]> git.proxmox.com Git - mirror_qemu.git/blame - hw/ppc/spapr.c
pseries: Make cpu_update during CAS unconditional
[mirror_qemu.git] / hw / ppc / spapr.c
CommitLineData
9fdf0c29
DG
1/*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
0d75590d 27#include "qemu/osdep.h"
da34e65c 28#include "qapi/error.h"
9c17d615 29#include "sysemu/sysemu.h"
e35704ba 30#include "sysemu/numa.h"
83c9f4ca 31#include "hw/hw.h"
03dd024f 32#include "qemu/log.h"
71461b0f 33#include "hw/fw-path-provider.h"
9fdf0c29 34#include "elf.h"
1422e32d 35#include "net/net.h"
ad440b4a 36#include "sysemu/device_tree.h"
fa1d36df 37#include "sysemu/block-backend.h"
9c17d615 38#include "sysemu/cpus.h"
b3946626 39#include "sysemu/hw_accel.h"
e97c3636 40#include "kvm_ppc.h"
ff14e817 41#include "migration/migration.h"
4be21d56 42#include "mmu-hash64.h"
3794d548 43#include "qom/cpu.h"
9fdf0c29
DG
44
45#include "hw/boards.h"
0d09e41a 46#include "hw/ppc/ppc.h"
9fdf0c29
DG
47#include "hw/loader.h"
48
7804c353 49#include "hw/ppc/fdt.h"
0d09e41a
PB
50#include "hw/ppc/spapr.h"
51#include "hw/ppc/spapr_vio.h"
52#include "hw/pci-host/spapr.h"
53#include "hw/ppc/xics.h"
a2cb15b0 54#include "hw/pci/msi.h"
9fdf0c29 55
83c9f4ca 56#include "hw/pci/pci.h"
71461b0f
AK
57#include "hw/scsi/scsi.h"
58#include "hw/virtio/virtio-scsi.h"
f61b4bed 59
022c62cb 60#include "exec/address-spaces.h"
35139a59 61#include "hw/usb.h"
1de7afc9 62#include "qemu/config-file.h"
135a129a 63#include "qemu/error-report.h"
2a6593cb 64#include "trace.h"
34316482 65#include "hw/nmi.h"
890c2b77 66
68a27b20 67#include "hw/compat.h"
f348b6d1 68#include "qemu/cutils.h"
94a94e4c 69#include "hw/ppc/spapr_cpu_core.h"
2474bfd4 70#include "qmp-commands.h"
68a27b20 71
9fdf0c29
DG
72#include <libfdt.h>
73
4d8d5467
BH
74/* SLOF memory layout:
75 *
76 * SLOF raw image loaded at 0, copies its romfs right below the flat
77 * device-tree, then position SLOF itself 31M below that
78 *
79 * So we set FW_OVERHEAD to 40MB which should account for all of that
80 * and more
81 *
82 * We load our kernel at 4M, leaving space for SLOF initial image
83 */
38b02bd8 84#define FDT_MAX_SIZE 0x100000
39ac8455 85#define RTAS_MAX_SIZE 0x10000
b7d1f77a 86#define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
a9f8ad8f
DG
87#define FW_MAX_SIZE 0x400000
88#define FW_FILE_NAME "slof.bin"
4d8d5467
BH
89#define FW_OVERHEAD 0x2800000
90#define KERNEL_LOAD_ADDR FW_MAX_SIZE
a9f8ad8f 91
4d8d5467 92#define MIN_RMA_SLOF 128UL
9fdf0c29 93
0c103f8e
DG
94#define PHANDLE_XICP 0x00001111
95
7f763a5d
DG
96#define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
97
c04d6cfa 98static XICSState *try_create_xics(const char *type, int nr_servers,
34f2af3d 99 int nr_irqs, Error **errp)
c04d6cfa 100{
34f2af3d 101 Error *err = NULL;
c04d6cfa
AL
102 DeviceState *dev;
103
104 dev = qdev_create(NULL, type);
105 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
106 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
34f2af3d
MA
107 object_property_set_bool(OBJECT(dev), true, "realized", &err);
108 if (err) {
109 error_propagate(errp, err);
110 object_unparent(OBJECT(dev));
c04d6cfa
AL
111 return NULL;
112 }
5a3d7b23 113 return XICS_COMMON(dev);
c04d6cfa
AL
114}
115
446f16a6 116static XICSState *xics_system_init(MachineState *machine,
1e49182d 117 int nr_servers, int nr_irqs, Error **errp)
c04d6cfa 118{
27f24582 119 XICSState *xics = NULL;
c04d6cfa 120
11ad93f6 121 if (kvm_enabled()) {
34f2af3d
MA
122 Error *err = NULL;
123
446f16a6 124 if (machine_kernel_irqchip_allowed(machine)) {
27f24582
BH
125 xics = try_create_xics(TYPE_XICS_SPAPR_KVM, nr_servers, nr_irqs,
126 &err);
11ad93f6 127 }
27f24582 128 if (machine_kernel_irqchip_required(machine) && !xics) {
b83baa60
MA
129 error_reportf_err(err,
130 "kernel_irqchip requested but unavailable: ");
