]> git.proxmox.com Git - mirror_qemu.git/blame - hw/ppc/spapr.c
spapr_cpu_core: drop reference on ICP object during CPU realization
[mirror_qemu.git] / hw / ppc / spapr.c
CommitLineData
9fdf0c29
DG
1/*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
0d75590d 27#include "qemu/osdep.h"
da34e65c 28#include "qapi/error.h"
9c17d615 29#include "sysemu/sysemu.h"
e35704ba 30#include "sysemu/numa.h"
83c9f4ca 31#include "hw/hw.h"
03dd024f 32#include "qemu/log.h"
71461b0f 33#include "hw/fw-path-provider.h"
9fdf0c29 34#include "elf.h"
1422e32d 35#include "net/net.h"
ad440b4a 36#include "sysemu/device_tree.h"
fa1d36df 37#include "sysemu/block-backend.h"
9c17d615 38#include "sysemu/cpus.h"
b3946626 39#include "sysemu/hw_accel.h"
e97c3636 40#include "kvm_ppc.h"
ff14e817 41#include "migration/migration.h"
4be21d56 42#include "mmu-hash64.h"
b4db5413 43#include "mmu-book3s-v3.h"
3794d548 44#include "qom/cpu.h"
9fdf0c29
DG
45
46#include "hw/boards.h"
0d09e41a 47#include "hw/ppc/ppc.h"
9fdf0c29
DG
48#include "hw/loader.h"
49
7804c353 50#include "hw/ppc/fdt.h"
0d09e41a
PB
51#include "hw/ppc/spapr.h"
52#include "hw/ppc/spapr_vio.h"
53#include "hw/pci-host/spapr.h"
54#include "hw/ppc/xics.h"
a2cb15b0 55#include "hw/pci/msi.h"
9fdf0c29 56
83c9f4ca 57#include "hw/pci/pci.h"
71461b0f
AK
58#include "hw/scsi/scsi.h"
59#include "hw/virtio/virtio-scsi.h"
f61b4bed 60
022c62cb 61#include "exec/address-spaces.h"
35139a59 62#include "hw/usb.h"
1de7afc9 63#include "qemu/config-file.h"
135a129a 64#include "qemu/error-report.h"
2a6593cb 65#include "trace.h"
34316482 66#include "hw/nmi.h"
6449da45 67#include "hw/intc/intc.h"
890c2b77 68
68a27b20 69#include "hw/compat.h"
f348b6d1 70#include "qemu/cutils.h"
94a94e4c 71#include "hw/ppc/spapr_cpu_core.h"
2474bfd4 72#include "qmp-commands.h"
68a27b20 73
9fdf0c29
DG
74#include <libfdt.h>
75
4d8d5467
BH
76/* SLOF memory layout:
77 *
78 * SLOF raw image loaded at 0, copies its romfs right below the flat
79 * device-tree, then position SLOF itself 31M below that
80 *
81 * So we set FW_OVERHEAD to 40MB which should account for all of that
82 * and more
83 *
84 * We load our kernel at 4M, leaving space for SLOF initial image
85 */
38b02bd8 86#define FDT_MAX_SIZE 0x100000
39ac8455 87#define RTAS_MAX_SIZE 0x10000
b7d1f77a 88#define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
a9f8ad8f
DG
89#define FW_MAX_SIZE 0x400000
90#define FW_FILE_NAME "slof.bin"
4d8d5467
BH
91#define FW_OVERHEAD 0x2800000
92#define KERNEL_LOAD_ADDR FW_MAX_SIZE
a9f8ad8f 93
4d8d5467 94#define MIN_RMA_SLOF 128UL
9fdf0c29 95
0c103f8e
DG
96#define PHANDLE_XICP 0x00001111
97
7f763a5d
DG
98#define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
99
71cd4dac
CLG
100static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
101 const char *type_ics,
102 int nr_irqs, Error **errp)
c04d6cfa 103{
175d2aa0 104 Error *local_err = NULL;
71cd4dac 105 Object *obj;
4e4169f7 106
71cd4dac 107 obj = object_new(type_ics);
175d2aa0 108 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
71cd4dac 109 object_property_add_const_link(obj, "xics", OBJECT(spapr), &error_abort);
175d2aa0
GK
110 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
111 if (local_err) {
112 goto error;
113 }
71cd4dac 114 object_property_set_bool(obj, true, "realized", &local_err);
175d2aa0
GK
115 if (local_err) {
116 goto error;
4e4169f7 117 }
4e4169f7 118
71cd4dac 119 return ICS_SIMPLE(obj);
175d2aa0
GK
120
121error:
122 error_propagate(errp, local_err);
123 return NULL;
c04d6cfa
AL
124}
125
71cd4dac 126static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
c04d6cfa 127{
71cd4dac 128 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
c04d6cfa 129
11ad93f6 130 if (kvm_enabled()) {
34f2af3d
MA
131 Error *err = NULL;
132
2192a930 133 if (machine_kernel_irqchip_allowed(machine) &&
71cd4dac
CLG
134 !xics_kvm_init(spapr, errp)) {
135 spapr->icp_type = TYPE_KVM_ICP;
136 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, &err);
11ad93f6 137 }
71cd4dac 138 if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
b83baa60
MA
139 error_reportf_err(err,
140 "kernel_irqchip requested but unavailable: ");
141 } else {
142 error_free(err);
11ad93f6
DG
143 }
144 }
145
71cd4dac 146 if (!spapr->ics) {
f63ebfe0 147 xics_spapr_init(spapr);
71cd4dac
CLG
148 spapr->icp_type = TYPE_ICP;
149 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
c04d6cfa 150 }
c04d6cfa
AL
151}
152
833d4668
AK
153static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
154 int smt_threads)
155{
156 int i, ret = 0;
157 uint32_t servers_prop[smt_threads];
158 uint32_t gservers_prop[smt_threads * 2];
159 int index = ppc_get_vcpu_dt_id(cpu);
160
d6e166c0
DG
161 if (cpu->compat_pvr) {
162 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
6d9412ea
AK
163 if (ret < 0) {
164 return ret;
165 }
166 }
167
833d4668
AK
168 /* Build interrupt servers and gservers properties */
169 for (i = 0; i < smt_threads; i++) {
170 servers_prop[i] = cpu_to_be32(index + i);
171 /* Hack, direct the group queues back to cpu 0 */
172 gservers_prop[i*2] = cpu_to_be32(index + i);
173 gservers_prop[i*2 + 1] = 0;
174 }
175 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
176 servers_prop, sizeof(servers_prop));
177 if (ret < 0) {
178 return ret;
179 }
180 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
181 gservers_prop, sizeof(gservers_prop));
182
183 return ret;
184}
185
0da6f3fe
BR
186static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
187{
188 int ret = 0;
189 PowerPCCPU *cpu = POWERPC_CPU(cs);
190 int index = ppc_get_vcpu_dt_id(cpu);
191 uint32_t associativity[] = {cpu_to_be32(0x5),
192 cpu_to_be32(0x0),
193 cpu_to_be32(0x0),
194 cpu_to_be32(0x0),
195 cpu_to_be32(cs->numa_node),
196 cpu_to_be32(index)};
197
198 /* Advertise NUMA via ibm,associativity */
199 if (nb_numa_nodes > 1) {
200 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
201 sizeof(associativity));
202 }
203
204 return ret;
205}
206
86d5771a 207/* Populate the "ibm,pa-features" property */
e957f6a9
SB
208static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset,
209 bool legacy_guest)
86d5771a
SB
210{
211 uint8_t pa_features_206[] = { 6, 0,
212 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
213 uint8_t pa_features_207[] = { 24, 0,
214 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
215 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
216 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
217 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
9fb4541f
SB
218 uint8_t pa_features_300[] = { 66, 0,
219 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
220 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
221 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
222 /* 6: DS207 */
223 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
224 /* 16: Vector */
86d5771a 225 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
9fb4541f 226 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
9bf502fe 227 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
9fb4541f
SB
228 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
229 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
230 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
231 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
232 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
233 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
234 /* 42: PM, 44: PC RA, 46: SC vec'd */
235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
236 /* 48: SIMD, 50: QP BFP, 52: String */
237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
238 /* 54: DecFP, 56: DecI, 58: SHA */
239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
240 /* 60: NM atomic, 62: RNG */
241 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
242 };
86d5771a
SB
243 uint8_t *pa_features;
244 size_t pa_size;
245
246 switch (POWERPC_MMU_VER(env->mmu_model)) {
247 case POWERPC_MMU_VER_2_06:
248 pa_features = pa_features_206;
249 pa_size = sizeof(pa_features_206);
250 break;
251 case POWERPC_MMU_VER_2_07:
252 pa_features = pa_features_207;
253 pa_size = sizeof(pa_features_207);
254 break;
255 case POWERPC_MMU_VER_3_00:
256 pa_features = pa_features_300;
257 pa_size = sizeof(pa_features_300);
258 break;
259 default:
260 return;
261 }
262
263 if (env->ci_large_pages) {
264 /*
265 * Note: we keep CI large pages off by default because a 64K capable
266 * guest provisioned with large pages might otherwise try to map a qemu
267 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
268 * even if that qemu runs on a 4k host.
269 * We dd this bit back here if we are confident this is not an issue
270 */
271 pa_features[3] |= 0x20;
272 }
273 if (kvmppc_has_cap_htm() && pa_size > 24) {
274 pa_features[24] |= 0x80; /* Transactional memory support */
275 }
e957f6a9
SB
276 if (legacy_guest && pa_size > 40) {
277 /* Workaround for broken kernels that attempt (guest) radix
278 * mode when they can't handle it, if they see the radix bit set
279 * in pa-features. So hide it from them. */
280 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
281 }
86d5771a
SB
282
283 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
284}
285
28e02042 286static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
6e806cc3 287{
82677ed2
AK
288 int ret = 0, offset, cpus_offset;
289 CPUState *cs;
6e806cc3
BR
290 char cpu_model[32];
291 int smt = kvmppc_smt_threads();
7f763a5d 292 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
6e806cc3 293
82677ed2
AK
294 CPU_FOREACH(cs) {
295 PowerPCCPU *cpu = POWERPC_CPU(cs);
e957f6a9 296 CPUPPCState *env = &cpu->env;
82677ed2
AK
297 DeviceClass *dc = DEVICE_GET_CLASS(cs);
298 int index = ppc_get_vcpu_dt_id(cpu);
12dbeb16 299 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
6e806cc3 300
0f20ba62 301 if ((index % smt) != 0) {
6e806cc3
BR
302 continue;
303 }
304
82677ed2 305 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
6e806cc3 306
82677ed2
AK
307 cpus_offset = fdt_path_offset(fdt, "/cpus");
308 if (cpus_offset < 0) {
309 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
310 "cpus");
311 if (cpus_offset < 0) {
312 return cpus_offset;
313 }
314 }
315 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
6e806cc3 316 if (offset < 0) {
82677ed2
AK
317 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
318 if (offset < 0) {
319 return offset;
320 }
6e806cc3
BR
321 }
322
7f763a5d
DG
323 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
324 pft_size_prop, sizeof(pft_size_prop));
6e806cc3
BR
325 if (ret < 0) {
326 return ret;
327 }
833d4668 328
0da6f3fe
BR
329 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
330 if (ret < 0) {
331 return ret;
332 }
333
12dbeb16 334 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
833d4668
AK
335 if (ret < 0) {
336 return ret;
337 }
e957f6a9
SB
338
339 spapr_populate_pa_features(env, fdt, offset,
340 spapr->cas_legacy_guest_workaround);
6e806cc3
BR
341 }
342 return ret;
343}
344
b082d65a
AK
345static hwaddr spapr_node0_size(void)
346{
fb164994
DG
347 MachineState *machine = MACHINE(qdev_get_machine());
348
b082d65a
AK
349 if (nb_numa_nodes) {
350 int i;
351 for (i = 0; i < nb_numa_nodes; ++i) {
352 if (numa_info[i].node_mem) {
fb164994
DG
353 return MIN(pow2floor(numa_info[i].node_mem),
354 machine->ram_size);
b082d65a
AK
355 }
356 }
357 }
fb164994 358 return machine->ram_size;
b082d65a
AK
359}
360
a1d59c0f
AK
361static void add_str(GString *s, const gchar *s1)
362{
363 g_string_append_len(s, s1, strlen(s1) + 1);
364}
7f763a5d 365
03d196b7 366static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
26a8c353
AK
367 hwaddr size)
368{
369 uint32_t associativity[] = {
370 cpu_to_be32(0x4), /* length */
371 cpu_to_be32(0x0), cpu_to_be32(0x0),
c3b4f589 372 cpu_to_be32(0x0), cpu_to_be32(nodeid)
26a8c353
AK
373 };
374 char mem_name[32];
375 uint64_t mem_reg_property[2];
376 int off;
377
378 mem_reg_property[0] = cpu_to_be64(start);
379 mem_reg_property[1] = cpu_to_be64(size);
380
381 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
382 off = fdt_add_subnode(fdt, 0, mem_name);
383 _FDT(off);
384 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
385 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
386 sizeof(mem_reg_property))));
387 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
388 sizeof(associativity))));
03d196b7 389 return off;
26a8c353
AK
390}
391
28e02042 392static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
7f763a5d 393{
fb164994 394 MachineState *machine = MACHINE(spapr);
7db8a127
AK
395 hwaddr mem_start, node_size;
396 int i, nb_nodes = nb_numa_nodes;
397 NodeInfo *nodes = numa_info;
398 NodeInfo ramnode;
399
400 /* No NUMA nodes, assume there is just one node with whole RAM */
401 if (!nb_numa_nodes) {
402 nb_nodes = 1;
fb164994 403 ramnode.node_mem = machine->ram_size;
7db8a127 404 nodes = &ramnode;
5fe269b1 405 }
7f763a5d 406
7db8a127
AK
407 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
408 if (!nodes[i].node_mem) {
409 continue;
410 }
fb164994 411 if (mem_start >= machine->ram_size) {
5fe269b1
PM
412 node_size = 0;
413 } else {
7db8a127 414 node_size = nodes[i].node_mem;
fb164994
DG
415 if (node_size > machine->ram_size - mem_start) {
416 node_size = machine->ram_size - mem_start;
5fe269b1
PM
417 }
418 }
7db8a127
AK
419 if (!mem_start) {
420 /* ppc_spapr_init() checks for rma_size <= node0_size already */
e8f986fc 421 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
7db8a127
AK
422 mem_start += spapr->rma_size;
423 node_size -= spapr->rma_size;
424 }
6010818c
AK
425 for ( ; node_size; ) {
426 hwaddr sizetmp = pow2floor(node_size);
427
428 /* mem_start != 0 here */
429 if (ctzl(mem_start) < ctzl(sizetmp)) {
430 sizetmp = 1ULL << ctzl(mem_start);
431 }
432
433 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
434 node_size -= sizetmp;
435 mem_start += sizetmp;
436 }
7f763a5d
DG
437 }
438
439 return 0;
440}
441
0da6f3fe
BR
442static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
443 sPAPRMachineState *spapr)
444{
445 PowerPCCPU *cpu = POWERPC_CPU(cs);
446 CPUPPCState *env = &cpu->env;
447 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
448 int index = ppc_get_vcpu_dt_id(cpu);
449 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
450 0xffffffff, 0xffffffff};
afd10a0f
BR
451 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
452 : SPAPR_TIMEBASE_FREQ;
0da6f3fe
BR
453 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
454 uint32_t page_sizes_prop[64];
455 size_t page_sizes_prop_size;
22419c2a 456 uint32_t vcpus_per_socket = smp_threads * smp_cores;
0da6f3fe 457 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
12dbeb16 458 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
af81cf32
BR
459 sPAPRDRConnector *drc;
460 sPAPRDRConnectorClass *drck;
461 int drc_index;
c64abd1f
SB
462 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
463 int i;
af81cf32
BR
464
465 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
466 if (drc) {
467 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
468 drc_index = drck->get_index(drc);
469 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
470 }
0da6f3fe
BR
471
472 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
473 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
474
475 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
476 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
477 env->dcache_line_size)));
478 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
479 env->dcache_line_size)));
480 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
481 env->icache_line_size)));
482 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
483 env->icache_line_size)));
484
485 if (pcc->l1_dcache_size) {
486 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
487 pcc->l1_dcache_size)));
488 } else {
ce9863b7 489 error_report("Warning: Unknown L1 dcache size for cpu");
0da6f3fe
BR
490 }
491 if (pcc->l1_icache_size) {
492 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
493 pcc->l1_icache_size)));
494 } else {
ce9863b7 495 error_report("Warning: Unknown L1 icache size for cpu");
0da6f3fe
BR
496 }
497
498 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
499 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
fd5da5c4 500 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
0da6f3fe
BR
501 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
502 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
503 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
504
505 if (env->spr_cb[SPR_PURR].oea_read) {
506 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
507 }
508
509 if (env->mmu_model & POWERPC_MMU_1TSEG) {
510 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
511 segs, sizeof(segs))));
512 }
513
514 /* Advertise VMX/VSX (vector extensions) if available
515 * 0 / no property == no vector extensions
516 * 1 == VMX / Altivec available
517 * 2 == VSX available */
518 if (env->insns_flags & PPC_ALTIVEC) {
519 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
520
521 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
522 }
523
524 /* Advertise DFP (Decimal Floating Point) if available
525 * 0 / no property == no DFP
526 * 1 == DFP available */
527 if (env->insns_flags2 & PPC2_DFP) {
528 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
529 }
530
3654fa95 531 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
0da6f3fe
BR
532 sizeof(page_sizes_prop));
533 if (page_sizes_prop_size) {
534 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
535 page_sizes_prop, page_sizes_prop_size)));
536 }
537
e957f6a9 538 spapr_populate_pa_features(env, fdt, offset, false);
90da0d5a 539
0da6f3fe 540 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
22419c2a 541 cs->cpu_index / vcpus_per_socket)));
0da6f3fe
BR
542
543 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
544 pft_size_prop, sizeof(pft_size_prop))));
545
546 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
547
12dbeb16 548 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
c64abd1f
SB
549
550 if (pcc->radix_page_info) {
551 for (i = 0; i < pcc->radix_page_info->count; i++) {
552 radix_AP_encodings[i] =
553 cpu_to_be32(pcc->radix_page_info->entries[i]);
554 }
555 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
556 radix_AP_encodings,
557 pcc->radix_page_info->count *
558 sizeof(radix_AP_encodings[0]))));
559 }
0da6f3fe
BR
560}
561
562static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
563{
564 CPUState *cs;
565 int cpus_offset;
566 char *nodename;
567 int smt = kvmppc_smt_threads();
568
569 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
570 _FDT(cpus_offset);
571 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
572 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
573
574 /*
575 * We walk the CPUs in reverse order to ensure that CPU DT nodes
576 * created by fdt_add_subnode() end up in the right order in FDT
577 * for the guest kernel the enumerate the CPUs correctly.
