_HANDLER(machine);
3008 }
3009 return NULL;
3010}
3011
20bb648d
DG
3012static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
3013{
3014 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
3015 * socket means much for the paravirtualized PAPR platform) */
3016 return cpu_index / smp_threads / smp_cores;
3017}
3018
535455fd
IM
3019static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3020{
3021 int i;
3022 int spapr_max_cores = max_cpus / smp_threads;
3023 MachineClass *mc = MACHINE_GET_CLASS(machine);
3024
c5514d0e 3025 if (!mc->has_hotpluggable_cpus) {
535455fd
IM
3026 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3027 }
3028 if (machine->possible_cpus) {
3029 assert(machine->possible_cpus->len == spapr_max_cores);
3030 return machine->possible_cpus;
3031 }
3032
3033 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3034 sizeof(CPUArchId) * spapr_max_cores);
3035 machine->possible_cpus->len = spapr_max_cores;
3036 for (i = 0; i < machine->possible_cpus->len; i++) {
3037 int core_id = i * smp_threads;
3038
f2d672c2 3039 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
535455fd
IM
3040 machine->possible_cpus->cpus[i].arch_id = core_id;
3041 machine->possible_cpus->cpus[i].props.has_core_id = true;
3042 machine->possible_cpus->cpus[i].props.core_id = core_id;
3043 /* TODO: add 'has_node/node' here to describe
3044 to which node core belongs */
3045 }
3046 return machine->possible_cpus;
3047}
3048
6737d9ad 3049static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
daa23699
DG
3050 uint64_t *buid, hwaddr *pio,
3051 hwaddr *mmio32, hwaddr *mmio64,
6737d9ad
DG
3052 unsigned n_dma, uint32_t *liobns, Error **errp)
3053{
357d1e3b
DG
3054 /*
3055 * New-style PHB window placement.
3056 *
3057 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3058 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3059 * windows.
3060 *
3061 * Some guest kernels can't work with MMIO windows above 1<<46
3062 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3063 *
3064 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3065 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3066 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3067 * 1TiB 64-bit MMIO windows for each PHB.
3068 */
6737d9ad 3069 const uint64_t base_buid = 0x800000020000000ULL;
25e6a118
MT
3070#define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3071 SPAPR_PCI_MEM64_WIN_SIZE - 1)
6737d9ad
DG
3072 int i;
3073
357d1e3b
DG
3074 /* Sanity check natural alignments */
3075 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3076 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3077 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3078 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3079 /* Sanity check bounds */
25e6a118
MT
3080 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3081 SPAPR_PCI_MEM32_WIN_SIZE);
3082 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3083 SPAPR_PCI_MEM64_WIN_SIZE);
3084
3085 if (index >= SPAPR_MAX_PHBS) {
3086 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3087 SPAPR_MAX_PHBS - 1);
6737d9ad
DG
3088 return;
3089 }
3090
3091 *buid = base_buid + index;
3092 for (i = 0; i < n_dma; ++i) {
3093 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3094 }
3095
357d1e3b
DG
3096 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3097 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3098 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
6737d9ad
DG
3099}
3100
7844e12b
CLG
3101static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3102{
3103 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3104
3105 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3106}
3107
3108static void spapr_ics_resend(XICSFabric *dev)
3109{