131 } else {
132 error_free(err);
11ad93f6
DG
133 }
134 }
135
27f24582
BH
136 if (!xics) {
137 xics = try_create_xics(TYPE_XICS_SPAPR, nr_servers, nr_irqs, errp);
c04d6cfa
AL
138 }
139
27f24582 140 return xics;
c04d6cfa
AL
141}
142
833d4668
AK
143static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
144 int smt_threads)
145{
146 int i, ret = 0;
147 uint32_t servers_prop[smt_threads];
148 uint32_t gservers_prop[smt_threads * 2];
149 int index = ppc_get_vcpu_dt_id(cpu);
150
6d9412ea 151 if (cpu->cpu_version) {
4bce526e 152 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
6d9412ea
AK
153 if (ret < 0) {
154 return ret;
155 }
156 }
157
833d4668
AK
158 /* Build interrupt servers and gservers properties */
159 for (i = 0; i < smt_threads; i++) {
160 servers_prop[i] = cpu_to_be32(index + i);
161 /* Hack, direct the group queues back to cpu 0 */
162 gservers_prop[i*2] = cpu_to_be32(index + i);
163 gservers_prop[i*2 + 1] = 0;
164 }
165 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
166 servers_prop, sizeof(servers_prop));
167 if (ret < 0) {
168 return ret;
169 }
170 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
171 gservers_prop, sizeof(gservers_prop));
172
173 return ret;
174}
175
0da6f3fe
BR
176static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
177{
178 int ret = 0;
179 PowerPCCPU *cpu = POWERPC_CPU(cs);
180 int index = ppc_get_vcpu_dt_id(cpu);
181 uint32_t associativity[] = {cpu_to_be32(0x5),
182 cpu_to_be32(0x0),
183 cpu_to_be32(0x0),
184 cpu_to_be32(0x0),
185 cpu_to_be32(cs->numa_node),
186 cpu_to_be32(index)};
187
188 /* Advertise NUMA via ibm,associativity */
189 if (nb_numa_nodes > 1) {
190 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
191 sizeof(associativity));
192 }
193
194 return ret;
195}
196
28e02042 197static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
6e806cc3 198{
82677ed2
AK
199 int ret = 0, offset, cpus_offset;
200 CPUState *cs;
6e806cc3
BR
201 char cpu_model[32];
202 int smt = kvmppc_smt_threads();
7f763a5d 203 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
6e806cc3 204
82677ed2
AK
205 CPU_FOREACH(cs) {
206 PowerPCCPU *cpu = POWERPC_CPU(cs);
207 DeviceClass *dc = DEVICE_GET_CLASS(cs);
208 int index = ppc_get_vcpu_dt_id(cpu);
6e806cc3 209
0f20ba62 210 if ((index % smt) != 0) {
6e806cc3
BR
211 continue;
212 }
213
82677ed2 214 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
6e806cc3 215
82677ed2
AK
216 cpus_offset = fdt_path_offset(fdt, "/cpus");
217 if (cpus_offset < 0) {
218 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
219 "cpus");
220 if (cpus_offset < 0) {
221 return cpus_offset;
222 }
223 }
224 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
6e806cc3 225 if (offset < 0) {
82677ed2
AK
226 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
227 if (offset < 0) {
228 return offset;
229 }
6e806cc3
BR
230 }
231
7f763a5d
DG
232 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
233 pft_size_prop, sizeof(pft_size_prop));
6e806cc3
BR
234 if (ret < 0) {
235 return ret;
236 }
833d4668 237
0da6f3fe
BR
238 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
239 if (ret < 0) {
240 return ret;
241 }
242
82677ed2 243 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
2a48d993 244 ppc_get_compat_smt_threads(cpu));
833d4668
AK
245 if (ret < 0) {
246 return ret;
247 }
6e806cc3
BR
248 }
249 return ret;
250}
251
b082d65a
AK
252static hwaddr spapr_node0_size(void)
253{
fb164994
DG
254 MachineState *machine = MACHINE(qdev_get_machine());
255
b082d65a
AK
256 if (nb_numa_nodes) {
257 int i;
258 for (i = 0; i < nb_numa_nodes; ++i) {
259 if (numa_info[i].node_mem) {
fb164994
DG
260 return MIN(pow2floor(numa_info[i].node_mem),
261 machine->ram_size);
b082d65a
AK
262 }
263 }
264 }
fb164994 265 return machine->ram_size;
b082d65a
AK
266}
267
a1d59c0f