578 */
579 CPU_FOREACH_REVERSE(cs) {
580 PowerPCCPU *cpu = POWERPC_CPU(cs);
581 int index = ppc_get_vcpu_dt_id(cpu);
582 DeviceClass *dc = DEVICE_GET_CLASS(cs);
583 int offset;
584
585 if ((index % smt) != 0) {
586 continue;
587 }
588
589 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
590 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
591 g_free(nodename);
592 _FDT(offset);
593 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
594 }
595
596}
597
03d196b7
BR
598/*
599 * Adds ibm,dynamic-reconfiguration-memory node.
600 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
601 * of this device tree node.
602 */
603static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
604{
605 MachineState *machine = MACHINE(spapr);
606 int ret, i, offset;
607 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
608 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
d0e5a8f2
BR
609 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
610 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
611 memory_region_size(&spapr->hotplug_memory.mr)) /
612 lmb_size;
03d196b7 613 uint32_t *int_buf, *cur_index, buf_len;
6663864e 614 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
03d196b7 615
16c25aef 616 /*
d0e5a8f2 617 * Don't create the node if there is no hotpluggable memory
16c25aef 618 */
d0e5a8f2 619 if (machine->ram_size == machine->maxram_size) {
16c25aef
BR
620 return 0;
621 }
622
ef001f06
TH
623 /*
624 * Allocate enough buffer size to fit in ibm,dynamic-memory
625 * or ibm,associativity-lookup-arrays
626 */
627 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
628 * sizeof(uint32_t);
03d196b7
BR
629 cur_index = int_buf = g_malloc0(buf_len);
630
631 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
632
633 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
634 sizeof(prop_lmb_size));
635 if (ret < 0) {
636 goto out;
637 }
638
639 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
640 if (ret < 0) {
641 goto out;
642 }
643
644 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
645 if (ret < 0) {
646 goto out;
647 }
648
649 /* ibm,dynamic-memory */
650 int_buf[0] = cpu_to_be32(nr_lmbs);
651 cur_index++;
652 for (i = 0; i < nr_lmbs; i++) {
d0e5a8f2 653 uint64_t addr = i * lmb_size;
03d196b7
BR
654 uint32_t *dynamic_memory = cur_index;
655
d0e5a8f2
BR
656 if (i >= hotplug_lmb_start) {
657 sPAPRDRConnector *drc;
658 sPAPRDRConnectorClass *drck;
659
660 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
661 g_assert(drc);
662 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
663
664 dynamic_memory[0] = cpu_to_be32(addr >> 32);
665 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
666 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
667 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
668 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
669 if (memory_region_present(get_system_memory(), addr)) {
670 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
671 } else {
672 dynamic_memory[5] = cpu_to_be32(0);
673 }
03d196b7 674 } else {
d0e5a8f2
BR
675 /*
676 * LMB information for RMA, boot time RAM and gap b/n RAM and
677 * hotplug memory region -- all these are marked as reserved
678 * and as having no valid DRC.
679 */
680 dynamic_memory[0] = cpu_to_be32(addr >> 32);
681 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
682 dynamic_memory[2] = cpu_to_be32(0);
683 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
684 dynamic_memory[4] = cpu_to_be32(-1);
685 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
686 SPAPR_LMB_FLAGS_DRC_INVALID);
03d196b7
BR
687 }
688
689 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
690 }
691 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
692 if (ret < 0) {
693 goto out;
694 }
695
696 /* ibm,associativity-lookup-arrays */
697 cur_index = int_buf;
6663864e 698 int_buf[0] = cpu_to_be32(nr_nodes);
03d196b7
BR
699 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
700 cur_index += 2;
6663864e 701 for (i = 0; i < nr_nodes; i++) {
03d196b7
BR
702 uint32_t associativity[] = {
703 cpu_to_be32(0x0),
704 cpu_to_be32(0x0),
705 cpu_to_be32(0x0),
706 cpu_to_be32(i)
707 };
708 memcpy(cur_index, associativity, sizeof(associativity));
709 cur_index += 4;
710 }
711 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
712 (cur_index - int_buf) * sizeof(uint32_t));
713out:
714 g_free(int_buf);
715 return ret;
716}
717
6787d27b
MR
718static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
719 sPAPROptionVector *ov5_updates)
720{
721 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
417ece33 722 int ret = 0, offset;
6787d27b
MR
723
724 /* Generate ibm,dynamic-reconfiguration-memory node if required */
725 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
726 g_assert(smc->dr_lmb_enabled);
727 ret = spapr_populate_drconf_memory(spapr, fdt);
417ece33
MR
728 if (ret) {
729 goto out;
730 }
6787d27b
MR
731 }
732
417ece33
MR
733 offset = fdt_path_offset(fdt, "/chosen");
734 if (offset < 0) {
735 offset = fdt_add_subnode(fdt, 0, "chosen");
736 if (offset < 0) {
737 return offset;
738 }
739 }
740 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
741 "ibm,architecture-vec-5");
742
743out:
6787d27b
MR
744 return ret;
745}
746
03d196b7
BR
747int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
748 target_ulong addr, target_ulong size,
6787d27b 749 sPAPROptionVector *ov5_updates)
03d196b7
BR
750{
751 void *fdt, *fdt_skel;
752 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
03d196b7
BR
753
754 size -= sizeof(hdr);
755
756 /* Create sceleton */
757 fdt_skel = g_malloc0(size);
758 _FDT((fdt_create(fdt_skel, size)));
759 _FDT((fdt_begin_node(fdt_skel, "")));
760 _FDT((fdt_end_node(fdt_skel)));
761 _FDT((fdt_finish(fdt_skel)));
762 fdt = g_malloc0(size);
763 _FDT((fdt_open_into(fdt_skel, fdt, size)));
764 g_free(fdt_skel);
765
766 /* Fixup cpu nodes */
5b120785 767 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
03d196b7 768
6787d27b
MR
769 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
770 return -1;
03d196b7
BR
771 }
772
773 /* Pack resulting tree */
774 _FDT((fdt_pack(fdt)));
775
776 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
777 trace_spapr_cas_failed(size);
778 return -1;
779 }
780
781 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
782 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
783 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
784 g_free(fdt);
785
786 return 0;
787}
788
3f5dabce
DG
789static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
790{
791 int rtas;
792 GString *hypertas = g_string_sized_new(256);
793 GString *qemu_hypertas = g_string_sized_new(256);
794 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
795 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
796 memory_region_size(&spapr->hotplug_memory.mr);
797 uint32_t lrdr_capacity[] = {
798 cpu_to_be32(max_hotplug_addr >> 32),
799 cpu_to_be32(max_hotplug_addr & 0xffffffff),
800 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
801 cpu_to_be32(max_cpus / smp_threads),
802 };
803
804 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
805
806 /* hypertas */
807 add_str(hypertas, "hcall-pft");
808 add_str(hypertas, "hcall-term");
809 add_str(hypertas, "hcall-dabr");
810 add_str(hypertas, "hcall-interrupt");
811 add_str(hypertas, "hcall-tce");
812 add_str(hypertas, "hcall-vio");
813 add_str(hypertas, "hcall-splpar");
814 add_str(hypertas, "hcall-bulk");
815 add_str(hypertas, "hcall-set-mode");
816 add_str(hypertas, "hcall-sprg0");
817 add_str(hypertas, "hcall-copy");
818 add_str(hypertas, "hcall-debug");
819 add_str(qemu_hypertas, "hcall-memop1");
820
821 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
822 add_str(hypertas, "hcall-multi-tce");
823 }
824 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
825 hypertas->str, hypertas->len));
826 g_string_free(hypertas, TRUE);
827 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
828 qemu_hypertas->str, qemu_hypertas->len));
829 g_string_free(qemu_hypertas, TRUE);
830
831 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
832 refpoints, sizeof(refpoints)));
833
834 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
835 RTAS_ERROR_LOG_MAX));
836 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
837 RTAS_EVENT_SCAN_RATE));
838
839 if (msi_nonbroken) {
840 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
841 }
842
843 /*
844 * According to PAPR, rtas ibm,os-term does not guarantee a return
845 * back to the guest cpu.
846 *
847 * While an additional ibm,extended-os-term property indicates
848 * that rtas call return will always occur. Set this property.
849 */
850 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
851
852 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
853 lrdr_capacity, sizeof(lrdr_capacity)));
854
855 spapr_dt_rtas_tokens(fdt, rtas);
856}
857
9fb4541f
SB
858/* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
859 * that the guest may request and thus the valid values for bytes 24..26 of
860 * option vector 5: */
861static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
862{
545d6e2b
SJS
863 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
864
9fb4541f
SB
865 char val[2 * 3] = {
866 24, 0x00, /* Hash/Radix, filled in below. */
867 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
868 26, 0x40, /* Radix options: GTSE == yes. */
869 };
870
871 if (kvm_enabled()) {
872 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
873 val[1] = 0x80; /* OV5_MMU_BOTH */
874 } else if (kvmppc_has_cap_mmu_radix()) {
875 val[1] = 0x40; /* OV5_MMU_RADIX_300 */
876 } else {
877 val[1] = 0x00; /* Hash */
878 }
879 } else {
545d6e2b
SJS
880 if (first_ppc_cpu->env.mmu_model & POWERPC_MMU_V3) {
881 /* V3 MMU supports both hash and radix (with dynamic switching) */
882 val[1] = 0xC0;
883 } else {
884 /* Otherwise we can only do hash */
885 val[1] = 0x00;
886 }
9fb4541f
SB
887 }
888 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
889 val, sizeof(val)));
890}
891
7c866c6a
DG
892static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
893{
894 MachineState *machine = MACHINE(spapr);
895 int chosen;
896 const char *boot_device = machine->boot_order;
897 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
898 size_t cb = 0;
899 char *bootlist = get_boot_devices_list(&cb, true);
7c866c6a
DG
900
901 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
902
7c866c6a
DG
903 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
904 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
905 spapr->initrd_base));
906 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
907 spapr->initrd_base + spapr->initrd_size));
908
909 if (spapr->kernel_size) {
910 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
911 cpu_to_be64(spapr->kernel_size) };
912
913 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
914 &kprop, sizeof(kprop)));
915 if (spapr->kernel_le) {
916 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
917 }
918 }
919 if (boot_menu) {
920 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
921 }
922 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
923 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
924 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
925
926 if (cb && bootlist) {
927 int i;
928
929 for (i = 0; i < cb; i++) {
930 if (bootlist[i] == '\n') {
931 bootlist[i] = ' ';
932 }
933 }
934 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
935 }
936
937 if (boot_device && strlen(boot_device)) {
938 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
939 }
940
941 if (!spapr->has_graphics && stdout_path) {
942 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
943 }
944
9fb4541f
SB
945 spapr_dt_ov5_platform_support(fdt, chosen);
946
7c866c6a
DG
947 g_free(stdout_path);
948 g_free(bootlist);
949}
950
fca5f2dc
DG
951static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
952{
953 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
954 * KVM to work under pHyp with some guest co-operation */
955 int hypervisor;
956 uint8_t hypercall[16];
957
958 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
959 /* indicate KVM hypercall interface */
960 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
961 if (kvmppc_has_cap_fixup_hcalls()) {
962 /*
963 * Older KVM versions with older guest kernels were broken
964 * with the magic page, don't allow the guest to map it.