3110 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3111
3112 ics_resend(spapr->ics);
3113}
3114
06747ba6 3115static ICPState *spapr_icp_get(XICSFabric *xi, int cpu_dt_id)
b2fc59aa
CLG
3116{
3117 sPAPRMachineState *spapr = SPAPR_MACHINE(xi);
06747ba6 3118 int server = xics_get_cpu_index_by_dt_id(cpu_dt_id);
b2fc59aa 3119
852ad27e 3120 return (server < spapr->nr_servers) ? &spapr->icps[server] : NULL;
b2fc59aa
CLG
3121}
3122
6449da45
CLG
3123static void spapr_pic_print_info(InterruptStatsProvider *obj,
3124 Monitor *mon)
3125{
3126 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3127 int i;
3128
3129 for (i = 0; i < spapr->nr_servers; i++) {
3130 icp_pic_print_info(&spapr->icps[i], mon);
3131 }
3132
3133 ics_pic_print_info(spapr->ics, mon);
3134}
3135
29ee3247
AK
3136static void spapr_machine_class_init(ObjectClass *oc, void *data)
3137{
3138 MachineClass *mc = MACHINE_CLASS(oc);
224245bf 3139 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
71461b0f 3140 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
34316482 3141 NMIClass *nc = NMI_CLASS(oc);
c20d332a 3142 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1d1be34d 3143 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
7844e12b 3144 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
6449da45 3145 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
958db90c 3146
0eb9054c 3147 mc->desc = "pSeries Logical Partition (PAPR compliant)";
fc9f38c3
DG
3148
3149 /*
3150 * We set up the default / latest behaviour here. The class_init
3151 * functions for the specific versioned machine types can override
3152 * these details for backwards compatibility
3153 */
958db90c
MA
3154 mc->init = ppc_spapr_init;
3155 mc->reset = ppc_spapr_reset;
3156 mc->block_default_type = IF_SCSI;
6244bb7e 3157 mc->max_cpus = 1024;
958db90c 3158 mc->no_parallel = 1;
5b2128d2 3159 mc->default_boot_order = "";
a34944fe 3160 mc->default_ram_size = 512 * M_BYTE;
958db90c 3161 mc->kvm_type = spapr_kvm_type;
9e3f9733 3162 mc->has_dynamic_sysbus = true;
e4024630 3163 mc->pci_allow_0_address = true;
7ebaf795 3164 mc->get_hotplug_handler = spapr_get_hotplug_handler;
94a94e4c 3165 hc->pre_plug = spapr_machine_device_pre_plug;
c20d332a
BR
3166 hc->plug = spapr_machine_device_plug;
3167 hc->unplug = spapr_machine_device_unplug;
20bb648d 3168 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
535455fd 3169 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
cf632463 3170 hc->unplug_request = spapr_machine_device_unplug_request;
00b4fbe2 3171
fc9f38c3 3172 smc->dr_lmb_enabled = true;
3daa4a9f 3173 smc->tcg_default_cpu = "POWER8";
c5514d0e 3174 mc->has_hotpluggable_cpus = true;
71461b0f 3175 fwc->get_dev_path = spapr_get_fw_dev_path;
34316482 3176 nc->nmi_monitor_handler = spapr_nmi;
6737d9ad 3177 smc->phb_placement = spapr_phb_placement;
1d1be34d 3178 vhc->hypercall = emulate_spapr_hypercall;
e57ca75c
DG
3179 vhc->hpt_mask = spapr_hpt_mask;
3180 vhc->map_hptes = spapr_map_hptes;
3181 vhc->unmap_hptes = spapr_unmap_hptes;
3182 vhc->store_hpte = spapr_store_hpte;
9861bb3e 3183 vhc->get_patbe = spapr_get_patbe;
7844e12b
CLG
3184 xic->ics_get = spapr_ics_get;
3185 xic->ics_resend = spapr_ics_resend;
b2fc59aa 3186 xic->icp_get = spapr_icp_get;
6449da45 3187 ispc->print_info = spapr_pic_print_info;
55641213
LV
3188 /* Force NUMA node memory size to be a multiple of
3189 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3190 * in which LMBs are represented and hot-added
3191 */
3192 mc->numa_mem_align_shift = 28;
29ee3247
AK
3193}
3194
3195static const TypeInfo spapr_machine_info = {
3196 .name = TYPE_SPAPR_MACHINE,
3197 .parent = TYPE_MACHINE,
4aee7362 3198 .abstract = true,
6ca1502e 3199 .instance_size = sizeof(sPAPRMachineState),
23825581 3200 .instance_init = spapr_machine_initfn,