AK
268static void add_str(GString *s, const gchar *s1)
269{
270 g_string_append_len(s, s1, strlen(s1) + 1);
271}
7f763a5d 272
03d196b7 273static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
26a8c353
AK
274 hwaddr size)
275{
276 uint32_t associativity[] = {
277 cpu_to_be32(0x4), /* length */
278 cpu_to_be32(0x0), cpu_to_be32(0x0),
c3b4f589 279 cpu_to_be32(0x0), cpu_to_be32(nodeid)
26a8c353
AK
280 };
281 char mem_name[32];
282 uint64_t mem_reg_property[2];
283 int off;
284
285 mem_reg_property[0] = cpu_to_be64(start);
286 mem_reg_property[1] = cpu_to_be64(size);
287
288 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
289 off = fdt_add_subnode(fdt, 0, mem_name);
290 _FDT(off);
291 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
292 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
293 sizeof(mem_reg_property))));
294 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
295 sizeof(associativity))));
03d196b7 296 return off;
26a8c353
AK
297}
298
28e02042 299static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
7f763a5d 300{
fb164994 301 MachineState *machine = MACHINE(spapr);
7db8a127
AK
302 hwaddr mem_start, node_size;
303 int i, nb_nodes = nb_numa_nodes;
304 NodeInfo *nodes = numa_info;
305 NodeInfo ramnode;
306
307 /* No NUMA nodes, assume there is just one node with whole RAM */
308 if (!nb_numa_nodes) {
309 nb_nodes = 1;
fb164994 310 ramnode.node_mem = machine->ram_size;
7db8a127 311 nodes = &ramnode;
5fe269b1 312 }
7f763a5d 313
7db8a127
AK
314 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
315 if (!nodes[i].node_mem) {
316 continue;
317 }
fb164994 318 if (mem_start >= machine->ram_size) {
5fe269b1
PM
319 node_size = 0;
320 } else {
7db8a127 321 node_size = nodes[i].node_mem;
fb164994
DG
322 if (node_size > machine->ram_size - mem_start) {
323 node_size = machine->ram_size - mem_start;
5fe269b1
PM
324 }
325 }
7db8a127
AK
326 if (!mem_start) {
327 /* ppc_spapr_init() checks for rma_size <= node0_size already */
e8f986fc 328 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
7db8a127
AK
329 mem_start += spapr->rma_size;
330 node_size -= spapr->rma_size;
331 }
6010818c
AK
332 for ( ; node_size; ) {
333 hwaddr sizetmp = pow2floor(node_size);
334
335 /* mem_start != 0 here */
336 if (ctzl(mem_start) < ctzl(sizetmp)) {
337 sizetmp = 1ULL << ctzl(mem_start);
338 }
339
340 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
341 node_size -= sizetmp;
342 mem_start += sizetmp;
343 }
7f763a5d
DG
344 }
345
346 return 0;
347}
348
230bf719
TH
349/* Populate the "ibm,pa-features" property */
350static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset)
351{
352 uint8_t pa_features_206[] = { 6, 0,
353 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
354 uint8_t pa_features_207[] = { 24, 0,
355 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
356 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
357 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
bac3bf28 358 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
230bf719
TH
359 uint8_t *pa_features;
360 size_t pa_size;
361
4cbec30d
TH
362 switch (env->mmu_model) {
363 case POWERPC_MMU_2_06:
364 case POWERPC_MMU_2_06a:
230bf719
TH
365 pa_features = pa_features_206;
366 pa_size = sizeof(pa_features_206);
4cbec30d
TH
367 break;
368 case POWERPC_MMU_2_07:
369 case POWERPC_MMU_2_07a:
230bf719
TH
370 pa_features = pa_features_207;
371 pa_size = sizeof(pa_features_207);
4cbec30d
TH
372 break;
373 default:
374 return;
230bf719
TH
375 }
376
377 if (env->ci_large_pages) {
378 /*
379 * Note: we keep CI large pages off by default because a 64K capable
380 * guest provisioned with large pages might otherwise try to map a qemu
381 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
382 * even if that qemu runs on a 4k host.