965 */
966 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
967 sizeof(hypercall))) {
968 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
969 hypercall, sizeof(hypercall)));
970 }
971 }
972}
973
997b6cfc
DG
974static void *spapr_build_fdt(sPAPRMachineState *spapr,
975 hwaddr rtas_addr,
976 hwaddr rtas_size)
a3467baa 977{
5b2128d2 978 MachineState *machine = MACHINE(qdev_get_machine());
3c0c47e3 979 MachineClass *mc = MACHINE_GET_CLASS(machine);
c20d332a 980 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
7c866c6a 981 int ret;
a3467baa 982 void *fdt;
3384f95c 983 sPAPRPHBState *phb;
398a0bd5 984 char *buf;
71cd4dac 985 int smt = kvmppc_smt_threads();
a3467baa 986
398a0bd5
DG
987 fdt = g_malloc0(FDT_MAX_SIZE);
988 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
a3467baa 989
398a0bd5
DG
990 /* Root node */
991 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
992 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
993 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
994
995 /*
996 * Add info to guest to indentify which host is it being run on
997 * and what is the uuid of the guest
998 */
999 if (kvmppc_get_host_model(&buf)) {
1000 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1001 g_free(buf);
1002 }
1003 if (kvmppc_get_host_serial(&buf)) {
1004 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1005 g_free(buf);
1006 }
1007
1008 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1009
1010 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1011 if (qemu_uuid_set) {
1012 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1013 }
1014 g_free(buf);
1015
1016 if (qemu_get_vm_name()) {
1017 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1018 qemu_get_vm_name()));
1019 }
1020
1021 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1022 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
4040ab72 1023
9b9a1908 1024 /* /interrupt controller */
71cd4dac 1025 spapr_dt_xics(DIV_ROUND_UP(max_cpus * smt, smp_threads), fdt, PHANDLE_XICP);
9b9a1908 1026
e8f986fc
BR
1027 ret = spapr_populate_memory(spapr, fdt);
1028 if (ret < 0) {
ce9863b7 1029 error_report("couldn't setup memory nodes in fdt");
e8f986fc 1030 exit(1);
7f763a5d
DG
1031 }
1032
bf5a6696
DG
1033 /* /vdevice */
1034 spapr_dt_vdevice(spapr->vio_bus, fdt);
4040ab72 1035
4d9392be
TH
1036 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1037 ret = spapr_rng_populate_dt(fdt);
1038 if (ret < 0) {
ce9863b7 1039 error_report("could not set up rng device in the fdt");
4d9392be
TH
1040 exit(1);
1041 }
1042 }
1043
3384f95c 1044 QLIST_FOREACH(phb, &spapr->phbs, list) {
e0fdbd7c 1045 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
da34fed7
TH
1046 if (ret < 0) {
1047 error_report("couldn't setup PCI devices in fdt");
1048 exit(1);
1049 }
3384f95c
DG
1050 }
1051
0da6f3fe
BR
1052 /* cpus */
1053 spapr_populate_cpus_dt_node(fdt, spapr);
6e806cc3 1054
c20d332a
BR
1055 if (smc->dr_lmb_enabled) {
1056 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1057 }
1058
c5514d0e 1059 if (mc->has_hotpluggable_cpus) {
af81cf32
BR
1060 int offset = fdt_path_offset(fdt, "/cpus");
1061 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1062 SPAPR_DR_CONNECTOR_TYPE_CPU);
1063 if (ret < 0) {
1064 error_report("Couldn't set up CPU DR device tree properties");
1065 exit(1);
1066 }
1067 }
1068
ffb1e275 1069 /* /event-sources */
ffbb1705 1070 spapr_dt_events(spapr, fdt);
ffb1e275 1071
3f5dabce
DG
1072 /* /rtas */
1073 spapr_dt_rtas(spapr, fdt);
1074
7c866c6a
DG
1075 /* /chosen */
1076 spapr_dt_chosen(spapr, fdt);
cf6e5223 1077
fca5f2dc
DG
1078 /* /hypervisor */
1079 if (kvm_enabled()) {
1080 spapr_dt_hypervisor(spapr, fdt);
1081 }
1082
cf6e5223
DG
1083 /* Build memory reserve map */
1084 if (spapr->kernel_size) {
1085 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1086 }
1087 if (spapr->initrd_size) {
1088 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1089 }
1090
6787d27b
MR
1091 /* ibm,client-architecture-support updates */
1092 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1093 if (ret < 0) {
1094 error_report("couldn't setup CAS properties fdt");
1095 exit(1);
1096 }
1097
997b6cfc 1098 return fdt;
9fdf0c29
DG
1099}
1100
1101static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1102{
1103 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1104}
1105
1d1be34d
DG
1106static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1107 PowerPCCPU *cpu)
9fdf0c29 1108{
1b14670a
AF
1109 CPUPPCState *env = &cpu->env;
1110
8d04fb55
JK
1111 /* The TCG path should also be holding the BQL at this point */
1112 g_assert(qemu_mutex_iothread_locked());
1113
efcb9383
DG
1114 if (msr_pr) {
1115 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1116 env->gpr[3] = H_PRIVILEGE;
1117 } else {
aa100fa4 1118 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
efcb9383 1119 }
9fdf0c29
DG
1120}
1121
9861bb3e
SJS
1122static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1123{
1124 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1125
1126 return spapr->patb_entry;
1127}
1128
e6b8fd24
SMJ
1129#define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1130#define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1131#define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1132#define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1133#define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1134
715c5407
DG
1135/*
1136 * Get the fd to access the kernel htab, re-opening it if necessary
1137 */
1138static int get_htab_fd(sPAPRMachineState *spapr)
1139{
1140 if (spapr->htab_fd >= 0) {
1141 return spapr->htab_fd;
1142 }
1143
1144 spapr->htab_fd = kvmppc_get_htab_fd(false);
1145 if (spapr->htab_fd < 0) {
1146 error_report("Unable to open fd for reading hash table from KVM: %s",
1147 strerror(errno));
1148 }
1149
1150 return spapr->htab_fd;
1151}
1152
b4db5413 1153void close_htab_fd(sPAPRMachineState *spapr)
715c5407
DG
1154{
1155 if (spapr->htab_fd >= 0) {
1156 close(spapr->htab_fd);
1157 }
1158 spapr->htab_fd = -1;
1159}
1160
e57ca75c
DG
1161static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1162{
1163 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1164
1165 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1166}
1167
1168static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1169 hwaddr ptex, int n)
1170{
1171 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1172 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1173
1174 if (!spapr->htab) {
1175 /*
1176 * HTAB is controlled by KVM. Fetch into temporary buffer
1177 */
1178 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1179 kvmppc_read_hptes(hptes, ptex, n);
1180 return hptes;
1181 }
1182
1183 /*
1184 * HTAB is controlled by QEMU. Just point to the internally
1185 * accessible PTEG.
1186 */
1187 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1188}
1189
1190static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1191 const ppc_hash_pte64_t *hptes,
1192 hwaddr ptex, int n)
1193{
1194 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1195
1196 if (!spapr->htab) {
1197 g_free((void *)hptes);
1198 }
1199
1200 /* Nothing to do for qemu managed HPT */
1201}
1202
1203static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1204 uint64_t pte0, uint64_t pte1)
1205{
1206 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1207 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1208
1209 if (!spapr->htab) {
1210 kvmppc_write_hpte(ptex, pte0, pte1);
1211 } else {
1212 stq_p(spapr->htab + offset, pte0);
1213 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1214 }
1215}
1216
8dfe8e7f
DG
1217static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1218{
1219 int shift;
1220
1221 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1222 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1223 * that's much more than is needed for Linux guests */
1224 shift = ctz64(pow2ceil(ramsize)) - 7;
1225 shift = MAX(shift, 18); /* Minimum architected size */
1226 shift = MIN(shift, 46); /* Maximum architected size */
1227 return shift;
1228}
1229
06ec79e8
BR
1230void spapr_free_hpt(sPAPRMachineState *spapr)
1231{
1232 g_free(spapr->htab);
1233 spapr->htab = NULL;
1234 spapr->htab_shift = 0;
1235 close_htab_fd(spapr);
1236}
1237
c5f54f3e
DG
1238static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1239 Error **errp)
7f763a5d 1240{
c5f54f3e
DG
1241 long rc;
1242
1243 /* Clean up any HPT info from a previous boot */
06ec79e8 1244 spapr_free_hpt(spapr);
c5f54f3e
DG
1245
1246 rc = kvmppc_reset_htab(shift);
1247 if (rc < 0) {
1248 /* kernel-side HPT needed, but couldn't allocate one */
1249 error_setg_errno(errp, errno,
1250 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1251 shift);
1252 /* This is almost certainly fatal, but if the caller really
1253 * wants to carry on with shift == 0, it's welcome to try */
1254 } else if (rc > 0) {
1255 /* kernel-side HPT allocated */
1256 if (rc != shift) {
1257 error_setg(errp,
1258 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1259 shift, rc);
7735feda
BR
1260 }
1261
7f763a5d 1262 spapr->htab_shift = shift;
c18ad9a5 1263 spapr->htab = NULL;
b817772a 1264 } else {
c5f54f3e
DG
1265 /* kernel-side HPT not needed, allocate in userspace instead */
1266 size_t size = 1ULL << shift;
1267 int i;
b817772a 1268
c5f54f3e
DG
1269 spapr->htab = qemu_memalign(size, size);
1270 if (!spapr->htab) {
1271 error_setg_errno(errp, errno,
1272 "Could not allocate HPT of order %d", shift);
1273 return;
7735feda
BR
1274 }
1275
c5f54f3e
DG
1276 memset(spapr->htab, 0, size);
1277 spapr->htab_shift = shift;
e6b8fd24 1278
c5f54f3e
DG
1279 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1280 DIRTY_HPTE(HPTE(spapr->htab, i));
e6b8fd24 1281 }
7f763a5d 1282 }
9fdf0c29
DG
1283}
1284
b4db5413
SJS
1285void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1286{
1287 spapr_reallocate_hpt(spapr,
1288 spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size),
1289 &error_fatal);
1290 if (spapr->vrma_adjust) {
1291 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1292 spapr->htab_shift);
1293 }
1294 /* We're setting up a hash table, so that means we're not radix */
1295 spapr->patb_entry = 0;
1296}
1297
4f01a637 1298static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
9e3f9733
AG
1299{
1300 bool matched = false;
1301
1302 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1303 matched = true;
1304 }
1305
1306 if (!matched) {
1307 error_report("Device %s is not supported by this machine yet.",
1308 qdev_fw_name(DEVICE(sbdev)));
1309 exit(1);
1310 }
9e3f9733
AG
1311}
1312
c8787ad4 1313static void ppc_spapr_reset(void)
a3467baa 1314{
c5f54f3e
DG
1315 MachineState *machine = MACHINE(qdev_get_machine());
1316 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
182735ef 1317 PowerPCCPU *first_ppc_cpu;
b7d1f77a 1318 uint32_t rtas_limit;
cae172ab 1319 hwaddr rtas_addr, fdt_addr;
997b6cfc
DG
1320 void *fdt;
1321 int rc;
259186a7 1322
9e3f9733
AG
1323 /* Check for unknown sysbus devices */
1324 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1325
b4db5413
SJS
1326 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1327 /* If using KVM with radix mode available, VCPUs can be started
1328 * without a HPT because KVM will start them in radix mode.
1329 * Set the GR bit in PATB so that we know there is no HPT. */
1330 spapr->patb_entry = PATBE1_GR;
1331 } else {
1332 spapr->patb_entry = 0;
1333 spapr_setup_hpt_and_vrma(spapr);
c5f54f3e 1334 }
a3467baa 1335
c8787ad4 1336 qemu_devices_reset();
a3467baa 1337
b7d1f77a
BH
1338 /*
1339 * We place the device tree and RTAS just below either the top of the RMA,
1340 * or just below 2GB, whichever is lowere, so that it can be
1341 * processed with 32-bit real mode code if necessary
1342 */
1343 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
cae172ab
DG
1344 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1345 fdt_addr = rtas_addr - FDT_MAX_SIZE;
b7d1f77a 1346
6787d27b
MR
1347 /* if this reset wasn't generated by CAS, we should reset our
1348 * negotiated options and start from scratch */
1349 if (!spapr->cas_reboot) {
1350 spapr_ovec_cleanup(spapr->ov5_cas);
1351 spapr->ov5_cas = spapr_ovec_new();
1352 }
1353
cae172ab 1354 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
a3467baa 1355
2cac78c1 1356 spapr_load_rtas(spapr, fdt, rtas_addr);
b7d1f77a 1357
997b6cfc
DG
1358 rc = fdt_pack(fdt);
1359
1360 /* Should only fail if we've built a corrupted tree */
1361 assert(rc == 0);
1362
1363 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1364 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1365 fdt_totalsize(fdt), FDT_MAX_SIZE);
1366 exit(1);
1367 }
1368
1369 /* Load the fdt */
1370 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
cae172ab 1371 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
997b6cfc
DG
1372 g_free(fdt);
1373
a3467baa 1374 /* Set up the entry state */
182735ef 1375 first_ppc_cpu = POWERPC_CPU(first_cpu);
cae172ab 1376 first_ppc_cpu->env.gpr[3] = fdt_addr;
182735ef
AF
1377 first_ppc_cpu->env.gpr[5] = 0;
1378 first_cpu->halted = 0;
1b718907 1379 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
a3467baa 1380
6787d27b 1381 spapr->cas_reboot = false;
a3467baa
DG
1382}
1383
28e02042 1384static void spapr_create_nvram(sPAPRMachineState *spapr)
639e8102 1385{
2ff3de68 1386 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
3978b863 1387 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
639e8102 1388
3978b863 1389 if (dinfo) {
6231a6da
MA
1390 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1391 &error_fatal);
639e8102
DG
1392 }
1393
1394 qdev_init_nofail(dev);
1395
1396 spapr->nvram = (struct sPAPRNVRAM *)dev;
1397}
1398
28e02042 1399static void spapr_rtc_create(sPAPRMachineState *spapr)
28df36a1 1400{
147ff807
CLG
1401 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1402 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1403 &error_fatal);
1404 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1405 &error_fatal);
1406 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1407 "date", &error_fatal);
28df36a1
DG
1408}
1409
8c57b867 1410/* Returns whether we want to use VGA or not */
14c6a894 1411static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
f28359d8 1412{
8c57b867 1413 switch (vga_interface_type) {
8c57b867 1414 case VGA_NONE:
7effdaa3
MW
1415 return false;
1416 case VGA_DEVICE:
1417 return true;
1ddcae82 1418 case VGA_STD:
b798c190 1419 case VGA_VIRTIO:
1ddcae82 1420 return pci_vga_init(pci_bus) != NULL;
8c57b867 1421 default:
14c6a894
DG
1422 error_setg(errp,
1423 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1424 return false;
f28359d8 1425 }
f28359d8
LZ
1426}
1427
880ae7de
DG
1428static int spapr_post_load(void *opaque, int version_id)
1429{
28e02042 1430 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
880ae7de
DG
1431 int err = 0;
1432
a7ff1212 1433 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
5bc8d26d
CLG
1434 CPUState *cs;
1435 CPU_FOREACH(cs) {
1436 PowerPCCPU *cpu = POWERPC_CPU(cs);
1437 icp_resend(ICP(cpu->intc));
a7ff1212
CLG
1438 }
1439 }
1440
631b22ea 1441 /* In earlier versions, there was no separate qdev for the PAPR
880ae7de
DG
1442 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1443 * So when migrating from those versions, poke the incoming offset
1444 * value into the RTC device */
1445 if (version_id < 3) {
147ff807 1446 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
880ae7de
DG
1447 }
1448
1449 return err;
1450}
1451
1452static bool version_before_3(void *opaque, int version_id)
1453{
1454 return version_id < 3;
1455}
1456
62ef3760
MR
1457static bool spapr_ov5_cas_needed(void *opaque)
1458{
1459 sPAPRMachineState *spapr = opaque;
1460 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1461 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1462 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1463 bool cas_needed;
1464
1465 /* Prior to the introduction of sPAPROptionVector, we had two option
1466 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1467 * Both of these options encode machine topology into the device-tree
1468 * in such a way that the now-booted OS should still be able to interact
1469 * appropriately with QEMU regardless of what options were actually
1470 * negotiatied on the source side.