87bbdd9c 3201 .instance_finalize = spapr_machine_finalizefn,
183930c0 3202 .class_size = sizeof(sPAPRMachineClass),
29ee3247 3203 .class_init = spapr_machine_class_init,
71461b0f
AK
3204 .interfaces = (InterfaceInfo[]) {
3205 { TYPE_FW_PATH_PROVIDER },
34316482 3206 { TYPE_NMI },
c20d332a 3207 { TYPE_HOTPLUG_HANDLER },
1d1be34d 3208 { TYPE_PPC_VIRTUAL_HYPERVISOR },
7844e12b 3209 { TYPE_XICS_FABRIC },
6449da45 3210 { TYPE_INTERRUPT_STATS_PROVIDER },
71461b0f
AK
3211 { }
3212 },
29ee3247
AK
3213};
3214
fccbc785 3215#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
5013c547
DG
3216 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3217 void *data) \
3218 { \
3219 MachineClass *mc = MACHINE_CLASS(oc); \
3220 spapr_machine_##suffix##_class_options(mc); \
fccbc785
DG
3221 if (latest) { \
3222 mc->alias = "pseries"; \
3223 mc->is_default = 1; \
3224 } \
5013c547
DG
3225 } \
3226 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3227 { \
3228 MachineState *machine = MACHINE(obj); \
3229 spapr_machine_##suffix##_instance_options(machine); \
3230 } \
3231 static const TypeInfo spapr_machine_##suffix##_info = { \
3232 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3233 .parent = TYPE_SPAPR_MACHINE, \
3234 .class_init = spapr_machine_##suffix##_class_init, \
3235 .instance_init = spapr_machine_##suffix##_instance_init, \
3236 }; \
3237 static void spapr_machine_register_##suffix(void) \
3238 { \
3239 type_register(&spapr_machine_##suffix##_info); \
3240 } \
0e6aac87 3241 type_init(spapr_machine_register_##suffix)
5013c547 3242
3fa14fbe
DG
3243/*
3244 * pseries-2.10
3245 */
3246static void spapr_machine_2_10_instance_options(MachineState *machine)
3247{
3248}
3249
3250static void spapr_machine_2_10_class_options(MachineClass *mc)
3251{
3252 /* Defaults for the latest behaviour inherited from the base class */
3253}
3254
3255DEFINE_SPAPR_MACHINE(2_10, "2.10", true);
3256
fa325e6c
DG
3257/*
3258 * pseries-2.9
3259 */
3fa14fbe
DG
3260#define SPAPR_COMPAT_2_9 \
3261 HW_COMPAT_2_9
3262
fa325e6c
DG
3263static void spapr_machine_2_9_instance_options(MachineState *machine)
3264{
3fa14fbe 3265 spapr_machine_2_10_instance_options(machine);
fa325e6c
DG
3266}
3267
3268static void spapr_machine_2_9_class_options(MachineClass *mc)
3269{
3fa14fbe
DG
3270 spapr_machine_2_10_class_options(mc);
3271 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
fa325e6c
DG
3272}
3273
3fa14fbe 3274DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
fa325e6c 3275
db800b21
DG
3276/*
3277 * pseries-2.8
3278 */
82516263
DG
3279#define SPAPR_COMPAT_2_8 \
3280 HW_COMPAT_2_8 \
3281 { \
3282 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3283 .property = "pcie-extended-configuration-space", \
3284 .value = "off", \
3285 },
fa325e6c 3286
db800b21
DG
3287static void spapr_machine_2_8_instance_options(MachineState *machine)
3288{
fa325e6c 3289 spapr_machine_2_9_instance_options(machine);
db800b21
DG
3290}
3291
3292static void spapr_machine_2_8_class_options(MachineClass *mc)
3293{
fa325e6c
DG
3294 spapr_machine_2_9_class_options(mc);
3295 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
55641213 3296 mc->numa_mem_align_shift = 23;
db800b21
DG
3297}
3298
fa325e6c 3299DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
db800b21 3300
1ea1eefc
BR
3301/*
3302 * pseries-2.7
3303 */
357d1e3b
DG
3304#define SPAPR_COMPAT_2_7 \
3305 HW_COMPAT_2_7 \
3306 { \
3307 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3308 .property = "mem_win_size", \
3309 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3310 }, \
3311 { \
3312 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3313 .property = "mem64_win_size", \
3314 .value = "0", \
146c11f1
DG
3315 }, \
3316 { \
3317 .driver = TYPE_POWERPC_CPU, \