383 * We dd this bit back here if we are confident this is not an issue
384 */
385 pa_features[3] |= 0x20;
386 }
bac3bf28
TH
387 if (kvmppc_has_cap_htm() && pa_size > 24) {
388 pa_features[24] |= 0x80; /* Transactional memory support */
389 }
230bf719
TH
390
391 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
392}
393
0da6f3fe
BR
394static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
395 sPAPRMachineState *spapr)
396{
397 PowerPCCPU *cpu = POWERPC_CPU(cs);
398 CPUPPCState *env = &cpu->env;
399 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
400 int index = ppc_get_vcpu_dt_id(cpu);
401 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
402 0xffffffff, 0xffffffff};
afd10a0f
BR
403 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
404 : SPAPR_TIMEBASE_FREQ;
0da6f3fe
BR
405 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
406 uint32_t page_sizes_prop[64];
407 size_t page_sizes_prop_size;
22419c2a 408 uint32_t vcpus_per_socket = smp_threads * smp_cores;
0da6f3fe 409 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
af81cf32
BR
410 sPAPRDRConnector *drc;
411 sPAPRDRConnectorClass *drck;
412 int drc_index;
413
414 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
415 if (drc) {
416 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
417 drc_index = drck->get_index(drc);
418 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
419 }
0da6f3fe
BR
420
421 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
422 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
423
424 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
425 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
426 env->dcache_line_size)));
427 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
428 env->dcache_line_size)));
429 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
430 env->icache_line_size)));
431 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
432 env->icache_line_size)));
433
434 if (pcc->l1_dcache_size) {
435 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
436 pcc->l1_dcache_size)));
437 } else {
ce9863b7 438 error_report("Warning: Unknown L1 dcache size for cpu");
0da6f3fe
BR
439 }
440 if (pcc->l1_icache_size) {
441 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
442 pcc->l1_icache_size)));
443 } else {
ce9863b7 444 error_report("Warning: Unknown L1 icache size for cpu");
0da6f3fe
BR
445 }
446
447 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
448 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
fd5da5c4 449 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
0da6f3fe
BR
450 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
451 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
452 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
453
454 if (env->spr_cb[SPR_PURR].oea_read) {
455 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
456 }
457
458 if (env->mmu_model & POWERPC_MMU_1TSEG) {
459 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
460 segs, sizeof(segs))));
461 }
462
463 /* Advertise VMX/VSX (vector extensions) if available
464 * 0 / no property == no vector extensions
465 * 1 == VMX / Altivec available
466 * 2 == VSX available */
467 if (env->insns_flags & PPC_ALTIVEC) {
468 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
469
470 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
471 }
472
473 /* Advertise DFP (Decimal Floating Point) if available
474 * 0 / no property == no DFP
475 * 1 == DFP available */
476 if (env->insns_flags2 & PPC2_DFP) {
477 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
478 }
479
3654fa95 480 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
0da6f3fe
BR
481 sizeof(page_sizes_prop));
482 if (page_sizes_prop_size) {
483 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
484 page_sizes_prop, page_sizes_prop_size)));
485 }
486
230bf719 487 spapr_populate_pa_features(env, fdt, offset);
90da0d5a 488
0da6f3fe 489 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
22419c2a 490 cs->cpu_index / vcpus_per_socket)));
0da6f3fe
BR
491
492 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
493 pft_size_prop, sizeof(pft_size_prop))));
494
495 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
496
497 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
498 ppc_get_compat_smt_threads(cpu)));
499}
500
501static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
502{
503 CPUState *cs;
504 int cpus_offset;
505 char *nodename;
506 int smt = kvmppc_smt_threads();
507
508 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
509 _FDT(cpus_offset);
510 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
511 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
512
513 /*
514 * We walk the CPUs in reverse order to ensure that CPU DT nodes
515 * created by fdt_add_subnode() end up in the right order in FDT
516 * for the guest kernel the enumerate the CPUs correctly.
517 */
518 CPU_FOREACH_REVERSE(cs) {
519 PowerPCCPU *cpu = POWERPC_CPU(cs);
520 int index = ppc_get_vcpu_dt_id(cpu);
521 DeviceClass *dc = DEVICE_GET_CLASS(cs);
522 int offset;
523
524 if ((index % smt) != 0) {
525 continue;
526 }
527
528 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
529 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
530 g_free(nodename);
531 _FDT(offset);
532 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
533 }
534
535}
536
03d196b7
BR
537/*
538 * Adds ibm,dynamic-reconfiguration-memory node.
539 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
540 * of this device tree node.
