]> git.proxmox.com Git - mirror_qemu.git/blame - hw/ppc/spapr.c
migration: ram_control_* are implemented in qemu_file
[mirror_qemu.git] / hw / ppc / spapr.c
CommitLineData
9fdf0c29
DG
1/*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
0d75590d 27#include "qemu/osdep.h"
da34e65c 28#include "qapi/error.h"
9c17d615 29#include "sysemu/sysemu.h"
e35704ba 30#include "sysemu/numa.h"
83c9f4ca 31#include "hw/hw.h"
03dd024f 32#include "qemu/log.h"
71461b0f 33#include "hw/fw-path-provider.h"
9fdf0c29 34#include "elf.h"
1422e32d 35#include "net/net.h"
ad440b4a 36#include "sysemu/device_tree.h"
fa1d36df 37#include "sysemu/block-backend.h"
9c17d615 38#include "sysemu/cpus.h"
b3946626 39#include "sysemu/hw_accel.h"
e97c3636 40#include "kvm_ppc.h"
ff14e817 41#include "migration/migration.h"
f2a8f0a6 42#include "migration/register.h"
4be21d56 43#include "mmu-hash64.h"
b4db5413 44#include "mmu-book3s-v3.h"
3794d548 45#include "qom/cpu.h"
9fdf0c29
DG
46
47#include "hw/boards.h"
0d09e41a 48#include "hw/ppc/ppc.h"
9fdf0c29
DG
49#include "hw/loader.h"
50
7804c353 51#include "hw/ppc/fdt.h"
0d09e41a
PB
52#include "hw/ppc/spapr.h"
53#include "hw/ppc/spapr_vio.h"
54#include "hw/pci-host/spapr.h"
55#include "hw/ppc/xics.h"
a2cb15b0 56#include "hw/pci/msi.h"
9fdf0c29 57
83c9f4ca 58#include "hw/pci/pci.h"
71461b0f
AK
59#include "hw/scsi/scsi.h"
60#include "hw/virtio/virtio-scsi.h"
c4e13492 61#include "hw/virtio/vhost-scsi-common.h"
f61b4bed 62
022c62cb 63#include "exec/address-spaces.h"
35139a59 64#include "hw/usb.h"
1de7afc9 65#include "qemu/config-file.h"
135a129a 66#include "qemu/error-report.h"
2a6593cb 67#include "trace.h"
34316482 68#include "hw/nmi.h"
6449da45 69#include "hw/intc/intc.h"
890c2b77 70
68a27b20 71#include "hw/compat.h"
f348b6d1 72#include "qemu/cutils.h"
94a94e4c 73#include "hw/ppc/spapr_cpu_core.h"
2474bfd4 74#include "qmp-commands.h"
68a27b20 75
9fdf0c29
DG
76#include <libfdt.h>
77
4d8d5467
BH
78/* SLOF memory layout:
79 *
80 * SLOF raw image loaded at 0, copies its romfs right below the flat
81 * device-tree, then position SLOF itself 31M below that
82 *
83 * So we set FW_OVERHEAD to 40MB which should account for all of that
84 * and more
85 *
86 * We load our kernel at 4M, leaving space for SLOF initial image
87 */
38b02bd8 88#define FDT_MAX_SIZE 0x100000
39ac8455 89#define RTAS_MAX_SIZE 0x10000
b7d1f77a 90#define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
a9f8ad8f
DG
91#define FW_MAX_SIZE 0x400000
92#define FW_FILE_NAME "slof.bin"
4d8d5467
BH
93#define FW_OVERHEAD 0x2800000
94#define KERNEL_LOAD_ADDR FW_MAX_SIZE
a9f8ad8f 95
4d8d5467 96#define MIN_RMA_SLOF 128UL
9fdf0c29 97
0c103f8e
DG
98#define PHANDLE_XICP 0x00001111
99
7f763a5d
DG
100#define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
101
71cd4dac
CLG
102static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
103 const char *type_ics,
104 int nr_irqs, Error **errp)
c04d6cfa 105{
175d2aa0 106 Error *local_err = NULL;
71cd4dac 107 Object *obj;
4e4169f7 108
71cd4dac 109 obj = object_new(type_ics);
175d2aa0 110 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
71cd4dac 111 object_property_add_const_link(obj, "xics", OBJECT(spapr), &error_abort);
175d2aa0
GK
112 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
113 if (local_err) {
114 goto error;
115 }
71cd4dac 116 object_property_set_bool(obj, true, "realized", &local_err);
175d2aa0
GK
117 if (local_err) {
118 goto error;
4e4169f7 119 }
4e4169f7 120
71cd4dac 121 return ICS_SIMPLE(obj);
175d2aa0
GK
122
123error:
124 error_propagate(errp, local_err);
125 return NULL;
c04d6cfa
AL
126}
127
71cd4dac 128static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
c04d6cfa 129{
71cd4dac 130 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
c04d6cfa 131
11ad93f6 132 if (kvm_enabled()) {
2192a930 133 if (machine_kernel_irqchip_allowed(machine) &&
71cd4dac
CLG
134 !xics_kvm_init(spapr, errp)) {
135 spapr->icp_type = TYPE_KVM_ICP;
3d85885a 136 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
11ad93f6 137 }
71cd4dac 138 if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
3d85885a
GK
139 error_prepend(errp, "kernel_irqchip requested but unavailable: ");
140 return;
11ad93f6
DG
141 }
142 }
143
71cd4dac 144 if (!spapr->ics) {
f63ebfe0 145 xics_spapr_init(spapr);
71cd4dac
CLG
146 spapr->icp_type = TYPE_ICP;
147 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
3d85885a
GK
148 if (!spapr->ics) {
149 return;
150 }
c04d6cfa 151 }
c04d6cfa
AL
152}
153
833d4668
AK
154static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
155 int smt_threads)
156{
157 int i, ret = 0;
158 uint32_t servers_prop[smt_threads];
159 uint32_t gservers_prop[smt_threads * 2];
160 int index = ppc_get_vcpu_dt_id(cpu);
161
d6e166c0
DG
162 if (cpu->compat_pvr) {
163 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
6d9412ea
AK
164 if (ret < 0) {
165 return ret;
166 }
167 }
168
833d4668
AK
169 /* Build interrupt servers and gservers properties */
170 for (i = 0; i < smt_threads; i++) {
171 servers_prop[i] = cpu_to_be32(index + i);
172 /* Hack, direct the group queues back to cpu 0 */
173 gservers_prop[i*2] = cpu_to_be32(index + i);
174 gservers_prop[i*2 + 1] = 0;
175 }
176 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
177 servers_prop, sizeof(servers_prop));
178 if (ret < 0) {
179 return ret;
180 }
181 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
182 gservers_prop, sizeof(gservers_prop));
183
184 return ret;
185}
186
99861ecb 187static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
0da6f3fe 188{
0da6f3fe
BR
189 int index = ppc_get_vcpu_dt_id(cpu);
190 uint32_t associativity[] = {cpu_to_be32(0x5),
191 cpu_to_be32(0x0),
192 cpu_to_be32(0x0),
193 cpu_to_be32(0x0),
15f8b142 194 cpu_to_be32(cpu->node_id),
0da6f3fe
BR
195 cpu_to_be32(index)};
196
197 /* Advertise NUMA via ibm,associativity */
99861ecb 198 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
0da6f3fe 199 sizeof(associativity));
0da6f3fe
BR
200}
201
86d5771a 202/* Populate the "ibm,pa-features" property */
e957f6a9
SB
203static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset,
204 bool legacy_guest)
86d5771a
SB
205{
206 uint8_t pa_features_206[] = { 6, 0,
207 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
208 uint8_t pa_features_207[] = { 24, 0,
209 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
210 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
211 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
212 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
9fb4541f
SB
213 uint8_t pa_features_300[] = { 66, 0,
214 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
215 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
217 /* 6: DS207 */
218 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
219 /* 16: Vector */
86d5771a 220 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
9fb4541f 221 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
9bf502fe 222 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
9fb4541f
SB
223 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
224 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
225 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
226 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
227 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
228 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
229 /* 42: PM, 44: PC RA, 46: SC vec'd */
230 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
231 /* 48: SIMD, 50: QP BFP, 52: String */
232 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
233 /* 54: DecFP, 56: DecI, 58: SHA */
234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
235 /* 60: NM atomic, 62: RNG */
236 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
237 };
86d5771a
SB
238 uint8_t *pa_features;
239 size_t pa_size;
240
241 switch (POWERPC_MMU_VER(env->mmu_model)) {
242 case POWERPC_MMU_VER_2_06:
243 pa_features = pa_features_206;
244 pa_size = sizeof(pa_features_206);
245 break;
246 case POWERPC_MMU_VER_2_07:
247 pa_features = pa_features_207;
248 pa_size = sizeof(pa_features_207);
249 break;
250 case POWERPC_MMU_VER_3_00:
251 pa_features = pa_features_300;
252 pa_size = sizeof(pa_features_300);
253 break;
254 default:
255 return;
256 }
257
258 if (env->ci_large_pages) {
259 /*
260 * Note: we keep CI large pages off by default because a 64K capable
261 * guest provisioned with large pages might otherwise try to map a qemu
262 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
263 * even if that qemu runs on a 4k host.
264 * We dd this bit back here if we are confident this is not an issue
265 */
266 pa_features[3] |= 0x20;
267 }
268 if (kvmppc_has_cap_htm() && pa_size > 24) {
269 pa_features[24] |= 0x80; /* Transactional memory support */
270 }
e957f6a9
SB
271 if (legacy_guest && pa_size > 40) {
272 /* Workaround for broken kernels that attempt (guest) radix
273 * mode when they can't handle it, if they see the radix bit set
274 * in pa-features. So hide it from them. */
275 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
276 }
86d5771a
SB
277
278 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
279}
280
28e02042 281static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
6e806cc3 282{
82677ed2
AK
283 int ret = 0, offset, cpus_offset;
284 CPUState *cs;
6e806cc3
BR
285 char cpu_model[32];
286 int smt = kvmppc_smt_threads();
7f763a5d 287 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
6e806cc3 288
82677ed2
AK
289 CPU_FOREACH(cs) {
290 PowerPCCPU *cpu = POWERPC_CPU(cs);
e957f6a9 291 CPUPPCState *env = &cpu->env;
82677ed2
AK
292 DeviceClass *dc = DEVICE_GET_CLASS(cs);
293 int index = ppc_get_vcpu_dt_id(cpu);
12dbeb16 294 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
6e806cc3 295
0f20ba62 296 if ((index % smt) != 0) {
6e806cc3
BR
297 continue;
298 }
299
82677ed2 300 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
6e806cc3 301
82677ed2
AK
302 cpus_offset = fdt_path_offset(fdt, "/cpus");
303 if (cpus_offset < 0) {
304 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
305 "cpus");
306 if (cpus_offset < 0) {
307 return cpus_offset;
308 }
309 }
310 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
6e806cc3 311 if (offset < 0) {
82677ed2
AK
312 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
313 if (offset < 0) {
314 return offset;
315 }
6e806cc3
BR
316 }
317
7f763a5d
DG
318 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
319 pft_size_prop, sizeof(pft_size_prop));
6e806cc3
BR
320 if (ret < 0) {
321 return ret;
322 }
833d4668 323
99861ecb
IM
324 if (nb_numa_nodes > 1) {
325 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
326 if (ret < 0) {
327 return ret;
328 }
0da6f3fe
BR
329 }
330
12dbeb16 331 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
833d4668
AK
332 if (ret < 0) {
333 return ret;
334 }
e957f6a9
SB
335
336 spapr_populate_pa_features(env, fdt, offset,
337 spapr->cas_legacy_guest_workaround);
6e806cc3
BR
338 }
339 return ret;
340}
341
b082d65a
AK
342static hwaddr spapr_node0_size(void)
343{
fb164994
DG
344 MachineState *machine = MACHINE(qdev_get_machine());
345
b082d65a
AK
346 if (nb_numa_nodes) {
347 int i;
348 for (i = 0; i < nb_numa_nodes; ++i) {
349 if (numa_info[i].node_mem) {
fb164994
DG
350 return MIN(pow2floor(numa_info[i].node_mem),
351 machine->ram_size);
b082d65a
AK
352 }
353 }
354 }
fb164994 355 return machine->ram_size;
b082d65a
AK
356}
357
a1d59c0f
AK
358static void add_str(GString *s, const gchar *s1)
359{
360 g_string_append_len(s, s1, strlen(s1) + 1);
361}
7f763a5d 362
03d196b7 363static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
26a8c353
AK
364 hwaddr size)
365{
366 uint32_t associativity[] = {
367 cpu_to_be32(0x4), /* length */
368 cpu_to_be32(0x0), cpu_to_be32(0x0),
c3b4f589 369 cpu_to_be32(0x0), cpu_to_be32(nodeid)
26a8c353
AK
370 };
371 char mem_name[32];
372 uint64_t mem_reg_property[2];
373 int off;
374
375 mem_reg_property[0] = cpu_to_be64(start);
376 mem_reg_property[1] = cpu_to_be64(size);
377
378 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
379 off = fdt_add_subnode(fdt, 0, mem_name);
380 _FDT(off);
381 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
382 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
383 sizeof(mem_reg_property))));
384 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
385 sizeof(associativity))));
03d196b7 386 return off;
26a8c353
AK
387}
388
28e02042 389static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
7f763a5d 390{
fb164994 391 MachineState *machine = MACHINE(spapr);
7db8a127
AK
392 hwaddr mem_start, node_size;
393 int i, nb_nodes = nb_numa_nodes;
394 NodeInfo *nodes = numa_info;
395 NodeInfo ramnode;
396
397 /* No NUMA nodes, assume there is just one node with whole RAM */
398 if (!nb_numa_nodes) {
399 nb_nodes = 1;
fb164994 400 ramnode.node_mem = machine->ram_size;
7db8a127 401 nodes = &ramnode;
5fe269b1 402 }
7f763a5d 403
7db8a127
AK
404 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
405 if (!nodes[i].node_mem) {
406 continue;
407 }
fb164994 408 if (mem_start >= machine->ram_size) {
5fe269b1
PM
409 node_size = 0;
410 } else {
7db8a127 411 node_size = nodes[i].node_mem;
fb164994
DG
412 if (node_size > machine->ram_size - mem_start) {
413 node_size = machine->ram_size - mem_start;
5fe269b1
PM
414 }
415 }
7db8a127
AK
416 if (!mem_start) {
417 /* ppc_spapr_init() checks for rma_size <= node0_size already */
e8f986fc 418 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
7db8a127
AK
419 mem_start += spapr->rma_size;
420 node_size -= spapr->rma_size;
421 }
6010818c
AK
422 for ( ; node_size; ) {
423 hwaddr sizetmp = pow2floor(node_size);
424
425 /* mem_start != 0 here */
426 if (ctzl(mem_start) < ctzl(sizetmp)) {
427 sizetmp = 1ULL << ctzl(mem_start);
428 }
429
430 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
431 node_size -= sizetmp;
432 mem_start += sizetmp;
433 }
7f763a5d
DG
434 }
435
436 return 0;
437}
438
0da6f3fe
BR
439static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
440 sPAPRMachineState *spapr)
441{
442 PowerPCCPU *cpu = POWERPC_CPU(cs);
443 CPUPPCState *env = &cpu->env;
444 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
445 int index = ppc_get_vcpu_dt_id(cpu);
446 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
447 0xffffffff, 0xffffffff};
afd10a0f
BR
448 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
449 : SPAPR_TIMEBASE_FREQ;
0da6f3fe
BR
450 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
451 uint32_t page_sizes_prop[64];
452 size_t page_sizes_prop_size;
22419c2a 453 uint32_t vcpus_per_socket = smp_threads * smp_cores;
0da6f3fe 454 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
12dbeb16 455 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
af81cf32 456 sPAPRDRConnector *drc;
af81cf32 457 int drc_index;
c64abd1f
SB
458 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
459 int i;
af81cf32 460
fbf55397 461 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
af81cf32 462 if (drc) {
0b55aa91 463 drc_index = spapr_drc_index(drc);
af81cf32
BR
464 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
465 }
0da6f3fe
BR
466
467 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
468 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
469
470 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
471 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
472 env->dcache_line_size)));
473 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
474 env->dcache_line_size)));
475 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
476 env->icache_line_size)));
477 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
478 env->icache_line_size)));
479
480 if (pcc->l1_dcache_size) {
481 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
482 pcc->l1_dcache_size)));
483 } else {
ce9863b7 484 error_report("Warning: Unknown L1 dcache size for cpu");
0da6f3fe
BR
485 }
486 if (pcc->l1_icache_size) {
487 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
488 pcc->l1_icache_size)));
489 } else {
ce9863b7 490 error_report("Warning: Unknown L1 icache size for cpu");
0da6f3fe
BR
491 }
492
493 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
494 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
fd5da5c4 495 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
0da6f3fe
BR
496 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
497 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
498 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
499
500 if (env->spr_cb[SPR_PURR].oea_read) {
501 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
502 }
503
504 if (env->mmu_model & POWERPC_MMU_1TSEG) {
505 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
506 segs, sizeof(segs))));
507 }
508
509 /* Advertise VMX/VSX (vector extensions) if available
510 * 0 / no property == no vector extensions
511 * 1 == VMX / Altivec available
512 * 2 == VSX available */
513 if (env->insns_flags & PPC_ALTIVEC) {
514 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
515
516 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
517 }
518
519 /* Advertise DFP (Decimal Floating Point) if available
520 * 0 / no property == no DFP
521 * 1 == DFP available */
522 if (env->insns_flags2 & PPC2_DFP) {
523 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
524 }
525
3654fa95 526 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
0da6f3fe
BR
527 sizeof(page_sizes_prop));
528 if (page_sizes_prop_size) {
529 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
530 page_sizes_prop, page_sizes_prop_size)));
531 }
532
e957f6a9 533 spapr_populate_pa_features(env, fdt, offset, false);
90da0d5a 534
0da6f3fe 535 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
22419c2a 536 cs->cpu_index / vcpus_per_socket)));
0da6f3fe
BR
537
538 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
539 pft_size_prop, sizeof(pft_size_prop))));
540
99861ecb
IM
541 if (nb_numa_nodes > 1) {
542 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
543 }
0da6f3fe 544
12dbeb16 545 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
c64abd1f
SB
546
547 if (pcc->radix_page_info) {
548 for (i = 0; i < pcc->radix_page_info->count; i++) {
549 radix_AP_encodings[i] =
550 cpu_to_be32(pcc->radix_page_info->entries[i]);
551 }
552 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
553 radix_AP_encodings,
554 pcc->radix_page_info->count *
555 sizeof(radix_AP_encodings[0]))));
556 }
0da6f3fe
BR
557}
558
559static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
560{
561 CPUState *cs;
562 int cpus_offset;
563 char *nodename;
564 int smt = kvmppc_smt_threads();
565
566 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
567 _FDT(cpus_offset);
568 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
569 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
570
571 /*
572 * We walk the CPUs in reverse order to ensure that CPU DT nodes
573 * created by fdt_add_subnode() end up in the right order in FDT
574 * for the guest kernel the enumerate the CPUs correctly.
