]> git.proxmox.com Git - mirror_qemu.git/blame - hw/ppc/spapr.c
spapr: Remove abuse of rtas_ld() in h_client_architecture_support
[mirror_qemu.git] / hw / ppc / spapr.c
CommitLineData
9fdf0c29
DG
1/*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
0d75590d 27#include "qemu/osdep.h"
9c17d615 28#include "sysemu/sysemu.h"
e35704ba 29#include "sysemu/numa.h"
83c9f4ca 30#include "hw/hw.h"
71461b0f 31#include "hw/fw-path-provider.h"
9fdf0c29 32#include "elf.h"
1422e32d 33#include "net/net.h"
ad440b4a 34#include "sysemu/device_tree.h"
fa1d36df 35#include "sysemu/block-backend.h"
9c17d615
PB
36#include "sysemu/cpus.h"
37#include "sysemu/kvm.h"
c20d332a 38#include "sysemu/device_tree.h"
e97c3636 39#include "kvm_ppc.h"
ff14e817 40#include "migration/migration.h"
4be21d56 41#include "mmu-hash64.h"
3794d548 42#include "qom/cpu.h"
9fdf0c29
DG
43
44#include "hw/boards.h"
0d09e41a 45#include "hw/ppc/ppc.h"
9fdf0c29
DG
46#include "hw/loader.h"
47
0d09e41a
PB
48#include "hw/ppc/spapr.h"
49#include "hw/ppc/spapr_vio.h"
50#include "hw/pci-host/spapr.h"
51#include "hw/ppc/xics.h"
a2cb15b0 52#include "hw/pci/msi.h"
9fdf0c29 53
83c9f4ca 54#include "hw/pci/pci.h"
71461b0f
AK
55#include "hw/scsi/scsi.h"
56#include "hw/virtio/virtio-scsi.h"
f61b4bed 57
022c62cb 58#include "exec/address-spaces.h"
35139a59 59#include "hw/usb.h"
1de7afc9 60#include "qemu/config-file.h"
135a129a 61#include "qemu/error-report.h"
2a6593cb 62#include "trace.h"
34316482 63#include "hw/nmi.h"
890c2b77 64
68a27b20 65#include "hw/compat.h"
224245bf 66#include "qemu-common.h"
68a27b20 67
9fdf0c29
DG
68#include <libfdt.h>
69
4d8d5467
BH
70/* SLOF memory layout:
71 *
72 * SLOF raw image loaded at 0, copies its romfs right below the flat
73 * device-tree, then position SLOF itself 31M below that
74 *
75 * So we set FW_OVERHEAD to 40MB which should account for all of that
76 * and more
77 *
78 * We load our kernel at 4M, leaving space for SLOF initial image
79 */
38b02bd8 80#define FDT_MAX_SIZE 0x100000
39ac8455 81#define RTAS_MAX_SIZE 0x10000
b7d1f77a 82#define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
a9f8ad8f
DG
83#define FW_MAX_SIZE 0x400000
84#define FW_FILE_NAME "slof.bin"
4d8d5467
BH
85#define FW_OVERHEAD 0x2800000
86#define KERNEL_LOAD_ADDR FW_MAX_SIZE
a9f8ad8f 87
4d8d5467 88#define MIN_RMA_SLOF 128UL
9fdf0c29
DG
89
90#define TIMEBASE_FREQ 512000000ULL
91
0c103f8e
DG
92#define PHANDLE_XICP 0x00001111
93
7f763a5d
DG
94#define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
95
c04d6cfa 96static XICSState *try_create_xics(const char *type, int nr_servers,
34f2af3d 97 int nr_irqs, Error **errp)
c04d6cfa 98{
34f2af3d 99 Error *err = NULL;
c04d6cfa
AL
100 DeviceState *dev;
101
102 dev = qdev_create(NULL, type);
103 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
104 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
34f2af3d
MA
105 object_property_set_bool(OBJECT(dev), true, "realized", &err);
106 if (err) {
107 error_propagate(errp, err);
108 object_unparent(OBJECT(dev));
c04d6cfa
AL
109 return NULL;
110 }
5a3d7b23 111 return XICS_COMMON(dev);
c04d6cfa
AL
112}
113
446f16a6
MA
114static XICSState *xics_system_init(MachineState *machine,
115 int nr_servers, int nr_irqs)
c04d6cfa
AL
116{
117 XICSState *icp = NULL;
118
11ad93f6 119 if (kvm_enabled()) {
34f2af3d
MA
120 Error *err = NULL;
121
446f16a6 122 if (machine_kernel_irqchip_allowed(machine)) {
34f2af3d 123 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
11ad93f6 124 }
446f16a6 125 if (machine_kernel_irqchip_required(machine) && !icp) {
b83baa60
MA
126 error_reportf_err(err,
127 "kernel_irqchip requested but unavailable: ");
128 } else {
129 error_free(err);
11ad93f6
DG
130 }
131 }
132
133 if (!icp) {
34f2af3d 134 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, &error_abort);
c04d6cfa
AL
135 }
136
137 return icp;
138}
139
833d4668
AK
140static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
141 int smt_threads)
142{
143 int i, ret = 0;
144 uint32_t servers_prop[smt_threads];
145 uint32_t gservers_prop[smt_threads * 2];
146 int index = ppc_get_vcpu_dt_id(cpu);
147
6d9412ea 148 if (cpu->cpu_version) {
4bce526e 149 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
6d9412ea
AK
150 if (ret < 0) {
151 return ret;
152 }
153 }
154
833d4668
AK
155 /* Build interrupt servers and gservers properties */
156 for (i = 0; i < smt_threads; i++) {
157 servers_prop[i] = cpu_to_be32(index + i);
158 /* Hack, direct the group queues back to cpu 0 */
159 gservers_prop[i*2] = cpu_to_be32(index + i);
160 gservers_prop[i*2 + 1] = 0;
161 }
162 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
163 servers_prop, sizeof(servers_prop));
164 if (ret < 0) {
165 return ret;
166 }
167 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
168 gservers_prop, sizeof(gservers_prop));
169
170 return ret;
171}
172
0da6f3fe
BR
173static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
174{
175 int ret = 0;
176 PowerPCCPU *cpu = POWERPC_CPU(cs);
177 int index = ppc_get_vcpu_dt_id(cpu);
178 uint32_t associativity[] = {cpu_to_be32(0x5),
179 cpu_to_be32(0x0),
180 cpu_to_be32(0x0),
181 cpu_to_be32(0x0),
182 cpu_to_be32(cs->numa_node),
183 cpu_to_be32(index)};
184
185 /* Advertise NUMA via ibm,associativity */
186 if (nb_numa_nodes > 1) {
187 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
188 sizeof(associativity));
189 }
190
191 return ret;
192}
193
28e02042 194static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
6e806cc3 195{
82677ed2
AK
196 int ret = 0, offset, cpus_offset;
197 CPUState *cs;
6e806cc3
BR
198 char cpu_model[32];
199 int smt = kvmppc_smt_threads();
7f763a5d 200 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
6e806cc3 201
82677ed2
AK
202 CPU_FOREACH(cs) {
203 PowerPCCPU *cpu = POWERPC_CPU(cs);
204 DeviceClass *dc = DEVICE_GET_CLASS(cs);
205 int index = ppc_get_vcpu_dt_id(cpu);
6e806cc3 206
0f20ba62 207 if ((index % smt) != 0) {
6e806cc3
BR
208 continue;
209 }
210
82677ed2 211 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
6e806cc3 212
82677ed2
AK
213 cpus_offset = fdt_path_offset(fdt, "/cpus");
214 if (cpus_offset < 0) {
215 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
216 "cpus");
217 if (cpus_offset < 0) {
218 return cpus_offset;
219 }
220 }
221 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
6e806cc3 222 if (offset < 0) {
82677ed2
AK
223 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
224 if (offset < 0) {
225 return offset;
226 }
6e806cc3
BR
227 }
228
7f763a5d
DG
229 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
230 pft_size_prop, sizeof(pft_size_prop));
6e806cc3
BR
231 if (ret < 0) {
232 return ret;
233 }
833d4668 234
0da6f3fe
BR
235 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
236 if (ret < 0) {
237 return ret;
238 }
239
82677ed2 240 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
2a48d993 241 ppc_get_compat_smt_threads(cpu));
833d4668
AK
242 if (ret < 0) {
243 return ret;
244 }
6e806cc3
BR
245 }
246 return ret;
247}
248
5af9873d
BH
249
250static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
251 size_t maxsize)
252{
253 size_t maxcells = maxsize / sizeof(uint32_t);
254 int i, j, count;
255 uint32_t *p = prop;
256
257 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
258 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
259
260 if (!sps->page_shift) {
261 break;
262 }
263 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
264 if (sps->enc[count].page_shift == 0) {
265 break;
266 }
267 }
268 if ((p - prop) >= (maxcells - 3 - count * 2)) {
269 break;
270 }
271 *(p++) = cpu_to_be32(sps->page_shift);
272 *(p++) = cpu_to_be32(sps->slb_enc);
273 *(p++) = cpu_to_be32(count);
274 for (j = 0; j < count; j++) {
275 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
276 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
277 }
278 }
279
280 return (p - prop) * sizeof(uint32_t);
281}
282
b082d65a
AK
283static hwaddr spapr_node0_size(void)
284{
fb164994
DG
285 MachineState *machine = MACHINE(qdev_get_machine());
286
b082d65a
AK
287 if (nb_numa_nodes) {
288 int i;
289 for (i = 0; i < nb_numa_nodes; ++i) {
290 if (numa_info[i].node_mem) {
fb164994
DG
291 return MIN(pow2floor(numa_info[i].node_mem),
292 machine->ram_size);
b082d65a
AK
293 }
294 }
295 }
fb164994 296 return machine->ram_size;
b082d65a
AK
297}
298
7f763a5d
DG
299#define _FDT(exp) \
300 do { \
301 int ret = (exp); \
302 if (ret < 0) { \
303 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
304 #exp, fdt_strerror(ret)); \
305 exit(1); \
306 } \
307 } while (0)
308
a1d59c0f
AK
309static void add_str(GString *s, const gchar *s1)
310{
311 g_string_append_len(s, s1, strlen(s1) + 1);
312}
7f763a5d 313
3bbf37f2 314static void *spapr_create_fdt_skel(hwaddr initrd_base,
a8170e5e
AK
315 hwaddr initrd_size,
316 hwaddr kernel_size,
16457e7f 317 bool little_endian,
74d042e5
DG
318 const char *kernel_cmdline,
319 uint32_t epow_irq)
9fdf0c29
DG
320{
321 void *fdt;
9fdf0c29
DG
322 uint32_t start_prop = cpu_to_be32(initrd_base);
323 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
a1d59c0f
AK
324 GString *hypertas = g_string_sized_new(256);
325 GString *qemu_hypertas = g_string_sized_new(256);
7f763a5d 326 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
9e734e3d 327 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
6e806cc3 328 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
ef951443 329 char *buf;
9fdf0c29 330
a1d59c0f
AK
331 add_str(hypertas, "hcall-pft");
332 add_str(hypertas, "hcall-term");
333 add_str(hypertas, "hcall-dabr");
334 add_str(hypertas, "hcall-interrupt");
335 add_str(hypertas, "hcall-tce");
336 add_str(hypertas, "hcall-vio");
337 add_str(hypertas, "hcall-splpar");