541 */
542static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
543{
544 MachineState *machine = MACHINE(spapr);
545 int ret, i, offset;
546 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
547 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
d0e5a8f2
BR
548 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
549 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
550 memory_region_size(&spapr->hotplug_memory.mr)) /
551 lmb_size;
03d196b7 552 uint32_t *int_buf, *cur_index, buf_len;
6663864e 553 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
03d196b7 554
16c25aef 555 /*
d0e5a8f2 556 * Don't create the node if there is no hotpluggable memory
16c25aef 557 */
d0e5a8f2 558 if (machine->ram_size == machine->maxram_size) {
16c25aef
BR
559 return 0;
560 }
561
ef001f06
TH
562 /*
563 * Allocate enough buffer size to fit in ibm,dynamic-memory
564 * or ibm,associativity-lookup-arrays
565 */
566 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
567 * sizeof(uint32_t);
03d196b7
BR
568 cur_index = int_buf = g_malloc0(buf_len);
569
570 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
571
572 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
573 sizeof(prop_lmb_size));
574 if (ret < 0) {
575 goto out;
576 }
577
578 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
579 if (ret < 0) {
580 goto out;
581 }
582
583 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
584 if (ret < 0) {
585 goto out;
586 }
587
588 /* ibm,dynamic-memory */
589 int_buf[0] = cpu_to_be32(nr_lmbs);
590 cur_index++;
591 for (i = 0; i < nr_lmbs; i++) {
d0e5a8f2 592 uint64_t addr = i * lmb_size;
03d196b7
BR
593 uint32_t *dynamic_memory = cur_index;
594
d0e5a8f2
BR
595 if (i >= hotplug_lmb_start) {
596 sPAPRDRConnector *drc;
597 sPAPRDRConnectorClass *drck;
598
599 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
600 g_assert(drc);
601 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
602
603 dynamic_memory[0] = cpu_to_be32(addr >> 32);
604 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
605 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
606 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
607 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
608 if (memory_region_present(get_system_memory(), addr)) {
609 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
610 } else {
611 dynamic_memory[5] = cpu_to_be32(0);
612 }
03d196b7 613 } else {
d0e5a8f2
BR
614 /*
615 * LMB information for RMA, boot time RAM and gap b/n RAM and
616 * hotplug memory region -- all these are marked as reserved
617 * and as having no valid DRC.
618 */
619 dynamic_memory[0] = cpu_to_be32(addr >> 32);
620 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
621 dynamic_memory[2] = cpu_to_be32(0);
622 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
623 dynamic_memory[4] = cpu_to_be32(-1);
624 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
625 SPAPR_LMB_FLAGS_DRC_INVALID);
03d196b7
BR
626 }
627
628 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
629 }
630 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
631 if (ret < 0) {
632 goto out;
633 }
634
635 /* ibm,associativity-lookup-arrays */
636 cur_index = int_buf;
6663864e 637 int_buf[0] = cpu_to_be32(nr_nodes);
03d196b7
BR
638 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
639 cur_index += 2;
6663864e 640 for (i = 0; i < nr_nodes; i++) {
03d196b7
BR
641 uint32_t associativity[] = {
642 cpu_to_be32(0x0),
643 cpu_to_be32(0x0),
644 cpu_to_be32(0x0),
645 cpu_to_be32(i)
646 };
647 memcpy(cur_index, associativity, sizeof(associativity));
648 cur_index += 4;
649 }
650 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
651 (cur_index - int_buf) * sizeof(uint32_t));
652out:
653 g_free(int_buf);
654 return ret;
655}
656
6787d27b
MR
657static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
658 sPAPROptionVector *ov5_updates)
659{
660 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
417ece33 661 int ret = 0, offset;
6787d27b
MR
662
663 /* Generate ibm,dynamic-reconfiguration-memory node if required */
664 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
665 g_assert(smc->dr_lmb_enabled);
666 ret = spapr_populate_drconf_memory(spapr, fdt);
417ece33
MR
667 if (ret) {
668 goto out;
669 }
6787d27b
MR
670 }
671
417ece33
MR
672 offset = fdt_path_offset(fdt, "/chosen");
673 if (offset < 0) {
674 offset = fdt_add_subnode(fdt, 0, "chosen");
675 if (offset < 0) {
676 return offset;
677 }
678 }
679 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
680 "ibm,architecture-vec-5");
681
682out:
6787d27b
MR
683 return ret;
684}
685
03d196b7
BR
686int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
687 target_ulong addr, target_ulong size,
6787d27b 688 sPAPROptionVector *ov5_updates)
03d196b7
BR
689{
690 void *fdt, *fdt_skel;
691 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
03d196b7
BR
692
693 size -= sizeof(hdr);
694
695 /* Create sceleton */
696 fdt_skel = g_malloc0(size);
697 _FDT((fdt_create(fdt_skel, size)));
698 _FDT((fdt_begin_node(fdt_skel, "")));
699 _FDT((fdt_end_node(fdt_skel)));
700 _FDT((fdt_finish(fdt_skel)));
701 fdt = g_malloc0(size);
702 _FDT((fdt_open_into(fdt_skel, fdt, size)));
703 g_free(fdt_skel);
704
705 /* Fixup cpu nodes */