575 */
576 CPU_FOREACH_REVERSE(cs) {
577 PowerPCCPU *cpu = POWERPC_CPU(cs);
578 int index = ppc_get_vcpu_dt_id(cpu);
579 DeviceClass *dc = DEVICE_GET_CLASS(cs);
580 int offset;
581
582 if ((index % smt) != 0) {
583 continue;
584 }
585
586 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
587 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
588 g_free(nodename);
589 _FDT(offset);
590 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
591 }
592
593}
594
03d196b7
BR
595/*
596 * Adds ibm,dynamic-reconfiguration-memory node.
597 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
598 * of this device tree node.
599 */
600static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
601{
602 MachineState *machine = MACHINE(spapr);
603 int ret, i, offset;
604 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
605 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
d0e5a8f2
BR
606 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
607 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
608 memory_region_size(&spapr->hotplug_memory.mr)) /
609 lmb_size;
03d196b7 610 uint32_t *int_buf, *cur_index, buf_len;
6663864e 611 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
03d196b7 612
16c25aef 613 /*
d0e5a8f2 614 * Don't create the node if there is no hotpluggable memory
16c25aef 615 */
d0e5a8f2 616 if (machine->ram_size == machine->maxram_size) {
16c25aef
BR
617 return 0;
618 }
619
ef001f06
TH
620 /*
621 * Allocate enough buffer size to fit in ibm,dynamic-memory
622 * or ibm,associativity-lookup-arrays
623 */
624 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
625 * sizeof(uint32_t);
03d196b7
BR
626 cur_index = int_buf = g_malloc0(buf_len);
627
628 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
629
630 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
631 sizeof(prop_lmb_size));
632 if (ret < 0) {
633 goto out;
634 }
635
636 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
637 if (ret < 0) {
638 goto out;
639 }
640
641 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
642 if (ret < 0) {
643 goto out;
644 }
645
646 /* ibm,dynamic-memory */
647 int_buf[0] = cpu_to_be32(nr_lmbs);
648 cur_index++;
649 for (i = 0; i < nr_lmbs; i++) {
d0e5a8f2 650 uint64_t addr = i * lmb_size;
03d196b7
BR
651 uint32_t *dynamic_memory = cur_index;
652
d0e5a8f2
BR
653 if (i >= hotplug_lmb_start) {
654 sPAPRDRConnector *drc;
d0e5a8f2 655
fbf55397 656 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
d0e5a8f2 657 g_assert(drc);
d0e5a8f2
BR
658
659 dynamic_memory[0] = cpu_to_be32(addr >> 32);
660 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
0b55aa91 661 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
d0e5a8f2
BR
662 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
663 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
664 if (memory_region_present(get_system_memory(), addr)) {
665 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
666 } else {
667 dynamic_memory[5] = cpu_to_be32(0);
668 }
03d196b7 669 } else {
d0e5a8f2
BR
670 /*
671 * LMB information for RMA, boot time RAM and gap b/n RAM and
672 * hotplug memory region -- all these are marked as reserved
673 * and as having no valid DRC.
674 */
675 dynamic_memory[0] = cpu_to_be32(addr >> 32);
676 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
677 dynamic_memory[2] = cpu_to_be32(0);
678 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
679 dynamic_memory[4] = cpu_to_be32(-1);
680 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
681 SPAPR_LMB_FLAGS_DRC_INVALID);
03d196b7
BR
682 }
683
684 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
685 }
686 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
687 if (ret < 0) {
688 goto out;
689 }
690
691 /* ibm,associativity-lookup-arrays */
692 cur_index = int_buf;
6663864e 693 int_buf[0] = cpu_to_be32(nr_nodes);
03d196b7
BR
694 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
695 cur_index += 2;
6663864e 696 for (i = 0; i < nr_nodes; i++) {
03d196b7
BR
697 uint32_t associativity[] = {
698 cpu_to_be32(0x0),
699 cpu_to_be32(0x0),
700 cpu_to_be32(0x0),
701 cpu_to_be32(i)
702 };
703 memcpy(cur_index, associativity, sizeof(associativity));
704 cur_index += 4;
705 }
706 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
707 (cur_index - int_buf) * sizeof(uint32_t));
708out:
709 g_free(int_buf);
710 return ret;
711}
712
6787d27b
MR
713static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
714 sPAPROptionVector *ov5_updates)
715{
716 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
417ece33 717 int ret = 0, offset;
6787d27b
MR
718
719 /* Generate ibm,dynamic-reconfiguration-memory node if required */
720 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
721 g_assert(smc->dr_lmb_enabled);
722 ret = spapr_populate_drconf_memory(spapr, fdt);
417ece33
MR
723 if (ret) {
724 goto out;
725 }
6787d27b
MR
726 }
727
417ece33
MR
728 offset = fdt_path_offset(fdt, "/chosen");
729 if (offset < 0) {
730 offset = fdt_add_subnode(fdt, 0, "chosen");
731 if (offset < 0) {
732 return offset;
733 }
734 }
735 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
736 "ibm,architecture-vec-5");
737
738out:
6787d27b
MR
739 return ret;
740}
741
03d196b7
BR
742int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
743 target_ulong addr, target_ulong size,
6787d27b 744 sPAPROptionVector *ov5_updates)
03d196b7
BR
745{
746 void *fdt, *fdt_skel;
747 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
03d196b7
BR
748
749 size -= sizeof(hdr);
750
751 /* Create sceleton */
752 fdt_skel = g_malloc0(size);
753 _FDT((fdt_create(fdt_skel, size)));
754 _FDT((fdt_begin_node(fdt_skel, "")));
755 _FDT((fdt_end_node(fdt_skel)));
756 _FDT((fdt_finish(fdt_skel)));
757 fdt = g_malloc0(size);
758 _FDT((fdt_open_into(fdt_skel, fdt, size)));
759 g_free(fdt_skel);
760
761 /* Fixup cpu nodes */
5b120785 762 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
03d196b7 763
6787d27b
MR
764 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
765 return -1;
03d196b7
BR
766 }
767
768 /* Pack resulting tree */
769 _FDT((fdt_pack(fdt)));
770
771 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
772 trace_spapr_cas_failed(size);
773 return -1;
774 }
775
776 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
777 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
778 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
779 g_free(fdt);
780
781 return 0;
782}
783
3f5dabce
DG
784static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
785{
786 int rtas;
787 GString *hypertas = g_string_sized_new(256);
788 GString *qemu_hypertas = g_string_sized_new(256);
789 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
790 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
791 memory_region_size(&spapr->hotplug_memory.mr);
792 uint32_t lrdr_capacity[] = {
793 cpu_to_be32(max_hotplug_addr >> 32),
794 cpu_to_be32(max_hotplug_addr & 0xffffffff),
795 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
796 cpu_to_be32(max_cpus / smp_threads),
797 };
798
799 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
800
801 /* hypertas */
802 add_str(hypertas, "hcall-pft");
803 add_str(hypertas, "hcall-term");
804 add_str(hypertas, "hcall-dabr");
805 add_str(hypertas, "hcall-interrupt");
806 add_str(hypertas, "hcall-tce");
807 add_str(hypertas, "hcall-vio");
808 add_str(hypertas, "hcall-splpar");
809 add_str(hypertas, "hcall-bulk");
810 add_str(hypertas, "hcall-set-mode");
811 add_str(hypertas, "hcall-sprg0");
812 add_str(hypertas, "hcall-copy");
813 add_str(hypertas, "hcall-debug");
814 add_str(qemu_hypertas, "hcall-memop1");
815
816 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
817 add_str(hypertas, "hcall-multi-tce");
818 }
819 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
820 hypertas->str, hypertas->len));
821 g_string_free(hypertas, TRUE);
822 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
823 qemu_hypertas->str, qemu_hypertas->len));
824 g_string_free(qemu_hypertas, TRUE);
825
826 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
827 refpoints, sizeof(refpoints)));
828
829 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
830 RTAS_ERROR_LOG_MAX));
831 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
832 RTAS_EVENT_SCAN_RATE));
833
834 if (msi_nonbroken) {
835 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
836 }
837
838 /*
839 * According to PAPR, rtas ibm,os-term does not guarantee a return
840 * back to the guest cpu.
841 *
842 * While an additional ibm,extended-os-term property indicates
843 * that rtas call return will always occur. Set this property.
844 */
845 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
846
847 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
848 lrdr_capacity, sizeof(lrdr_capacity)));
849
850 spapr_dt_rtas_tokens(fdt, rtas);
851}
852
9fb4541f
SB
853/* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
854 * that the guest may request and thus the valid values for bytes 24..26 of
855 * option vector 5: */
856static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
857{
545d6e2b
SJS
858 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
859
9fb4541f
SB
860 char val[2 * 3] = {
861 24, 0x00, /* Hash/Radix, filled in below. */
862 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
863 26, 0x40, /* Radix options: GTSE == yes. */
864 };
865
866 if (kvm_enabled()) {
867 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
868 val[1] = 0x80; /* OV5_MMU_BOTH */
869 } else if (kvmppc_has_cap_mmu_radix()) {
870 val[1] = 0x40; /* OV5_MMU_RADIX_300 */
871 } else {
872 val[1] = 0x00; /* Hash */
873 }
874 } else {
545d6e2b
SJS
875 if (first_ppc_cpu->env.mmu_model & POWERPC_MMU_V3) {
876 /* V3 MMU supports both hash and radix (with dynamic switching) */
877 val[1] = 0xC0;
878 } else {
879 /* Otherwise we can only do hash */
880 val[1] = 0x00;
881 }
9fb4541f
SB
882 }
883 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
884 val, sizeof(val)));
885}
886
7c866c6a
DG
887static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
888{
889 MachineState *machine = MACHINE(spapr);
890 int chosen;
891 const char *boot_device = machine->boot_order;
892 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
893 size_t cb = 0;
894 char *bootlist = get_boot_devices_list(&cb, true);
7c866c6a
DG
895
896 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
897
7c866c6a
DG
898 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
899 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
900 spapr->initrd_base));
901 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
902 spapr->initrd_base + spapr->initrd_size));
903
904 if (spapr->kernel_size) {
905 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
906 cpu_to_be64(spapr->kernel_size) };
907
908 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
909 &kprop, sizeof(kprop)));
910 if (spapr->kernel_le) {
911 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
912 }
913 }
914 if (boot_menu) {
915 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
916 }
917 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
918 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
919 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
920
921 if (cb && bootlist) {
922 int i;
923
924 for (i = 0; i < cb; i++) {
925 if (bootlist[i] == '\n') {
926 bootlist[i] = ' ';
927 }
928 }
929 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
930 }
931
932 if (boot_device && strlen(boot_device)) {
933 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
934 }
935
936 if (!spapr->has_graphics && stdout_path) {
937 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
938 }
939
9fb4541f
SB
940 spapr_dt_ov5_platform_support(fdt, chosen);
941
7c866c6a
DG
942 g_free(stdout_path);
943 g_free(bootlist);
944}
945
fca5f2dc
DG
946static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
947{
948 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
949 * KVM to work under pHyp with some guest co-operation */
950 int hypervisor;
951 uint8_t hypercall[16];
952
953 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
954 /* indicate KVM hypercall interface */
955 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
956 if (kvmppc_has_cap_fixup_hcalls()) {
957 /*
958 * Older KVM versions with older guest kernels were broken
959 * with the magic page, don't allow the guest to map it.