3318 .property = "pre-2.8-migration", \
3319 .value = "on", \
5c4537bd
DG
3320 }, \
3321 { \
3322 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3323 .property = "pre-2.8-migration", \
3324 .value = "on", \
357d1e3b
DG
3325 },
3326
3327static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3328 uint64_t *buid, hwaddr *pio,
3329 hwaddr *mmio32, hwaddr *mmio64,
3330 unsigned n_dma, uint32_t *liobns, Error **errp)
3331{
3332 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3333 const uint64_t base_buid = 0x800000020000000ULL;
3334 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3335 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3336 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3337 const uint32_t max_index = 255;
3338 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3339
3340 uint64_t ram_top = MACHINE(spapr)->ram_size;
3341 hwaddr phb0_base, phb_base;
3342 int i;
3343
3344 /* Do we have hotpluggable memory? */
3345 if (MACHINE(spapr)->maxram_size > ram_top) {
3346 /* Can't just use maxram_size, because there may be an
3347 * alignment gap between normal and hotpluggable memory
3348 * regions */
3349 ram_top = spapr->hotplug_memory.base +
3350 memory_region_size(&spapr->hotplug_memory.mr);
3351 }
3352
3353 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3354
3355 if (index > max_index) {
3356 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3357 max_index);
3358 return;
3359 }
3360
3361 *buid = base_buid + index;
3362 for (i = 0; i < n_dma; ++i) {
3363 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3364 }
3365
3366 phb_base = phb0_base + index * phb_spacing;
3367 *pio = phb_base + pio_offset;
3368 *mmio32 = phb_base + mmio_offset;
3369 /*
3370 * We don't set the 64-bit MMIO window, relying on the PHB's
3371 * fallback behaviour of automatically splitting a large "32-bit"
3372 * window into contiguous 32-bit and 64-bit windows
3373 */
3374}
db800b21 3375
1ea1eefc
BR
3376static void spapr_machine_2_7_instance_options(MachineState *machine)
3377{
f6229214
MR
3378 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3379
672de881 3380 spapr_machine_2_8_instance_options(machine);
f6229214 3381 spapr->use_hotplug_event_source = false;
1ea1eefc
BR
3382}
3383
3384static void spapr_machine_2_7_class_options(MachineClass *mc)
3385{
3daa4a9f
TH
3386 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3387
db800b21 3388 spapr_machine_2_8_class_options(mc);
3daa4a9f 3389 smc->tcg_default_cpu = "POWER7";
db800b21 3390 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
357d1e3b 3391 smc->phb_placement = phb_placement_2_7;
1ea1eefc
BR
3392}
3393
db800b21 3394DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
1ea1eefc 3395
4b23699c
DG
3396/*
3397 * pseries-2.6
3398 */
1ea1eefc 3399#define SPAPR_COMPAT_2_6 \
ae4de14c
AK
3400 HW_COMPAT_2_6 \
3401 { \
3402 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3403 .property = "ddw",\
3404 .value = stringify(off),\
3405 },
1ea1eefc 3406
4b23699c
DG
3407static void spapr_machine_2_6_instance_options(MachineState *machine)
3408{
672de881 3409 spapr_machine_2_7_instance_options(machine);
4b23699c
DG
3410}
3411
3412static void spapr_machine_2_6_class_options(MachineClass *mc)
3413{
1ea1eefc 3414 spapr_machine_2_7_class_options(mc);
c5514d0e 3415 mc->has_hotpluggable_cpus = false;
1ea1eefc 3416 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4b23699c
DG
3417}
3418
1ea1eefc 3419DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4b23699c 3420
1c5f29bb
DG
3421/*
3422 * pseries-2.5
3423 */
4b23699c 3424#define SPAPR_COMPAT_2_5 \
57c522f4
TH
3425 HW_COMPAT_2_5 \
3426 { \
3427 .driver = "spapr-vlan", \
3428 .property = "use-rx-buffer-pools", \
3429 .value = "off", \
3430 },
4b23699c 3431