1471 *
1472 * As such, we can avoid migrating the CAS-negotiated options if these
1473 * are the only options available on the current machine/platform.
1474 * Since these are the only options available for pseries-2.7 and
1475 * earlier, this allows us to maintain old->new/new->old migration
1476 * compatibility.
1477 *
1478 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1479 * via default pseries-2.8 machines and explicit command-line parameters.
1480 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1481 * of the actual CAS-negotiated values to continue working properly. For
1482 * example, availability of memory unplug depends on knowing whether
1483 * OV5_HP_EVT was negotiated via CAS.
1484 *
1485 * Thus, for any cases where the set of available CAS-negotiatable
1486 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1487 * include the CAS-negotiated options in the migration stream.
1488 */
1489 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1490 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1491
1492 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1493 * the mask itself since in the future it's possible "legacy" bits may be
1494 * removed via machine options, which could generate a false positive
1495 * that breaks migration.
1496 */
1497 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1498 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1499
1500 spapr_ovec_cleanup(ov5_mask);
1501 spapr_ovec_cleanup(ov5_legacy);
1502 spapr_ovec_cleanup(ov5_removed);
1503
1504 return cas_needed;
1505}
1506
1507static const VMStateDescription vmstate_spapr_ov5_cas = {
1508 .name = "spapr_option_vector_ov5_cas",
1509 .version_id = 1,
1510 .minimum_version_id = 1,
1511 .needed = spapr_ov5_cas_needed,
1512 .fields = (VMStateField[]) {
1513 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1514 vmstate_spapr_ovec, sPAPROptionVector),
1515 VMSTATE_END_OF_LIST()
1516 },
1517};
1518
9861bb3e
SJS
1519static bool spapr_patb_entry_needed(void *opaque)
1520{
1521 sPAPRMachineState *spapr = opaque;
1522
1523 return !!spapr->patb_entry;
1524}
1525
1526static const VMStateDescription vmstate_spapr_patb_entry = {
1527 .name = "spapr_patb_entry",
1528 .version_id = 1,
1529 .minimum_version_id = 1,
1530 .needed = spapr_patb_entry_needed,
1531 .fields = (VMStateField[]) {
1532 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1533 VMSTATE_END_OF_LIST()
1534 },
1535};
1536
4be21d56
DG
1537static const VMStateDescription vmstate_spapr = {
1538 .name = "spapr",
880ae7de 1539 .version_id = 3,
4be21d56 1540 .minimum_version_id = 1,
880ae7de 1541 .post_load = spapr_post_load,
3aff6c2f 1542 .fields = (VMStateField[]) {
880ae7de
DG
1543 /* used to be @next_irq */
1544 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
4be21d56
DG
1545
1546 /* RTC offset */
28e02042 1547 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
880ae7de 1548
28e02042 1549 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
4be21d56
DG
1550 VMSTATE_END_OF_LIST()
1551 },
62ef3760
MR
1552 .subsections = (const VMStateDescription*[]) {
1553 &vmstate_spapr_ov5_cas,
9861bb3e 1554 &vmstate_spapr_patb_entry,
62ef3760
MR
1555 NULL
1556 }
4be21d56
DG
1557};
1558
4be21d56
DG
1559static int htab_save_setup(QEMUFile *f, void *opaque)
1560{
28e02042 1561 sPAPRMachineState *spapr = opaque;
4be21d56 1562
4be21d56
DG
1563 /* "Iteration" header */
1564 qemu_put_be32(f, spapr->htab_shift);
1565
e68cb8b4
AK
1566 if (spapr->htab) {
1567 spapr->htab_save_index = 0;
1568 spapr->htab_first_pass = true;
1569 } else {
1570 assert(kvm_enabled());
e68cb8b4
AK
1571 }
1572
1573
4be21d56
DG
1574 return 0;
1575}
1576
28e02042 1577static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
4be21d56
DG
1578 int64_t max_ns)
1579{
378bc217 1580 bool has_timeout = max_ns != -1;
4be21d56
DG
1581 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1582 int index = spapr->htab_save_index;
bc72ad67 1583 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1584
1585 assert(spapr->htab_first_pass);
1586
1587 do {
1588 int chunkstart;
1589
1590 /* Consume invalid HPTEs */
1591 while ((index < htabslots)
1592 && !HPTE_VALID(HPTE(spapr->htab, index))) {
4be21d56 1593 CLEAN_HPTE(HPTE(spapr->htab, index));
24ec2863 1594 index++;
4be21d56
DG
1595 }
1596
1597 /* Consume valid HPTEs */
1598 chunkstart = index;
338c25b6 1599 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56 1600 && HPTE_VALID(HPTE(spapr->htab, index))) {
4be21d56 1601 CLEAN_HPTE(HPTE(spapr->htab, index));
24ec2863 1602 index++;
4be21d56
DG
1603 }
1604
1605 if (index > chunkstart) {
1606 int n_valid = index - chunkstart;
1607
1608 qemu_put_be32(f, chunkstart);
1609 qemu_put_be16(f, n_valid);
1610 qemu_put_be16(f, 0);
1611 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1612 HASH_PTE_SIZE_64 * n_valid);
1613
378bc217
DG
1614 if (has_timeout &&
1615 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1616 break;
1617 }
1618 }
1619 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1620
1621 if (index >= htabslots) {
1622 assert(index == htabslots);
1623 index = 0;
1624 spapr->htab_first_pass = false;
1625 }
1626 spapr->htab_save_index = index;
1627}
1628
28e02042 1629static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
e68cb8b4 1630 int64_t max_ns)
4be21d56
DG
1631{
1632 bool final = max_ns < 0;
1633 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1634 int examined = 0, sent = 0;
1635 int index = spapr->htab_save_index;
bc72ad67 1636 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1637
1638 assert(!spapr->htab_first_pass);
1639
1640 do {
1641 int chunkstart, invalidstart;
1642
1643 /* Consume non-dirty HPTEs */
1644 while ((index < htabslots)
1645 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1646 index++;
1647 examined++;
1648 }
1649
1650 chunkstart = index;
1651 /* Consume valid dirty HPTEs */
338c25b6 1652 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56
DG
1653 && HPTE_DIRTY(HPTE(spapr->htab, index))
1654 && HPTE_VALID(HPTE(spapr->htab, index))) {
1655 CLEAN_HPTE(HPTE(spapr->htab, index));
1656 index++;
1657 examined++;
1658 }
1659
1660 invalidstart = index;
1661 /* Consume invalid dirty HPTEs */
338c25b6 1662 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
4be21d56
DG
1663 && HPTE_DIRTY(HPTE(spapr->htab, index))
1664 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1665 CLEAN_HPTE(HPTE(spapr->htab, index));
1666 index++;
1667 examined++;
1668 }
1669
1670 if (index > chunkstart) {
1671 int n_valid = invalidstart - chunkstart;
1672 int n_invalid = index - invalidstart;
1673
1674 qemu_put_be32(f, chunkstart);
1675 qemu_put_be16(f, n_valid);
1676 qemu_put_be16(f, n_invalid);
1677 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1678 HASH_PTE_SIZE_64 * n_valid);
1679 sent += index - chunkstart;
1680
bc72ad67 1681 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1682 break;
1683 }
1684 }
1685
1686 if (examined >= htabslots) {
1687 break;
1688 }
1689
1690 if (index >= htabslots) {
1691 assert(index == htabslots);
1692 index = 0;
1693 }
1694 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1695
1696 if (index >= htabslots) {
1697 assert(index == htabslots);
1698 index = 0;
1699 }
1700
1701 spapr->htab_save_index = index;
1702
e68cb8b4 1703 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
4be21d56
DG
1704}
1705
e68cb8b4
AK
1706#define MAX_ITERATION_NS 5000000 /* 5 ms */
1707#define MAX_KVM_BUF_SIZE 2048
1708
4be21d56
DG
1709static int htab_save_iterate(QEMUFile *f, void *opaque)
1710{
28e02042 1711 sPAPRMachineState *spapr = opaque;
715c5407 1712 int fd;
e68cb8b4 1713 int rc = 0;
4be21d56
DG
1714
1715 /* Iteration header */
1716 qemu_put_be32(f, 0);
1717
e68cb8b4
AK
1718 if (!spapr->htab) {
1719 assert(kvm_enabled());
1720
715c5407
DG
1721 fd = get_htab_fd(spapr);
1722 if (fd < 0) {
1723 return fd;
01a57972
SMJ
1724 }
1725
715c5407 1726 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
e68cb8b4
AK
1727 if (rc < 0) {
1728 return rc;
1729 }
1730 } else if (spapr->htab_first_pass) {
4be21d56
DG
1731 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1732 } else {
e68cb8b4 1733 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
4be21d56
DG
1734 }
1735
1736 /* End marker */
1737 qemu_put_be32(f, 0);
1738 qemu_put_be16(f, 0);
1739 qemu_put_be16(f, 0);
1740
e68cb8b4 1741 return rc;
4be21d56
DG
1742}
1743
1744static int htab_save_complete(QEMUFile *f, void *opaque)
1745{
28e02042 1746 sPAPRMachineState *spapr = opaque;
715c5407 1747 int fd;
4be21d56
DG
1748
1749 /* Iteration header */
1750 qemu_put_be32(f, 0);
1751
e68cb8b4
AK
1752 if (!spapr->htab) {
1753 int rc;
1754
1755 assert(kvm_enabled());
1756
715c5407
DG
1757 fd = get_htab_fd(spapr);
1758 if (fd < 0) {
1759 return fd;
01a57972
SMJ
1760 }
1761
715c5407 1762 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
e68cb8b4
AK
1763 if (rc < 0) {
1764 return rc;
1765 }
e68cb8b4 1766 } else {
378bc217
DG
1767 if (spapr->htab_first_pass) {
1768 htab_save_first_pass(f, spapr, -1);
1769 }
e68cb8b4
AK
1770 htab_save_later_pass(f, spapr, -1);
1771 }
4be21d56
DG
1772
1773 /* End marker */
1774 qemu_put_be32(f, 0);
1775 qemu_put_be16(f, 0);
1776 qemu_put_be16(f, 0);
1777
1778 return 0;
1779}
1780
1781static int htab_load(QEMUFile *f, void *opaque, int version_id)
1782{
28e02042 1783 sPAPRMachineState *spapr = opaque;
4be21d56 1784 uint32_t section_hdr;
e68cb8b4 1785 int fd = -1;
4be21d56
DG
1786
1787 if (version_id < 1 || version_id > 1) {
98a5d100 1788 error_report("htab_load() bad version");
4be21d56
DG
1789 return -EINVAL;
1790 }
1791
1792 section_hdr = qemu_get_be32(f);
1793
1794 if (section_hdr) {
9897e462 1795 Error *local_err = NULL;
c5f54f3e
DG
1796
1797 /* First section gives the htab size */
1798 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1799 if (local_err) {
1800 error_report_err(local_err);
4be21d56
DG
1801 return -EINVAL;
1802 }
1803 return 0;
1804 }
1805
e68cb8b4
AK
1806 if (!spapr->htab) {
1807 assert(kvm_enabled());
1808
1809 fd = kvmppc_get_htab_fd(true);
1810 if (fd < 0) {
98a5d100
DG
1811 error_report("Unable to open fd to restore KVM hash table: %s",
1812 strerror(errno));
e68cb8b4
AK
1813 }
1814 }
1815
4be21d56
DG
1816 while (true) {
1817 uint32_t index;
1818 uint16_t n_valid, n_invalid;
1819
1820 index = qemu_get_be32(f);
1821 n_valid = qemu_get_be16(f);
1822 n_invalid = qemu_get_be16(f);
1823
1824 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1825 /* End of Stream */
1826 break;
1827 }
1828
e68cb8b4 1829 if ((index + n_valid + n_invalid) >
4be21d56
DG
1830 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1831 /* Bad index in stream */
98a5d100
DG
1832 error_report(
1833 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1834 index, n_valid, n_invalid, spapr->htab_shift);
4be21d56
DG
1835 return -EINVAL;
1836 }
1837
e68cb8b4
AK
1838 if (spapr->htab) {
1839 if (n_valid) {
1840 qemu_get_buffer(f, HPTE(spapr->htab, index),
1841 HASH_PTE_SIZE_64 * n_valid);
1842 }
1843 if (n_invalid) {
1844 memset(HPTE(spapr->htab, index + n_valid), 0,
1845 HASH_PTE_SIZE_64 * n_invalid);
1846 }
1847 } else {
1848 int rc;
1849
1850 assert(fd >= 0);
1851
1852 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1853 if (rc < 0) {
1854 return rc;
1855 }
4be21d56
DG
1856 }
1857 }
1858
e68cb8b4
AK
1859 if (!spapr->htab) {
1860 assert(fd >= 0);
1861 close(fd);
1862 }
1863
4be21d56
DG
1864 return 0;
1865}
1866
c573fc03
TH
1867static void htab_cleanup(void *opaque)
1868{
1869 sPAPRMachineState *spapr = opaque;
1870
1871 close_htab_fd(spapr);
1872}
1873
4be21d56
DG
1874static SaveVMHandlers savevm_htab_handlers = {
1875 .save_live_setup = htab_save_setup,
1876 .save_live_iterate = htab_save_iterate,
a3e06c3d 1877 .save_live_complete_precopy = htab_save_complete,
c573fc03 1878 .cleanup = htab_cleanup,
4be21d56
DG
1879 .load_state = htab_load,
1880};
1881
5b2128d2
AG
1882static void spapr_boot_set(void *opaque, const char *boot_device,
1883 Error **errp)
1884{
1885 MachineState *machine = MACHINE(qdev_get_machine());
1886 machine->boot_order = g_strdup(boot_device);
1887}
1888
224245bf
DG
1889/*
1890 * Reset routine for LMB DR devices.