960 */
961 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
962 sizeof(hypercall))) {
963 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
964 hypercall, sizeof(hypercall)));
965 }
966 }
967}
968
997b6cfc
DG
969static void *spapr_build_fdt(sPAPRMachineState *spapr,
970 hwaddr rtas_addr,
971 hwaddr rtas_size)
a3467baa 972{
5b2128d2 973 MachineState *machine = MACHINE(qdev_get_machine());
3c0c47e3 974 MachineClass *mc = MACHINE_GET_CLASS(machine);
c20d332a 975 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
7c866c6a 976 int ret;
a3467baa 977 void *fdt;
3384f95c 978 sPAPRPHBState *phb;
398a0bd5 979 char *buf;
71cd4dac 980 int smt = kvmppc_smt_threads();
a3467baa 981
398a0bd5
DG
982 fdt = g_malloc0(FDT_MAX_SIZE);
983 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
a3467baa 984
398a0bd5
DG
985 /* Root node */
986 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
987 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
988 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
989
990 /*
991 * Add info to guest to indentify which host is it being run on
992 * and what is the uuid of the guest
993 */
994 if (kvmppc_get_host_model(&buf)) {
995 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
996 g_free(buf);
997 }
998 if (kvmppc_get_host_serial(&buf)) {
999 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1000 g_free(buf);
1001 }
1002
1003 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1004
1005 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1006 if (qemu_uuid_set) {
1007 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1008 }
1009 g_free(buf);
1010
1011 if (qemu_get_vm_name()) {
1012 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1013 qemu_get_vm_name()));
1014 }
1015
1016 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1017 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
4040ab72 1018
9b9a1908 1019 /* /interrupt controller */
71cd4dac 1020 spapr_dt_xics(DIV_ROUND_UP(max_cpus * smt, smp_threads), fdt, PHANDLE_XICP);
9b9a1908 1021
e8f986fc
BR
1022 ret = spapr_populate_memory(spapr, fdt);
1023 if (ret < 0) {
ce9863b7 1024 error_report("couldn't setup memory nodes in fdt");
e8f986fc 1025 exit(1);
7f763a5d
DG
1026 }
1027
bf5a6696
DG
1028 /* /vdevice */
1029 spapr_dt_vdevice(spapr->vio_bus, fdt);
4040ab72 1030
4d9392be
TH
1031 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1032 ret = spapr_rng_populate_dt(fdt);
1033 if (ret < 0) {
ce9863b7 1034 error_report("could not set up rng device in the fdt");
4d9392be
TH
1035 exit(1);
1036 }
1037 }
1038
3384f95c 1039 QLIST_FOREACH(phb, &spapr->phbs, list) {
e0fdbd7c 1040 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
da34fed7
TH
1041 if (ret < 0) {
1042 error_report("couldn't setup PCI devices in fdt");
1043 exit(1);
1044 }
3384f95c
DG
1045 }
1046
0da6f3fe
BR
1047 /* cpus */
1048 spapr_populate_cpus_dt_node(fdt, spapr);
6e806cc3 1049
c20d332a
BR
1050 if (smc->dr_lmb_enabled) {
1051 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1052 }
1053
c5514d0e 1054 if (mc->has_hotpluggable_cpus) {
af81cf32
BR
1055 int offset = fdt_path_offset(fdt, "/cpus");
1056 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1057 SPAPR_DR_CONNECTOR_TYPE_CPU);
1058 if (ret < 0) {
1059 error_report("Couldn't set up CPU DR device tree properties");
1060 exit(1);
1061 }
1062 }
1063
ffb1e275 1064 /* /event-sources */
ffbb1705 1065 spapr_dt_events(spapr, fdt);
ffb1e275 1066
3f5dabce
DG
1067 /* /rtas */
1068 spapr_dt_rtas(spapr, fdt);
1069
7c866c6a
DG
1070 /* /chosen */
1071 spapr_dt_chosen(spapr, fdt);
cf6e5223 1072
fca5f2dc
DG
1073 /* /hypervisor */
1074 if (kvm_enabled()) {
1075 spapr_dt_hypervisor(spapr, fdt);
1076 }
1077
cf6e5223
DG
1078 /* Build memory reserve map */
1079 if (spapr->kernel_size) {
1080 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1081 }
1082 if (spapr->initrd_size) {
1083 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1084 }
1085
6787d27b
MR
1086 /* ibm,client-architecture-support updates */
1087 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1088 if (ret < 0) {
1089 error_report("couldn't setup CAS properties fdt");
1090 exit(1);
1091 }
1092
997b6cfc 1093 return fdt;
9fdf0c29
DG
1094}
1095
1096static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1097{
1098 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1099}
1100
1d1be34d
DG
1101static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1102 PowerPCCPU *cpu)
9fdf0c29 1103{
1b14670a
AF
1104 CPUPPCState *env = &cpu->env;
1105
8d04fb55
JK
1106 /* The TCG path should also be holding the BQL at this point */
1107 g_assert(qemu_mutex_iothread_locked());
1108
efcb9383
DG
1109 if (msr_pr) {
1110 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1111 env->gpr[3] = H_PRIVILEGE;
1112 } else {
aa100fa4 1113 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
efcb9383 1114 }
9fdf0c29
DG
1115}
1116
9861bb3e
SJS
1117static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1118{
1119 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1120
1121 return spapr->patb_entry;
1122}
1123
e6b8fd24
SMJ
1124#define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1125#define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1126#define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1127#define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1128#define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1129
715c5407
DG
1130/*
1131 * Get the fd to access the kernel htab, re-opening it if necessary
1132 */
1133static int get_htab_fd(sPAPRMachineState *spapr)
1134{
1135 if (spapr->htab_fd >= 0) {
1136 return spapr->htab_fd;
1137 }
1138
1139 spapr->htab_fd = kvmppc_get_htab_fd(false);
1140 if (spapr->htab_fd < 0) {
1141 error_report("Unable to open fd for reading hash table from KVM: %s",
1142 strerror(errno));
1143 }
1144
1145 return spapr->htab_fd;
1146}
1147
b4db5413 1148void close_htab_fd(sPAPRMachineState *spapr)
715c5407
DG
1149{
1150 if (spapr->htab_fd >= 0) {
1151 close(spapr->htab_fd);
1152 }
1153 spapr->htab_fd = -1;
1154}
1155
e57ca75c
DG
1156static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1157{
1158 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1159
1160 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1161}
1162
1163static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1164 hwaddr ptex, int n)
1165{
1166 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1167 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1168
1169 if (!spapr->htab) {
1170 /*
1171 * HTAB is controlled by KVM. Fetch into temporary buffer
1172 */
1173 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1174 kvmppc_read_hptes(hptes, ptex, n);
1175 return hptes;
1176 }
1177
1178 /*
1179 * HTAB is controlled by QEMU. Just point to the internally
1180 * accessible PTEG.
1181 */
1182 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1183}
1184
1185static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1186 const ppc_hash_pte64_t *hptes,
1187 hwaddr ptex, int n)
1188{
1189 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1190
1191 if (!spapr->htab) {
1192 g_free((void *)hptes);
1193 }
1194
1195 /* Nothing to do for qemu managed HPT */
1196}
1197
1198static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1199 uint64_t pte0, uint64_t pte1)
1200{
1201 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1202 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1203
1204 if (!spapr->htab) {
1205 kvmppc_write_hpte(ptex, pte0, pte1);
1206 } else {
1207 stq_p(spapr->htab + offset, pte0);
1208 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1209 }
1210}
1211
8dfe8e7f
DG
1212static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1213{
1214 int shift;
1215
1216 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1217 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1218 * that's much more than is needed for Linux guests */
1219 shift = ctz64(pow2ceil(ramsize)) - 7;
1220 shift = MAX(shift, 18); /* Minimum architected size */
1221 shift = MIN(shift, 46); /* Maximum architected size */
1222 return shift;
1223}
1224
06ec79e8
BR
1225void spapr_free_hpt(sPAPRMachineState *spapr)
1226{
1227 g_free(spapr->htab);
1228 spapr->htab = NULL;
1229 spapr->htab_shift = 0;
1230 close_htab_fd(spapr);
1231}
1232
c5f54f3e
DG
1233static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1234 Error **errp)
7f763a5d 1235{
c5f54f3e
DG
1236 long rc;
1237
1238 /* Clean up any HPT info from a previous boot */
06ec79e8 1239 spapr_free_hpt(spapr);
c5f54f3e
DG
1240
1241 rc = kvmppc_reset_htab(shift);
1242 if (rc < 0) {
1243 /* kernel-side HPT needed, but couldn't allocate one */
1244 error_setg_errno(errp, errno,
1245 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1246 shift);
1247 /* This is almost certainly fatal, but if the caller really
1248 * wants to carry on with shift == 0, it's welcome to try */
1249 } else if (rc > 0) {
1250 /* kernel-side HPT allocated */
1251 if (rc != shift) {
1252 error_setg(errp,
1253 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1254 shift, rc);
7735feda
BR
1255 }
1256
7f763a5d 1257 spapr->htab_shift = shift;
c18ad9a5 1258 spapr->htab = NULL;
b817772a 1259 } else {
c5f54f3e
DG
1260 /* kernel-side HPT not needed, allocate in userspace instead */
1261 size_t size = 1ULL << shift;
1262 int i;
b817772a 1263
c5f54f3e
DG
1264 spapr->htab = qemu_memalign(size, size);
1265 if (!spapr->htab) {
1266 error_setg_errno(errp, errno,
1267 "Could not allocate HPT of order %d", shift);
1268 return;
7735feda
BR
1269 }
1270
c5f54f3e
DG
1271 memset(spapr->htab, 0, size);
1272 spapr->htab_shift = shift;
e6b8fd24 1273
c5f54f3e
DG
1274 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1275 DIRTY_HPTE(HPTE(spapr->htab, i));
e6b8fd24 1276 }
7f763a5d 1277 }
9fdf0c29
DG
1278}
1279
b4db5413
SJS
1280void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1281{
1282 spapr_reallocate_hpt(spapr,
1283 spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size),
1284 &error_fatal);
1285 if (spapr->vrma_adjust) {
1286 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1287 spapr->htab_shift);
1288 }
1289 /* We're setting up a hash table, so that means we're not radix */
1290 spapr->patb_entry = 0;
1291}
1292
4f01a637 1293static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
9e3f9733
AG
1294{
1295 bool matched = false;
1296
1297 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1298 matched = true;
1299 }
1300
1301 if (!matched) {
1302 error_report("Device %s is not supported by this machine yet.",
1303 qdev_fw_name(DEVICE(sbdev)));
1304 exit(1);
1305 }
9e3f9733
AG
1306}
1307
c8787ad4 1308static void ppc_spapr_reset(void)
a3467baa 1309{
c5f54f3e
DG
1310 MachineState *machine = MACHINE(qdev_get_machine());
1311 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
182735ef 1312 PowerPCCPU *first_ppc_cpu;
b7d1f77a 1313 uint32_t rtas_limit;
cae172ab 1314 hwaddr rtas_addr, fdt_addr;
997b6cfc
DG
1315 void *fdt;
1316 int rc;
259186a7 1317
9e3f9733
AG
1318 /* Check for unknown sysbus devices */
1319 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1320
b4db5413
SJS
1321 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1322 /* If using KVM with radix mode available, VCPUs can be started
1323 * without a HPT because KVM will start them in radix mode.
1324 * Set the GR bit in PATB so that we know there is no HPT. */
1325 spapr->patb_entry = PATBE1_GR;
1326 } else {
1327 spapr->patb_entry = 0;
1328 spapr_setup_hpt_and_vrma(spapr);
c5f54f3e 1329 }
a3467baa 1330
c8787ad4 1331 qemu_devices_reset();
a3467baa 1332
b7d1f77a
BH
1333 /*
1334 * We place the device tree and RTAS just below either the top of the RMA,
1335 * or just below 2GB, whichever is lowere, so that it can be
1336 * processed with 32-bit real mode code if necessary
1337 */
1338 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
cae172ab
DG
1339 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1340 fdt_addr = rtas_addr - FDT_MAX_SIZE;
b7d1f77a 1341
6787d27b
MR
1342 /* if this reset wasn't generated by CAS, we should reset our
1343 * negotiated options and start from scratch */
1344 if (!spapr->cas_reboot) {
1345 spapr_ovec_cleanup(spapr->ov5_cas);
1346 spapr->ov5_cas = spapr_ovec_new();
1347 }
1348
cae172ab 1349 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
a3467baa 1350
2cac78c1 1351 spapr_load_rtas(spapr, fdt, rtas_addr);
b7d1f77a 1352
997b6cfc
DG
1353 rc = fdt_pack(fdt);
1354
1355 /* Should only fail if we've built a corrupted tree */
1356 assert(rc == 0);
1357
1358 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1359 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1360 fdt_totalsize(fdt), FDT_MAX_SIZE);
1361 exit(1);
1362 }
1363
1364 /* Load the fdt */
1365 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
cae172ab 1366 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
997b6cfc
DG
1367 g_free(fdt);
1368
a3467baa 1369 /* Set up the entry state */
182735ef 1370 first_ppc_cpu = POWERPC_CPU(first_cpu);
cae172ab 1371 first_ppc_cpu->env.gpr[3] = fdt_addr;
182735ef
AF
1372 first_ppc_cpu->env.gpr[5] = 0;
1373 first_cpu->halted = 0;
1b718907 1374 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
a3467baa 1375
6787d27b 1376 spapr->cas_reboot = false;
a3467baa
DG
1377}
1378
28e02042 1379static void spapr_create_nvram(sPAPRMachineState *spapr)
639e8102 1380{
2ff3de68 1381 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
3978b863 1382 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
639e8102 1383
3978b863 1384 if (dinfo) {
6231a6da
MA
1385 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1386 &error_fatal);
639e8102
DG
1387 }
1388
1389 qdev_init_nofail(dev);
1390
1391 spapr->nvram = (struct sPAPRNVRAM *)dev;
1392}
1393
28e02042 1394static void spapr_rtc_create(sPAPRMachineState *spapr)
28df36a1 1395{
147ff807
CLG
1396 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1397 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1398 &error_fatal);
1399 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1400 &error_fatal);
1401 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1402 "date", &error_fatal);
28df36a1
DG
1403}
1404
8c57b867 1405/* Returns whether we want to use VGA or not */
14c6a894 1406static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
f28359d8 1407{
8c57b867 1408 switch (vga_interface_type) {
8c57b867 1409 case VGA_NONE:
7effdaa3
MW
1410 return false;
1411 case VGA_DEVICE:
1412 return true;
1ddcae82 1413 case VGA_STD:
b798c190 1414 case VGA_VIRTIO:
1ddcae82 1415 return pci_vga_init(pci_bus) != NULL;
8c57b867 1416 default:
14c6a894
DG
1417 error_setg(errp,
1418 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1419 return false;
f28359d8 1420 }
f28359d8
LZ
1421}
1422
880ae7de
DG
1423static int spapr_post_load(void *opaque, int version_id)
1424{
28e02042 1425 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
880ae7de
DG
1426 int err = 0;
1427
a7ff1212 1428 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
5bc8d26d
CLG
1429 CPUState *cs;
1430 CPU_FOREACH(cs) {
1431 PowerPCCPU *cpu = POWERPC_CPU(cs);
1432 icp_resend(ICP(cpu->intc));
a7ff1212
CLG
1433 }
1434 }
1435
631b22ea 1436 /* In earlier versions, there was no separate qdev for the PAPR
880ae7de
DG
1437 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1438 * So when migrating from those versions, poke the incoming offset
1439 * value into the RTC device */
1440 if (version_id < 3) {
147ff807 1441 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
880ae7de
DG
1442 }
1443
1444 return err;
1445}
1446
1447static bool version_before_3(void *opaque, int version_id)
1448{
1449 return version_id < 3;
1450}
1451
62ef3760
MR
1452static bool spapr_ov5_cas_needed(void *opaque)
1453{
1454 sPAPRMachineState *spapr = opaque;
1455 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1456 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1457 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1458 bool cas_needed;
1459
1460 /* Prior to the introduction of sPAPROptionVector, we had two option
1461 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1462 * Both of these options encode machine topology into the device-tree
1463 * in such a way that the now-booted OS should still be able to interact
1464 * appropriately with QEMU regardless of what options were actually
1465 * negotiatied on the source side.