338 add_str(hypertas, "hcall-bulk");
339 add_str(hypertas, "hcall-set-mode");
340 add_str(qemu_hypertas, "hcall-memop1");
341
7267c094 342 fdt = g_malloc0(FDT_MAX_SIZE);
9fdf0c29
DG
343 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
344
4d8d5467
BH
345 if (kernel_size) {
346 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
347 }
348 if (initrd_size) {
349 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
350 }
9fdf0c29
DG
351 _FDT((fdt_finish_reservemap(fdt)));
352
353 /* Root node */
354 _FDT((fdt_begin_node(fdt, "")));
355 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
5d73dd66 356 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
d63919c9 357 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
9fdf0c29 358
ef951443
ND
359 /*
360 * Add info to guest to indentify which host is it being run on
361 * and what is the uuid of the guest
362 */
363 if (kvmppc_get_host_model(&buf)) {
364 _FDT((fdt_property_string(fdt, "host-model", buf)));
365 g_free(buf);
366 }
367 if (kvmppc_get_host_serial(&buf)) {
368 _FDT((fdt_property_string(fdt, "host-serial", buf)));
369 g_free(buf);
370 }
371
372 buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
373 qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
374 qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
375 qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
376 qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
377 qemu_uuid[14], qemu_uuid[15]);
378
379 _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
3dc0a66d
AK
380 if (qemu_uuid_set) {
381 _FDT((fdt_property_string(fdt, "system-id", buf)));
382 }
ef951443
ND
383 g_free(buf);
384
2c1aaa81
SB
385 if (qemu_get_vm_name()) {
386 _FDT((fdt_property_string(fdt, "ibm,partition-name",
387 qemu_get_vm_name())));
388 }
389
9fdf0c29
DG
390 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
391 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
392
393 /* /chosen */
394 _FDT((fdt_begin_node(fdt, "chosen")));
395
6e806cc3
BR
396 /* Set Form1_affinity */
397 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
398
9fdf0c29
DG
399 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
400 _FDT((fdt_property(fdt, "linux,initrd-start",
401 &start_prop, sizeof(start_prop))));
402 _FDT((fdt_property(fdt, "linux,initrd-end",
403 &end_prop, sizeof(end_prop))));
4d8d5467
BH
404 if (kernel_size) {
405 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
406 cpu_to_be64(kernel_size) };
9fdf0c29 407
4d8d5467 408 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
16457e7f
BH
409 if (little_endian) {
410 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
411 }
4d8d5467 412 }
cc84c0f3
AS
413 if (boot_menu) {
414 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
415 }
f28359d8
LZ
416 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
417 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
418 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
3384f95c 419
9fdf0c29
DG
420 _FDT((fdt_end_node(fdt)));
421
f43e3525
DG
422 /* RTAS */
423 _FDT((fdt_begin_node(fdt, "rtas")));
424
da95324e
AK
425 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
426 add_str(hypertas, "hcall-multi-tce");
427 }
a1d59c0f
AK
428 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
429 hypertas->len)));
430 g_string_free(hypertas, TRUE);
431 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
432 qemu_hypertas->len)));
433 g_string_free(qemu_hypertas, TRUE);
f43e3525 434
6e806cc3
BR
435 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
436 refpoints, sizeof(refpoints))));
437
74d042e5 438 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
79853e18
TD
439 _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
440 RTAS_EVENT_SCAN_RATE)));
74d042e5 441
a95f9922
SB
442 if (msi_supported) {
443 _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
444 }
445
2e14072f 446 /*
9d632f5f 447 * According to PAPR, rtas ibm,os-term does not guarantee a return
2e14072f
ND
448 * back to the guest cpu.
449 *
450 * While an additional ibm,extended-os-term property indicates that
451 * rtas call return will always occur. Set this property.
452 */
453 _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
454
f43e3525
DG
455 _FDT((fdt_end_node(fdt)));
456
b5cec4c5 457 /* interrupt controller */
9dfef5aa 458 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
b5cec4c5
DG
459
460 _FDT((fdt_property_string(fdt, "device_type",
461 "PowerPC-External-Interrupt-Presentation")));
462 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
b5cec4c5
DG
463 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
464 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
465 interrupt_server_ranges_prop,
466 sizeof(interrupt_server_ranges_prop))));
0c103f8e
DG
467 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
468 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
469 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
b5cec4c5
DG
470
471 _FDT((fdt_end_node(fdt)));
472
4040ab72
DG
473 /* vdevice */
474 _FDT((fdt_begin_node(fdt, "vdevice")));
475
476 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
477 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
478 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
479 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
b5cec4c5
DG
480 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
481 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
4040ab72
DG
482
483 _FDT((fdt_end_node(fdt)));
484
74d042e5
DG
485 /* event-sources */
486 spapr_events_fdt_skel(fdt, epow_irq);
487
f7d69146
AG
488 /* /hypervisor node */
489 if (kvm_enabled()) {
490 uint8_t hypercall[16];
491
492 /* indicate KVM hypercall interface */
493 _FDT((fdt_begin_node(fdt, "hypervisor")));
494 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
495 if (kvmppc_has_cap_fixup_hcalls()) {
496 /*
497 * Older KVM versions with older guest kernels were broken with the
498 * magic page, don't allow the guest to map it.
499 */
500 kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
501 sizeof(hypercall));
502 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
503 sizeof(hypercall))));
504 }
505 _FDT((fdt_end_node(fdt)));
506 }
507
9fdf0c29
DG
508 _FDT((fdt_end_node(fdt))); /* close root node */
509 _FDT((fdt_finish(fdt)));
510
a3467baa
DG
511 return fdt;
512}
513
03d196b7 514static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
26a8c353
AK
515 hwaddr size)
516{
517 uint32_t associativity[] = {
518 cpu_to_be32(0x4), /* length */
519 cpu_to_be32(0x0), cpu_to_be32(0x0),
c3b4f589 520 cpu_to_be32(0x0), cpu_to_be32(nodeid)
26a8c353
AK
521 };
522 char mem_name[32];
523 uint64_t mem_reg_property[2];
524 int off;
525
526 mem_reg_property[0] = cpu_to_be64(start);
527 mem_reg_property[1] = cpu_to_be64(size);
528
529 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
530 off = fdt_add_subnode(fdt, 0, mem_name);
531 _FDT(off);
532 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
533 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
534 sizeof(mem_reg_property))));
535 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
536 sizeof(associativity))));
03d196b7 537 return off;
26a8c353
AK
538}
539
28e02042 540static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
7f763a5d 541{
fb164994 542 MachineState *machine = MACHINE(spapr);
7db8a127
AK
543 hwaddr mem_start, node_size;
544 int i, nb_nodes = nb_numa_nodes;
545 NodeInfo *nodes = numa_info;
546 NodeInfo ramnode;
547
548 /* No NUMA nodes, assume there is just one node with whole RAM */
549 if (!nb_numa_nodes) {
550 nb_nodes = 1;
fb164994 551 ramnode.node_mem = machine->ram_size;
7db8a127 552 nodes = &ramnode;
5fe269b1 553 }
7f763a5d 554
7db8a127
AK
555 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
556 if (!nodes[i].node_mem) {
557 continue;
558 }
fb164994 559 if (mem_start >= machine->ram_size) {
5fe269b1
PM
560 node_size = 0;
561 } else {
7db8a127 562 node_size = nodes[i].node_mem;
fb164994
DG
563 if (node_size > machine->ram_size - mem_start) {
564 node_size = machine->ram_size - mem_start;
5fe269b1
PM
565 }
566 }
7db8a127
AK
567 if (!mem_start) {
568 /* ppc_spapr_init() checks for rma_size <= node0_size already */
e8f986fc 569 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
7db8a127
AK
570 mem_start += spapr->rma_size;
571 node_size -= spapr->rma_size;
572 }
6010818c
AK
573 for ( ; node_size; ) {
574 hwaddr sizetmp = pow2floor(node_size);
575
576 /* mem_start != 0 here */
577 if (ctzl(mem_start) < ctzl(sizetmp)) {
578 sizetmp = 1ULL << ctzl(mem_start);
579 }
580
581 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
582 node_size -= sizetmp;
583 mem_start += sizetmp;
584 }
7f763a5d
DG
585 }
586
587 return 0;
588}
589
0da6f3fe
BR
590static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
591 sPAPRMachineState *spapr)
592{
593 PowerPCCPU *cpu = POWERPC_CPU(cs);
594 CPUPPCState *env = &cpu->env;
595 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
596 int index = ppc_get_vcpu_dt_id(cpu);
597 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
598 0xffffffff, 0xffffffff};
599 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
600 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
601 uint32_t page_sizes_prop[64];
602 size_t page_sizes_prop_size;
22419c2a 603 uint32_t vcpus_per_socket = smp_threads * smp_cores;
0da6f3fe
BR
604 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
605
90da0d5a
BH
606 /* Note: we keep CI large pages off for now because a 64K capable guest
607 * provisioned with large pages might otherwise try to map a qemu
608 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
609 * even if that qemu runs on a 4k host.