1891 *
1892 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1893 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1894 * when it walks all its children devices. LMB devices reset occurs
1895 * as part of spapr_ppc_reset().
1896 */
1897static void spapr_drc_reset(void *opaque)
1898{
1899 sPAPRDRConnector *drc = opaque;
1900 DeviceState *d = DEVICE(drc);
1901
1902 if (d) {
1903 device_reset(d);
1904 }
1905}
1906
1907static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1908{
1909 MachineState *machine = MACHINE(spapr);
1910 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
e8f986fc 1911 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
224245bf
DG
1912 int i;
1913
1914 for (i = 0; i < nr_lmbs; i++) {
1915 sPAPRDRConnector *drc;
1916 uint64_t addr;
1917
e8f986fc 1918 addr = i * lmb_size + spapr->hotplug_memory.base;
224245bf
DG
1919 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1920 addr/lmb_size);
1921 qemu_register_reset(spapr_drc_reset, drc);
1922 }
1923}
1924
1925/*
1926 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1927 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1928 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1929 */
7c150d6f 1930static void spapr_validate_node_memory(MachineState *machine, Error **errp)
224245bf
DG
1931{
1932 int i;
1933
7c150d6f
DG
1934 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1935 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1936 " is not aligned to %llu MiB",
1937 machine->ram_size,
1938 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1939 return;
1940 }
1941
1942 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1943 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1944 " is not aligned to %llu MiB",
1945 machine->ram_size,
1946 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1947 return;
224245bf
DG
1948 }
1949
1950 for (i = 0; i < nb_numa_nodes; i++) {
1951 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
7c150d6f
DG
1952 error_setg(errp,
1953 "Node %d memory size 0x%" PRIx64
1954 " is not aligned to %llu MiB",
1955 i, numa_info[i].node_mem,
1956 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1957 return;
224245bf
DG
1958 }
1959 }
1960}
1961
535455fd
IM
1962/* find cpu slot in machine->possible_cpus by core_id */
1963static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1964{
1965 int index = id / smp_threads;
1966
1967 if (index >= ms->possible_cpus->len) {
1968 return NULL;
1969 }
1970 if (idx) {
1971 *idx = index;
1972 }
1973 return &ms->possible_cpus->cpus[index];
1974}
1975
0c86d0fd
DG
1976static void spapr_init_cpus(sPAPRMachineState *spapr)
1977{
1978 MachineState *machine = MACHINE(spapr);
1979 MachineClass *mc = MACHINE_GET_CLASS(machine);
1980 char *type = spapr_get_cpu_core_type(machine->cpu_model);
1981 int smt = kvmppc_smt_threads();
535455fd
IM
1982 const CPUArchIdList *possible_cpus;
1983 int boot_cores_nr = smp_cpus / smp_threads;
0c86d0fd
DG
1984 int i;
1985
1986 if (!type) {
1987 error_report("Unable to find sPAPR CPU Core definition");
1988 exit(1);
1989 }
1990
535455fd 1991 possible_cpus = mc->possible_cpu_arch_ids(machine);
c5514d0e 1992 if (mc->has_hotpluggable_cpus) {
0c86d0fd
DG
1993 if (smp_cpus % smp_threads) {
1994 error_report("smp_cpus (%u) must be multiple of threads (%u)",
1995 smp_cpus, smp_threads);
1996 exit(1);
1997 }
1998 if (max_cpus % smp_threads) {
1999 error_report("max_cpus (%u) must be multiple of threads (%u)",
2000 max_cpus, smp_threads);
2001 exit(1);
2002 }
0c86d0fd
DG
2003 } else {
2004 if (max_cpus != smp_cpus) {
2005 error_report("This machine version does not support CPU hotplug");
2006 exit(1);
2007 }
535455fd 2008 boot_cores_nr = possible_cpus->len;
0c86d0fd
DG
2009 }
2010
535455fd 2011 for (i = 0; i < possible_cpus->len; i++) {
0c86d0fd
DG
2012 int core_id = i * smp_threads;
2013
c5514d0e 2014 if (mc->has_hotpluggable_cpus) {
0c86d0fd
DG
2015 sPAPRDRConnector *drc =
2016 spapr_dr_connector_new(OBJECT(spapr),
2017 SPAPR_DR_CONNECTOR_TYPE_CPU,
2018 (core_id / smp_threads) * smt);
2019
2020 qemu_register_reset(spapr_drc_reset, drc);
2021 }
2022
535455fd 2023 if (i < boot_cores_nr) {
0c86d0fd
DG
2024 Object *core = object_new(type);
2025 int nr_threads = smp_threads;
2026
2027 /* Handle the partially filled core for older machine types */
2028 if ((i + 1) * smp_threads >= smp_cpus) {
2029 nr_threads = smp_cpus - i * smp_threads;
2030 }
2031
2032 object_property_set_int(core, nr_threads, "nr-threads",
2033 &error_fatal);
2034 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2035 &error_fatal);
2036 object_property_set_bool(core, true, "realized", &error_fatal);
2037 }
2038 }
2039 g_free(type);
2040}
2041
9fdf0c29 2042/* pSeries LPAR / sPAPR hardware init */
3ef96221 2043static void ppc_spapr_init(MachineState *machine)
9fdf0c29 2044{
28e02042 2045 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
224245bf 2046 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
3ef96221 2047 const char *kernel_filename = machine->kernel_filename;
3ef96221 2048 const char *initrd_filename = machine->initrd_filename;
8c9f64df 2049 PCIHostState *phb;
9fdf0c29 2050 int i;
890c2b77
AK
2051 MemoryRegion *sysmem = get_system_memory();
2052 MemoryRegion *ram = g_new(MemoryRegion, 1);
658fa66b
AK
2053 MemoryRegion *rma_region;
2054 void *rma = NULL;
a8170e5e 2055 hwaddr rma_alloc_size;
b082d65a 2056 hwaddr node0_size = spapr_node0_size();
b7d1f77a 2057 long load_limit, fw_size;
39ac8455 2058 char *filename;
9fdf0c29 2059
226419d6 2060 msi_nonbroken = true;
0ee2c058 2061
d43b45e2
DG
2062 QLIST_INIT(&spapr->phbs);
2063
354ac20a 2064 /* Allocate RMA if necessary */
658fa66b 2065 rma_alloc_size = kvmppc_alloc_rma(&rma);
354ac20a
DG
2066
2067 if (rma_alloc_size == -1) {
730fce59 2068 error_report("Unable to create RMA");
354ac20a
DG
2069 exit(1);
2070 }
7f763a5d 2071
c4177479 2072 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
7f763a5d 2073 spapr->rma_size = rma_alloc_size;
354ac20a 2074 } else {
c4177479 2075 spapr->rma_size = node0_size;
7f763a5d
DG
2076
2077 /* With KVM, we don't actually know whether KVM supports an
2078 * unbounded RMA (PR KVM) or is limited by the hash table size
2079 * (HV KVM using VRMA), so we always assume the latter
2080 *
2081 * In that case, we also limit the initial allocations for RTAS
2082 * etc... to 256M since we have no way to know what the VRMA size
2083 * is going to be as it depends on the size of the hash table
2084 * isn't determined yet.
2085 */
2086 if (kvm_enabled()) {
2087 spapr->vrma_adjust = 1;
2088 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2089 }
912acdf4
BH
2090
2091 /* Actually we don't support unbounded RMA anymore since we
2092 * added proper emulation of HV mode. The max we can get is
2093 * 16G which also happens to be what we configure for PAPR
2094 * mode so make sure we don't do anything bigger than that
2095 */
2096 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
354ac20a
DG
2097 }
2098
c4177479 2099 if (spapr->rma_size > node0_size) {
d54e4d76
DG
2100 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2101 spapr->rma_size);
c4177479
AK
2102 exit(1);
2103 }
2104
b7d1f77a
BH
2105 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2106 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
9fdf0c29 2107
7b565160 2108 /* Set up Interrupt Controller before we create the VCPUs */
71cd4dac 2109 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
7b565160 2110
facdb8b6
MR
2111 /* Set up containers for ibm,client-set-architecture negotiated options */
2112 spapr->ov5 = spapr_ovec_new();
2113 spapr->ov5_cas = spapr_ovec_new();
2114
224245bf 2115 if (smc->dr_lmb_enabled) {
facdb8b6 2116 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
7c150d6f 2117 spapr_validate_node_memory(machine, &error_fatal);
224245bf
DG
2118 }
2119
417ece33 2120 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
545d6e2b
SJS
2121 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2122 /* KVM and TCG always allow GTSE with radix... */
9fb4541f
SB
2123 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2124 }
2125 /* ... but not with hash (currently). */
417ece33 2126
ffbb1705
MR
2127 /* advertise support for dedicated HP event source to guests */
2128 if (spapr->use_hotplug_event_source) {
2129 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2130 }
2131
9fdf0c29 2132 /* init CPUs */
19fb2c36 2133 if (machine->cpu_model == NULL) {
3daa4a9f 2134 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
9fdf0c29 2135 }
94a94e4c 2136
e703d2f7
GK
2137 ppc_cpu_parse_features(machine->cpu_model);
2138
0c86d0fd 2139 spapr_init_cpus(spapr);
9fdf0c29 2140
026bfd89
DG
2141 if (kvm_enabled()) {
2142 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2143 kvmppc_enable_logical_ci_hcalls();
ef9971dd 2144 kvmppc_enable_set_mode_hcall();
5145ad4f
NW
2145
2146 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2147 kvmppc_enable_clear_ref_mod_hcalls();
026bfd89
DG
2148 }
2149
9fdf0c29 2150 /* allocate RAM */
f92f5da1 2151 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
fb164994 2152 machine->ram_size);
f92f5da1 2153 memory_region_add_subregion(sysmem, 0, ram);
9fdf0c29 2154
658fa66b
AK
2155 if (rma_alloc_size && rma) {
2156 rma_region = g_new(MemoryRegion, 1);
2157 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2158 rma_alloc_size, rma);
2159 vmstate_register_ram_global(rma_region);
2160 memory_region_add_subregion(sysmem, 0, rma_region);
2161 }
2162
4a1c9cf0
BR
2163 /* initialize hotplug memory address space */
2164 if (machine->ram_size < machine->maxram_size) {
2165 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
71c9a3dd
BR
2166 /*
2167 * Limit the number of hotpluggable memory slots to half the number
2168 * slots that KVM supports, leaving the other half for PCI and other
2169 * devices. However ensure that number of slots doesn't drop below 32.