5013c547 3432static void spapr_machine_2_5_instance_options(MachineState *machine)
1c5f29bb 3433{
672de881 3434 spapr_machine_2_6_instance_options(machine);
5013c547
DG
3435}
3436
3437static void spapr_machine_2_5_class_options(MachineClass *mc)
3438{
57040d45
TH
3439 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3440
4b23699c 3441 spapr_machine_2_6_class_options(mc);
57040d45 3442 smc->use_ohci_by_default = true;
4b23699c 3443 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
1c5f29bb
DG
3444}
3445
4b23699c 3446DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
1c5f29bb
DG
3447
3448/*
3449 * pseries-2.4
3450 */
80fd50f9
CH
3451#define SPAPR_COMPAT_2_4 \
3452 HW_COMPAT_2_4
3453
5013c547 3454static void spapr_machine_2_4_instance_options(MachineState *machine)
1c5f29bb 3455{
5013c547
DG
3456 spapr_machine_2_5_instance_options(machine);
3457}
1c5f29bb 3458
5013c547
DG
3459static void spapr_machine_2_4_class_options(MachineClass *mc)
3460{
fc9f38c3
DG
3461 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3462
3463 spapr_machine_2_5_class_options(mc);
fc9f38c3 3464 smc->dr_lmb_enabled = false;
f949b4e5 3465 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
1c5f29bb
DG
3466}
3467
fccbc785 3468DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
1c5f29bb
DG
3469
3470/*
3471 * pseries-2.3
3472 */
38ff32c6 3473#define SPAPR_COMPAT_2_3 \
7619c7b0
MR
3474 HW_COMPAT_2_3 \
3475 {\
3476 .driver = "spapr-pci-host-bridge",\
3477 .property = "dynamic-reconfiguration",\
3478 .value = "off",\
3479 },
38ff32c6 3480
5013c547 3481static void spapr_machine_2_3_instance_options(MachineState *machine)
d25228e7 3482{
5013c547 3483 spapr_machine_2_4_instance_options(machine);
ff14e817 3484 savevm_skip_section_footers();
13d16814 3485 global_state_set_optional();
09b5e30d 3486 savevm_skip_configuration();
d25228e7
JW
3487}
3488
5013c547 3489static void spapr_machine_2_3_class_options(MachineClass *mc)
6026db45 3490{
fc9f38c3 3491 spapr_machine_2_4_class_options(mc);
f949b4e5 3492 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
6026db45 3493}
fccbc785 3494DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
6026db45 3495
1c5f29bb
DG
3496/*
3497 * pseries-2.2
3498 */
3499
3500#define SPAPR_COMPAT_2_2 \
1c5f29bb
DG
3501 HW_COMPAT_2_2 \
3502 {\
3503 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3504 .property = "mem_win_size",\
3505 .value = "0x20000000",\
3506 },
3507
5013c547 3508static void spapr_machine_2_2_instance_options(MachineState *machine)
1c5f29bb 3509{
5013c547 3510 spapr_machine_2_3_instance_options(machine);
cba0e779 3511 machine->suppress_vmdesc = true;
1c5f29bb
DG
3512}
3513
5013c547 3514static void spapr_machine_2_2_class_options(MachineClass *mc)
4aee7362 3515{
fc9f38c3 3516 spapr_machine_2_3_class_options(mc);
f949b4e5 3517 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4aee7362 3518}
fccbc785 3519DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4aee7362 3520
1c5f29bb
DG
3521/*
3522 * pseries-2.1
3523 */
3524#define SPAPR_COMPAT_2_1 \
1c5f29bb 3525 HW_COMPAT_2_1
3dab0244 3526
5013c547 3527static void spapr_machine_2_1_instance_options(MachineState *machine)
1c5f29bb 3528{
5013c547 3529 spapr_machine_2_2_instance_options(machine);
1c5f29bb 3530}
d25228e7 3531
5013c547 3532static void spapr_machine_2_1_class_options(MachineClass *mc)
d25228e7 3533{
fc9f38c3 3534 spapr_machine_2_2_class_options(mc);
f949b4e5 3535 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
d25228e7 3536}
fccbc785 3537DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
fb0fc8f6 3538
29ee3247 3539static void spapr_machine_register_types(void)
9fdf0c29 3540{
29ee3247 3541 type_register_static(&spapr_machine_info);
9fdf0c29
DG
3542}
3543
29ee3247 3544type_init(spapr_machine_register_types)