610 *
611 * We can later add this bit back when we are confident this is not
612 * an issue (!HV KVM or 64K host)
613 */
614 uint8_t pa_features_206[] = { 6, 0,
615 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
616 uint8_t pa_features_207[] = { 24, 0,
617 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
618 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
619 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
620 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
621 uint8_t *pa_features;
622 size_t pa_size;
623
0da6f3fe
BR
624 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
625 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
626
627 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
628 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
629 env->dcache_line_size)));
630 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
631 env->dcache_line_size)));
632 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
633 env->icache_line_size)));
634 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
635 env->icache_line_size)));
636
637 if (pcc->l1_dcache_size) {
638 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
639 pcc->l1_dcache_size)));
640 } else {
641 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
642 }
643 if (pcc->l1_icache_size) {
644 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
645 pcc->l1_icache_size)));
646 } else {
647 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
648 }
649
650 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
651 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
fd5da5c4 652 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
0da6f3fe
BR
653 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
654 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
655 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
656
657 if (env->spr_cb[SPR_PURR].oea_read) {
658 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
659 }
660
661 if (env->mmu_model & POWERPC_MMU_1TSEG) {
662 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
663 segs, sizeof(segs))));
664 }
665
666 /* Advertise VMX/VSX (vector extensions) if available
667 * 0 / no property == no vector extensions
668 * 1 == VMX / Altivec available
669 * 2 == VSX available */
670 if (env->insns_flags & PPC_ALTIVEC) {
671 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
672
673 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
674 }
675
676 /* Advertise DFP (Decimal Floating Point) if available
677 * 0 / no property == no DFP
678 * 1 == DFP available */
679 if (env->insns_flags2 & PPC2_DFP) {
680 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
681 }
682
683 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
684 sizeof(page_sizes_prop));
685 if (page_sizes_prop_size) {
686 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
687 page_sizes_prop, page_sizes_prop_size)));
688 }
689
90da0d5a
BH
690 /* Do the ibm,pa-features property, adjust it for ci-large-pages */
691 if (env->mmu_model == POWERPC_MMU_2_06) {
692 pa_features = pa_features_206;
693 pa_size = sizeof(pa_features_206);
694 } else /* env->mmu_model == POWERPC_MMU_2_07 */ {
695 pa_features = pa_features_207;
696 pa_size = sizeof(pa_features_207);
697 }
698 if (env->ci_large_pages) {
699 pa_features[3] |= 0x20;
700 }
701 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
702
0da6f3fe 703 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
22419c2a 704 cs->cpu_index / vcpus_per_socket)));
0da6f3fe
BR
705
706 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
707 pft_size_prop, sizeof(pft_size_prop))));
708
709 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
710
711 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
712 ppc_get_compat_smt_threads(cpu)));
713}
714
715static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
716{
717 CPUState *cs;
718 int cpus_offset;
719 char *nodename;
720 int smt = kvmppc_smt_threads();
721
722 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
723 _FDT(cpus_offset);
724 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
725 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
726
727 /*
728 * We walk the CPUs in reverse order to ensure that CPU DT nodes
729 * created by fdt_add_subnode() end up in the right order in FDT
730 * for the guest kernel the enumerate the CPUs correctly.
731 */
732 CPU_FOREACH_REVERSE(cs) {
733 PowerPCCPU *cpu = POWERPC_CPU(cs);
734 int index = ppc_get_vcpu_dt_id(cpu);
735 DeviceClass *dc = DEVICE_GET_CLASS(cs);
736 int offset;
737
738 if ((index % smt) != 0) {
739 continue;
740 }
741
742 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
743 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
744 g_free(nodename);
745 _FDT(offset);
746 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
747 }
748
749}
750
03d196b7
BR
751/*
752 * Adds ibm,dynamic-reconfiguration-memory node.
753 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
754 * of this device tree node.
755 */
756static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
757{
758 MachineState *machine = MACHINE(spapr);
759 int ret, i, offset;
760 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
761 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
e8f986fc 762 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
03d196b7 763 uint32_t *int_buf, *cur_index, buf_len;
6663864e 764 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
03d196b7 765
ef001f06
TH
766 /*
767 * Allocate enough buffer size to fit in ibm,dynamic-memory
768 * or ibm,associativity-lookup-arrays
769 */
770 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
771 * sizeof(uint32_t);
03d196b7
BR
772 cur_index = int_buf = g_malloc0(buf_len);
773
774 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
775
776 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
777 sizeof(prop_lmb_size));
778 if (ret < 0) {
779 goto out;
780 }
781
782 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
783 if (ret < 0) {
784 goto out;
785 }
786
787 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
788 if (ret < 0) {
789 goto out;
790 }
791
792 /* ibm,dynamic-memory */
793 int_buf[0] = cpu_to_be32(nr_lmbs);
794 cur_index++;
795 for (i = 0; i < nr_lmbs; i++) {
796 sPAPRDRConnector *drc;
797 sPAPRDRConnectorClass *drck;
e8f986fc 798 uint64_t addr = i * lmb_size + spapr->hotplug_memory.base;;
03d196b7
BR
799 uint32_t *dynamic_memory = cur_index;
800
03d196b7
BR
801 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
802 addr/lmb_size);
803 g_assert(drc);
804 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
805
806 dynamic_memory[0] = cpu_to_be32(addr >> 32);
807 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
808 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
809 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
810 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
811 if (addr < machine->ram_size ||
812 memory_region_present(get_system_memory(), addr)) {
813 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
814 } else {
815 dynamic_memory[5] = cpu_to_be32(0);
816 }
817
818 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
819 }
820 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
821 if (ret < 0) {
822 goto out;
823 }
824
825 /* ibm,associativity-lookup-arrays */
826 cur_index = int_buf;
6663864e 827 int_buf[0] = cpu_to_be32(nr_nodes);
03d196b7
BR
828 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
829 cur_index += 2;
6663864e 830 for (i = 0; i < nr_nodes; i++) {
03d196b7
BR
831 uint32_t associativity[] = {
832 cpu_to_be32(0x0),
833 cpu_to_be32(0x0),
834 cpu_to_be32(0x0),
835 cpu_to_be32(i)
836 };
837 memcpy(cur_index, associativity, sizeof(associativity));
838 cur_index += 4;
839 }
840 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
841 (cur_index - int_buf) * sizeof(uint32_t));
842out:
843 g_free(int_buf);
844 return ret;
845}
846
847int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
848 target_ulong addr, target_ulong size,
849 bool cpu_update, bool memory_update)
850{
851 void *fdt, *fdt_skel;
852 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
853 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
854
855 size -= sizeof(hdr);
856
857 /* Create sceleton */
858 fdt_skel = g_malloc0(size);
859 _FDT((fdt_create(fdt_skel, size)));
860 _FDT((fdt_begin_node(fdt_skel, "")));
861 _FDT((fdt_end_node(fdt_skel)));
862 _FDT((fdt_finish(fdt_skel)));
863 fdt = g_malloc0(size);
864 _FDT((fdt_open_into(fdt_skel, fdt, size)));
865 g_free(fdt_skel);
866
867 /* Fixup cpu nodes */
868 if (cpu_update) {
869 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
870 }
871
872 /* Generate memory nodes or ibm,dynamic-reconfiguration-memory node */
873 if (memory_update && smc->dr_lmb_enabled) {
874 _FDT((spapr_populate_drconf_memory(spapr, fdt)));
03d196b7
BR
875 }
876
877 /* Pack resulting tree */
878 _FDT((fdt_pack(fdt)));
879
880 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
881 trace_spapr_cas_failed(size);
882 return -1;
883 }
884
885 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
886 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
887 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
888 g_free(fdt);
889
890 return 0;
891}
892
28e02042 893static void spapr_finalize_fdt(sPAPRMachineState *spapr,
a8170e5e
AK
894 hwaddr fdt_addr,
895 hwaddr rtas_addr,
896 hwaddr rtas_size)
a3467baa 897{
5b2128d2 898 MachineState *machine = MACHINE(qdev_get_machine());
c20d332a 899 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
5b2128d2 900 const char *boot_device = machine->boot_order;
71461b0f
AK
901 int ret, i;
902 size_t cb = 0;
903 char *bootlist;
a3467baa 904 void *fdt;
3384f95c 905 sPAPRPHBState *phb;
a3467baa 906
7267c094 907 fdt = g_malloc(FDT_MAX_SIZE);
a3467baa
DG
908
909 /* open out the base tree into a temp buffer for the final tweaks */
910 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
4040ab72 911
e8f986fc
BR
912 ret = spapr_populate_memory(spapr, fdt);
913 if (ret < 0) {
914 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
915 exit(1);
7f763a5d
DG
916 }
917
4040ab72
DG
918 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
919 if (ret < 0) {
920 fprintf(stderr, "couldn't setup vio devices in fdt\n");
921 exit(1);
922 }
923
4d9392be
TH
924 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
925 ret = spapr_rng_populate_dt(fdt);
926 if (ret < 0) {
927 fprintf(stderr, "could not set up rng device in the fdt\n");
928 exit(1);
929 }
930 }
931
3384f95c 932 QLIST_FOREACH(phb, &spapr->phbs, list) {
e0fdbd7c 933 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
3384f95c
DG
934 }
935
936 if (ret < 0) {
937 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
938 exit(1);
939 }
940
39ac8455
DG
941 /* RTAS */
942 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
943 if (ret < 0) {
944 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
945 }
946
0da6f3fe
BR
947 /* cpus */
948 spapr_populate_cpus_dt_node(fdt, spapr);
6e806cc3 949
71461b0f
AK
950 bootlist = get_boot_devices_list(&cb, true);
951 if (cb && bootlist) {
952 int offset = fdt_path_offset(fdt, "/chosen");
953 if (offset < 0) {
954 exit(1);
955 }
956 for (i = 0; i < cb; i++) {
957 if (bootlist[i] == '\n') {
958 bootlist[i] = ' ';
959 }
960
961 }
962 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
963 }
964
5b2128d2
AG
965 if (boot_device && strlen(boot_device)) {
966 int offset = fdt_path_offset(fdt, "/chosen");
967
968 if (offset < 0) {
969 exit(1);
970 }
971 fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
972 }
973
3fc5acde 974 if (!spapr->has_graphics) {
f28359d8
LZ
975 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
976 }
68f3a94c 977
c20d332a
BR
978 if (smc->dr_lmb_enabled) {
979 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
980 }
981
4040ab72
DG
982 _FDT((fdt_pack(fdt)));
983
4d8d5467 984 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
730fce59
TH
985 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
986 fdt_totalsize(fdt), FDT_MAX_SIZE);
4d8d5467
BH
987 exit(1);
988 }
989
ad440b4a 990 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
a3467baa 991 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
9fdf0c29 992
a21a7a70 993 g_free(bootlist);
7267c094 994 g_free(fdt);
9fdf0c29
DG
995}
996
997static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
998{
999 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1000}
1001
1b14670a 1002static void emulate_spapr_hypercall(PowerPCCPU *cpu)
9fdf0c29 1003{
1b14670a
AF
1004 CPUPPCState *env = &cpu->env;
1005
efcb9383
DG
1006 if (msr_pr) {
1007 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1008 env->gpr[3] = H_PRIVILEGE;
1009 } else {
aa100fa4 1010 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
efcb9383 1011 }
9fdf0c29
DG
1012}
1013
e6b8fd24
SMJ
1014#define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1015#define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1016#define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1017#define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1018#define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1019
b817772a 1020static void spapr_alloc_htab(sPAPRMachineState *spapr)
7f763a5d
DG
1021{
1022 long shift;
e6b8fd24 1023 int index;
7f763a5d
DG
1024
1025 /* allocate hash page table. For now we always make this 16mb,
1026 * later we should probably make it scale to the size of guest
1027 * RAM */
1028
1029 shift = kvmppc_reset_htab(spapr->htab_shift);
b41d320f
BR
1030 if (shift < 0) {
1031 /*
1032 * For HV KVM, host kernel will return -ENOMEM when requested
1033 * HTAB size can't be allocated.