2170 */
2171 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2172 SPAPR_MAX_RAM_SLOTS;
4a1c9cf0 2173
71c9a3dd
BR
2174 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2175 max_memslots = SPAPR_MAX_RAM_SLOTS;
2176 }
2177 if (machine->ram_slots > max_memslots) {
d54e4d76
DG
2178 error_report("Specified number of memory slots %"
2179 PRIu64" exceeds max supported %d",
71c9a3dd 2180 machine->ram_slots, max_memslots);
d54e4d76 2181 exit(1);
4a1c9cf0
BR
2182 }
2183
2184 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2185 SPAPR_HOTPLUG_MEM_ALIGN);
2186 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2187 "hotplug-memory", hotplug_mem_size);
2188 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2189 &spapr->hotplug_memory.mr);
2190 }
2191
224245bf
DG
2192 if (smc->dr_lmb_enabled) {
2193 spapr_create_lmb_dr_connectors(spapr);
2194 }
2195
39ac8455 2196 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
4c56440d 2197 if (!filename) {
730fce59 2198 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
4c56440d
SW
2199 exit(1);
2200 }
b7d1f77a 2201 spapr->rtas_size = get_image_size(filename);
8afc22a2
ZJ
2202 if (spapr->rtas_size < 0) {
2203 error_report("Could not get size of LPAR rtas '%s'", filename);
2204 exit(1);
2205 }
b7d1f77a
BH
2206 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2207 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
730fce59 2208 error_report("Could not load LPAR rtas '%s'", filename);
39ac8455
DG
2209 exit(1);
2210 }
4d8d5467 2211 if (spapr->rtas_size > RTAS_MAX_SIZE) {
730fce59
TH
2212 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2213 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
4d8d5467
BH
2214 exit(1);
2215 }
7267c094 2216 g_free(filename);
39ac8455 2217
ffbb1705 2218 /* Set up RTAS event infrastructure */
74d042e5
DG
2219 spapr_events_init(spapr);
2220
12f42174 2221 /* Set up the RTC RTAS interfaces */
28df36a1 2222 spapr_rtc_create(spapr);
12f42174 2223
b5cec4c5 2224 /* Set up VIO bus */
4040ab72
DG
2225 spapr->vio_bus = spapr_vio_bus_init();
2226
277f9acf 2227 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
4040ab72 2228 if (serial_hds[i]) {
d601fac4 2229 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
4040ab72
DG
2230 }
2231 }
9fdf0c29 2232
639e8102
DG
2233 /* We always have at least the nvram device on VIO */
2234 spapr_create_nvram(spapr);
2235
3384f95c 2236 /* Set up PCI */
fa28f71b
AK
2237 spapr_pci_rtas_init();
2238
89dfd6e1 2239 phb = spapr_create_phb(spapr, 0);
3384f95c 2240
277f9acf 2241 for (i = 0; i < nb_nics; i++) {
8d90ad90
DG
2242 NICInfo *nd = &nd_table[i];
2243
2244 if (!nd->model) {
7267c094 2245 nd->model = g_strdup("ibmveth");
8d90ad90
DG
2246 }
2247
2248 if (strcmp(nd->model, "ibmveth") == 0) {
d601fac4 2249 spapr_vlan_create(spapr->vio_bus, nd);
8d90ad90 2250 } else {
29b358f9 2251 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
8d90ad90
DG
2252 }
2253 }
2254
6e270446 2255 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
d601fac4 2256 spapr_vscsi_create(spapr->vio_bus);
6e270446
BH
2257 }
2258
f28359d8 2259 /* Graphics */
14c6a894 2260 if (spapr_vga_init(phb->bus, &error_fatal)) {
3fc5acde 2261 spapr->has_graphics = true;
c6e76503 2262 machine->usb |= defaults_enabled() && !machine->usb_disabled;
f28359d8
LZ
2263 }
2264
4ee9ced9 2265 if (machine->usb) {
57040d45
TH
2266 if (smc->use_ohci_by_default) {
2267 pci_create_simple(phb->bus, -1, "pci-ohci");
2268 } else {
2269 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2270 }
c86580b8 2271
35139a59 2272 if (spapr->has_graphics) {
c86580b8
MA
2273 USBBus *usb_bus = usb_bus_find(-1);
2274
2275 usb_create_simple(usb_bus, "usb-kbd");
2276 usb_create_simple(usb_bus, "usb-mouse");
35139a59
DG
2277 }
2278 }
2279
7f763a5d 2280 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
d54e4d76
DG
2281 error_report(
2282 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2283 MIN_RMA_SLOF);
4d8d5467
BH
2284 exit(1);
2285 }
2286
9fdf0c29
DG
2287 if (kernel_filename) {
2288 uint64_t lowaddr = 0;
2289
a19f7fb0
DG
2290 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2291 NULL, NULL, &lowaddr, NULL, 1,
2292 PPC_ELF_MACHINE, 0, 0);
2293 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2294 spapr->kernel_size = load_elf(kernel_filename,
2295 translate_kernel_address, NULL, NULL,
2296 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2297 0, 0);
2298 spapr->kernel_le = spapr->kernel_size > 0;
16457e7f 2299 }
a19f7fb0
DG
2300 if (spapr->kernel_size < 0) {
2301 error_report("error loading %s: %s", kernel_filename,
2302 load_elf_strerror(spapr->kernel_size));
9fdf0c29
DG
2303 exit(1);
2304 }
2305
2306 /* load initrd */
2307 if (initrd_filename) {
4d8d5467
BH
2308 /* Try to locate the initrd in the gap between the kernel
2309 * and the firmware. Add a bit of space just in case
2310 */
a19f7fb0
DG
2311 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2312 + 0x1ffff) & ~0xffff;
2313 spapr->initrd_size = load_image_targphys(initrd_filename,
2314 spapr->initrd_base,
2315 load_limit
2316 - spapr->initrd_base);
2317 if (spapr->initrd_size < 0) {
d54e4d76
DG
2318 error_report("could not load initial ram disk '%s'",
2319 initrd_filename);
9fdf0c29
DG
2320 exit(1);
2321 }
9fdf0c29 2322 }
4d8d5467 2323 }
a3467baa 2324
8e7ea787
AF
2325 if (bios_name == NULL) {
2326 bios_name = FW_FILE_NAME;
2327 }
2328 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
4c56440d 2329 if (!filename) {
68fea5a0 2330 error_report("Could not find LPAR firmware '%s'", bios_name);
4c56440d
SW
2331 exit(1);
2332 }
4d8d5467 2333 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
68fea5a0
TH
2334 if (fw_size <= 0) {
2335 error_report("Could not load LPAR firmware '%s'", filename);
4d8d5467
BH
2336 exit(1);
2337 }
2338 g_free(filename);
4d8d5467 2339
28e02042
DG
2340 /* FIXME: Should register things through the MachineState's qdev
2341 * interface, this is a legacy from the sPAPREnvironment structure
2342 * which predated MachineState but had a similar function */
4be21d56
DG
2343 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2344 register_savevm_live(NULL, "spapr/htab", -1, 1,
2345 &savevm_htab_handlers, spapr);
2346
46503c2b
MR
2347 /* used by RTAS */
2348 QTAILQ_INIT(&spapr->ccs_list);
2349 qemu_register_reset(spapr_ccs_reset_hook, spapr);
2350
5b2128d2 2351 qemu_register_boot_set(spapr_boot_set, spapr);
42043e4f 2352
42043e4f 2353 if (kvm_enabled()) {
3dc410ae 2354 /* to stop and start vmclock */
42043e4f
LV
2355 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2356 &spapr->tb);
3dc410ae
AK
2357
2358 kvmppc_spapr_enable_inkernel_multitce();
42043e4f 2359 }
9fdf0c29
DG
2360}
2361
135a129a
AK
2362static int spapr_kvm_type(const char *vm_type)
2363{
2364 if (!vm_type) {
2365 return 0;
2366 }
2367
2368 if (!strcmp(vm_type, "HV")) {
2369 return 1;
2370 }
2371
2372 if (!strcmp(vm_type, "PR")) {
2373 return 2;
2374 }
2375
2376 error_report("Unknown kvm-type specified '%s'", vm_type);
2377 exit(1);
2378}
2379
71461b0f 2380/*
627b84f4 2381 * Implementation of an interface to adjust firmware path
71461b0f
AK
2382 * for the bootindex property handling.
2383 */
2384static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2385 DeviceState *dev)
2386{
2387#define CAST(type, obj, name) \
2388 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2389 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2390 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2391
2392 if (d) {
2393 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2394 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2395 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2396
2397 if (spapr) {
2398 /*
2399 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2400 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2401 * in the top 16 bits of the 64-bit LUN
2402 */
2403 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2404 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2405 (uint64_t)id << 48);
2406 } else if (virtio) {
2407 /*
2408 * We use SRP luns of the form 01000000 | (target << 8) | lun
2409 * in the top 32 bits of the 64-bit LUN
2410 * Note: the quote above is from SLOF and it is wrong,
2411 * the actual binding is:
2412 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2413 */
2414 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2415 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2416 (uint64_t)id << 32);
2417 } else if (usb) {
2418 /*
2419 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2420 * in the top 32 bits of the 64-bit LUN
2421 */
2422 unsigned usb_port = atoi(usb->port->path);
2423 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2424 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2425 (uint64_t)id << 32);
2426 }
2427 }
2428
b99260eb
TH
2429 /*
2430 * SLOF probes the USB devices, and if it recognizes that the device is a
2431 * storage device, it changes its name to "storage" instead of "usb-host",
2432 * and additionally adds a child node for the SCSI LUN, so the correct
2433 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2434 */
2435 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2436 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2437 if (usb_host_dev_is_scsi_storage(usbdev)) {
2438 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2439 }
2440 }
2441
71461b0f
AK
2442 if (phb) {
2443 /* Replace "pci" with "pci@800000020000000" */
2444 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2445 }
2446
2447 return NULL;
2448}
2449
23825581
EH
2450static char *spapr_get_kvm_type(Object *obj, Error **errp)
2451{
28e02042 2452 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2453
28e02042 2454 return g_strdup(spapr->kvm_type);
23825581
EH
2455}
2456
2457static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2458{
28e02042 2459 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2460
28e02042
DG
2461 g_free(spapr->kvm_type);
2462 spapr->kvm_type = g_strdup(value);
23825581
EH
2463}
2464
f6229214
MR
2465static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2466{
2467 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2468
2469 return spapr->use_hotplug_event_source;
2470}
2471
2472static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2473 Error **errp)
2474{
2475 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2476
2477 spapr->use_hotplug_event_source = value;
2478}
2479
23825581
EH
2480static void spapr_machine_initfn(Object *obj)
2481{
715c5407
DG
2482 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2483
2484 spapr->htab_fd = -1;
f6229214 2485 spapr->use_hotplug_event_source = true;
23825581
EH
2486 object_property_add_str(obj, "kvm-type",
2487 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
49d2e648
MA
2488 object_property_set_description(obj, "kvm-type",
2489 "Specifies the KVM virtualization mode (HV, PR)",
2490 NULL);
f6229214
MR
2491 object_property_add_bool(obj, "modern-hotplug-events",
2492 spapr_get_modern_hotplug_events,
2493 spapr_set_modern_hotplug_events,
2494 NULL);
2495 object_property_set_description(obj, "modern-hotplug-events",
2496 "Use dedicated hotplug event mechanism in"
2497 " place of standard EPOW events when possible"
2498 " (required for memory hot-unplug support)",
2499 NULL);
23825581
EH
2500}
2501
87bbdd9c
DG
2502static void spapr_machine_finalizefn(Object *obj)
2503{
2504 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2505
2506 g_free(spapr->kvm_type);
2507}
2508
1c7ad77e 2509void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
34316482 2510{
34316482
AK
2511 cpu_synchronize_state(cs);
2512 ppc_cpu_do_system_reset(cs);
2513}
2514
2515static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2516{
2517 CPUState *cs;
2518
2519 CPU_FOREACH(cs) {
1c7ad77e 2520 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
34316482
AK
2521 }
2522}
2523
79b78a6b
MR
2524static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2525 uint32_t node, bool dedicated_hp_event_source,
2526 Error **errp)
c20d332a
BR
2527{
2528 sPAPRDRConnector *drc;
2529 sPAPRDRConnectorClass *drck;
2530 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2531 int i, fdt_offset, fdt_size;
2532 void *fdt;
79b78a6b 2533 uint64_t addr = addr_start;
c20d332a 2534
c20d332a
BR
2535 for (i = 0; i < nr_lmbs; i++) {
2536 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2537 addr/SPAPR_MEMORY_BLOCK_SIZE);
2538 g_assert(drc);
2539
2540 fdt = create_device_tree(&fdt_size);
2541 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2542 SPAPR_MEMORY_BLOCK_SIZE);
2543
2544 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2545 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
c20d332a 2546 addr += SPAPR_MEMORY_BLOCK_SIZE;
5c0139a8
MR
2547 if (!dev->hotplugged) {
2548 /* guests expect coldplugged LMBs to be pre-allocated */
2549 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2550 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2551 }
c20d332a 2552 }
5dd5238c
JD
2553 /* send hotplug notification to the
2554 * guest only in case of hotplugged memory
2555 */
2556 if (dev->hotplugged) {
79b78a6b
MR
2557 if (dedicated_hp_event_source) {
2558 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2559 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2560 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2561 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2562 nr_lmbs,
2563 drck->get_index(drc));
2564 } else {
2565 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2566 nr_lmbs);
2567 }
5dd5238c 2568 }
c20d332a
BR
2569}
2570
2571static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2572 uint32_t node, Error **errp)
2573{
2574 Error *local_err = NULL;
2575 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2576 PCDIMMDevice *dimm = PC_DIMM(dev);
2577 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2578 MemoryRegion *mr = ddc->get_memory_region(dimm);
2579 uint64_t align = memory_region_get_alignment(mr);
2580 uint64_t size = memory_region_size(mr);
2581 uint64_t addr;
df587133 2582 char *mem_dev;
c20d332a
BR
2583
2584 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2585 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2586 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2587 goto out;
2588 }
2589
df587133
TH
2590 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2591 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2592 error_setg(&local_err, "Memory backend has bad page size. "
2593 "Use 'memory-backend-file' with correct mem-path.");
2594 goto out;
2595 }
2596
d6a9b0b8 2597 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
c20d332a
BR
2598 if (local_err) {
2599 goto out;
2600 }
2601
2602 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2603 if (local_err) {
2604 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2605 goto out;
2606 }
2607
79b78a6b
MR
2608 spapr_add_lmbs(dev, addr, size, node,
2609 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2610 &error_abort);
c20d332a
BR
2611
2612out:
2613 error_propagate(errp, local_err);
2614}
2615
cf632463
BR
2616typedef struct sPAPRDIMMState {
2617 uint32_t nr_lmbs;
2618} sPAPRDIMMState;
2619
2620static void spapr_lmb_release(DeviceState *dev, void *opaque)
2621{
2622 sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque;
2623 HotplugHandler *hotplug_ctrl;
2624
2625 if (--ds->nr_lmbs) {
2626 return;
2627 }
2628
2629 g_free(ds);
2630
2631 /*
2632 * Now that all the LMBs have been removed by the guest, call the
2633 * pc-dimm unplug handler to cleanup up the pc-dimm device.
2634 */
2635 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2636 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2637}
2638
2639static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2640 Error **errp)
2641{
2642 sPAPRDRConnector *drc;
2643 sPAPRDRConnectorClass *drck;
2644 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2645 int i;
2646 sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState));
2647 uint64_t addr = addr_start;
2648
2649 ds->nr_lmbs = nr_lmbs;
2650 for (i = 0; i < nr_lmbs; i++) {
2651 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2652 addr / SPAPR_MEMORY_BLOCK_SIZE);
2653 g_assert(drc);
2654
2655 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2656 drck->detach(drc, dev, spapr_lmb_release, ds, errp);
2657 addr += SPAPR_MEMORY_BLOCK_SIZE;
2658 }
2659
2660 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2661 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2662 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2663 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2664 nr_lmbs,
2665 drck->get_index(drc));
2666}
2667
2668static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2669 Error **errp)
2670{
2671 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2672 PCDIMMDevice *dimm = PC_DIMM(dev);
2673 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2674 MemoryRegion *mr = ddc->get_memory_region(dimm);
2675
2676 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2677 object_unparent(OBJECT(dev));
2678}
2679
2680static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2681 DeviceState *dev, Error **errp)
2682{
2683 Error *local_err = NULL;
2684 PCDIMMDevice *dimm = PC_DIMM(dev);
2685 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2686 MemoryRegion *mr = ddc->get_memory_region(dimm);
2687 uint64_t size = memory_region_size(mr);
2688 uint64_t addr;
2689
2690 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2691 if (local_err) {
2692 goto out;
2693 }
2694
2695 spapr_del_lmbs(dev, addr, size, &error_abort);
2696out:
2697 error_propagate(errp, local_err);
2698}
2699
af81cf32
BR
2700void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2701 sPAPRMachineState *spapr)
2702{
2703 PowerPCCPU *cpu = POWERPC_CPU(cs);
2704 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2705 int id = ppc_get_vcpu_dt_id(cpu);
2706 void *fdt;
2707 int offset, fdt_size;
2708 char *nodename;
2709
2710 fdt = create_device_tree(&fdt_size);
2711 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2712 offset = fdt_add_subnode(fdt, 0, nodename);
2713
2714 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2715 g_free(nodename);
2716
2717 *fdt_offset = offset;
2718 return fdt;
2719}
2720
115debf2
IM
2721static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2722 Error **errp)
ff9006dd 2723{
535455fd 2724 MachineState *ms = MACHINE(qdev_get_machine());
ff9006dd 2725 CPUCore *cc = CPU_CORE(dev);
535455fd 2726 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
ff9006dd 2727
07572c06 2728 assert(core_slot);
535455fd 2729 core_slot->cpu = NULL;
ff9006dd
IM
2730 object_unparent(OBJECT(dev));
2731}
2732
115debf2
IM
2733static void spapr_core_release(DeviceState *dev, void *opaque)
2734{
2735 HotplugHandler *hotplug_ctrl;
2736
2737 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2738 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2739}
2740
2741static
2742void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
2743 Error **errp)
ff9006dd 2744{
535455fd
IM
2745 int index;
2746 sPAPRDRConnector *drc;
ff9006dd
IM
2747 sPAPRDRConnectorClass *drck;
2748 Error *local_err = NULL;
535455fd
IM
2749 CPUCore *cc = CPU_CORE(dev);
2750 int smt = kvmppc_smt_threads();
ff9006dd 2751
535455fd
IM
2752 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
2753 error_setg(errp, "Unable to find CPU core with core-id: %d",
2754 cc->core_id);
2755 return;
2756 }
ff9006dd
IM
2757 if (index == 0) {
2758 error_setg(errp, "Boot CPU core may not be unplugged");
2759 return;
2760 }
2761
535455fd 2762 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
ff9006dd
IM
2763 g_assert(drc);
2764
2765 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2766 drck->detach(drc, dev, spapr_core_release, NULL, &local_err);
2767 if (local_err) {
2768 error_propagate(errp, local_err);
2769 return;
2770 }
2771
2772 spapr_hotplug_req_remove_by_index(drc);
2773}
2774
2775static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2776 Error **errp)
2777{
2778 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
2779 MachineClass *mc = MACHINE_GET_CLASS(spapr);
2780 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
2781 CPUCore *cc = CPU_CORE(dev);
2782 CPUState *cs = CPU(core->threads);
2783 sPAPRDRConnector *drc;
2784 Error *local_err = NULL;
2785 void *fdt = NULL;
2786 int fdt_offset = 0;
ff9006dd 2787 int smt = kvmppc_smt_threads();
535455fd
IM
2788 CPUArchId *core_slot;
2789 int index;
ff9006dd 2790
535455fd
IM
2791 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2792 if (!core_slot) {
2793 error_setg(errp, "Unable to find CPU core with core-id: %d",
2794 cc->core_id);
2795 return;
2796 }
ff9006dd 2797 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
ff9006dd 2798
c5514d0e 2799 g_assert(drc || !mc->has_hotpluggable_cpus);
ff9006dd
IM
2800
2801 /*
2802 * Setup CPU DT entries only for hotplugged CPUs. For boot time or
2803 * coldplugged CPUs DT entries are setup in spapr_build_fdt().