1466 *
1467 * As such, we can avoid migrating the CAS-negotiated options if these
1468 * are the only options available on the current machine/platform.
1469 * Since these are the only options available for pseries-2.7 and
1470 * earlier, this allows us to maintain old->new/new->old migration
1471 * compatibility.
1472 *
1473 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1474 * via default pseries-2.8 machines and explicit command-line parameters.
1475 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1476 * of the actual CAS-negotiated values to continue working properly. For
1477 * example, availability of memory unplug depends on knowing whether
1478 * OV5_HP_EVT was negotiated via CAS.
1479 *
1480 * Thus, for any cases where the set of available CAS-negotiatable
1481 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1482 * include the CAS-negotiated options in the migration stream.
1483 */
1484 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1485 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1486
1487 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1488 * the mask itself since in the future it's possible "legacy" bits may be
1489 * removed via machine options, which could generate a false positive
1490 * that breaks migration.
1491 */
1492 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1493 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1494
1495 spapr_ovec_cleanup(ov5_mask);
1496 spapr_ovec_cleanup(ov5_legacy);
1497 spapr_ovec_cleanup(ov5_removed);
1498
1499 return cas_needed;
1500}
1501
1502static const VMStateDescription vmstate_spapr_ov5_cas = {
1503 .name = "spapr_option_vector_ov5_cas",
1504 .version_id = 1,
1505 .minimum_version_id = 1,
1506 .needed = spapr_ov5_cas_needed,
1507 .fields = (VMStateField[]) {
1508 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1509 vmstate_spapr_ovec, sPAPROptionVector),
1510 VMSTATE_END_OF_LIST()
1511 },
1512};
1513
9861bb3e
SJS
1514static bool spapr_patb_entry_needed(void *opaque)
1515{
1516 sPAPRMachineState *spapr = opaque;
1517
1518 return !!spapr->patb_entry;
1519}
1520
1521static const VMStateDescription vmstate_spapr_patb_entry = {
1522 .name = "spapr_patb_entry",
1523 .version_id = 1,
1524 .minimum_version_id = 1,
1525 .needed = spapr_patb_entry_needed,
1526 .fields = (VMStateField[]) {
1527 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1528 VMSTATE_END_OF_LIST()
1529 },
1530};
1531
4be21d56
DG
1532static const VMStateDescription vmstate_spapr = {
1533 .name = "spapr",
880ae7de 1534 .version_id = 3,
4be21d56 1535 .minimum_version_id = 1,
880ae7de 1536 .post_load = spapr_post_load,
3aff6c2f 1537 .fields = (VMStateField[]) {
880ae7de
DG
1538 /* used to be @next_irq */
1539 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
4be21d56
DG
1540
1541 /* RTC offset */
28e02042 1542 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
880ae7de 1543
28e02042 1544 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
4be21d56
DG
1545 VMSTATE_END_OF_LIST()
1546 },
62ef3760
MR
1547 .subsections = (const VMStateDescription*[]) {
1548 &vmstate_spapr_ov5_cas,
9861bb3e 1549 &vmstate_spapr_patb_entry,
62ef3760
MR
1550 NULL
1551 }
4be21d56
DG
1552};
1553
4be21d56
DG
1554static int htab_save_setup(QEMUFile *f, void *opaque)
1555{
28e02042 1556 sPAPRMachineState *spapr = opaque;
4be21d56 1557
4be21d56
DG
1558 /* "Iteration" header */
1559 qemu_put_be32(f, spapr->htab_shift);
1560
e68cb8b4
AK
1561 if (spapr->htab) {
1562 spapr->htab_save_index = 0;
1563 spapr->htab_first_pass = true;
1564 } else {
1565 assert(kvm_enabled());
e68cb8b4
AK
1566 }
1567
1568
4be21d56
DG
1569 return 0;
1570}
1571
28e02042 1572static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
4be21d56
DG
1573 int64_t max_ns)
1574{
378bc217 1575 bool has_timeout = max_ns != -1;
4be21d56
DG
1576 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1577 int index = spapr->htab_save_index;
bc72ad67 1578 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1579
1580 assert(spapr->htab_first_pass);
1581
1582 do {
1583 int chunkstart;
1584
1585 /* Consume invalid HPTEs */
1586 while ((index < htabslots)
1587 && !HPTE_VALID(HPTE(spapr->htab, index))) {
4be21d56 1588 CLEAN_HPTE(HPTE(spapr->htab, index));
24ec2863 1589 index++;
4be21d56
DG
1590 }
1591
1592 /* Consume valid HPTEs */
1593 chunkstart = index;
338c25b6 1594 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56 1595 && HPTE_VALID(HPTE(spapr->htab, index))) {
4be21d56 1596 CLEAN_HPTE(HPTE(spapr->htab, index));
24ec2863 1597 index++;
4be21d56
DG
1598 }
1599
1600 if (index > chunkstart) {
1601 int n_valid = index - chunkstart;
1602
1603 qemu_put_be32(f, chunkstart);
1604 qemu_put_be16(f, n_valid);
1605 qemu_put_be16(f, 0);
1606 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1607 HASH_PTE_SIZE_64 * n_valid);
1608
378bc217
DG
1609 if (has_timeout &&
1610 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1611 break;
1612 }
1613 }
1614 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1615
1616 if (index >= htabslots) {
1617 assert(index == htabslots);
1618 index = 0;
1619 spapr->htab_first_pass = false;
1620 }
1621 spapr->htab_save_index = index;
1622}
1623
28e02042 1624static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
e68cb8b4 1625 int64_t max_ns)
4be21d56
DG
1626{
1627 bool final = max_ns < 0;
1628 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1629 int examined = 0, sent = 0;
1630 int index = spapr->htab_save_index;
bc72ad67 1631 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1632
1633 assert(!spapr->htab_first_pass);
1634
1635 do {
1636 int chunkstart, invalidstart;
1637
1638 /* Consume non-dirty HPTEs */
1639 while ((index < htabslots)
1640 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1641 index++;
1642 examined++;
1643 }
1644
1645 chunkstart = index;
1646 /* Consume valid dirty HPTEs */
338c25b6 1647 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56
DG
1648 && HPTE_DIRTY(HPTE(spapr->htab, index))
1649 && HPTE_VALID(HPTE(spapr->htab, index))) {
1650 CLEAN_HPTE(HPTE(spapr->htab, index));
1651 index++;
1652 examined++;
1653 }
1654
1655 invalidstart = index;
1656 /* Consume invalid dirty HPTEs */
338c25b6 1657 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
4be21d56
DG
1658 && HPTE_DIRTY(HPTE(spapr->htab, index))
1659 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1660 CLEAN_HPTE(HPTE(spapr->htab, index));
1661 index++;
1662 examined++;
1663 }
1664
1665 if (index > chunkstart) {
1666 int n_valid = invalidstart - chunkstart;
1667 int n_invalid = index - invalidstart;
1668
1669 qemu_put_be32(f, chunkstart);
1670 qemu_put_be16(f, n_valid);
1671 qemu_put_be16(f, n_invalid);
1672 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1673 HASH_PTE_SIZE_64 * n_valid);
1674 sent += index - chunkstart;
1675
bc72ad67 1676 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1677 break;
1678 }
1679 }
1680
1681 if (examined >= htabslots) {
1682 break;
1683 }
1684
1685 if (index >= htabslots) {
1686 assert(index == htabslots);
1687 index = 0;
1688 }
1689 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1690
1691 if (index >= htabslots) {
1692 assert(index == htabslots);
1693 index = 0;
1694 }
1695
1696 spapr->htab_save_index = index;
1697
e68cb8b4 1698 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
4be21d56
DG
1699}
1700
e68cb8b4
AK
1701#define MAX_ITERATION_NS 5000000 /* 5 ms */
1702#define MAX_KVM_BUF_SIZE 2048
1703
4be21d56
DG
1704static int htab_save_iterate(QEMUFile *f, void *opaque)
1705{
28e02042 1706 sPAPRMachineState *spapr = opaque;
715c5407 1707 int fd;
e68cb8b4 1708 int rc = 0;
4be21d56
DG
1709
1710 /* Iteration header */
1711 qemu_put_be32(f, 0);
1712
e68cb8b4
AK
1713 if (!spapr->htab) {
1714 assert(kvm_enabled());
1715
715c5407
DG
1716 fd = get_htab_fd(spapr);
1717 if (fd < 0) {
1718 return fd;
01a57972
SMJ
1719 }
1720
715c5407 1721 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
e68cb8b4
AK
1722 if (rc < 0) {
1723 return rc;
1724 }
1725 } else if (spapr->htab_first_pass) {
4be21d56
DG
1726 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1727 } else {
e68cb8b4 1728 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
4be21d56
DG
1729 }
1730
1731 /* End marker */
1732 qemu_put_be32(f, 0);
1733 qemu_put_be16(f, 0);
1734 qemu_put_be16(f, 0);
1735
e68cb8b4 1736 return rc;
4be21d56
DG
1737}
1738
1739static int htab_save_complete(QEMUFile *f, void *opaque)
1740{
28e02042 1741 sPAPRMachineState *spapr = opaque;
715c5407 1742 int fd;
4be21d56
DG
1743
1744 /* Iteration header */
1745 qemu_put_be32(f, 0);
1746
e68cb8b4
AK
1747 if (!spapr->htab) {
1748 int rc;
1749
1750 assert(kvm_enabled());
1751
715c5407
DG
1752 fd = get_htab_fd(spapr);
1753 if (fd < 0) {
1754 return fd;
01a57972
SMJ
1755 }
1756
715c5407 1757 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
e68cb8b4
AK
1758 if (rc < 0) {
1759 return rc;
1760 }
e68cb8b4 1761 } else {
378bc217
DG
1762 if (spapr->htab_first_pass) {
1763 htab_save_first_pass(f, spapr, -1);
1764 }
e68cb8b4
AK
1765 htab_save_later_pass(f, spapr, -1);
1766 }
4be21d56
DG
1767
1768 /* End marker */
1769 qemu_put_be32(f, 0);
1770 qemu_put_be16(f, 0);
1771 qemu_put_be16(f, 0);
1772
1773 return 0;
1774}
1775
1776static int htab_load(QEMUFile *f, void *opaque, int version_id)
1777{
28e02042 1778 sPAPRMachineState *spapr = opaque;
4be21d56 1779 uint32_t section_hdr;
e68cb8b4 1780 int fd = -1;
4be21d56
DG
1781
1782 if (version_id < 1 || version_id > 1) {
98a5d100 1783 error_report("htab_load() bad version");
4be21d56
DG
1784 return -EINVAL;
1785 }
1786
1787 section_hdr = qemu_get_be32(f);
1788
1789 if (section_hdr) {
9897e462 1790 Error *local_err = NULL;
c5f54f3e
DG
1791
1792 /* First section gives the htab size */
1793 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1794 if (local_err) {
1795 error_report_err(local_err);
4be21d56
DG
1796 return -EINVAL;
1797 }
1798 return 0;
1799 }
1800
e68cb8b4
AK
1801 if (!spapr->htab) {
1802 assert(kvm_enabled());
1803
1804 fd = kvmppc_get_htab_fd(true);
1805 if (fd < 0) {
98a5d100
DG
1806 error_report("Unable to open fd to restore KVM hash table: %s",
1807 strerror(errno));
e68cb8b4
AK
1808 }
1809 }
1810
4be21d56
DG
1811 while (true) {
1812 uint32_t index;
1813 uint16_t n_valid, n_invalid;
1814
1815 index = qemu_get_be32(f);
1816 n_valid = qemu_get_be16(f);
1817 n_invalid = qemu_get_be16(f);
1818
1819 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1820 /* End of Stream */
1821 break;
1822 }
1823
e68cb8b4 1824 if ((index + n_valid + n_invalid) >
4be21d56
DG
1825 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1826 /* Bad index in stream */
98a5d100
DG
1827 error_report(
1828 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1829 index, n_valid, n_invalid, spapr->htab_shift);
4be21d56
DG
1830 return -EINVAL;
1831 }
1832
e68cb8b4
AK
1833 if (spapr->htab) {
1834 if (n_valid) {
1835 qemu_get_buffer(f, HPTE(spapr->htab, index),
1836 HASH_PTE_SIZE_64 * n_valid);
1837 }
1838 if (n_invalid) {
1839 memset(HPTE(spapr->htab, index + n_valid), 0,
1840 HASH_PTE_SIZE_64 * n_invalid);
1841 }
1842 } else {
1843 int rc;
1844
1845 assert(fd >= 0);
1846
1847 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1848 if (rc < 0) {
1849 return rc;
1850 }
4be21d56
DG
1851 }
1852 }
1853
e68cb8b4
AK
1854 if (!spapr->htab) {
1855 assert(fd >= 0);
1856 close(fd);
1857 }
1858
4be21d56
DG
1859 return 0;
1860}
1861
c573fc03
TH
1862static void htab_cleanup(void *opaque)
1863{
1864 sPAPRMachineState *spapr = opaque;
1865
1866 close_htab_fd(spapr);
1867}
1868
4be21d56
DG
1869static SaveVMHandlers savevm_htab_handlers = {
1870 .save_live_setup = htab_save_setup,
1871 .save_live_iterate = htab_save_iterate,
a3e06c3d 1872 .save_live_complete_precopy = htab_save_complete,
c573fc03 1873 .cleanup = htab_cleanup,
4be21d56
DG
1874 .load_state = htab_load,
1875};
1876
5b2128d2
AG
1877static void spapr_boot_set(void *opaque, const char *boot_device,
1878 Error **errp)
1879{
1880 MachineState *machine = MACHINE(qdev_get_machine());
1881 machine->boot_order = g_strdup(boot_device);
1882}
1883
224245bf
DG
1884/*
1885 * Reset routine for LMB DR devices.
1886 *
1887 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1888 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1889 * when it walks all its children devices. LMB devices reset occurs
1890 * as part of spapr_ppc_reset().