5b120785 706 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
03d196b7 707
6787d27b
MR
708 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
709 return -1;
03d196b7
BR
710 }
711
712 /* Pack resulting tree */
713 _FDT((fdt_pack(fdt)));
714
715 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
716 trace_spapr_cas_failed(size);
717 return -1;
718 }
719
720 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
721 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
722 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
723 g_free(fdt);
724
725 return 0;
726}
727
3f5dabce
DG
728static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
729{
730 int rtas;
731 GString *hypertas = g_string_sized_new(256);
732 GString *qemu_hypertas = g_string_sized_new(256);
733 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
734 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
735 memory_region_size(&spapr->hotplug_memory.mr);
736 uint32_t lrdr_capacity[] = {
737 cpu_to_be32(max_hotplug_addr >> 32),
738 cpu_to_be32(max_hotplug_addr & 0xffffffff),
739 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
740 cpu_to_be32(max_cpus / smp_threads),
741 };
742
743 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
744
745 /* hypertas */
746 add_str(hypertas, "hcall-pft");
747 add_str(hypertas, "hcall-term");
748 add_str(hypertas, "hcall-dabr");
749 add_str(hypertas, "hcall-interrupt");
750 add_str(hypertas, "hcall-tce");
751 add_str(hypertas, "hcall-vio");
752 add_str(hypertas, "hcall-splpar");
753 add_str(hypertas, "hcall-bulk");
754 add_str(hypertas, "hcall-set-mode");
755 add_str(hypertas, "hcall-sprg0");
756 add_str(hypertas, "hcall-copy");
757 add_str(hypertas, "hcall-debug");
758 add_str(qemu_hypertas, "hcall-memop1");
759
760 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
761 add_str(hypertas, "hcall-multi-tce");
762 }
763 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
764 hypertas->str, hypertas->len));
765 g_string_free(hypertas, TRUE);
766 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
767 qemu_hypertas->str, qemu_hypertas->len));
768 g_string_free(qemu_hypertas, TRUE);
769
770 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
771 refpoints, sizeof(refpoints)));
772
773 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
774 RTAS_ERROR_LOG_MAX));
775 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
776 RTAS_EVENT_SCAN_RATE));
777
778 if (msi_nonbroken) {
779 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
780 }
781
782 /*
783 * According to PAPR, rtas ibm,os-term does not guarantee a return
784 * back to the guest cpu.
785 *
786 * While an additional ibm,extended-os-term property indicates
787 * that rtas call return will always occur. Set this property.
788 */
789 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
790
791 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
792 lrdr_capacity, sizeof(lrdr_capacity)));
793
794 spapr_dt_rtas_tokens(fdt, rtas);
795}
796
7c866c6a
DG
797static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
798{
799 MachineState *machine = MACHINE(spapr);
800 int chosen;
801 const char *boot_device = machine->boot_order;
802 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
803 size_t cb = 0;
804 char *bootlist = get_boot_devices_list(&cb, true);
7c866c6a
DG
805
806 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
807
7c866c6a
DG
808 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
809 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
810 spapr->initrd_base));
811 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
812 spapr->initrd_base + spapr->initrd_size));
813
814 if (spapr->kernel_size) {
815 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
816 cpu_to_be64(spapr->kernel_size) };
817
818 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
819 &kprop, sizeof(kprop)));
820 if (spapr->kernel_le) {
821 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
822 }
823 }
824 if (boot_menu) {
825 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
826 }
827 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
828 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
829 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
830
831 if (cb && bootlist) {
832 int i;
833
834 for (i = 0; i < cb; i++) {
835 if (bootlist[i] == '\n') {
836 bootlist[i] = ' ';
837 }
838 }
839 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
840 }
841
842 if (boot_device && strlen(boot_device)) {
843 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
844 }
845
846 if (!spapr->has_graphics && stdout_path) {
847 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
848 }
849
850 g_free(stdout_path);
851 g_free(bootlist);
852}
853
fca5f2dc
DG
854static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
855{
856 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
857 * KVM to work under pHyp with some guest co-operation */
858 int hypervisor;
859 uint8_t hypercall[16];
860
861 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
862 /* indicate KVM hypercall interface */
863 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
864 if (kvmppc_has_cap_fixup_hcalls()) {
865 /*
866 * Older KVM versions with older guest kernels were broken
867 * with the magic page, don't allow the guest to map it.