1034 */
1035 error_setg(&error_abort, "Failed to allocate HTAB of requested size, try with smaller maxmem");
1036 } else if (shift > 0) {
1037 /*
1038 * Kernel handles htab, we don't need to allocate one
1039 *
1040 * Older kernels can fall back to lower HTAB shift values,
1041 * but we don't allow booting of such guests.
1042 */
7735feda
BR
1043 if (shift != spapr->htab_shift) {
1044 error_setg(&error_abort, "Failed to allocate HTAB of requested size, try with smaller maxmem");
1045 }
1046
7f763a5d 1047 spapr->htab_shift = shift;
7c43bca0 1048 kvmppc_kern_htab = true;
b817772a
BR
1049 } else {
1050 /* Allocate htab */
1051 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
1052
1053 /* And clear it */
1054 memset(spapr->htab, 0, HTAB_SIZE(spapr));
1055
1056 for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
1057 DIRTY_HPTE(HPTE(spapr->htab, index));
1058 }
1059 }
1060}
1061
1062/*
1063 * Clear HTAB entries during reset.
1064 *
1065 * If host kernel has allocated HTAB, KVM_PPC_ALLOCATE_HTAB ioctl is
1066 * used to clear HTAB. Otherwise QEMU-allocated HTAB is cleared manually.
1067 */
1068static void spapr_reset_htab(sPAPRMachineState *spapr)
1069{
1070 long shift;
1071 int index;
01a57972 1072
b817772a 1073 shift = kvmppc_reset_htab(spapr->htab_shift);
b41d320f
BR
1074 if (shift < 0) {
1075 error_setg(&error_abort, "Failed to reset HTAB");
1076 } else if (shift > 0) {
7735feda
BR
1077 if (shift != spapr->htab_shift) {
1078 error_setg(&error_abort, "Requested HTAB allocation failed during reset");
1079 }
1080
01a57972
SMJ
1081 /* Tell readers to update their file descriptor */
1082 if (spapr->htab_fd >= 0) {
1083 spapr->htab_fd_stale = true;
1084 }
7f763a5d 1085 } else {
7f763a5d 1086 memset(spapr->htab, 0, HTAB_SIZE(spapr));
e6b8fd24
SMJ
1087
1088 for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
1089 DIRTY_HPTE(HPTE(spapr->htab, index));
1090 }
7f763a5d
DG
1091 }
1092
1093 /* Update the RMA size if necessary */
1094 if (spapr->vrma_adjust) {
b082d65a
AK
1095 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1096 spapr->htab_shift);
7f763a5d 1097 }
9fdf0c29
DG
1098}
1099
9e3f9733
AG
1100static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1101{
1102 bool matched = false;
1103
1104 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1105 matched = true;
1106 }
1107
1108 if (!matched) {
1109 error_report("Device %s is not supported by this machine yet.",
1110 qdev_fw_name(DEVICE(sbdev)));
1111 exit(1);
1112 }
1113
1114 return 0;
1115}
1116
01a57972
SMJ
1117/*
1118 * A guest reset will cause spapr->htab_fd to become stale if being used.
1119 * Reopen the file descriptor to make sure the whole HTAB is properly read.
1120 */
28e02042 1121static int spapr_check_htab_fd(sPAPRMachineState *spapr)
01a57972
SMJ
1122{
1123 int rc = 0;
1124
1125 if (spapr->htab_fd_stale) {
1126 close(spapr->htab_fd);
1127 spapr->htab_fd = kvmppc_get_htab_fd(false);
1128 if (spapr->htab_fd < 0) {
1129 error_report("Unable to open fd for reading hash table from KVM: "
730fce59 1130 "%s", strerror(errno));
01a57972
SMJ
1131 rc = -1;
1132 }
1133 spapr->htab_fd_stale = false;
1134 }
1135
1136 return rc;
1137}
1138
c8787ad4 1139static void ppc_spapr_reset(void)
a3467baa 1140{
28e02042 1141 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
182735ef 1142 PowerPCCPU *first_ppc_cpu;
b7d1f77a 1143 uint32_t rtas_limit;
259186a7 1144
9e3f9733
AG
1145 /* Check for unknown sysbus devices */
1146 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1147
7f763a5d
DG
1148 /* Reset the hash table & recalc the RMA */
1149 spapr_reset_htab(spapr);
a3467baa 1150
c8787ad4 1151 qemu_devices_reset();
a3467baa 1152
b7d1f77a
BH
1153 /*
1154 * We place the device tree and RTAS just below either the top of the RMA,
1155 * or just below 2GB, whichever is lowere, so that it can be
1156 * processed with 32-bit real mode code if necessary
1157 */
1158 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1159 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1160 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1161
a3467baa
DG
1162 /* Load the fdt */
1163 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
1164 spapr->rtas_size);
1165
b7d1f77a
BH
1166 /* Copy RTAS over */
1167 cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
1168 spapr->rtas_size);
1169
a3467baa 1170 /* Set up the entry state */
182735ef
AF
1171 first_ppc_cpu = POWERPC_CPU(first_cpu);
1172 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
1173 first_ppc_cpu->env.gpr[5] = 0;
1174 first_cpu->halted = 0;
1b718907 1175 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
a3467baa
DG
1176
1177}
1178
1bba0dc9
AF
1179static void spapr_cpu_reset(void *opaque)
1180{
28e02042 1181 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
5b2038e0 1182 PowerPCCPU *cpu = opaque;
259186a7 1183 CPUState *cs = CPU(cpu);
048706d9 1184 CPUPPCState *env = &cpu->env;
1bba0dc9 1185
259186a7 1186 cpu_reset(cs);
048706d9
DG
1187
1188 /* All CPUs start halted. CPU0 is unhalted from the machine level
1189 * reset code and the rest are explicitly started up by the guest
1190 * using an RTAS call */
259186a7 1191 cs->halted = 1;
048706d9
DG
1192
1193 env->spr[SPR_HIOR] = 0;
7f763a5d 1194
4be21d56 1195 env->external_htab = (uint8_t *)spapr->htab;
5736245c
AK
1196 if (kvm_enabled() && !env->external_htab) {
1197 /*
1198 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
1199 * functions do the right thing.
1200 */
1201 env->external_htab = (void *)1;
1202 }
7f763a5d 1203 env->htab_base = -1;
f3c75d42
AK
1204 /*
1205 * htab_mask is the mask used to normalize hash value to PTEG index.
1206 * htab_shift is log2 of hash table size.
1207 * We have 8 hpte per group, and each hpte is 16 bytes.
1208 * ie have 128 bytes per hpte entry.