1891 */
1892static void spapr_drc_reset(void *opaque)
1893{
1894 sPAPRDRConnector *drc = opaque;
1895 DeviceState *d = DEVICE(drc);
1896
1897 if (d) {
1898 device_reset(d);
1899 }
1900}
1901
1902static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1903{
1904 MachineState *machine = MACHINE(spapr);
1905 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
e8f986fc 1906 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
224245bf
DG
1907 int i;
1908
1909 for (i = 0; i < nr_lmbs; i++) {
1910 sPAPRDRConnector *drc;
1911 uint64_t addr;
1912
e8f986fc 1913 addr = i * lmb_size + spapr->hotplug_memory.base;
2d335818 1914 drc = spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
224245bf
DG
1915 addr/lmb_size);
1916 qemu_register_reset(spapr_drc_reset, drc);
1917 }
1918}
1919
1920/*
1921 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1922 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1923 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1924 */
7c150d6f 1925static void spapr_validate_node_memory(MachineState *machine, Error **errp)
224245bf
DG
1926{
1927 int i;
1928
7c150d6f
DG
1929 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1930 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1931 " is not aligned to %llu MiB",
1932 machine->ram_size,
1933 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1934 return;
1935 }
1936
1937 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1938 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1939 " is not aligned to %llu MiB",
1940 machine->ram_size,
1941 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1942 return;
224245bf
DG
1943 }
1944
1945 for (i = 0; i < nb_numa_nodes; i++) {
1946 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
7c150d6f
DG
1947 error_setg(errp,
1948 "Node %d memory size 0x%" PRIx64
1949 " is not aligned to %llu MiB",
1950 i, numa_info[i].node_mem,
1951 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1952 return;
224245bf
DG
1953 }
1954 }
1955}
1956
535455fd
IM
1957/* find cpu slot in machine->possible_cpus by core_id */
1958static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1959{
1960 int index = id / smp_threads;
1961
1962 if (index >= ms->possible_cpus->len) {
1963 return NULL;
1964 }
1965 if (idx) {
1966 *idx = index;
1967 }
1968 return &ms->possible_cpus->cpus[index];
1969}
1970
0c86d0fd
DG
1971static void spapr_init_cpus(sPAPRMachineState *spapr)
1972{
1973 MachineState *machine = MACHINE(spapr);
1974 MachineClass *mc = MACHINE_GET_CLASS(machine);
1975 char *type = spapr_get_cpu_core_type(machine->cpu_model);
1976 int smt = kvmppc_smt_threads();
535455fd
IM
1977 const CPUArchIdList *possible_cpus;
1978 int boot_cores_nr = smp_cpus / smp_threads;
0c86d0fd
DG
1979 int i;
1980
1981 if (!type) {
1982 error_report("Unable to find sPAPR CPU Core definition");
1983 exit(1);
1984 }
1985
535455fd 1986 possible_cpus = mc->possible_cpu_arch_ids(machine);
c5514d0e 1987 if (mc->has_hotpluggable_cpus) {
0c86d0fd
DG
1988 if (smp_cpus % smp_threads) {
1989 error_report("smp_cpus (%u) must be multiple of threads (%u)",
1990 smp_cpus, smp_threads);
1991 exit(1);
1992 }
1993 if (max_cpus % smp_threads) {
1994 error_report("max_cpus (%u) must be multiple of threads (%u)",
1995 max_cpus, smp_threads);
1996 exit(1);
1997 }
0c86d0fd
DG
1998 } else {
1999 if (max_cpus != smp_cpus) {
2000 error_report("This machine version does not support CPU hotplug");
2001 exit(1);
2002 }
535455fd 2003 boot_cores_nr = possible_cpus->len;
0c86d0fd
DG
2004 }
2005
535455fd 2006 for (i = 0; i < possible_cpus->len; i++) {
0c86d0fd
DG
2007 int core_id = i * smp_threads;
2008
c5514d0e 2009 if (mc->has_hotpluggable_cpus) {
0c86d0fd 2010 sPAPRDRConnector *drc =
2d335818 2011 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
0c86d0fd
DG
2012 (core_id / smp_threads) * smt);
2013
2014 qemu_register_reset(spapr_drc_reset, drc);
2015 }
2016
535455fd 2017 if (i < boot_cores_nr) {
0c86d0fd
DG
2018 Object *core = object_new(type);
2019 int nr_threads = smp_threads;
2020
2021 /* Handle the partially filled core for older machine types */
2022 if ((i + 1) * smp_threads >= smp_cpus) {
2023 nr_threads = smp_cpus - i * smp_threads;
2024 }
2025
2026 object_property_set_int(core, nr_threads, "nr-threads",
2027 &error_fatal);
2028 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2029 &error_fatal);
2030 object_property_set_bool(core, true, "realized", &error_fatal);
2031 }
2032 }
2033 g_free(type);
2034}
2035
9fdf0c29 2036/* pSeries LPAR / sPAPR hardware init */
3ef96221 2037static void ppc_spapr_init(MachineState *machine)
9fdf0c29 2038{
28e02042 2039 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
224245bf 2040 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
3ef96221 2041 const char *kernel_filename = machine->kernel_filename;
3ef96221 2042 const char *initrd_filename = machine->initrd_filename;
8c9f64df 2043 PCIHostState *phb;
9fdf0c29 2044 int i;
890c2b77
AK
2045 MemoryRegion *sysmem = get_system_memory();
2046 MemoryRegion *ram = g_new(MemoryRegion, 1);
658fa66b
AK
2047 MemoryRegion *rma_region;
2048 void *rma = NULL;
a8170e5e 2049 hwaddr rma_alloc_size;
b082d65a 2050 hwaddr node0_size = spapr_node0_size();
b7d1f77a 2051 long load_limit, fw_size;
39ac8455 2052 char *filename;
9fdf0c29 2053
226419d6 2054 msi_nonbroken = true;
0ee2c058 2055
d43b45e2 2056 QLIST_INIT(&spapr->phbs);
0cffce56 2057 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
d43b45e2 2058
354ac20a 2059 /* Allocate RMA if necessary */
658fa66b 2060 rma_alloc_size = kvmppc_alloc_rma(&rma);
354ac20a
DG
2061
2062 if (rma_alloc_size == -1) {
730fce59 2063 error_report("Unable to create RMA");
354ac20a
DG
2064 exit(1);
2065 }
7f763a5d 2066
c4177479 2067 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
7f763a5d 2068 spapr->rma_size = rma_alloc_size;
354ac20a 2069 } else {
c4177479 2070 spapr->rma_size = node0_size;
7f763a5d
DG
2071
2072 /* With KVM, we don't actually know whether KVM supports an
2073 * unbounded RMA (PR KVM) or is limited by the hash table size
2074 * (HV KVM using VRMA), so we always assume the latter
2075 *
2076 * In that case, we also limit the initial allocations for RTAS
2077 * etc... to 256M since we have no way to know what the VRMA size
2078 * is going to be as it depends on the size of the hash table
2079 * isn't determined yet.
2080 */
2081 if (kvm_enabled()) {
2082 spapr->vrma_adjust = 1;
2083 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2084 }
912acdf4
BH
2085
2086 /* Actually we don't support unbounded RMA anymore since we
2087 * added proper emulation of HV mode. The max we can get is
2088 * 16G which also happens to be what we configure for PAPR
2089 * mode so make sure we don't do anything bigger than that
2090 */
2091 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
354ac20a
DG
2092 }
2093
c4177479 2094 if (spapr->rma_size > node0_size) {
d54e4d76
DG
2095 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2096 spapr->rma_size);
c4177479
AK
2097 exit(1);
2098 }
2099
b7d1f77a
BH
2100 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2101 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
9fdf0c29 2102
7b565160 2103 /* Set up Interrupt Controller before we create the VCPUs */
71cd4dac 2104 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
7b565160 2105
facdb8b6
MR
2106 /* Set up containers for ibm,client-set-architecture negotiated options */
2107 spapr->ov5 = spapr_ovec_new();
2108 spapr->ov5_cas = spapr_ovec_new();
2109
224245bf 2110 if (smc->dr_lmb_enabled) {
facdb8b6 2111 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
7c150d6f 2112 spapr_validate_node_memory(machine, &error_fatal);
224245bf
DG
2113 }
2114
417ece33 2115 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
545d6e2b
SJS
2116 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2117 /* KVM and TCG always allow GTSE with radix... */
9fb4541f
SB
2118 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2119 }
2120 /* ... but not with hash (currently). */
417ece33 2121
ffbb1705
MR
2122 /* advertise support for dedicated HP event source to guests */
2123 if (spapr->use_hotplug_event_source) {
2124 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2125 }
2126
9fdf0c29 2127 /* init CPUs */
19fb2c36 2128 if (machine->cpu_model == NULL) {
3daa4a9f 2129 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
9fdf0c29 2130 }
94a94e4c 2131
e703d2f7
GK
2132 ppc_cpu_parse_features(machine->cpu_model);
2133
0c86d0fd 2134 spapr_init_cpus(spapr);
9fdf0c29 2135
026bfd89
DG
2136 if (kvm_enabled()) {
2137 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2138 kvmppc_enable_logical_ci_hcalls();
ef9971dd 2139 kvmppc_enable_set_mode_hcall();
5145ad4f
NW
2140
2141 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2142 kvmppc_enable_clear_ref_mod_hcalls();
026bfd89
DG
2143 }
2144
9fdf0c29 2145 /* allocate RAM */
f92f5da1 2146 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
fb164994 2147 machine->ram_size);
f92f5da1 2148 memory_region_add_subregion(sysmem, 0, ram);
9fdf0c29 2149
658fa66b
AK
2150 if (rma_alloc_size && rma) {
2151 rma_region = g_new(MemoryRegion, 1);
2152 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2153 rma_alloc_size, rma);
2154 vmstate_register_ram_global(rma_region);
2155 memory_region_add_subregion(sysmem, 0, rma_region);
2156 }
2157
4a1c9cf0
BR
2158 /* initialize hotplug memory address space */
2159 if (machine->ram_size < machine->maxram_size) {
2160 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
71c9a3dd
BR
2161 /*
2162 * Limit the number of hotpluggable memory slots to half the number
2163 * slots that KVM supports, leaving the other half for PCI and other
2164 * devices. However ensure that number of slots doesn't drop below 32.
2165 */
2166 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2167 SPAPR_MAX_RAM_SLOTS;
4a1c9cf0 2168
71c9a3dd
BR
2169 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2170 max_memslots = SPAPR_MAX_RAM_SLOTS;
2171 }
2172 if (machine->ram_slots > max_memslots) {
d54e4d76
DG
2173 error_report("Specified number of memory slots %"
2174 PRIu64" exceeds max supported %d",
71c9a3dd 2175 machine->ram_slots, max_memslots);
d54e4d76 2176 exit(1);
4a1c9cf0
BR
2177 }
2178
2179 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2180 SPAPR_HOTPLUG_MEM_ALIGN);
2181 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2182 "hotplug-memory", hotplug_mem_size);
2183 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2184 &spapr->hotplug_memory.mr);
2185 }
2186
224245bf
DG
2187 if (smc->dr_lmb_enabled) {
2188 spapr_create_lmb_dr_connectors(spapr);
2189 }
2190
39ac8455 2191 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
4c56440d 2192 if (!filename) {
730fce59 2193 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
4c56440d
SW
2194 exit(1);
2195 }
b7d1f77a 2196 spapr->rtas_size = get_image_size(filename);
8afc22a2
ZJ
2197 if (spapr->rtas_size < 0) {
2198 error_report("Could not get size of LPAR rtas '%s'", filename);
2199 exit(1);
2200 }
b7d1f77a
BH
2201 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2202 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
730fce59 2203 error_report("Could not load LPAR rtas '%s'", filename);
39ac8455
DG
2204 exit(1);
2205 }
4d8d5467 2206 if (spapr->rtas_size > RTAS_MAX_SIZE) {
730fce59
TH
2207 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2208 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
4d8d5467
BH
2209 exit(1);
2210 }
7267c094 2211 g_free(filename);
39ac8455 2212
ffbb1705 2213 /* Set up RTAS event infrastructure */
74d042e5
DG
2214 spapr_events_init(spapr);
2215
12f42174 2216 /* Set up the RTC RTAS interfaces */
28df36a1 2217 spapr_rtc_create(spapr);
12f42174 2218
b5cec4c5 2219 /* Set up VIO bus */
4040ab72
DG
2220 spapr->vio_bus = spapr_vio_bus_init();
2221
277f9acf 2222 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
4040ab72 2223 if (serial_hds[i]) {
d601fac4 2224 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
4040ab72
DG
2225 }
2226 }
9fdf0c29 2227
639e8102
DG
2228 /* We always have at least the nvram device on VIO */
2229 spapr_create_nvram(spapr);
2230
3384f95c 2231 /* Set up PCI */
fa28f71b
AK
2232 spapr_pci_rtas_init();
2233
89dfd6e1 2234 phb = spapr_create_phb(spapr, 0);
3384f95c 2235
277f9acf 2236 for (i = 0; i < nb_nics; i++) {
8d90ad90
DG
2237 NICInfo *nd = &nd_table[i];
2238
2239 if (!nd->model) {
7267c094 2240 nd->model = g_strdup("ibmveth");
8d90ad90
DG
2241 }
2242
2243 if (strcmp(nd->model, "ibmveth") == 0) {
d601fac4 2244 spapr_vlan_create(spapr->vio_bus, nd);
8d90ad90 2245 } else {
29b358f9 2246 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
8d90ad90
DG
2247 }
2248 }
2249
6e270446 2250 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
d601fac4 2251 spapr_vscsi_create(spapr->vio_bus);
6e270446
BH
2252 }
2253
f28359d8 2254 /* Graphics */
14c6a894 2255 if (spapr_vga_init(phb->bus, &error_fatal)) {
3fc5acde 2256 spapr->has_graphics = true;
c6e76503 2257 machine->usb |= defaults_enabled() && !machine->usb_disabled;
f28359d8
LZ
2258 }
2259
4ee9ced9 2260 if (machine->usb) {
57040d45
TH
2261 if (smc->use_ohci_by_default) {
2262 pci_create_simple(phb->bus, -1, "pci-ohci");
2263 } else {
2264 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2265 }
c86580b8 2266
35139a59 2267 if (spapr->has_graphics) {
c86580b8
MA
2268 USBBus *usb_bus = usb_bus_find(-1);
2269
2270 usb_create_simple(usb_bus, "usb-kbd");
2271 usb_create_simple(usb_bus, "usb-mouse");
35139a59
DG
2272 }
2273 }
2274
7f763a5d 2275 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
d54e4d76
DG
2276 error_report(
2277 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2278 MIN_RMA_SLOF);
4d8d5467
BH
2279 exit(1);
2280 }
2281
9fdf0c29
DG
2282 if (kernel_filename) {
2283 uint64_t lowaddr = 0;
2284
a19f7fb0
DG
2285 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2286 NULL, NULL, &lowaddr, NULL, 1,
2287 PPC_ELF_MACHINE, 0, 0);
2288 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2289 spapr->kernel_size = load_elf(kernel_filename,
2290 translate_kernel_address, NULL, NULL,
2291 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2292 0, 0);
2293 spapr->kernel_le = spapr->kernel_size > 0;
16457e7f 2294 }
a19f7fb0
DG
2295 if (spapr->kernel_size < 0) {
2296 error_report("error loading %s: %s", kernel_filename,
2297 load_elf_strerror(spapr->kernel_size));
9fdf0c29
DG
2298 exit(1);
2299 }
2300
2301 /* load initrd */
2302 if (initrd_filename) {
4d8d5467
BH
2303 /* Try to locate the initrd in the gap between the kernel
2304 * and the firmware. Add a bit of space just in case
2305 */
a19f7fb0
DG
2306 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2307 + 0x1ffff) & ~0xffff;
2308 spapr->initrd_size = load_image_targphys(initrd_filename,
2309 spapr->initrd_base,
2310 load_limit
2311 - spapr->initrd_base);
2312 if (spapr->initrd_size < 0) {
d54e4d76
DG
2313 error_report("could not load initial ram disk '%s'",
2314 initrd_filename);
9fdf0c29
DG
2315 exit(1);
2316 }
9fdf0c29 2317 }
4d8d5467 2318 }
a3467baa 2319
8e7ea787
AF
2320 if (bios_name == NULL) {
2321 bios_name = FW_FILE_NAME;
2322 }
2323 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
4c56440d 2324 if (!filename) {
68fea5a0 2325 error_report("Could not find LPAR firmware '%s'", bios_name);
4c56440d
SW
2326 exit(1);
2327 }
4d8d5467 2328 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
68fea5a0
TH
2329 if (fw_size <= 0) {
2330 error_report("Could not load LPAR firmware '%s'", filename);
4d8d5467
BH
2331 exit(1);
2332 }
2333 g_free(filename);
4d8d5467 2334
28e02042
DG
2335 /* FIXME: Should register things through the MachineState's qdev
2336 * interface, this is a legacy from the sPAPREnvironment structure
2337 * which predated MachineState but had a similar function */
4be21d56
DG
2338 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2339 register_savevm_live(NULL, "spapr/htab", -1, 1,
2340 &savevm_htab_handlers, spapr);
2341
5b2128d2 2342 qemu_register_boot_set(spapr_boot_set, spapr);
42043e4f 2343
42043e4f 2344 if (kvm_enabled()) {
3dc410ae 2345 /* to stop and start vmclock */
42043e4f
LV
2346 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2347 &spapr->tb);
3dc410ae
AK
2348
2349 kvmppc_spapr_enable_inkernel_multitce();
42043e4f 2350 }
9fdf0c29
DG
2351}
2352
135a129a
AK
2353static int spapr_kvm_type(const char *vm_type)
2354{
2355 if (!vm_type) {
2356 return 0;
2357 }
2358
2359 if (!strcmp(vm_type, "HV")) {
2360 return 1;
2361 }
2362
2363 if (!strcmp(vm_type, "PR")) {
2364 return 2;
2365 }
2366
2367 error_report("Unknown kvm-type specified '%s'", vm_type);
2368 exit(1);
2369}
2370
71461b0f 2371/*
627b84f4 2372 * Implementation of an interface to adjust firmware path
71461b0f
AK
2373 * for the bootindex property handling.