868 */
869 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
870 sizeof(hypercall))) {
871 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
872 hypercall, sizeof(hypercall)));
873 }
874 }
875}
876
997b6cfc
DG
877static void *spapr_build_fdt(sPAPRMachineState *spapr,
878 hwaddr rtas_addr,
879 hwaddr rtas_size)
a3467baa 880{
5b2128d2 881 MachineState *machine = MACHINE(qdev_get_machine());
3c0c47e3 882 MachineClass *mc = MACHINE_GET_CLASS(machine);
c20d332a 883 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
7c866c6a 884 int ret;
a3467baa 885 void *fdt;
3384f95c 886 sPAPRPHBState *phb;
398a0bd5 887 char *buf;
a3467baa 888
398a0bd5
DG
889 fdt = g_malloc0(FDT_MAX_SIZE);
890 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
a3467baa 891
398a0bd5
DG
892 /* Root node */
893 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
894 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
895 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
896
897 /*
898 * Add info to guest to indentify which host is it being run on
899 * and what is the uuid of the guest
900 */
901 if (kvmppc_get_host_model(&buf)) {
902 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
903 g_free(buf);
904 }
905 if (kvmppc_get_host_serial(&buf)) {
906 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
907 g_free(buf);
908 }
909
910 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
911
912 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
913 if (qemu_uuid_set) {
914 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
915 }
916 g_free(buf);
917
918 if (qemu_get_vm_name()) {
919 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
920 qemu_get_vm_name()));
921 }
922
923 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
924 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
4040ab72 925
9b9a1908
DG
926 /* /interrupt controller */
927 spapr_dt_xics(spapr->xics, fdt, PHANDLE_XICP);
928
e8f986fc
BR
929 ret = spapr_populate_memory(spapr, fdt);
930 if (ret < 0) {
ce9863b7 931 error_report("couldn't setup memory nodes in fdt");
e8f986fc 932 exit(1);
7f763a5d
DG
933 }
934
bf5a6696
DG
935 /* /vdevice */
936 spapr_dt_vdevice(spapr->vio_bus, fdt);
4040ab72 937
4d9392be
TH
938 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
939 ret = spapr_rng_populate_dt(fdt);
940 if (ret < 0) {
ce9863b7 941 error_report("could not set up rng device in the fdt");
4d9392be
TH
942 exit(1);
943 }
944 }
945
3384f95c 946 QLIST_FOREACH(phb, &spapr->phbs, list) {
e0fdbd7c 947 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
da34fed7
TH
948 if (ret < 0) {
949 error_report("couldn't setup PCI devices in fdt");
950 exit(1);
951 }
3384f95c
DG
952 }
953
0da6f3fe
BR
954 /* cpus */
955 spapr_populate_cpus_dt_node(fdt, spapr);
6e806cc3 956
c20d332a
BR
957 if (smc->dr_lmb_enabled) {
958 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
959 }
960
3c0c47e3 961 if (mc->query_hotpluggable_cpus) {
af81cf32
BR
962 int offset = fdt_path_offset(fdt, "/cpus");
963 ret = spapr_drc_populate_dt(fdt, offset, NULL,
964 SPAPR_DR_CONNECTOR_TYPE_CPU);
965 if (ret < 0) {
966 error_report("Couldn't set up CPU DR device tree properties");
967 exit(1);
968 }
969 }
970
ffb1e275 971 /* /event-sources */
ffbb1705 972 spapr_dt_events(spapr, fdt);
ffb1e275 973
3f5dabce
DG
974 /* /rtas */
975 spapr_dt_rtas(spapr, fdt);
976
7c866c6a
DG
977 /* /chosen */
978 spapr_dt_chosen(spapr, fdt);
cf6e5223 979
fca5f2dc
DG
980 /* /hypervisor */
981 if (kvm_enabled()) {
982 spapr_dt_hypervisor(spapr, fdt);
983 }
984
cf6e5223
DG
985 /* Build memory reserve map */
986 if (spapr->kernel_size) {
987 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
988 }
989 if (spapr->initrd_size) {
990 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
991 }
992
6787d27b
MR
993 /* ibm,client-architecture-support updates */
994 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
995 if (ret < 0) {
996 error_report("couldn't setup CAS properties fdt");
997 exit(1);
998 }
999
997b6cfc 1000 return fdt;
9fdf0c29
DG
1001}
1002
1003static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1004{
1005 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1006}
1007
1b14670a 1008static void emulate_spapr_hypercall(PowerPCCPU *cpu)
9fdf0c29 1009{
1b14670a
AF
1010 CPUPPCState *env = &cpu->env;
1011
efcb9383
DG
1012 if (msr_pr) {
1013 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1014 env->gpr[3] = H_PRIVILEGE;
1015 } else {
aa100fa4 1016 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
efcb9383 1017 }
9fdf0c29
DG
1018}
1019
e6b8fd24
SMJ
1020#define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1021#define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1022#define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1023#define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1024#define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1025