2804 */
2805 if (dev->hotplugged) {
2806 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
2807 }
2808
2809 if (drc) {
2810 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2811 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err);
2812 if (local_err) {
2813 g_free(fdt);
ff9006dd
IM
2814 error_propagate(errp, local_err);
2815 return;
2816 }
2817 }
2818
2819 if (dev->hotplugged) {
2820 /*
2821 * Send hotplug notification interrupt to the guest only in case
2822 * of hotplugged CPUs.
2823 */
2824 spapr_hotplug_req_add_by_index(drc);
2825 } else {
2826 /*
2827 * Set the right DRC states for cold plugged CPU.
2828 */
2829 if (drc) {
2830 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2831 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2832 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2833 }
2834 }
535455fd 2835 core_slot->cpu = OBJECT(dev);
ff9006dd
IM
2836}
2837
2838static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2839 Error **errp)
2840{
2841 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
2842 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
ff9006dd
IM
2843 Error *local_err = NULL;
2844 CPUCore *cc = CPU_CORE(dev);
0b8497f0 2845 sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev);
ff9006dd
IM
2846 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
2847 const char *type = object_get_typename(OBJECT(dev));
535455fd 2848 CPUArchId *core_slot;
0b8497f0 2849 int node_id;
535455fd 2850 int index;
ff9006dd 2851
c5514d0e 2852 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
ff9006dd
IM
2853 error_setg(&local_err, "CPU hotplug not supported for this machine");
2854 goto out;
2855 }
2856
2857 if (strcmp(base_core_type, type)) {
2858 error_setg(&local_err, "CPU core type should be %s", base_core_type);
2859 goto out;
2860 }
2861
2862 if (cc->core_id % smp_threads) {
2863 error_setg(&local_err, "invalid core id %d", cc->core_id);
2864 goto out;
2865 }
2866
8149e299
DG
2867 if (cc->nr_threads != smp_threads) {
2868 error_setg(errp, "invalid nr-threads %d, must be %d",
2869 cc->nr_threads, smp_threads);
2870 return;
2871 }
2872
535455fd
IM
2873 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2874 if (!core_slot) {
ff9006dd
IM
2875 error_setg(&local_err, "core id %d out of range", cc->core_id);
2876 goto out;
2877 }
2878
535455fd 2879 if (core_slot->cpu) {
ff9006dd
IM
2880 error_setg(&local_err, "core %d already populated", cc->core_id);
2881 goto out;
2882 }
2883
722387e7
IM
2884 node_id = core_slot->props.node_id;
2885 if (!core_slot->props.has_node_id) {
0b8497f0
IM
2886 /* by default CPUState::numa_node was 0 if it's not set via CLI
2887 * keep it this way for now but in future we probably should
2888 * refuse to start up with incomplete numa mapping */
2889 node_id = 0;
2890 }
2891 if (sc->node_id == CPU_UNSET_NUMA_NODE_ID) {
2892 sc->node_id = node_id;
2893 } else if (sc->node_id != node_id) {
2894 error_setg(&local_err, "node-id %d must match numa node specified"
2895 "with -numa option for cpu-index %d", sc->node_id, cc->core_id);
2896 goto out;
2897 }
2898
ff9006dd
IM
2899out:
2900 g_free(base_core_type);
2901 error_propagate(errp, local_err);
2902}
2903
c20d332a
BR
2904static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2905 DeviceState *dev, Error **errp)
2906{
2907 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2908
2909 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
b556854b 2910 int node;
c20d332a
BR
2911
2912 if (!smc->dr_lmb_enabled) {
2913 error_setg(errp, "Memory hotplug not supported for this machine");
2914 return;
2915 }
2916 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2917 if (*errp) {
2918 return;
2919 }
1a5512bb
GA
2920 if (node < 0 || node >= MAX_NODES) {
2921 error_setg(errp, "Invaild node %d", node);
2922 return;
2923 }
c20d332a 2924
b556854b
BR
2925 /*
2926 * Currently PowerPC kernel doesn't allow hot-adding memory to
2927 * memory-less node, but instead will silently add the memory
2928 * to the first node that has some memory. This causes two
2929 * unexpected behaviours for the user.
2930 *
2931 * - Memory gets hotplugged to a different node than what the user
2932 * specified.
2933 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2934 * to memory-less node, a reboot will set things accordingly
2935 * and the previously hotplugged memory now ends in the right node.
2936 * This appears as if some memory moved from one node to another.
2937 *
2938 * So until kernel starts supporting memory hotplug to memory-less
2939 * nodes, just prevent such attempts upfront in QEMU.
2940 */
2941 if (nb_numa_nodes && !numa_info[node].node_mem) {
2942 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2943 node);
2944 return;
2945 }
2946
c20d332a 2947 spapr_memory_plug(hotplug_dev, dev, node, errp);
af81cf32
BR
2948 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2949 spapr_core_plug(hotplug_dev, dev, errp);
c20d332a
BR
2950 }
2951}
2952
2953static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2954 DeviceState *dev, Error **errp)
2955{
cf632463 2956 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
3c0c47e3 2957 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
6f4b5c3e 2958
c20d332a 2959 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
cf632463
BR
2960 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2961 spapr_memory_unplug(hotplug_dev, dev, errp);
2962 } else {
2963 error_setg(errp, "Memory hot unplug not supported for this guest");
2964 }
2965 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
c5514d0e 2966 if (!mc->has_hotpluggable_cpus) {
cf632463
BR
2967 error_setg(errp, "CPU hot unplug not supported on this machine");
2968 return;
2969 }
2970 spapr_core_unplug(hotplug_dev, dev, errp);
2971 }
2972}
2973
2974static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
2975 DeviceState *dev, Error **errp)
2976{
2977 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2978 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2979
2980 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2981 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2982 spapr_memory_unplug_request(hotplug_dev, dev, errp);
2983 } else {
2984 /* NOTE: this means there is a window after guest reset, prior to
2985 * CAS negotiation, where unplug requests will fail due to the
2986 * capability not being detected yet. This is a bit different than
2987 * the case with PCI unplug, where the events will be queued and
2988 * eventually handled by the guest after boot
2989 */
2990 error_setg(errp, "Memory hot unplug not supported for this guest");
2991 }
6f4b5c3e 2992 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
c5514d0e 2993 if (!mc->has_hotpluggable_cpus) {
6f4b5c3e
BR
2994 error_setg(errp, "CPU hot unplug not supported on this machine");
2995 return;
2996 }
115debf2 2997 spapr_core_unplug_request(hotplug_dev, dev, errp);
c20d332a
BR
2998 }
2999}
3000
94a94e4c
BR
3001static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3002 DeviceState *dev, Error **errp)
3003{
3004 if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3005 spapr_core_pre_plug(hotplug_dev, dev, errp);
3006 }
3007}
3008
7ebaf795
BR
3009static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3010 DeviceState *dev)
c20d332a 3011{
94a94e4c
BR
3012 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3013 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
c20d332a
BR
3014 return HOTPLUG_HANDLER(machine);
3015 }
3016 return NULL;
3017}
3018
ea089eeb
IM
3019static CpuInstanceProperties
3020spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
20bb648d 3021{
ea089eeb
IM
3022 CPUArchId *core_slot;
3023 MachineClass *mc = MACHINE_GET_CLASS(machine);
3024
3025 /* make sure possible_cpu are intialized */
3026 mc->possible_cpu_arch_ids(machine);
3027 /* get CPU core slot containing thread that matches cpu_index */
3028 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3029 assert(core_slot);
3030 return core_slot->props;
20bb648d
DG
3031}
3032
535455fd
IM
3033static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3034{
3035 int i;
3036 int spapr_max_cores = max_cpus / smp_threads;
3037 MachineClass *mc = MACHINE_GET_CLASS(machine);
3038
c5514d0e 3039 if (!mc->has_hotpluggable_cpus) {
535455fd
IM
3040 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3041 }
3042 if (machine->possible_cpus) {
3043 assert(machine->possible_cpus->len == spapr_max_cores);
3044 return machine->possible_cpus;
3045 }
3046
3047 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3048 sizeof(CPUArchId) * spapr_max_cores);
3049 machine->possible_cpus->len = spapr_max_cores;
3050 for (i = 0; i < machine->possible_cpus->len; i++) {
3051 int core_id = i * smp_threads;
3052
f2d672c2 3053 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
535455fd
IM
3054 machine->possible_cpus->cpus[i].arch_id = core_id;
3055 machine->possible_cpus->cpus[i].props.has_core_id = true;
3056 machine->possible_cpus->cpus[i].props.core_id = core_id;
ea089eeb
IM
3057
3058 /* default distribution of CPUs over NUMA nodes */
3059 if (nb_numa_nodes) {
3060 /* preset values but do not enable them i.e. 'has_node_id = false',
3061 * numa init code will enable them later if manual mapping wasn't
3062 * present on CLI */
3063 machine->possible_cpus->cpus[i].props.node_id =
3064 core_id / smp_threads / smp_cores % nb_numa_nodes;
3065 }
535455fd
IM
3066 }
3067 return machine->possible_cpus;
3068}
3069
6737d9ad 3070static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
daa23699
DG
3071 uint64_t *buid, hwaddr *pio,
3072 hwaddr *mmio32, hwaddr *mmio64,
6737d9ad
DG
3073 unsigned n_dma, uint32_t *liobns, Error **errp)
3074{
357d1e3b
DG
3075 /*
3076 * New-style PHB window placement.
3077 *
3078 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3079 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3080 * windows.
3081 *
3082 * Some guest kernels can't work with MMIO windows above 1<<46
3083 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3084 *
3085 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3086 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3087 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3088 * 1TiB 64-bit MMIO windows for each PHB.