2374 */
2375static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2376 DeviceState *dev)
2377{
2378#define CAST(type, obj, name) \
2379 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2380 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2381 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
c4e13492 2382 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
71461b0f
AK
2383
2384 if (d) {
2385 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2386 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2387 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2388
2389 if (spapr) {
2390 /*
2391 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2392 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2393 * in the top 16 bits of the 64-bit LUN
2394 */
2395 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2396 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2397 (uint64_t)id << 48);
2398 } else if (virtio) {
2399 /*
2400 * We use SRP luns of the form 01000000 | (target << 8) | lun
2401 * in the top 32 bits of the 64-bit LUN
2402 * Note: the quote above is from SLOF and it is wrong,
2403 * the actual binding is:
2404 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2405 */
2406 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2407 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2408 (uint64_t)id << 32);
2409 } else if (usb) {
2410 /*
2411 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2412 * in the top 32 bits of the 64-bit LUN
2413 */
2414 unsigned usb_port = atoi(usb->port->path);
2415 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2416 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2417 (uint64_t)id << 32);
2418 }
2419 }
2420
b99260eb
TH
2421 /*
2422 * SLOF probes the USB devices, and if it recognizes that the device is a
2423 * storage device, it changes its name to "storage" instead of "usb-host",
2424 * and additionally adds a child node for the SCSI LUN, so the correct
2425 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2426 */
2427 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2428 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2429 if (usb_host_dev_is_scsi_storage(usbdev)) {
2430 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2431 }
2432 }
2433
71461b0f
AK
2434 if (phb) {
2435 /* Replace "pci" with "pci@800000020000000" */
2436 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2437 }
2438
c4e13492
FF
2439 if (vsc) {
2440 /* Same logic as virtio above */
2441 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2442 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2443 }
2444
71461b0f
AK
2445 return NULL;
2446}
2447
23825581
EH
2448static char *spapr_get_kvm_type(Object *obj, Error **errp)
2449{
28e02042 2450 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2451
28e02042 2452 return g_strdup(spapr->kvm_type);
23825581
EH
2453}
2454
2455static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2456{
28e02042 2457 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2458
28e02042
DG
2459 g_free(spapr->kvm_type);
2460 spapr->kvm_type = g_strdup(value);
23825581
EH
2461}
2462
f6229214
MR
2463static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2464{
2465 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2466
2467 return spapr->use_hotplug_event_source;
2468}
2469
2470static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2471 Error **errp)
2472{
2473 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2474
2475 spapr->use_hotplug_event_source = value;
2476}
2477
23825581
EH
2478static void spapr_machine_initfn(Object *obj)
2479{
715c5407
DG
2480 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2481
2482 spapr->htab_fd = -1;
f6229214 2483 spapr->use_hotplug_event_source = true;
23825581
EH
2484 object_property_add_str(obj, "kvm-type",
2485 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
49d2e648
MA
2486 object_property_set_description(obj, "kvm-type",
2487 "Specifies the KVM virtualization mode (HV, PR)",
2488 NULL);
f6229214
MR
2489 object_property_add_bool(obj, "modern-hotplug-events",
2490 spapr_get_modern_hotplug_events,
2491 spapr_set_modern_hotplug_events,
2492 NULL);
2493 object_property_set_description(obj, "modern-hotplug-events",
2494 "Use dedicated hotplug event mechanism in"
2495 " place of standard EPOW events when possible"
2496 " (required for memory hot-unplug support)",
2497 NULL);
23825581
EH
2498}
2499
87bbdd9c
DG
2500static void spapr_machine_finalizefn(Object *obj)
2501{
2502 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2503
2504 g_free(spapr->kvm_type);
2505}
2506
1c7ad77e 2507void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
34316482 2508{
34316482
AK
2509 cpu_synchronize_state(cs);
2510 ppc_cpu_do_system_reset(cs);
2511}
2512
2513static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2514{
2515 CPUState *cs;
2516
2517 CPU_FOREACH(cs) {
1c7ad77e 2518 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
34316482
AK
2519 }
2520}
2521
79b78a6b
MR
2522static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2523 uint32_t node, bool dedicated_hp_event_source,
2524 Error **errp)
c20d332a
BR
2525{
2526 sPAPRDRConnector *drc;
2527 sPAPRDRConnectorClass *drck;
2528 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2529 int i, fdt_offset, fdt_size;
2530 void *fdt;
79b78a6b 2531 uint64_t addr = addr_start;
c20d332a 2532
c20d332a 2533 for (i = 0; i < nr_lmbs; i++) {
fbf55397
DG
2534 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2535 addr / SPAPR_MEMORY_BLOCK_SIZE);
c20d332a
BR
2536 g_assert(drc);
2537
2538 fdt = create_device_tree(&fdt_size);
2539 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2540 SPAPR_MEMORY_BLOCK_SIZE);
2541
2542 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2543 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
c20d332a 2544 addr += SPAPR_MEMORY_BLOCK_SIZE;
5c0139a8
MR
2545 if (!dev->hotplugged) {
2546 /* guests expect coldplugged LMBs to be pre-allocated */
2547 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2548 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2549 }
c20d332a 2550 }
5dd5238c
JD
2551 /* send hotplug notification to the
2552 * guest only in case of hotplugged memory
2553 */
2554 if (dev->hotplugged) {
79b78a6b 2555 if (dedicated_hp_event_source) {
fbf55397
DG
2556 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2557 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
79b78a6b
MR
2558 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2559 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2560 nr_lmbs,
0b55aa91 2561 spapr_drc_index(drc));
79b78a6b
MR
2562 } else {
2563 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2564 nr_lmbs);
2565 }
5dd5238c 2566 }
c20d332a
BR
2567}
2568
2569static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2570 uint32_t node, Error **errp)
2571{
2572 Error *local_err = NULL;
2573 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2574 PCDIMMDevice *dimm = PC_DIMM(dev);
2575 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2576 MemoryRegion *mr = ddc->get_memory_region(dimm);
2577 uint64_t align = memory_region_get_alignment(mr);
2578 uint64_t size = memory_region_size(mr);
2579 uint64_t addr;
df587133 2580
d6a9b0b8 2581 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
c20d332a
BR
2582 if (local_err) {
2583 goto out;
2584 }
2585
2586 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2587 if (local_err) {
2588 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2589 goto out;
2590 }
2591
79b78a6b
MR
2592 spapr_add_lmbs(dev, addr, size, node,
2593 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2594 &error_abort);
c20d332a
BR
2595
2596out:
2597 error_propagate(errp, local_err);
2598}
2599
c871bc70
LV
2600static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2601 Error **errp)
2602{
2603 PCDIMMDevice *dimm = PC_DIMM(dev);
2604 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2605 MemoryRegion *mr = ddc->get_memory_region(dimm);
2606 uint64_t size = memory_region_size(mr);
2607 char *mem_dev;
2608
2609 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2610 error_setg(errp, "Hotplugged memory size must be a multiple of "
2611 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2612 return;
2613 }
2614
2615 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2616 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2617 error_setg(errp, "Memory backend has bad page size. "
2618 "Use 'memory-backend-file' with correct mem-path.");
2619 return;
2620 }
2621}
2622
0cffce56
DG
2623struct sPAPRDIMMState {
2624 PCDIMMDevice *dimm;
cf632463 2625 uint32_t nr_lmbs;
0cffce56
DG
2626 QTAILQ_ENTRY(sPAPRDIMMState) next;
2627};
2628
2629static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
2630 PCDIMMDevice *dimm)
2631{
2632 sPAPRDIMMState *dimm_state = NULL;
2633
2634 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
2635 if (dimm_state->dimm == dimm) {
2636 break;
2637 }
2638 }
2639 return dimm_state;
2640}
2641
2642static void spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
2643 sPAPRDIMMState *dimm_state)
2644{
2645 g_assert(!spapr_pending_dimm_unplugs_find(spapr, dimm_state->dimm));
2646 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, dimm_state, next);
2647}
2648
2649static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
2650 sPAPRDIMMState *dimm_state)
2651{
2652 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
2653 g_free(dimm_state);
2654}
cf632463 2655
16ee9980
DHB
2656static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
2657 PCDIMMDevice *dimm)
2658{
2659 sPAPRDRConnector *drc;
2660 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2661 MemoryRegion *mr = ddc->get_memory_region(dimm);
2662 uint64_t size = memory_region_size(mr);
2663 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2664 uint32_t avail_lmbs = 0;
2665 uint64_t addr_start, addr;
2666 int i;
2667 sPAPRDIMMState *ds;
2668
2669 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
2670 &error_abort);
2671
2672 addr = addr_start;
2673 for (i = 0; i < nr_lmbs; i++) {
fbf55397
DG
2674 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2675 addr / SPAPR_MEMORY_BLOCK_SIZE);
16ee9980
DHB
2676 g_assert(drc);
2677 if (drc->indicator_state != SPAPR_DR_INDICATOR_STATE_INACTIVE) {
2678 avail_lmbs++;
2679 }
2680 addr += SPAPR_MEMORY_BLOCK_SIZE;
2681 }
2682
2683 ds = g_malloc0(sizeof(sPAPRDIMMState));
2684 ds->nr_lmbs = avail_lmbs;
2685 ds->dimm = dimm;
2686 spapr_pending_dimm_unplugs_add(ms, ds);
2687 return ds;
2688}
2689
31834723
DHB
2690/* Callback to be called during DRC release. */
2691void spapr_lmb_release(DeviceState *dev)
cf632463 2692{
0cffce56
DG
2693 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
2694 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
2695 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
cf632463 2696
16ee9980
DHB
2697 /* This information will get lost if a migration occurs
2698 * during the unplug process. In this case recover it. */
2699 if (ds == NULL) {
2700 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
2701 if (ds->nr_lmbs) {
2702 return;
2703 }
2704 } else if (--ds->nr_lmbs) {
cf632463
BR
2705 return;
2706 }
2707
0cffce56 2708 spapr_pending_dimm_unplugs_remove(spapr, ds);
cf632463
BR
2709
2710 /*
2711 * Now that all the LMBs have been removed by the guest, call the
2712 * pc-dimm unplug handler to cleanup up the pc-dimm device.