1209 */
28e02042 1210 env->htab_mask = (1ULL << (spapr->htab_shift - 7)) - 1;
ec4936e1 1211 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
7f763a5d 1212 (spapr->htab_shift - 18);
1bba0dc9
AF
1213}
1214
28e02042 1215static void spapr_create_nvram(sPAPRMachineState *spapr)
639e8102 1216{
2ff3de68 1217 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
3978b863 1218 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
639e8102 1219
3978b863 1220 if (dinfo) {
6231a6da
MA
1221 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1222 &error_fatal);
639e8102
DG
1223 }
1224
1225 qdev_init_nofail(dev);
1226
1227 spapr->nvram = (struct sPAPRNVRAM *)dev;
1228}
1229
28e02042 1230static void spapr_rtc_create(sPAPRMachineState *spapr)
28df36a1
DG
1231{
1232 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1233
1234 qdev_init_nofail(dev);
1235 spapr->rtc = dev;
74e5ae28
DG
1236
1237 object_property_add_alias(qdev_get_machine(), "rtc-time",
1238 OBJECT(spapr->rtc), "date", NULL);
28df36a1
DG
1239}
1240
8c57b867 1241/* Returns whether we want to use VGA or not */
f28359d8
LZ
1242static int spapr_vga_init(PCIBus *pci_bus)
1243{
8c57b867 1244 switch (vga_interface_type) {
8c57b867 1245 case VGA_NONE:
7effdaa3
MW
1246 return false;
1247 case VGA_DEVICE:
1248 return true;
1ddcae82 1249 case VGA_STD:
b798c190 1250 case VGA_VIRTIO:
1ddcae82 1251 return pci_vga_init(pci_bus) != NULL;
8c57b867 1252 default:
f28359d8
LZ
1253 fprintf(stderr, "This vga model is not supported,"
1254 "currently it only supports -vga std\n");
8c57b867 1255 exit(0);
f28359d8 1256 }
f28359d8
LZ
1257}
1258
880ae7de
DG
1259static int spapr_post_load(void *opaque, int version_id)
1260{
28e02042 1261 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
880ae7de
DG
1262 int err = 0;
1263
631b22ea 1264 /* In earlier versions, there was no separate qdev for the PAPR
880ae7de
DG
1265 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1266 * So when migrating from those versions, poke the incoming offset
1267 * value into the RTC device */
1268 if (version_id < 3) {
1269 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1270 }
1271
1272 return err;
1273}
1274
1275static bool version_before_3(void *opaque, int version_id)
1276{
1277 return version_id < 3;
1278}
1279
4be21d56
DG
1280static const VMStateDescription vmstate_spapr = {
1281 .name = "spapr",
880ae7de 1282 .version_id = 3,
4be21d56 1283 .minimum_version_id = 1,
880ae7de 1284 .post_load = spapr_post_load,
3aff6c2f 1285 .fields = (VMStateField[]) {
880ae7de
DG
1286 /* used to be @next_irq */
1287 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
4be21d56
DG
1288
1289 /* RTC offset */
28e02042 1290 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
880ae7de 1291
28e02042 1292 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
4be21d56
DG
1293 VMSTATE_END_OF_LIST()
1294 },
1295};
1296
4be21d56
DG
1297static int htab_save_setup(QEMUFile *f, void *opaque)
1298{
28e02042 1299 sPAPRMachineState *spapr = opaque;
4be21d56 1300
4be21d56
DG
1301 /* "Iteration" header */
1302 qemu_put_be32(f, spapr->htab_shift);
1303
e68cb8b4
AK
1304 if (spapr->htab) {
1305 spapr->htab_save_index = 0;
1306 spapr->htab_first_pass = true;
1307 } else {
1308 assert(kvm_enabled());
1309
1310 spapr->htab_fd = kvmppc_get_htab_fd(false);
01a57972 1311 spapr->htab_fd_stale = false;
e68cb8b4
AK
1312 if (spapr->htab_fd < 0) {
1313 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
1314 strerror(errno));
1315 return -1;
1316 }
1317 }
1318
1319
4be21d56
DG
1320 return 0;
1321}
1322
28e02042 1323static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
4be21d56
DG
1324 int64_t max_ns)
1325{
1326 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1327 int index = spapr->htab_save_index;
bc72ad67 1328 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1329
1330 assert(spapr->htab_first_pass);
1331
1332 do {
1333 int chunkstart;
1334
1335 /* Consume invalid HPTEs */
1336 while ((index < htabslots)
1337 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1338 index++;
1339 CLEAN_HPTE(HPTE(spapr->htab, index));
1340 }
1341
1342 /* Consume valid HPTEs */
1343 chunkstart = index;
338c25b6 1344 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56
DG
1345 && HPTE_VALID(HPTE(spapr->htab, index))) {
1346 index++;
1347 CLEAN_HPTE(HPTE(spapr->htab, index));
1348 }
1349
1350 if (index > chunkstart) {
1351 int n_valid = index - chunkstart;
1352
1353 qemu_put_be32(f, chunkstart);
1354 qemu_put_be16(f, n_valid);
1355 qemu_put_be16(f, 0);
1356 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1357 HASH_PTE_SIZE_64 * n_valid);
1358
bc72ad67 1359 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1360 break;
1361 }
1362 }
1363 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1364
1365 if (index >= htabslots) {
1366 assert(index == htabslots);
1367 index = 0;
1368 spapr->htab_first_pass = false;
1369 }
1370 spapr->htab_save_index = index;
1371}
1372
28e02042 1373static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
e68cb8b4 1374 int64_t max_ns)
4be21d56
DG
1375{
1376 bool final = max_ns < 0;
1377 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1378 int examined = 0, sent = 0;
1379 int index = spapr->htab_save_index;
bc72ad67 1380 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1381
1382 assert(!spapr->htab_first_pass);
1383
1384 do {
1385 int chunkstart, invalidstart;
1386
1387 /* Consume non-dirty HPTEs */
1388 while ((index < htabslots)
1389 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1390 index++;
1391 examined++;
1392 }
1393
1394 chunkstart = index;
1395 /* Consume valid dirty HPTEs */
338c25b6 1396 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56
DG
1397 && HPTE_DIRTY(HPTE(spapr->htab, index))
1398 && HPTE_VALID(HPTE(spapr->htab, index))) {
1399 CLEAN_HPTE(HPTE(spapr->htab, index));
1400 index++;
1401 examined++;
1402 }
1403
1404 invalidstart = index;
1405 /* Consume invalid dirty HPTEs */
338c25b6 1406 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
4be21d56
DG
1407 && HPTE_DIRTY(HPTE(spapr->htab, index))
1408 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1409 CLEAN_HPTE(HPTE(spapr->htab, index));
1410 index++;
1411 examined++;
1412 }
1413
1414 if (index > chunkstart) {
1415 int n_valid = invalidstart - chunkstart;
1416 int n_invalid = index - invalidstart;
1417
1418 qemu_put_be32(f, chunkstart);
1419 qemu_put_be16(f, n_valid);
1420 qemu_put_be16(f, n_invalid);
1421 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1422 HASH_PTE_SIZE_64 * n_valid);
1423 sent += index - chunkstart;
1424
bc72ad67 1425 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1426 break;
1427 }
1428 }
1429
1430 if (examined >= htabslots) {
1431 break;
1432 }
1433
1434 if (index >= htabslots) {
1435 assert(index == htabslots);
1436 index = 0;
1437 }
1438 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1439
1440 if (index >= htabslots) {
1441 assert(index == htabslots);
1442 index = 0;
1443 }
1444
1445 spapr->htab_save_index = index;
1446
e68cb8b4 1447 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
4be21d56
DG
1448}
1449
e68cb8b4
AK
1450#define MAX_ITERATION_NS 5000000 /* 5 ms */
1451#define MAX_KVM_BUF_SIZE 2048
1452
4be21d56
DG
1453static int htab_save_iterate(QEMUFile *f, void *opaque)
1454{
28e02042 1455 sPAPRMachineState *spapr = opaque;
e68cb8b4 1456 int rc = 0;
4be21d56
DG
1457
1458 /* Iteration header */
1459 qemu_put_be32(f, 0);
1460
e68cb8b4
AK
1461 if (!spapr->htab) {
1462 assert(kvm_enabled());
1463
01a57972
SMJ
1464 rc = spapr_check_htab_fd(spapr);
1465 if (rc < 0) {
1466 return rc;
1467 }
1468
e68cb8b4
AK
1469 rc = kvmppc_save_htab(f, spapr->htab_fd,
1470 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1471 if (rc < 0) {
1472 return rc;
1473 }
1474 } else if (spapr->htab_first_pass) {
4be21d56
DG
1475 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1476 } else {
e68cb8b4 1477 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
4be21d56
DG
1478 }
1479
1480 /* End marker */
1481 qemu_put_be32(f, 0);
1482 qemu_put_be16(f, 0);
1483 qemu_put_be16(f, 0);
1484
e68cb8b4 1485 return rc;
4be21d56
DG
1486}
1487
1488static int htab_save_complete(QEMUFile *f, void *opaque)
1489{
28e02042 1490 sPAPRMachineState *spapr = opaque;
4be21d56
DG
1491
1492 /* Iteration header */
1493 qemu_put_be32(f, 0);
1494
e68cb8b4
AK
1495 if (!spapr->htab) {
1496 int rc;
1497
1498 assert(kvm_enabled());
1499
01a57972
SMJ
1500 rc = spapr_check_htab_fd(spapr);
1501 if (rc < 0) {
1502 return rc;
1503 }
1504
e68cb8b4
AK
1505 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1506 if (rc < 0) {
1507 return rc;
1508 }
1509 close(spapr->htab_fd);
1510 spapr->htab_fd = -1;
1511 } else {
1512 htab_save_later_pass(f, spapr, -1);
1513 }
4be21d56
DG
1514
1515 /* End marker */
1516 qemu_put_be32(f, 0);
1517 qemu_put_be16(f, 0);
1518 qemu_put_be16(f, 0);
1519
1520 return 0;
1521}
1522
1523static int htab_load(QEMUFile *f, void *opaque, int version_id)
1524{
28e02042 1525 sPAPRMachineState *spapr = opaque;
4be21d56 1526 uint32_t section_hdr;
e68cb8b4 1527 int fd = -1;
4be21d56
DG
1528
1529 if (version_id < 1 || version_id > 1) {
1530 fprintf(stderr, "htab_load() bad version\n");
1531 return -EINVAL;
1532 }
1533
1534 section_hdr = qemu_get_be32(f);
1535
1536 if (section_hdr) {
1537 /* First section, just the hash shift */
1538 if (spapr->htab_shift != section_hdr) {
613e7a76
BR
1539 error_report("htab_shift mismatch: source %d target %d",
1540 section_hdr, spapr->htab_shift);
4be21d56
DG
1541 return -EINVAL;
1542 }
1543 return 0;
1544 }
1545
e68cb8b4
AK
1546 if (!spapr->htab) {
1547 assert(kvm_enabled());
1548
1549 fd = kvmppc_get_htab_fd(true);
1550 if (fd < 0) {
1551 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1552 strerror(errno));
1553 }
1554 }
1555
4be21d56
DG
1556 while (true) {
1557 uint32_t index;
1558 uint16_t n_valid, n_invalid;
1559
1560 index = qemu_get_be32(f);
1561 n_valid = qemu_get_be16(f);
1562 n_invalid = qemu_get_be16(f);
1563
1564 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1565 /* End of Stream */
1566 break;
1567 }
1568
e68cb8b4 1569 if ((index + n_valid + n_invalid) >
4be21d56
DG
1570 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1571 /* Bad index in stream */
1572 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
e68cb8b4
AK
1573 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1574 spapr->htab_shift);
4be21d56
DG
1575 return -EINVAL;
1576 }
1577
e68cb8b4
AK
1578 if (spapr->htab) {
1579 if (n_valid) {
1580 qemu_get_buffer(f, HPTE(spapr->htab, index),
1581 HASH_PTE_SIZE_64 * n_valid);
1582 }
1583 if (n_invalid) {
1584 memset(HPTE(spapr->htab, index + n_valid), 0,
1585 HASH_PTE_SIZE_64 * n_invalid);
1586 }
1587 } else {
1588 int rc;
1589
1590 assert(fd >= 0);
1591
1592 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1593 if (rc < 0) {
1594 return rc;
1595 }
4be21d56
DG
1596 }
1597 }
1598
e68cb8b4
AK
1599 if (!spapr->htab) {
1600 assert(fd >= 0);
1601 close(fd);
1602 }
1603
4be21d56
DG
1604 return 0;
1605}
1606
1607static SaveVMHandlers savevm_htab_handlers = {
1608 .save_live_setup = htab_save_setup,
1609 .save_live_iterate = htab_save_iterate,
a3e06c3d 1610 .save_live_complete_precopy = htab_save_complete,
4be21d56
DG
1611 .load_state = htab_load,
1612};
1613
5b2128d2
AG
1614static void spapr_boot_set(void *opaque, const char *boot_device,
1615 Error **errp)
1616{
1617 MachineState *machine = MACHINE(qdev_get_machine());
1618 machine->boot_order = g_strdup(boot_device);
1619}
1620
bab99ea0
BR
1621static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu)
1622{
1623 CPUPPCState *env = &cpu->env;
1624
1625 /* Set time-base frequency to 512 MHz */
1626 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1627
1628 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1629 * MSR[IP] should never be set.