3089 */
6737d9ad 3090 const uint64_t base_buid = 0x800000020000000ULL;
25e6a118
MT
3091#define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3092 SPAPR_PCI_MEM64_WIN_SIZE - 1)
6737d9ad
DG
3093 int i;
3094
357d1e3b
DG
3095 /* Sanity check natural alignments */
3096 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3097 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3098 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3099 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3100 /* Sanity check bounds */
25e6a118
MT
3101 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3102 SPAPR_PCI_MEM32_WIN_SIZE);
3103 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3104 SPAPR_PCI_MEM64_WIN_SIZE);
3105
3106 if (index >= SPAPR_MAX_PHBS) {
3107 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3108 SPAPR_MAX_PHBS - 1);
6737d9ad
DG
3109 return;
3110 }
3111
3112 *buid = base_buid + index;
3113 for (i = 0; i < n_dma; ++i) {
3114 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3115 }
3116
357d1e3b
DG
3117 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3118 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3119 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
6737d9ad
DG
3120}
3121
7844e12b
CLG
3122static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3123{
3124 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3125
3126 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3127}
3128
3129static void spapr_ics_resend(XICSFabric *dev)
3130{
3131 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3132
3133 ics_resend(spapr->ics);
3134}
3135
06747ba6 3136static ICPState *spapr_icp_get(XICSFabric *xi, int cpu_dt_id)
b2fc59aa 3137{
5bc8d26d 3138 PowerPCCPU *cpu = ppc_get_vcpu_by_dt_id(cpu_dt_id);
b2fc59aa 3139
5bc8d26d 3140 return cpu ? ICP(cpu->intc) : NULL;
b2fc59aa
CLG
3141}
3142
6449da45
CLG
3143static void spapr_pic_print_info(InterruptStatsProvider *obj,
3144 Monitor *mon)
3145{
3146 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
5bc8d26d
CLG
3147 CPUState *cs;
3148
3149 CPU_FOREACH(cs) {
3150 PowerPCCPU *cpu = POWERPC_CPU(cs);
6449da45 3151
5bc8d26d 3152 icp_pic_print_info(ICP(cpu->intc), mon);
6449da45
CLG
3153 }
3154
3155 ics_pic_print_info(spapr->ics, mon);
3156}
3157
29ee3247
AK
3158static void spapr_machine_class_init(ObjectClass *oc, void *data)
3159{
3160 MachineClass *mc = MACHINE_CLASS(oc);
224245bf 3161 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
71461b0f 3162 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
34316482 3163 NMIClass *nc = NMI_CLASS(oc);
c20d332a 3164 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1d1be34d 3165 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
7844e12b 3166 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
6449da45 3167 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
958db90c 3168
0eb9054c 3169 mc->desc = "pSeries Logical Partition (PAPR compliant)";
fc9f38c3
DG
3170
3171 /*
3172 * We set up the default / latest behaviour here. The class_init
3173 * functions for the specific versioned machine types can override
3174 * these details for backwards compatibility
3175 */
958db90c
MA
3176 mc->init = ppc_spapr_init;
3177 mc->reset = ppc_spapr_reset;
3178 mc->block_default_type = IF_SCSI;
6244bb7e 3179 mc->max_cpus = 1024;
958db90c 3180 mc->no_parallel = 1;
5b2128d2 3181 mc->default_boot_order = "";
a34944fe 3182 mc->default_ram_size = 512 * M_BYTE;
958db90c 3183 mc->kvm_type = spapr_kvm_type;
9e3f9733 3184 mc->has_dynamic_sysbus = true;
e4024630 3185 mc->pci_allow_0_address = true;
7ebaf795 3186 mc->get_hotplug_handler = spapr_get_hotplug_handler;
94a94e4c 3187 hc->pre_plug = spapr_machine_device_pre_plug;
c20d332a
BR
3188 hc->plug = spapr_machine_device_plug;
3189 hc->unplug = spapr_machine_device_unplug;
ea089eeb 3190 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
535455fd 3191 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
cf632463 3192 hc->unplug_request = spapr_machine_device_unplug_request;
00b4fbe2 3193
fc9f38c3 3194 smc->dr_lmb_enabled = true;
3daa4a9f 3195 smc->tcg_default_cpu = "POWER8";
c5514d0e 3196 mc->has_hotpluggable_cpus = true;
71461b0f 3197 fwc->get_dev_path = spapr_get_fw_dev_path;
34316482 3198 nc->nmi_monitor_handler = spapr_nmi;
6737d9ad 3199 smc->phb_placement = spapr_phb_placement;
1d1be34d 3200 vhc->hypercall = emulate_spapr_hypercall;
e57ca75c
DG
3201 vhc->hpt_mask = spapr_hpt_mask;
3202 vhc->map_hptes = spapr_map_hptes;
3203 vhc->unmap_hptes = spapr_unmap_hptes;
3204 vhc->store_hpte = spapr_store_hpte;
9861bb3e 3205 vhc->get_patbe = spapr_get_patbe;
7844e12b
CLG
3206 xic->ics_get = spapr_ics_get;
3207 xic->ics_resend = spapr_ics_resend;
b2fc59aa 3208 xic->icp_get = spapr_icp_get;
6449da45 3209 ispc->print_info = spapr_pic_print_info;
55641213
LV
3210 /* Force NUMA node memory size to be a multiple of
3211 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3212 * in which LMBs are represented and hot-added
3213 */
3214 mc->numa_mem_align_shift = 28;
29ee3247
AK
3215}
3216
3217static const TypeInfo spapr_machine_info = {
3218 .name = TYPE_SPAPR_MACHINE,
3219 .parent = TYPE_MACHINE,
4aee7362 3220 .abstract = true,
6ca1502e 3221 .instance_size = sizeof(sPAPRMachineState),
23825581 3222 .instance_init = spapr_machine_initfn,
87bbdd9c 3223 .instance_finalize = spapr_machine_finalizefn,
183930c0 3224 .class_size = sizeof(sPAPRMachineClass),
29ee3247 3225 .class_init = spapr_machine_class_init,
71461b0f
AK
3226 .interfaces = (InterfaceInfo[]) {
3227 { TYPE_FW_PATH_PROVIDER },
34316482 3228 { TYPE_NMI },
c20d332a 3229 { TYPE_HOTPLUG_HANDLER },
1d1be34d 3230 { TYPE_PPC_VIRTUAL_HYPERVISOR },
7844e12b 3231 { TYPE_XICS_FABRIC },
6449da45 3232 { TYPE_INTERRUPT_STATS_PROVIDER },
71461b0f
AK
3233 { }
3234 },
29ee3247
AK
3235};
3236
fccbc785 3237#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
5013c547
DG
3238 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3239 void *data) \
3240 { \
3241 MachineClass *mc = MACHINE_CLASS(oc); \
3242 spapr_machine_##suffix##_class_options(mc); \
fccbc785
DG
3243 if (latest) { \
3244 mc->alias = "pseries"; \
3245 mc->is_default = 1; \
3246 } \
5013c547
DG
3247 } \
3248 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3249 { \
3250 MachineState *machine = MACHINE(obj); \
3251 spapr_machine_##suffix##_instance_options(machine); \
3252 } \
3253 static const TypeInfo spapr_machine_##suffix##_info = { \
3254 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3255 .parent = TYPE_SPAPR_MACHINE, \
3256 .class_init = spapr_machine_##suffix##_class_init, \
3257 .instance_init = spapr_machine_##suffix##_instance_init, \
3258 }; \
3259 static void spapr_machine_register_##suffix(void) \
3260 { \
3261 type_register(&spapr_machine_##suffix##_info); \
3262 } \
0e6aac87 3263 type_init(spapr_machine_register_##suffix)
5013c547 3264
3fa14fbe
DG
3265/*
3266 * pseries-2.10
3267 */
3268static void spapr_machine_2_10_instance_options(MachineState *machine)
3269{
3270}
3271
3272static void spapr_machine_2_10_class_options(MachineClass *mc)
3273{
3274 /* Defaults for the latest behaviour inherited from the base class */
3275}
3276
3277DEFINE_SPAPR_MACHINE(2_10, "2.10", true);
3278
fa325e6c
DG
3279/*
3280 * pseries-2.9
3281 */
3fa14fbe
DG
3282#define SPAPR_COMPAT_2_9 \
3283 HW_COMPAT_2_9
3284
fa325e6c
DG
3285static void spapr_machine_2_9_instance_options(MachineState *machine)
3286{
3fa14fbe 3287 spapr_machine_2_10_instance_options(machine);
fa325e6c
DG
3288}
3289
3290static void spapr_machine_2_9_class_options(MachineClass *mc)
3291{
3fa14fbe
DG
3292 spapr_machine_2_10_class_options(mc);
3293 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3bfe5716 3294 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
fa325e6c
DG
3295}
3296
3fa14fbe 3297DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
fa325e6c 3298
db800b21
DG
3299/*
3300 * pseries-2.8
3301 */
82516263
DG
3302#define SPAPR_COMPAT_2_8 \
3303 HW_COMPAT_2_8 \
3304 { \
3305 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3306 .property = "pcie-extended-configuration-space", \
3307 .value = "off", \
3308 },
fa325e6c 3309
db800b21
DG
3310static void spapr_machine_2_8_instance_options(MachineState *machine)
3311{
fa325e6c 3312 spapr_machine_2_9_instance_options(machine);
db800b21
DG
3313}
3314
3315static void spapr_machine_2_8_class_options(MachineClass *mc)
3316{
fa325e6c
DG
3317 spapr_machine_2_9_class_options(mc);
3318 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
55641213 3319 mc->numa_mem_align_shift = 23;
db800b21
DG
3320}
3321
fa325e6c 3322DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
db800b21 3323
1ea1eefc
BR
3324/*
3325 * pseries-2.7
3326 */
357d1e3b
DG
3327#define SPAPR_COMPAT_2_7 \
3328 HW_COMPAT_2_7 \
3329 { \
3330 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3331 .property = "mem_win_size", \
3332 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3333 }, \
3334 { \
3335 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3336 .property = "mem64_win_size", \
3337 .value = "0", \
146c11f1
DG
3338 }, \
3339 { \
3340 .driver = TYPE_POWERPC_CPU, \
3341 .property = "pre-2.8-migration", \
3342 .value = "on", \
5c4537bd
DG
3343 }, \
3344 { \
3345 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3346 .property = "pre-2.8-migration", \
3347 .value = "on", \
357d1e3b
DG
3348 },
3349
3350static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3351 uint64_t *buid, hwaddr *pio,
3352 hwaddr *mmio32, hwaddr *mmio64,
3353 unsigned n_dma, uint32_t *liobns, Error **errp)
3354{
3355 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3356 const uint64_t base_buid = 0x800000020000000ULL;
3357 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3358 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3359 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3360 const uint32_t max_index = 255;
3361 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3362
3363 uint64_t ram_top = MACHINE(spapr)->ram_size;
3364 hwaddr phb0_base, phb_base;
3365 int i;
3366
3367 /* Do we have hotpluggable memory? */
3368 if (MACHINE(spapr)->maxram_size > ram_top) {
3369 /* Can't just use maxram_size, because there may be an
3370 * alignment gap between normal and hotpluggable memory
3371 * regions */
3372 ram_top = spapr->hotplug_memory.base +
3373 memory_region_size(&spapr->hotplug_memory.mr);
3374 }
3375
3376 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3377
3378 if (index > max_index) {
3379 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3380 max_index);
3381 return;
3382 }
3383
3384 *buid = base_buid + index;
3385 for (i = 0; i < n_dma; ++i) {
3386 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3387 }
3388
3389 phb_base = phb0_base + index * phb_spacing;
3390 *pio = phb_base + pio_offset;
3391 *mmio32 = phb_base + mmio_offset;
3392 /*
3393 * We don't set the 64-bit MMIO window, relying on the PHB's
3394 * fallback behaviour of automatically splitting a large "32-bit"
3395 * window into contiguous 32-bit and 64-bit windows
3396 */
3397}
db800b21 3398
1ea1eefc
BR
3399static void spapr_machine_2_7_instance_options(MachineState *machine)
3400{
f6229214
MR
3401 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3402
672de881 3403 spapr_machine_2_8_instance_options(machine);
f6229214 3404 spapr->use_hotplug_event_source = false;
1ea1eefc
BR
3405}
3406
3407static void spapr_machine_2_7_class_options(MachineClass *mc)
3408{
3daa4a9f
TH
3409 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3410
db800b21 3411 spapr_machine_2_8_class_options(mc);
3daa4a9f 3412 smc->tcg_default_cpu = "POWER7";
db800b21 3413 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
357d1e3b 3414 smc->phb_placement = phb_placement_2_7;
1ea1eefc
BR
3415}
3416
db800b21 3417DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
1ea1eefc 3418
4b23699c
DG
3419/*
3420 * pseries-2.6
3421 */
1ea1eefc 3422#define SPAPR_COMPAT_2_6 \
ae4de14c
AK
3423 HW_COMPAT_2_6 \
3424 { \
3425 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3426 .property = "ddw",\
3427 .value = stringify(off),\
3428 },
1ea1eefc 3429
4b23699c
DG
3430static void spapr_machine_2_6_instance_options(MachineState *machine)
3431{
672de881 3432 spapr_machine_2_7_instance_options(machine);
4b23699c
DG
3433}
3434
3435static void spapr_machine_2_6_class_options(MachineClass *mc)
3436{
1ea1eefc 3437 spapr_machine_2_7_class_options(mc);
c5514d0e 3438 mc->has_hotpluggable_cpus = false;
1ea1eefc 3439 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4b23699c
DG
3440}
3441
1ea1eefc 3442DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4b23699c 3443
1c5f29bb
DG
3444/*
3445 * pseries-2.5
3446 */
4b23699c 3447#define SPAPR_COMPAT_2_5 \
57c522f4
TH
3448 HW_COMPAT_2_5 \
3449 { \
3450 .driver = "spapr-vlan", \
3451 .property = "use-rx-buffer-pools", \
3452 .value = "off", \
3453 },
4b23699c 3454
5013c547 3455static void spapr_machine_2_5_instance_options(MachineState *machine)
1c5f29bb 3456{
672de881 3457 spapr_machine_2_6_instance_options(machine);
5013c547
DG
3458}
3459
3460static void spapr_machine_2_5_class_options(MachineClass *mc)
3461{
57040d45
TH
3462 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3463
4b23699c 3464 spapr_machine_2_6_class_options(mc);
57040d45 3465 smc->use_ohci_by_default = true;
4b23699c 3466 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
1c5f29bb
DG
3467}
3468
4b23699c 3469DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
1c5f29bb
DG
3470
3471/*
3472 * pseries-2.4
3473 */
80fd50f9
CH
3474#define SPAPR_COMPAT_2_4 \
3475 HW_COMPAT_2_4
3476
5013c547 3477static void spapr_machine_2_4_instance_options(MachineState *machine)
1c5f29bb 3478{
5013c547
DG
3479 spapr_machine_2_5_instance_options(machine);
3480}
1c5f29bb 3481
5013c547
DG
3482static void spapr_machine_2_4_class_options(MachineClass *mc)
3483{
fc9f38c3
DG
3484 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3485
3486 spapr_machine_2_5_class_options(mc);
fc9f38c3 3487 smc->dr_lmb_enabled = false;
f949b4e5 3488 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
1c5f29bb
DG
3489}
3490
fccbc785 3491DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
1c5f29bb
DG
3492
3493/*
3494 * pseries-2.3
3495 */
38ff32c6 3496#define SPAPR_COMPAT_2_3 \
7619c7b0
MR
3497 HW_COMPAT_2_3 \
3498 {\
3499 .driver = "spapr-pci-host-bridge",\
3500 .property = "dynamic-reconfiguration",\
3501 .value = "off",\
3502 },
38ff32c6 3503
5013c547 3504static void spapr_machine_2_3_instance_options(MachineState *machine)
d25228e7 3505{
5013c547 3506 spapr_machine_2_4_instance_options(machine);
ff14e817 3507 savevm_skip_section_footers();
13d16814 3508 global_state_set_optional();
09b5e30d 3509 savevm_skip_configuration();
d25228e7
JW
3510}
3511
5013c547 3512static void spapr_machine_2_3_class_options(MachineClass *mc)
6026db45 3513{
fc9f38c3 3514 spapr_machine_2_4_class_options(mc);
f949b4e5 3515 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
6026db45 3516}
fccbc785 3517DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
6026db45 3518
1c5f29bb
DG
3519/*
3520 * pseries-2.2
3521 */
3522
3523#define SPAPR_COMPAT_2_2 \
1c5f29bb
DG
3524 HW_COMPAT_2_2 \
3525 {\
3526 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3527 .property = "mem_win_size",\
3528 .value = "0x20000000",\
3529 },
3530
5013c547 3531static void spapr_machine_2_2_instance_options(MachineState *machine)
1c5f29bb 3532{
5013c547 3533 spapr_machine_2_3_instance_options(machine);
cba0e779 3534 machine->suppress_vmdesc = true;
1c5f29bb
DG
3535}
3536
5013c547 3537static void spapr_machine_2_2_class_options(MachineClass *mc)
4aee7362 3538{
fc9f38c3 3539 spapr_machine_2_3_class_options(mc);
f949b4e5 3540 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4aee7362 3541}
fccbc785 3542DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4aee7362 3543
1c5f29bb
DG
3544/*
3545 * pseries-2.1
3546 */
3547#define SPAPR_COMPAT_2_1 \
1c5f29bb 3548 HW_COMPAT_2_1
3dab0244 3549
5013c547 3550static void spapr_machine_2_1_instance_options(MachineState *machine)
1c5f29bb 3551{
5013c547 3552 spapr_machine_2_2_instance_options(machine);
1c5f29bb 3553}
d25228e7 3554
5013c547 3555static void spapr_machine_2_1_class_options(MachineClass *mc)
d25228e7 3556{
fc9f38c3 3557 spapr_machine_2_2_class_options(mc);
f949b4e5 3558 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
d25228e7 3559}
fccbc785 3560DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
fb0fc8f6 3561
29ee3247 3562static void spapr_machine_register_types(void)
9fdf0c29 3563{
29ee3247 3564 type_register_static(&spapr_machine_info);
9fdf0c29
DG
3565}
3566
29ee3247 3567type_init(spapr_machine_register_types)