2713 */
cf632463
BR
2714 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2715}
2716
cf632463
BR
2717static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2718 Error **errp)
2719{
2720 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2721 PCDIMMDevice *dimm = PC_DIMM(dev);
2722 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2723 MemoryRegion *mr = ddc->get_memory_region(dimm);
2724
2725 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2726 object_unparent(OBJECT(dev));
2727}
2728
2729static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2730 DeviceState *dev, Error **errp)
2731{
0cffce56 2732 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
cf632463
BR
2733 Error *local_err = NULL;
2734 PCDIMMDevice *dimm = PC_DIMM(dev);
2735 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2736 MemoryRegion *mr = ddc->get_memory_region(dimm);
2737 uint64_t size = memory_region_size(mr);
0cffce56
DG
2738 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2739 uint64_t addr_start, addr;
2740 int i;
2741 sPAPRDRConnector *drc;
2742 sPAPRDRConnectorClass *drck;
2743 sPAPRDIMMState *ds;
cf632463 2744
0cffce56
DG
2745 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
2746 &local_err);
cf632463
BR
2747 if (local_err) {
2748 goto out;
2749 }
2750
0cffce56
DG
2751 ds = g_malloc0(sizeof(sPAPRDIMMState));
2752 ds->nr_lmbs = nr_lmbs;
2753 ds->dimm = dimm;
2754 spapr_pending_dimm_unplugs_add(spapr, ds);
2755
2756 addr = addr_start;
2757 for (i = 0; i < nr_lmbs; i++) {
fbf55397
DG
2758 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2759 addr / SPAPR_MEMORY_BLOCK_SIZE);
0cffce56
DG
2760 g_assert(drc);
2761
2762 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
31834723 2763 drck->detach(drc, dev, errp);
0cffce56
DG
2764 addr += SPAPR_MEMORY_BLOCK_SIZE;
2765 }
2766
fbf55397
DG
2767 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2768 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
0cffce56
DG
2769 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2770 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
0b55aa91 2771 nr_lmbs, spapr_drc_index(drc));
cf632463
BR
2772out:
2773 error_propagate(errp, local_err);
2774}
2775
af81cf32
BR
2776void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2777 sPAPRMachineState *spapr)
2778{
2779 PowerPCCPU *cpu = POWERPC_CPU(cs);
2780 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2781 int id = ppc_get_vcpu_dt_id(cpu);
2782 void *fdt;
2783 int offset, fdt_size;
2784 char *nodename;
2785
2786 fdt = create_device_tree(&fdt_size);
2787 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2788 offset = fdt_add_subnode(fdt, 0, nodename);
2789
2790 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2791 g_free(nodename);
2792
2793 *fdt_offset = offset;
2794 return fdt;
2795}
2796
115debf2
IM
2797static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2798 Error **errp)
ff9006dd 2799{
535455fd 2800 MachineState *ms = MACHINE(qdev_get_machine());
ff9006dd 2801 CPUCore *cc = CPU_CORE(dev);
535455fd 2802 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
ff9006dd 2803
07572c06 2804 assert(core_slot);
535455fd 2805 core_slot->cpu = NULL;
ff9006dd
IM
2806 object_unparent(OBJECT(dev));
2807}
2808
31834723
DHB
2809/* Callback to be called during DRC release. */
2810void spapr_core_release(DeviceState *dev)
115debf2
IM
2811{
2812 HotplugHandler *hotplug_ctrl;
2813
2814 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2815 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2816}
2817
2818static
2819void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
2820 Error **errp)
ff9006dd 2821{
535455fd
IM
2822 int index;
2823 sPAPRDRConnector *drc;
ff9006dd
IM
2824 sPAPRDRConnectorClass *drck;
2825 Error *local_err = NULL;
535455fd
IM
2826 CPUCore *cc = CPU_CORE(dev);
2827 int smt = kvmppc_smt_threads();
ff9006dd 2828
535455fd
IM
2829 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
2830 error_setg(errp, "Unable to find CPU core with core-id: %d",
2831 cc->core_id);
2832 return;
2833 }
ff9006dd
IM
2834 if (index == 0) {
2835 error_setg(errp, "Boot CPU core may not be unplugged");
2836 return;
2837 }
2838
fbf55397 2839 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
ff9006dd
IM
2840 g_assert(drc);
2841
2842 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
31834723 2843 drck->detach(drc, dev, &local_err);
ff9006dd
IM
2844 if (local_err) {
2845 error_propagate(errp, local_err);
2846 return;
2847 }
2848
2849 spapr_hotplug_req_remove_by_index(drc);
2850}
2851
2852static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2853 Error **errp)
2854{
2855 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
2856 MachineClass *mc = MACHINE_GET_CLASS(spapr);
2857 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
2858 CPUCore *cc = CPU_CORE(dev);
2859 CPUState *cs = CPU(core->threads);
2860 sPAPRDRConnector *drc;
2861 Error *local_err = NULL;
2862 void *fdt = NULL;
2863 int fdt_offset = 0;
ff9006dd 2864 int smt = kvmppc_smt_threads();
535455fd
IM
2865 CPUArchId *core_slot;
2866 int index;
ff9006dd 2867
535455fd
IM
2868 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2869 if (!core_slot) {
2870 error_setg(errp, "Unable to find CPU core with core-id: %d",
2871 cc->core_id);
2872 return;
2873 }
fbf55397 2874 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
ff9006dd 2875
c5514d0e 2876 g_assert(drc || !mc->has_hotpluggable_cpus);
ff9006dd
IM
2877
2878 /*
2879 * Setup CPU DT entries only for hotplugged CPUs. For boot time or
2880 * coldplugged CPUs DT entries are setup in spapr_build_fdt().
2881 */
2882 if (dev->hotplugged) {
2883 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
2884 }
2885
2886 if (drc) {
2887 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2888 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err);
2889 if (local_err) {
2890 g_free(fdt);
ff9006dd
IM
2891 error_propagate(errp, local_err);
2892 return;
2893 }
2894 }
2895
2896 if (dev->hotplugged) {
2897 /*
2898 * Send hotplug notification interrupt to the guest only in case
2899 * of hotplugged CPUs.
2900 */
2901 spapr_hotplug_req_add_by_index(drc);
2902 } else {
2903 /*
2904 * Set the right DRC states for cold plugged CPU.
2905 */
2906 if (drc) {
2907 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2908 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2909 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2910 }
2911 }
535455fd 2912 core_slot->cpu = OBJECT(dev);
ff9006dd
IM
2913}
2914
2915static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2916 Error **errp)
2917{
2918 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
2919 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
ff9006dd
IM
2920 Error *local_err = NULL;
2921 CPUCore *cc = CPU_CORE(dev);
2922 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
2923 const char *type = object_get_typename(OBJECT(dev));
535455fd
IM
2924 CPUArchId *core_slot;
2925 int index;
ff9006dd 2926
c5514d0e 2927 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
ff9006dd
IM
2928 error_setg(&local_err, "CPU hotplug not supported for this machine");
2929 goto out;
2930 }
2931
2932 if (strcmp(base_core_type, type)) {
2933 error_setg(&local_err, "CPU core type should be %s", base_core_type);
2934 goto out;
2935 }
2936
2937 if (cc->core_id % smp_threads) {
2938 error_setg(&local_err, "invalid core id %d", cc->core_id);
2939 goto out;
2940 }
2941
459264ef
DG
2942 /*
2943 * In general we should have homogeneous threads-per-core, but old
2944 * (pre hotplug support) machine types allow the last core to have
2945 * reduced threads as a compatibility hack for when we allowed
2946 * total vcpus not a multiple of threads-per-core.
2947 */
2948 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
8149e299
DG
2949 error_setg(errp, "invalid nr-threads %d, must be %d",
2950 cc->nr_threads, smp_threads);
2951 return;
2952 }
2953
535455fd
IM
2954 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2955 if (!core_slot) {
ff9006dd
IM
2956 error_setg(&local_err, "core id %d out of range", cc->core_id);
2957 goto out;
2958 }
2959
535455fd 2960 if (core_slot->cpu) {
ff9006dd
IM
2961 error_setg(&local_err, "core %d already populated", cc->core_id);
2962 goto out;
2963 }
2964
a0ceb640 2965 numa_cpu_pre_plug(core_slot, dev, &local_err);
0b8497f0 2966
ff9006dd
IM
2967out:
2968 g_free(base_core_type);
2969 error_propagate(errp, local_err);
2970}
2971
c20d332a
BR
2972static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2973 DeviceState *dev, Error **errp)
2974{
2975 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2976
2977 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
b556854b 2978 int node;
c20d332a
BR
2979
2980 if (!smc->dr_lmb_enabled) {
2981 error_setg(errp, "Memory hotplug not supported for this machine");
2982 return;
2983 }
2984 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2985 if (*errp) {
2986 return;
2987 }
1a5512bb
GA
2988 if (node < 0 || node >= MAX_NODES) {
2989 error_setg(errp, "Invaild node %d", node);
2990 return;
2991 }
c20d332a 2992
b556854b
BR
2993 /*
2994 * Currently PowerPC kernel doesn't allow hot-adding memory to
2995 * memory-less node, but instead will silently add the memory
2996 * to the first node that has some memory. This causes two
2997 * unexpected behaviours for the user.
2998 *
2999 * - Memory gets hotplugged to a different node than what the user
3000 * specified.
3001 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3002 * to memory-less node, a reboot will set things accordingly
3003 * and the previously hotplugged memory now ends in the right node.
3004 * This appears as if some memory moved from one node to another.
3005 *
3006 * So until kernel starts supporting memory hotplug to memory-less
3007 * nodes, just prevent such attempts upfront in QEMU.
3008 */
3009 if (nb_numa_nodes && !numa_info[node].node_mem) {
3010 error_setg(errp, "Can't hotplug memory to memory-less node %d",
3011 node);
3012 return;
3013 }
3014
c20d332a 3015 spapr_memory_plug(hotplug_dev, dev, node, errp);
af81cf32
BR
3016 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3017 spapr_core_plug(hotplug_dev, dev, errp);
c20d332a
BR
3018 }
3019}
3020
3021static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3022 DeviceState *dev, Error **errp)
3023{
cf632463 3024 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
3c0c47e3 3025 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
6f4b5c3e 3026
c20d332a 3027 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
cf632463
BR
3028 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3029 spapr_memory_unplug(hotplug_dev, dev, errp);
3030 } else {
3031 error_setg(errp, "Memory hot unplug not supported for this guest");
3032 }
3033 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
c5514d0e 3034 if (!mc->has_hotpluggable_cpus) {
cf632463
BR
3035 error_setg(errp, "CPU hot unplug not supported on this machine");
3036 return;
3037 }
3038 spapr_core_unplug(hotplug_dev, dev, errp);
3039 }
3040}
3041
3042static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3043 DeviceState *dev, Error **errp)
3044{
3045 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
3046 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
3047
3048 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3049 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3050 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3051 } else {
3052 /* NOTE: this means there is a window after guest reset, prior to
3053 * CAS negotiation, where unplug requests will fail due to the
3054 * capability not being detected yet. This is a bit different than
3055 * the case with PCI unplug, where the events will be queued and
3056 * eventually handled by the guest after boot
3057 */
3058 error_setg(errp, "Memory hot unplug not supported for this guest");
3059 }
6f4b5c3e 3060 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
c5514d0e 3061 if (!mc->has_hotpluggable_cpus) {
6f4b5c3e
BR
3062 error_setg(errp, "CPU hot unplug not supported on this machine");
3063 return;
3064 }
115debf2 3065 spapr_core_unplug_request(hotplug_dev, dev, errp);
c20d332a
BR
3066 }
3067}
3068
94a94e4c
BR
3069static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3070 DeviceState *dev, Error **errp)
3071{
c871bc70
LV
3072 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3073 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3074 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
94a94e4c
BR
3075 spapr_core_pre_plug(hotplug_dev, dev, errp);
3076 }
3077}
3078
7ebaf795
BR
3079static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3080 DeviceState *dev)
c20d332a 3081{
94a94e4c
BR
3082 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3083 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
c20d332a
BR
3084 return HOTPLUG_HANDLER(machine);
3085 }
3086 return NULL;
3087}
3088
ea089eeb
IM
3089static CpuInstanceProperties
3090spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
20bb648d 3091{
ea089eeb
IM
3092 CPUArchId *core_slot;
3093 MachineClass *mc = MACHINE_GET_CLASS(machine);
3094
3095 /* make sure possible_cpu are intialized */
3096 mc->possible_cpu_arch_ids(machine);
3097 /* get CPU core slot containing thread that matches cpu_index */
3098 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3099 assert(core_slot);
3100 return core_slot->props;
20bb648d
DG
3101}
3102
535455fd
IM
3103static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3104{
3105 int i;
3106 int spapr_max_cores = max_cpus / smp_threads;
3107 MachineClass *mc = MACHINE_GET_CLASS(machine);
3108
c5514d0e 3109 if (!mc->has_hotpluggable_cpus) {
535455fd
IM
3110 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3111 }
3112 if (machine->possible_cpus) {
3113 assert(machine->possible_cpus->len == spapr_max_cores);
3114 return machine->possible_cpus;
3115 }
3116
3117 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3118 sizeof(CPUArchId) * spapr_max_cores);
3119 machine->possible_cpus->len = spapr_max_cores;
3120 for (i = 0; i < machine->possible_cpus->len; i++) {
3121 int core_id = i * smp_threads;
3122
f2d672c2 3123 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
535455fd
IM
3124 machine->possible_cpus->cpus[i].arch_id = core_id;
3125 machine->possible_cpus->cpus[i].props.has_core_id = true;
3126 machine->possible_cpus->cpus[i].props.core_id = core_id;
ea089eeb
IM
3127
3128 /* default distribution of CPUs over NUMA nodes */
3129 if (nb_numa_nodes) {
3130 /* preset values but do not enable them i.e. 'has_node_id = false',
3131 * numa init code will enable them later if manual mapping wasn't
3132 * present on CLI */
3133 machine->possible_cpus->cpus[i].props.node_id =
3134 core_id / smp_threads / smp_cores % nb_numa_nodes;
3135 }
535455fd
IM
3136 }
3137 return machine->possible_cpus;
3138}
3139
6737d9ad 3140static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
daa23699
DG
3141 uint64_t *buid, hwaddr *pio,
3142 hwaddr *mmio32, hwaddr *mmio64,
6737d9ad
DG
3143 unsigned n_dma, uint32_t *liobns, Error **errp)
3144{
357d1e3b
DG
3145 /*
3146 * New-style PHB window placement.
3147 *
3148 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3149 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3150 * windows.
3151 *
3152 * Some guest kernels can't work with MMIO windows above 1<<46
3153 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3154 *
3155 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3156 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3157 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3158 * 1TiB 64-bit MMIO windows for each PHB.