1630 */
1631 env->msr_mask &= ~(1 << 6);
1632
1633 /* Tell KVM that we're in PAPR mode */
1634 if (kvm_enabled()) {
1635 kvmppc_set_papr(cpu);
1636 }
1637
1638 if (cpu->max_compat) {
1639 if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
1640 exit(1);
1641 }
1642 }
1643
1644 xics_cpu_setup(spapr->icp, cpu);
1645
1646 qemu_register_reset(spapr_cpu_reset, cpu);
1647}
1648
224245bf
DG
1649/*
1650 * Reset routine for LMB DR devices.
1651 *
1652 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1653 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1654 * when it walks all its children devices. LMB devices reset occurs
1655 * as part of spapr_ppc_reset().
1656 */
1657static void spapr_drc_reset(void *opaque)
1658{
1659 sPAPRDRConnector *drc = opaque;
1660 DeviceState *d = DEVICE(drc);
1661
1662 if (d) {
1663 device_reset(d);
1664 }
1665}
1666
1667static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1668{
1669 MachineState *machine = MACHINE(spapr);
1670 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
e8f986fc 1671 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
224245bf
DG
1672 int i;
1673
1674 for (i = 0; i < nr_lmbs; i++) {
1675 sPAPRDRConnector *drc;
1676 uint64_t addr;
1677
e8f986fc 1678 addr = i * lmb_size + spapr->hotplug_memory.base;
224245bf
DG
1679 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1680 addr/lmb_size);
1681 qemu_register_reset(spapr_drc_reset, drc);
1682 }
1683}
1684
1685/*
1686 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1687 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1688 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1689 */
1690static void spapr_validate_node_memory(MachineState *machine)
1691{
1692 int i;
1693
1694 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE ||
1695 machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1696 error_report("Can't support memory configuration where RAM size "
1697 "0x" RAM_ADDR_FMT " or maxmem size "
1698 "0x" RAM_ADDR_FMT " isn't aligned to %llu MB",
1699 machine->ram_size, machine->maxram_size,
1700 SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
1701 exit(EXIT_FAILURE);
1702 }
1703
1704 for (i = 0; i < nb_numa_nodes; i++) {
1705 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1706 error_report("Can't support memory configuration where memory size"
1707 " %" PRIx64 " of node %d isn't aligned to %llu MB",
1708 numa_info[i].node_mem, i,
1709 SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
1710 exit(EXIT_FAILURE);
1711 }
1712 }
1713}
1714
9fdf0c29 1715/* pSeries LPAR / sPAPR hardware init */
3ef96221 1716static void ppc_spapr_init(MachineState *machine)
9fdf0c29 1717{
28e02042 1718 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
224245bf 1719 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
3ef96221
MA
1720 const char *kernel_filename = machine->kernel_filename;
1721 const char *kernel_cmdline = machine->kernel_cmdline;
1722 const char *initrd_filename = machine->initrd_filename;
05769733 1723 PowerPCCPU *cpu;
8c9f64df 1724 PCIHostState *phb;
9fdf0c29 1725 int i;
890c2b77
AK
1726 MemoryRegion *sysmem = get_system_memory();
1727 MemoryRegion *ram = g_new(MemoryRegion, 1);
658fa66b
AK
1728 MemoryRegion *rma_region;
1729 void *rma = NULL;
a8170e5e 1730 hwaddr rma_alloc_size;
b082d65a 1731 hwaddr node0_size = spapr_node0_size();
4d8d5467
BH
1732 uint32_t initrd_base = 0;
1733 long kernel_size = 0, initrd_size = 0;
b7d1f77a 1734 long load_limit, fw_size;
16457e7f 1735 bool kernel_le = false;
39ac8455 1736 char *filename;
9fdf0c29 1737
0ee2c058
AK
1738 msi_supported = true;
1739
d43b45e2
DG
1740 QLIST_INIT(&spapr->phbs);
1741
9fdf0c29
DG
1742 cpu_ppc_hypercall = emulate_spapr_hypercall;
1743
354ac20a 1744 /* Allocate RMA if necessary */
658fa66b 1745 rma_alloc_size = kvmppc_alloc_rma(&rma);
354ac20a
DG
1746
1747 if (rma_alloc_size == -1) {
730fce59 1748 error_report("Unable to create RMA");
354ac20a
DG
1749 exit(1);
1750 }
7f763a5d 1751
c4177479 1752 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
7f763a5d 1753 spapr->rma_size = rma_alloc_size;
354ac20a 1754 } else {
c4177479 1755 spapr->rma_size = node0_size;
7f763a5d
DG
1756
1757 /* With KVM, we don't actually know whether KVM supports an
1758 * unbounded RMA (PR KVM) or is limited by the hash table size
1759 * (HV KVM using VRMA), so we always assume the latter
1760 *
1761 * In that case, we also limit the initial allocations for RTAS
1762 * etc... to 256M since we have no way to know what the VRMA size
1763 * is going to be as it depends on the size of the hash table
1764 * isn't determined yet.
1765 */
1766 if (kvm_enabled()) {
1767 spapr->vrma_adjust = 1;
1768 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1769 }
354ac20a
DG
1770 }
1771
c4177479
AK
1772 if (spapr->rma_size > node0_size) {
1773 fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1774 spapr->rma_size);
1775 exit(1);
1776 }
1777
b7d1f77a
BH
1778 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1779 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
9fdf0c29 1780
382be75d
DG
1781 /* We aim for a hash table of size 1/128 the size of RAM. The
1782 * normal rule of thumb is 1/64 the size of RAM, but that's much
1783 * more than needed for the Linux guests we support. */
1784 spapr->htab_shift = 18; /* Minimum architected size */
1785 while (spapr->htab_shift <= 46) {
ce881f77 1786 if ((1ULL << (spapr->htab_shift + 7)) >= machine->maxram_size) {
382be75d
DG
1787 break;
1788 }
1789 spapr->htab_shift++;
1790 }
b817772a 1791 spapr_alloc_htab(spapr);
7f763a5d 1792
7b565160 1793 /* Set up Interrupt Controller before we create the VCPUs */
446f16a6 1794 spapr->icp = xics_system_init(machine,
9e734e3d 1795 DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(),
f303f117 1796 smp_threads),
7b565160 1797 XICS_IRQS);
7b565160 1798
224245bf
DG
1799 if (smc->dr_lmb_enabled) {
1800 spapr_validate_node_memory(machine);
1801 }
1802
9fdf0c29 1803 /* init CPUs */
19fb2c36
BR
1804 if (machine->cpu_model == NULL) {
1805 machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
9fdf0c29
DG
1806 }
1807 for (i = 0; i < smp_cpus; i++) {
19fb2c36 1808 cpu = cpu_ppc_init(machine->cpu_model);
05769733 1809 if (cpu == NULL) {
9fdf0c29
DG
1810 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1811 exit(1);
1812 }
bab99ea0 1813 spapr_cpu_init(spapr, cpu);
9fdf0c29
DG
1814 }
1815
026bfd89
DG
1816 if (kvm_enabled()) {
1817 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1818 kvmppc_enable_logical_ci_hcalls();
ef9971dd 1819 kvmppc_enable_set_mode_hcall();
026bfd89
DG
1820 }
1821
9fdf0c29 1822 /* allocate RAM */
f92f5da1 1823 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
fb164994 1824 machine->ram_size);
f92f5da1 1825 memory_region_add_subregion(sysmem, 0, ram);
9fdf0c29 1826
658fa66b
AK
1827 if (rma_alloc_size && rma) {
1828 rma_region = g_new(MemoryRegion, 1);
1829 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1830 rma_alloc_size, rma);
1831 vmstate_register_ram_global(rma_region);
1832 memory_region_add_subregion(sysmem, 0, rma_region);
1833 }
1834
4a1c9cf0
BR
1835 /* initialize hotplug memory address space */
1836 if (machine->ram_size < machine->maxram_size) {
1837 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1838
1839 if (machine->ram_slots > SPAPR_MAX_RAM_SLOTS) {
9af9e0fe
MA
1840 error_report("Specified number of memory slots %" PRIu64
1841 " exceeds max supported %d",
19a35c9e 1842 machine->ram_slots, SPAPR_MAX_RAM_SLOTS);
4a1c9cf0
BR
1843 exit(EXIT_FAILURE);
1844 }
1845
1846 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1847 SPAPR_HOTPLUG_MEM_ALIGN);
1848 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1849 "hotplug-memory", hotplug_mem_size);
1850 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1851 &spapr->hotplug_memory.mr);
1852 }
1853
224245bf
DG
1854 if (smc->dr_lmb_enabled) {
1855 spapr_create_lmb_dr_connectors(spapr);
1856 }
1857
39ac8455 1858 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
4c56440d 1859 if (!filename) {
730fce59 1860 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
4c56440d
SW
1861 exit(1);
1862 }
b7d1f77a
BH
1863 spapr->rtas_size = get_image_size(filename);
1864 spapr->rtas_blob = g_malloc(spapr->rtas_size);
1865 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
730fce59 1866 error_report("Could not load LPAR rtas '%s'", filename);
39ac8455
DG
1867 exit(1);
1868 }
4d8d5467 1869 if (spapr->rtas_size > RTAS_MAX_SIZE) {
730fce59
TH
1870 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1871 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
4d8d5467
BH
1872 exit(1);
1873 }
7267c094 1874 g_free(filename);
39ac8455 1875
74d042e5
DG
1876 /* Set up EPOW events infrastructure */
1877 spapr_events_init(spapr);
1878
12f42174 1879 /* Set up the RTC RTAS interfaces */
28df36a1 1880 spapr_rtc_create(spapr);
12f42174 1881
b5cec4c5 1882 /* Set up VIO bus */
4040ab72
DG
1883 spapr->vio_bus = spapr_vio_bus_init();
1884
277f9acf 1885 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
4040ab72 1886 if (serial_hds[i]) {
d601fac4 1887 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
4040ab72
DG
1888 }
1889 }
9fdf0c29 1890
639e8102
DG
1891 /* We always have at least the nvram device on VIO */
1892 spapr_create_nvram(spapr);
1893
3384f95c 1894 /* Set up PCI */
fa28f71b
AK
1895 spapr_pci_rtas_init();
1896
89dfd6e1 1897 phb = spapr_create_phb(spapr, 0);
3384f95c 1898
277f9acf 1899 for (i = 0; i < nb_nics; i++) {
8d90ad90
DG
1900 NICInfo *nd = &nd_table[i];
1901
1902 if (!nd->model) {
7267c094 1903 nd->model = g_strdup("ibmveth");
8d90ad90
DG
1904 }
1905
1906 if (strcmp(nd->model, "ibmveth") == 0) {
d601fac4 1907 spapr_vlan_create(spapr->vio_bus, nd);
8d90ad90 1908 } else {
29b358f9 1909 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
8d90ad90
DG
1910 }
1911 }
1912
6e270446 1913 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
d601fac4 1914 spapr_vscsi_create(spapr->vio_bus);
6e270446
BH
1915 }
1916
f28359d8 1917 /* Graphics */
8c9f64df 1918 if (spapr_vga_init(phb->bus)) {
3fc5acde 1919 spapr->has_graphics = true;