3159 */
6737d9ad 3160 const uint64_t base_buid = 0x800000020000000ULL;
25e6a118
MT
3161#define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3162 SPAPR_PCI_MEM64_WIN_SIZE - 1)
6737d9ad
DG
3163 int i;
3164
357d1e3b
DG
3165 /* Sanity check natural alignments */
3166 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3167 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3168 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3169 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3170 /* Sanity check bounds */
25e6a118
MT
3171 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3172 SPAPR_PCI_MEM32_WIN_SIZE);
3173 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3174 SPAPR_PCI_MEM64_WIN_SIZE);
3175
3176 if (index >= SPAPR_MAX_PHBS) {
3177 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3178 SPAPR_MAX_PHBS - 1);
6737d9ad
DG
3179 return;
3180 }
3181
3182 *buid = base_buid + index;
3183 for (i = 0; i < n_dma; ++i) {
3184 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3185 }
3186
357d1e3b
DG
3187 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3188 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3189 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
6737d9ad
DG
3190}
3191
7844e12b
CLG
3192static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3193{
3194 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3195
3196 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3197}
3198
3199static void spapr_ics_resend(XICSFabric *dev)
3200{
3201 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3202
3203 ics_resend(spapr->ics);
3204}
3205
06747ba6 3206static ICPState *spapr_icp_get(XICSFabric *xi, int cpu_dt_id)
b2fc59aa 3207{
5bc8d26d 3208 PowerPCCPU *cpu = ppc_get_vcpu_by_dt_id(cpu_dt_id);
b2fc59aa 3209
5bc8d26d 3210 return cpu ? ICP(cpu->intc) : NULL;
b2fc59aa
CLG
3211}
3212
6449da45
CLG
3213static void spapr_pic_print_info(InterruptStatsProvider *obj,
3214 Monitor *mon)
3215{
3216 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
5bc8d26d
CLG
3217 CPUState *cs;
3218
3219 CPU_FOREACH(cs) {
3220 PowerPCCPU *cpu = POWERPC_CPU(cs);
6449da45 3221
5bc8d26d 3222 icp_pic_print_info(ICP(cpu->intc), mon);
6449da45
CLG
3223 }
3224
3225 ics_pic_print_info(spapr->ics, mon);
3226}
3227
29ee3247
AK
3228static void spapr_machine_class_init(ObjectClass *oc, void *data)
3229{
3230 MachineClass *mc = MACHINE_CLASS(oc);
224245bf 3231 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
71461b0f 3232 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
34316482 3233 NMIClass *nc = NMI_CLASS(oc);
c20d332a 3234 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1d1be34d 3235 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
7844e12b 3236 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
6449da45 3237 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
958db90c 3238
0eb9054c 3239 mc->desc = "pSeries Logical Partition (PAPR compliant)";
fc9f38c3
DG
3240
3241 /*
3242 * We set up the default / latest behaviour here. The class_init
3243 * functions for the specific versioned machine types can override
3244 * these details for backwards compatibility
3245 */
958db90c
MA
3246 mc->init = ppc_spapr_init;
3247 mc->reset = ppc_spapr_reset;
3248 mc->block_default_type = IF_SCSI;
6244bb7e 3249 mc->max_cpus = 1024;
958db90c 3250 mc->no_parallel = 1;
5b2128d2 3251 mc->default_boot_order = "";
a34944fe 3252 mc->default_ram_size = 512 * M_BYTE;
958db90c 3253 mc->kvm_type = spapr_kvm_type;
9e3f9733 3254 mc->has_dynamic_sysbus = true;
e4024630 3255 mc->pci_allow_0_address = true;
7ebaf795 3256 mc->get_hotplug_handler = spapr_get_hotplug_handler;
94a94e4c 3257 hc->pre_plug = spapr_machine_device_pre_plug;
c20d332a
BR
3258 hc->plug = spapr_machine_device_plug;
3259 hc->unplug = spapr_machine_device_unplug;
ea089eeb 3260 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
535455fd 3261 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
cf632463 3262 hc->unplug_request = spapr_machine_device_unplug_request;
00b4fbe2 3263
fc9f38c3 3264 smc->dr_lmb_enabled = true;
3daa4a9f 3265 smc->tcg_default_cpu = "POWER8";
c5514d0e 3266 mc->has_hotpluggable_cpus = true;
71461b0f 3267 fwc->get_dev_path = spapr_get_fw_dev_path;
34316482 3268 nc->nmi_monitor_handler = spapr_nmi;
6737d9ad 3269 smc->phb_placement = spapr_phb_placement;
1d1be34d 3270 vhc->hypercall = emulate_spapr_hypercall;
e57ca75c
DG
3271 vhc->hpt_mask = spapr_hpt_mask;
3272 vhc->map_hptes = spapr_map_hptes;
3273 vhc->unmap_hptes = spapr_unmap_hptes;
3274 vhc->store_hpte = spapr_store_hpte;
9861bb3e 3275 vhc->get_patbe = spapr_get_patbe;
7844e12b
CLG
3276 xic->ics_get = spapr_ics_get;
3277 xic->ics_resend = spapr_ics_resend;
b2fc59aa 3278 xic->icp_get = spapr_icp_get;
6449da45 3279 ispc->print_info = spapr_pic_print_info;
55641213
LV
3280 /* Force NUMA node memory size to be a multiple of
3281 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3282 * in which LMBs are represented and hot-added
3283 */
3284 mc->numa_mem_align_shift = 28;
29ee3247
AK
3285}
3286
3287static const TypeInfo spapr_machine_info = {
3288 .name = TYPE_SPAPR_MACHINE,
3289 .parent = TYPE_MACHINE,
4aee7362 3290 .abstract = true,
6ca1502e 3291 .instance_size = sizeof(sPAPRMachineState),
23825581 3292 .instance_init = spapr_machine_initfn,
87bbdd9c 3293 .instance_finalize = spapr_machine_finalizefn,
183930c0 3294 .class_size = sizeof(sPAPRMachineClass),
29ee3247 3295 .class_init = spapr_machine_class_init,
71461b0f
AK
3296 .interfaces = (InterfaceInfo[]) {
3297 { TYPE_FW_PATH_PROVIDER },
34316482 3298 { TYPE_NMI },
c20d332a 3299 { TYPE_HOTPLUG_HANDLER },
1d1be34d 3300 { TYPE_PPC_VIRTUAL_HYPERVISOR },
7844e12b 3301 { TYPE_XICS_FABRIC },
6449da45 3302 { TYPE_INTERRUPT_STATS_PROVIDER },
71461b0f
AK
3303 { }
3304 },
29ee3247
AK
3305};
3306
fccbc785 3307#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
5013c547
DG
3308 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3309 void *data) \
3310 { \
3311 MachineClass *mc = MACHINE_CLASS(oc); \
3312 spapr_machine_##suffix##_class_options(mc); \
fccbc785
DG
3313 if (latest) { \
3314 mc->alias = "pseries"; \
3315 mc->is_default = 1; \
3316 } \
5013c547
DG
3317 } \
3318 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3319 { \
3320 MachineState *machine = MACHINE(obj); \
3321 spapr_machine_##suffix##_instance_options(machine); \
3322 } \
3323 static const TypeInfo spapr_machine_##suffix##_info = { \
3324 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3325 .parent = TYPE_SPAPR_MACHINE, \
3326 .class_init = spapr_machine_##suffix##_class_init, \
3327 .instance_init = spapr_machine_##suffix##_instance_init, \
3328 }; \
3329 static void spapr_machine_register_##suffix(void) \
3330 { \
3331 type_register(&spapr_machine_##suffix##_info); \
3332 } \
0e6aac87 3333 type_init(spapr_machine_register_##suffix)
5013c547 3334
3fa14fbe
DG
3335/*
3336 * pseries-2.10
3337 */
3338static void spapr_machine_2_10_instance_options(MachineState *machine)
3339{
3340}
3341
3342static void spapr_machine_2_10_class_options(MachineClass *mc)
3343{
3344 /* Defaults for the latest behaviour inherited from the base class */
3345}
3346
3347DEFINE_SPAPR_MACHINE(2_10, "2.10", true);
3348
fa325e6c
DG
3349/*
3350 * pseries-2.9
3351 */
3fa14fbe
DG
3352#define SPAPR_COMPAT_2_9 \
3353 HW_COMPAT_2_9
3354
fa325e6c
DG
3355static void spapr_machine_2_9_instance_options(MachineState *machine)
3356{
3fa14fbe 3357 spapr_machine_2_10_instance_options(machine);
fa325e6c
DG
3358}
3359
3360static void spapr_machine_2_9_class_options(MachineClass *mc)
3361{
3fa14fbe
DG
3362 spapr_machine_2_10_class_options(mc);
3363 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3bfe5716 3364 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
fa325e6c
DG
3365}
3366
3fa14fbe 3367DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
fa325e6c 3368
db800b21
DG
3369/*
3370 * pseries-2.8
3371 */
82516263
DG
3372#define SPAPR_COMPAT_2_8 \
3373 HW_COMPAT_2_8 \
3374 { \
3375 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3376 .property = "pcie-extended-configuration-space", \
3377 .value = "off", \
3378 },
fa325e6c 3379
db800b21
DG
3380static void spapr_machine_2_8_instance_options(MachineState *machine)
3381{
fa325e6c 3382 spapr_machine_2_9_instance_options(machine);
db800b21
DG
3383}
3384
3385static void spapr_machine_2_8_class_options(MachineClass *mc)
3386{
fa325e6c
DG
3387 spapr_machine_2_9_class_options(mc);
3388 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
55641213 3389 mc->numa_mem_align_shift = 23;
db800b21
DG
3390}
3391
fa325e6c 3392DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
db800b21 3393
1ea1eefc
BR
3394/*
3395 * pseries-2.7
3396 */
357d1e3b
DG
3397#define SPAPR_COMPAT_2_7 \
3398 HW_COMPAT_2_7 \
3399 { \
3400 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3401 .property = "mem_win_size", \
3402 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3403 }, \
3404 { \
3405 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3406 .property = "mem64_win_size", \
3407 .value = "0", \
146c11f1
DG
3408 }, \
3409 { \
3410 .driver = TYPE_POWERPC_CPU, \
3411 .property = "pre-2.8-migration", \
3412 .value = "on", \
5c4537bd
DG
3413 }, \
3414 { \
3415 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3416 .property = "pre-2.8-migration", \
3417 .value = "on", \
357d1e3b
DG
3418 },
3419
3420static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3421 uint64_t *buid, hwaddr *pio,
3422 hwaddr *mmio32, hwaddr *mmio64,
3423 unsigned n_dma, uint32_t *liobns, Error **errp)
3424{
3425 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3426 const uint64_t base_buid = 0x800000020000000ULL;
3427 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3428 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3429 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3430 const uint32_t max_index = 255;
3431 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3432
3433 uint64_t ram_top = MACHINE(spapr)->ram_size;
3434 hwaddr phb0_base, phb_base;
3435 int i;
3436
3437 /* Do we have hotpluggable memory? */
3438 if (MACHINE(spapr)->maxram_size > ram_top) {
3439 /* Can't just use maxram_size, because there may be an
3440 * alignment gap between normal and hotpluggable memory
3441 * regions */
3442 ram_top = spapr->hotplug_memory.base +
3443 memory_region_size(&spapr->hotplug_memory.mr);
3444 }
3445
3446 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3447
3448 if (index > max_index) {
3449 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3450 max_index);
3451 return;
3452 }
3453
3454 *buid = base_buid + index;
3455 for (i = 0; i < n_dma; ++i) {
3456 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3457 }
3458
3459 phb_base = phb0_base + index * phb_spacing;
3460 *pio = phb_base + pio_offset;
3461 *mmio32 = phb_base + mmio_offset;
3462 /*
3463 * We don't set the 64-bit MMIO window, relying on the PHB's
3464 * fallback behaviour of automatically splitting a large "32-bit"
3465 * window into contiguous 32-bit and 64-bit windows
3466 */
3467}
db800b21 3468
1ea1eefc
BR
3469static void spapr_machine_2_7_instance_options(MachineState *machine)
3470{
f6229214
MR
3471 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3472
672de881 3473 spapr_machine_2_8_instance_options(machine);
f6229214 3474 spapr->use_hotplug_event_source = false;
1ea1eefc
BR
3475}
3476
3477static void spapr_machine_2_7_class_options(MachineClass *mc)
3478{
3daa4a9f
TH
3479 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3480
db800b21 3481 spapr_machine_2_8_class_options(mc);
3daa4a9f 3482 smc->tcg_default_cpu = "POWER7";
db800b21 3483 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
357d1e3b 3484 smc->phb_placement = phb_placement_2_7;
1ea1eefc
BR
3485}
3486
db800b21 3487DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
1ea1eefc 3488
4b23699c
DG
3489/*
3490 * pseries-2.6
3491 */
1ea1eefc 3492#define SPAPR_COMPAT_2_6 \
ae4de14c
AK
3493 HW_COMPAT_2_6 \
3494 { \
3495 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3496 .property = "ddw",\
3497 .value = stringify(off),\
3498 },
1ea1eefc 3499
4b23699c
DG
3500static void spapr_machine_2_6_instance_options(MachineState *machine)
3501{
672de881 3502 spapr_machine_2_7_instance_options(machine);
4b23699c
DG
3503}
3504
3505static void spapr_machine_2_6_class_options(MachineClass *mc)
3506{
1ea1eefc 3507 spapr_machine_2_7_class_options(mc);
c5514d0e 3508 mc->has_hotpluggable_cpus = false;
1ea1eefc 3509 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4b23699c
DG
3510}
3511
1ea1eefc 3512DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4b23699c 3513
1c5f29bb
DG
3514/*
3515 * pseries-2.5
3516 */
4b23699c 3517#define SPAPR_COMPAT_2_5 \
57c522f4
TH
3518 HW_COMPAT_2_5 \
3519 { \
3520 .driver = "spapr-vlan", \
3521 .property = "use-rx-buffer-pools", \
3522 .value = "off", \
3523 },
4b23699c 3524
5013c547 3525static void spapr_machine_2_5_instance_options(MachineState *machine)
1c5f29bb 3526{
672de881 3527 spapr_machine_2_6_instance_options(machine);
5013c547
DG
3528}
3529
3530static void spapr_machine_2_5_class_options(MachineClass *mc)
3531{
57040d45
TH
3532 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3533
4b23699c 3534 spapr_machine_2_6_class_options(mc);
57040d45 3535 smc->use_ohci_by_default = true;
4b23699c 3536 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
1c5f29bb
DG
3537}
3538
4b23699c 3539DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
1c5f29bb
DG
3540
3541/*
3542 * pseries-2.4
3543 */
80fd50f9
CH
3544#define SPAPR_COMPAT_2_4 \
3545 HW_COMPAT_2_4
3546
5013c547 3547static void spapr_machine_2_4_instance_options(MachineState *machine)
1c5f29bb 3548{
5013c547
DG
3549 spapr_machine_2_5_instance_options(machine);
3550}
1c5f29bb 3551
5013c547
DG
3552static void spapr_machine_2_4_class_options(MachineClass *mc)
3553{
fc9f38c3
DG
3554 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3555
3556 spapr_machine_2_5_class_options(mc);
fc9f38c3 3557 smc->dr_lmb_enabled = false;
f949b4e5 3558 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
1c5f29bb
DG
3559}
3560
fccbc785 3561DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
1c5f29bb
DG
3562
3563/*
3564 * pseries-2.3
3565 */
38ff32c6 3566#define SPAPR_COMPAT_2_3 \
7619c7b0
MR
3567 HW_COMPAT_2_3 \
3568 {\
3569 .driver = "spapr-pci-host-bridge",\
3570 .property = "dynamic-reconfiguration",\
3571 .value = "off",\
3572 },
38ff32c6 3573
5013c547 3574static void spapr_machine_2_3_instance_options(MachineState *machine)
d25228e7 3575{
5013c547 3576 spapr_machine_2_4_instance_options(machine);
ff14e817 3577 savevm_skip_section_footers();
13d16814 3578 global_state_set_optional();
09b5e30d 3579 savevm_skip_configuration();
d25228e7
JW
3580}
3581
5013c547 3582static void spapr_machine_2_3_class_options(MachineClass *mc)
6026db45 3583{
fc9f38c3 3584 spapr_machine_2_4_class_options(mc);
f949b4e5 3585 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
6026db45 3586}
fccbc785 3587DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
6026db45 3588
1c5f29bb
DG
3589/*
3590 * pseries-2.2
3591 */
3592
3593#define SPAPR_COMPAT_2_2 \
1c5f29bb
DG
3594 HW_COMPAT_2_2 \
3595 {\
3596 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3597 .property = "mem_win_size",\
3598 .value = "0x20000000",\
3599 },
3600
5013c547 3601static void spapr_machine_2_2_instance_options(MachineState *machine)
1c5f29bb 3602{
5013c547 3603 spapr_machine_2_3_instance_options(machine);
cba0e779 3604 machine->suppress_vmdesc = true;
1c5f29bb
DG
3605}
3606
5013c547 3607static void spapr_machine_2_2_class_options(MachineClass *mc)
4aee7362 3608{
fc9f38c3 3609 spapr_machine_2_3_class_options(mc);
f949b4e5 3610 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4aee7362 3611}
fccbc785 3612DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4aee7362 3613
1c5f29bb
DG
3614/*
3615 * pseries-2.1
3616 */
3617#define SPAPR_COMPAT_2_1 \
1c5f29bb 3618 HW_COMPAT_2_1
3dab0244 3619
5013c547 3620static void spapr_machine_2_1_instance_options(MachineState *machine)
1c5f29bb 3621{
5013c547 3622 spapr_machine_2_2_instance_options(machine);
1c5f29bb 3623}
d25228e7 3624
5013c547 3625static void spapr_machine_2_1_class_options(MachineClass *mc)
d25228e7 3626{
fc9f38c3 3627 spapr_machine_2_2_class_options(mc);
f949b4e5 3628 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
d25228e7 3629}
fccbc785 3630DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
fb0fc8f6 3631
29ee3247 3632static void spapr_machine_register_types(void)
9fdf0c29 3633{
29ee3247 3634 type_register_static(&spapr_machine_info);
9fdf0c29
DG
3635}
3636
29ee3247 3637type_init(spapr_machine_register_types)