c6e76503 1920 machine->usb |= defaults_enabled() && !machine->usb_disabled;
f28359d8
LZ
1921 }
1922
4ee9ced9 1923 if (machine->usb) {
57040d45
TH
1924 if (smc->use_ohci_by_default) {
1925 pci_create_simple(phb->bus, -1, "pci-ohci");
1926 } else {
1927 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
1928 }
c86580b8 1929
35139a59 1930 if (spapr->has_graphics) {
c86580b8
MA
1931 USBBus *usb_bus = usb_bus_find(-1);
1932
1933 usb_create_simple(usb_bus, "usb-kbd");
1934 usb_create_simple(usb_bus, "usb-mouse");
35139a59
DG
1935 }
1936 }
1937
7f763a5d 1938 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
4d8d5467
BH
1939 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1940 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1941 exit(1);
1942 }
1943
9fdf0c29
DG
1944 if (kernel_filename) {
1945 uint64_t lowaddr = 0;
1946
9fdf0c29 1947 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
4ecd4d16 1948 NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE, 0);
3b66da82 1949 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
16457e7f
BH
1950 kernel_size = load_elf(kernel_filename,
1951 translate_kernel_address, NULL,
4ecd4d16 1952 NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE, 0);
16457e7f
BH
1953 kernel_le = kernel_size > 0;
1954 }
9fdf0c29 1955 if (kernel_size < 0) {
3b66da82
AK
1956 fprintf(stderr, "qemu: error loading %s: %s\n",
1957 kernel_filename, load_elf_strerror(kernel_size));
9fdf0c29
DG
1958 exit(1);
1959 }
1960
1961 /* load initrd */
1962 if (initrd_filename) {
4d8d5467
BH
1963 /* Try to locate the initrd in the gap between the kernel
1964 * and the firmware. Add a bit of space just in case
1965 */
1966 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
9fdf0c29 1967 initrd_size = load_image_targphys(initrd_filename, initrd_base,
4d8d5467 1968 load_limit - initrd_base);
9fdf0c29
DG
1969 if (initrd_size < 0) {
1970 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1971 initrd_filename);
1972 exit(1);
1973 }
1974 } else {
1975 initrd_base = 0;
1976 initrd_size = 0;
1977 }
4d8d5467 1978 }
a3467baa 1979
8e7ea787
AF
1980 if (bios_name == NULL) {
1981 bios_name = FW_FILE_NAME;
1982 }
1983 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
4c56440d 1984 if (!filename) {
68fea5a0 1985 error_report("Could not find LPAR firmware '%s'", bios_name);
4c56440d
SW
1986 exit(1);
1987 }
4d8d5467 1988 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
68fea5a0
TH
1989 if (fw_size <= 0) {
1990 error_report("Could not load LPAR firmware '%s'", filename);
4d8d5467
BH
1991 exit(1);
1992 }
1993 g_free(filename);
4d8d5467 1994
28e02042
DG
1995 /* FIXME: Should register things through the MachineState's qdev
1996 * interface, this is a legacy from the sPAPREnvironment structure
1997 * which predated MachineState but had a similar function */
4be21d56
DG
1998 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1999 register_savevm_live(NULL, "spapr/htab", -1, 1,
2000 &savevm_htab_handlers, spapr);
2001
9fdf0c29 2002 /* Prepare the device tree */
3bbf37f2 2003 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
16457e7f 2004 kernel_size, kernel_le,
31fe14d1
NF
2005 kernel_cmdline,
2006 spapr->check_exception_irq);
a3467baa 2007 assert(spapr->fdt_skel != NULL);
5b2128d2 2008
46503c2b
MR
2009 /* used by RTAS */
2010 QTAILQ_INIT(&spapr->ccs_list);
2011 qemu_register_reset(spapr_ccs_reset_hook, spapr);
2012
5b2128d2 2013 qemu_register_boot_set(spapr_boot_set, spapr);
9fdf0c29
DG
2014}
2015
135a129a
AK
2016static int spapr_kvm_type(const char *vm_type)
2017{
2018 if (!vm_type) {
2019 return 0;
2020 }
2021
2022 if (!strcmp(vm_type, "HV")) {
2023 return 1;
2024 }
2025
2026 if (!strcmp(vm_type, "PR")) {
2027 return 2;
2028 }
2029
2030 error_report("Unknown kvm-type specified '%s'", vm_type);
2031 exit(1);
2032}
2033
71461b0f 2034/*
627b84f4 2035 * Implementation of an interface to adjust firmware path
71461b0f
AK
2036 * for the bootindex property handling.
2037 */
2038static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2039 DeviceState *dev)
2040{
2041#define CAST(type, obj, name) \
2042 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2043 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2044 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2045
2046 if (d) {
2047 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2048 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2049 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2050
2051 if (spapr) {
2052 /*
2053 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2054 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2055 * in the top 16 bits of the 64-bit LUN
2056 */
2057 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2058 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2059 (uint64_t)id << 48);
2060 } else if (virtio) {
2061 /*
2062 * We use SRP luns of the form 01000000 | (target << 8) | lun
2063 * in the top 32 bits of the 64-bit LUN
2064 * Note: the quote above is from SLOF and it is wrong,
2065 * the actual binding is:
2066 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2067 */
2068 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2069 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2070 (uint64_t)id << 32);
2071 } else if (usb) {
2072 /*
2073 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2074 * in the top 32 bits of the 64-bit LUN
2075 */
2076 unsigned usb_port = atoi(usb->port->path);
2077 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2078 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2079 (uint64_t)id << 32);
2080 }
2081 }
2082
2083 if (phb) {
2084 /* Replace "pci" with "pci@800000020000000" */
2085 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2086 }
2087
2088 return NULL;
2089}
2090
23825581
EH
2091static char *spapr_get_kvm_type(Object *obj, Error **errp)
2092{
28e02042 2093 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2094
28e02042 2095 return g_strdup(spapr->kvm_type);
23825581
EH
2096}
2097
2098static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2099{
28e02042 2100 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2101
28e02042
DG
2102 g_free(spapr->kvm_type);
2103 spapr->kvm_type = g_strdup(value);
23825581
EH
2104}
2105
2106static void spapr_machine_initfn(Object *obj)
2107{
2108 object_property_add_str(obj, "kvm-type",
2109 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
49d2e648
MA
2110 object_property_set_description(obj, "kvm-type",
2111 "Specifies the KVM virtualization mode (HV, PR)",
2112 NULL);
23825581
EH
2113}
2114
87bbdd9c
DG
2115static void spapr_machine_finalizefn(Object *obj)
2116{
2117 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2118
2119 g_free(spapr->kvm_type);
2120}
2121
34316482
AK
2122static void ppc_cpu_do_nmi_on_cpu(void *arg)
2123{
2124 CPUState *cs = arg;
2125
2126 cpu_synchronize_state(cs);
2127 ppc_cpu_do_system_reset(cs);
2128}
2129
2130static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2131{
2132 CPUState *cs;
2133
2134 CPU_FOREACH(cs) {
2135 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
2136 }
2137}
2138
c20d332a
BR
2139static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
2140 uint32_t node, Error **errp)
2141{
2142 sPAPRDRConnector *drc;
2143 sPAPRDRConnectorClass *drck;
2144 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2145 int i, fdt_offset, fdt_size;
2146 void *fdt;
2147
2148 /*
2149 * Check for DRC connectors and send hotplug notification to the
2150 * guest only in case of hotplugged memory. This allows cold plugged
2151 * memory to be specified at boot time.
2152 */
2153 if (!dev->hotplugged) {
2154 return;
2155 }
2156
2157 for (i = 0; i < nr_lmbs; i++) {
2158 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2159 addr/SPAPR_MEMORY_BLOCK_SIZE);
2160 g_assert(drc);
2161
2162 fdt = create_device_tree(&fdt_size);
2163 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2164 SPAPR_MEMORY_BLOCK_SIZE);
2165
2166 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2167 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
c20d332a
BR
2168 addr += SPAPR_MEMORY_BLOCK_SIZE;
2169 }
0a417869 2170 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
c20d332a
BR
2171}
2172
2173static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2174 uint32_t node, Error **errp)
2175{
2176 Error *local_err = NULL;
2177 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2178 PCDIMMDevice *dimm = PC_DIMM(dev);
2179 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2180 MemoryRegion *mr = ddc->get_memory_region(dimm);
2181 uint64_t align = memory_region_get_alignment(mr);
2182 uint64_t size = memory_region_size(mr);
2183 uint64_t addr;
2184
2185 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2186 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2187 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2188 goto out;
2189 }
2190
d6a9b0b8 2191 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
c20d332a
BR
2192 if (local_err) {
2193 goto out;
2194 }
2195
2196 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2197 if (local_err) {
2198 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2199 goto out;
2200 }
2201
2202 spapr_add_lmbs(dev, addr, size, node, &error_abort);
2203
2204out:
2205 error_propagate(errp, local_err);
2206}
2207
2208static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2209 DeviceState *dev, Error **errp)
2210{
2211 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2212
2213 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
b556854b 2214 int node;
c20d332a
BR
2215
2216 if (!smc->dr_lmb_enabled) {
2217 error_setg(errp, "Memory hotplug not supported for this machine");
2218 return;
2219 }
2220 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2221 if (*errp) {
2222 return;
2223 }
2224
b556854b
BR
2225 /*
2226 * Currently PowerPC kernel doesn't allow hot-adding memory to
2227 * memory-less node, but instead will silently add the memory
2228 * to the first node that has some memory. This causes two
2229 * unexpected behaviours for the user.
2230 *
2231 * - Memory gets hotplugged to a different node than what the user
2232 * specified.
2233 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2234 * to memory-less node, a reboot will set things accordingly
2235 * and the previously hotplugged memory now ends in the right node.
2236 * This appears as if some memory moved from one node to another.
2237 *
2238 * So until kernel starts supporting memory hotplug to memory-less
2239 * nodes, just prevent such attempts upfront in QEMU.
2240 */
2241 if (nb_numa_nodes && !numa_info[node].node_mem) {
2242 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2243 node);
2244 return;
2245 }
2246
c20d332a
BR
2247 spapr_memory_plug(hotplug_dev, dev, node, errp);
2248 }
2249}
2250
2251static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2252 DeviceState *dev, Error **errp)
2253{
2254 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2255 error_setg(errp, "Memory hot unplug not supported by sPAPR");
2256 }
2257}
2258
2259static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine,
2260 DeviceState *dev)
2261{
2262 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2263 return HOTPLUG_HANDLER(machine);
2264 }
2265 return NULL;
2266}
2267
20bb648d
DG
2268static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2269{
2270 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2271 * socket means much for the paravirtualized PAPR platform) */
2272 return cpu_index / smp_threads / smp_cores;
2273}
2274
29ee3247
AK
2275static void spapr_machine_class_init(ObjectClass *oc, void *data)
2276{
2277 MachineClass *mc = MACHINE_CLASS(oc);
224245bf 2278 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
71461b0f 2279 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
34316482 2280 NMIClass *nc = NMI_CLASS(oc);
c20d332a 2281 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
958db90c 2282
0eb9054c 2283 mc->desc = "pSeries Logical Partition (PAPR compliant)";
fc9f38c3
DG
2284
2285 /*
2286 * We set up the default / latest behaviour here. The class_init
2287 * functions for the specific versioned machine types can override
2288 * these details for backwards compatibility
2289 */
958db90c
MA
2290 mc->init = ppc_spapr_init;
2291 mc->reset = ppc_spapr_reset;
2292 mc->block_default_type = IF_SCSI;
38b02bd8 2293 mc->max_cpus = MAX_CPUMASK_BITS;
958db90c 2294 mc->no_parallel = 1;
5b2128d2 2295 mc->default_boot_order = "";
a34944fe 2296 mc->default_ram_size = 512 * M_BYTE;
958db90c 2297 mc->kvm_type = spapr_kvm_type;
9e3f9733 2298 mc->has_dynamic_sysbus = true;
e4024630 2299 mc->pci_allow_0_address = true;
c20d332a
BR
2300 mc->get_hotplug_handler = spapr_get_hotpug_handler;
2301 hc->plug = spapr_machine_device_plug;
2302 hc->unplug = spapr_machine_device_unplug;
20bb648d 2303 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
00b4fbe2 2304
fc9f38c3 2305 smc->dr_lmb_enabled = true;
71461b0f 2306 fwc->get_dev_path = spapr_get_fw_dev_path;
34316482 2307 nc->nmi_monitor_handler = spapr_nmi;
29ee3247
AK
2308}
2309
2310static const TypeInfo spapr_machine_info = {
2311 .name = TYPE_SPAPR_MACHINE,
2312 .parent = TYPE_MACHINE,
4aee7362 2313 .abstract = true,
6ca1502e 2314 .instance_size = sizeof(sPAPRMachineState),
23825581 2315 .instance_init = spapr_machine_initfn,
87bbdd9c 2316 .instance_finalize = spapr_machine_finalizefn,
183930c0 2317 .class_size = sizeof(sPAPRMachineClass),
29ee3247 2318 .class_init = spapr_machine_class_init,
71461b0f
AK
2319 .interfaces = (InterfaceInfo[]) {
2320 { TYPE_FW_PATH_PROVIDER },
34316482 2321 { TYPE_NMI },
c20d332a 2322 { TYPE_HOTPLUG_HANDLER },
71461b0f
AK
2323 { }
2324 },
29ee3247
AK
2325};
2326
fccbc785 2327#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
5013c547
DG
2328 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
2329 void *data) \
2330 { \
2331 MachineClass *mc = MACHINE_CLASS(oc); \
2332 spapr_machine_##suffix##_class_options(mc); \
fccbc785
DG
2333 if (latest) { \
2334 mc->alias = "pseries"; \
2335 mc->is_default = 1; \
2336 } \
5013c547
DG
2337 } \
2338 static void spapr_machine_##suffix##_instance_init(Object *obj) \
2339 { \
2340 MachineState *machine = MACHINE(obj); \
2341 spapr_machine_##suffix##_instance_options(machine); \
2342 } \
2343 static const TypeInfo spapr_machine_##suffix##_info = { \
2344 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
2345 .parent = TYPE_SPAPR_MACHINE, \
2346 .class_init = spapr_machine_##suffix##_class_init, \
2347 .instance_init = spapr_machine_##suffix##_instance_init, \
2348 }; \
2349 static void spapr_machine_register_##suffix(void) \
2350 { \
2351 type_register(&spapr_machine_##suffix##_info); \
2352 } \
2353 machine_init(spapr_machine_register_##suffix)
2354
4b23699c
DG
2355/*
2356 * pseries-2.6
2357 */
2358static void spapr_machine_2_6_instance_options(MachineState *machine)
2359{
2360}
2361
2362static void spapr_machine_2_6_class_options(MachineClass *mc)
2363{
2364 /* Defaults for the latest behaviour inherited from the base class */
2365}
2366
2367DEFINE_SPAPR_MACHINE(2_6, "2.6", true);
2368
1c5f29bb
DG
2369/*
2370 * pseries-2.5
2371 */
4b23699c
DG
2372#define SPAPR_COMPAT_2_5 \
2373 HW_COMPAT_2_5
2374
5013c547 2375static void spapr_machine_2_5_instance_options(MachineState *machine)
1c5f29bb 2376{
5013c547
DG
2377}
2378
2379static void spapr_machine_2_5_class_options(MachineClass *mc)
2380{
57040d45
TH
2381 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2382
4b23699c 2383 spapr_machine_2_6_class_options(mc);
57040d45 2384 smc->use_ohci_by_default = true;
4b23699c 2385 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
1c5f29bb
DG
2386}
2387
4b23699c 2388DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
1c5f29bb
DG
2389
2390/*
2391 * pseries-2.4
2392 */
80fd50f9
CH
2393#define SPAPR_COMPAT_2_4 \
2394 HW_COMPAT_2_4
2395
5013c547 2396static void spapr_machine_2_4_instance_options(MachineState *machine)
1c5f29bb 2397{
5013c547
DG
2398 spapr_machine_2_5_instance_options(machine);
2399}
1c5f29bb 2400
5013c547
DG
2401static void spapr_machine_2_4_class_options(MachineClass *mc)
2402{
fc9f38c3
DG
2403 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2404
2405 spapr_machine_2_5_class_options(mc);
fc9f38c3 2406 smc->dr_lmb_enabled = false;
f949b4e5 2407 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
1c5f29bb
DG
2408}
2409
fccbc785 2410DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
1c5f29bb
DG
2411
2412/*
2413 * pseries-2.3
2414 */
38ff32c6 2415#define SPAPR_COMPAT_2_3 \
80fd50f9 2416 SPAPR_COMPAT_2_4 \
7619c7b0
MR
2417 HW_COMPAT_2_3 \
2418 {\
2419 .driver = "spapr-pci-host-bridge",\
2420 .property = "dynamic-reconfiguration",\
2421 .value = "off",\
2422 },
38ff32c6 2423
5013c547 2424static void spapr_machine_2_3_instance_options(MachineState *machine)
d25228e7 2425{
5013c547 2426 spapr_machine_2_4_instance_options(machine);
ff14e817 2427 savevm_skip_section_footers();
13d16814 2428 global_state_set_optional();
d25228e7
JW
2429}
2430
5013c547 2431static void spapr_machine_2_3_class_options(MachineClass *mc)
6026db45 2432{
fc9f38c3 2433 spapr_machine_2_4_class_options(mc);
f949b4e5 2434 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
6026db45 2435}
fccbc785 2436DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
6026db45 2437
1c5f29bb
DG
2438/*
2439 * pseries-2.2
2440 */
2441
2442#define SPAPR_COMPAT_2_2 \
2443 SPAPR_COMPAT_2_3 \
2444 HW_COMPAT_2_2 \
2445 {\
2446 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2447 .property = "mem_win_size",\
2448 .value = "0x20000000",\
2449 },
2450
5013c547 2451static void spapr_machine_2_2_instance_options(MachineState *machine)
1c5f29bb 2452{
5013c547 2453 spapr_machine_2_3_instance_options(machine);
1c5f29bb
DG
2454}
2455
5013c547 2456static void spapr_machine_2_2_class_options(MachineClass *mc)
4aee7362 2457{
fc9f38c3 2458 spapr_machine_2_3_class_options(mc);
f949b4e5 2459 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4aee7362 2460}
fccbc785 2461DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4aee7362 2462
1c5f29bb
DG
2463/*
2464 * pseries-2.1
2465 */
2466#define SPAPR_COMPAT_2_1 \
2467 SPAPR_COMPAT_2_2 \
2468 HW_COMPAT_2_1
3dab0244 2469
5013c547 2470static void spapr_machine_2_1_instance_options(MachineState *machine)
1c5f29bb 2471{
5013c547 2472 spapr_machine_2_2_instance_options(machine);
1c5f29bb 2473}
d25228e7 2474
5013c547 2475static void spapr_machine_2_1_class_options(MachineClass *mc)
d25228e7 2476{
fc9f38c3 2477 spapr_machine_2_2_class_options(mc);
f949b4e5 2478 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
d25228e7 2479}
fccbc785 2480DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
fb0fc8f6 2481
29ee3247 2482static void spapr_machine_register_types(void)
9fdf0c29 2483{
29ee3247 2484 type_register_static(&spapr_machine_info);
9fdf0c29
DG
2485}
2486
29ee3247 2487type_init(spapr_machine_register_types)