715c5407
DG
1026/*
1027 * Get the fd to access the kernel htab, re-opening it if necessary
1028 */
1029static int get_htab_fd(sPAPRMachineState *spapr)
1030{
1031 if (spapr->htab_fd >= 0) {
1032 return spapr->htab_fd;
1033 }
1034
1035 spapr->htab_fd = kvmppc_get_htab_fd(false);
1036 if (spapr->htab_fd < 0) {
1037 error_report("Unable to open fd for reading hash table from KVM: %s",
1038 strerror(errno));
1039 }
1040
1041 return spapr->htab_fd;
1042}
1043
1044static void close_htab_fd(sPAPRMachineState *spapr)
1045{
1046 if (spapr->htab_fd >= 0) {
1047 close(spapr->htab_fd);
1048 }
1049 spapr->htab_fd = -1;
1050}
1051
8dfe8e7f
DG
1052static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1053{
1054 int shift;
1055
1056 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1057 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1058 * that's much more than is needed for Linux guests */
1059 shift = ctz64(pow2ceil(ramsize)) - 7;
1060 shift = MAX(shift, 18); /* Minimum architected size */
1061 shift = MIN(shift, 46); /* Maximum architected size */
1062 return shift;
1063}
1064
c5f54f3e
DG
1065static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1066 Error **errp)
7f763a5d 1067{
c5f54f3e
DG
1068 long rc;
1069
1070 /* Clean up any HPT info from a previous boot */
1071 g_free(spapr->htab);
1072 spapr->htab = NULL;
1073 spapr->htab_shift = 0;
1074 close_htab_fd(spapr);
1075
1076 rc = kvmppc_reset_htab(shift);
1077 if (rc < 0) {
1078 /* kernel-side HPT needed, but couldn't allocate one */
1079 error_setg_errno(errp, errno,
1080 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1081 shift);
1082 /* This is almost certainly fatal, but if the caller really
1083 * wants to carry on with shift == 0, it's welcome to try */
1084 } else if (rc > 0) {
1085 /* kernel-side HPT allocated */
1086 if (rc != shift) {
1087 error_setg(errp,
1088 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1089 shift, rc);
7735feda
BR
1090 }
1091
7f763a5d 1092 spapr->htab_shift = shift;
c18ad9a5 1093 spapr->htab = NULL;
b817772a 1094 } else {
c5f54f3e
DG
1095 /* kernel-side HPT not needed, allocate in userspace instead */
1096 size_t size = 1ULL << shift;
1097 int i;
b817772a 1098
c5f54f3e
DG
1099 spapr->htab = qemu_memalign(size, size);
1100 if (!spapr->htab) {
1101 error_setg_errno(errp, errno,
1102 "Could not allocate HPT of order %d", shift);
1103 return;
7735feda
BR
1104 }
1105
c5f54f3e
DG
1106 memset(spapr->htab, 0, size);
1107 spapr->htab_shift = shift;
e6b8fd24 1108
c5f54f3e
DG
1109 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1110 DIRTY_HPTE(HPTE(spapr->htab, i));
e6b8fd24 1111 }
7f763a5d 1112 }
9fdf0c29
DG
1113}
1114
4f01a637 1115static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
9e3f9733
AG
1116{
1117 bool matched = false;
1118
1119 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1120 matched = true;
1121 }
1122
1123 if (!matched) {
1124 error_report("Device %s is not supported by this machine yet.",
1125 qdev_fw_name(DEVICE(sbdev)));
1126 exit(1);
1127 }
9e3f9733
AG
1128}
1129
c8787ad4 1130static void ppc_spapr_reset(void)
a3467baa 1131{
c5f54f3e
DG
1132 MachineState *machine = MACHINE(qdev_get_machine());
1133 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
182735ef 1134 PowerPCCPU *first_ppc_cpu;
b7d1f77a 1135 uint32_t rtas_limit;
cae172ab 1136 hwaddr rtas_addr, fdt_addr;
997b6cfc
DG
1137 void *fdt;
1138 int rc;
259186a7 1139
9e3f9733
AG
1140 /* Check for unknown sysbus devices */
1141 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1142
c5f54f3e
DG
1143 /* Allocate and/or reset the hash page table */
1144 spapr_reallocate_hpt(spapr,
1145 spapr_hpt_shift_for_ramsize(machine->maxram_size),
1146 &error_fatal);
1147
1148 /* Update the RMA size if necessary */
1149 if (spapr->vrma_adjust) {
1150 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1151 spapr->htab_shift);
1152 }
a3467baa 1153
c8787ad4 1154 qemu_devices_reset();
a3467baa 1155
b7d1f77a
BH
1156 /*
1157 * We place the device tree and RTAS just below either the top of the RMA,
1158 * or just below 2GB, whichever is lowere, so that it can be
1159 * processed with 32-bit real mode code if necessary
1160 */
1161 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
cae172ab
DG
1162 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1163 fdt_addr = rtas_addr - FDT_MAX_SIZE;
b7d1f77a 1164
6787d27b
MR
1165 /* if this reset wasn't generated by CAS, we should reset our
1166 * negotiated options and start from scratch */
1167 if (!spapr->cas_reboot) {
1168 spapr_ovec_cleanup(spapr->ov5_cas);
1169 spapr->ov5_cas = spapr_ovec_new();
1170 }
1171
cae172ab 1172 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
a3467baa 1173
2cac78c1 1174 spapr_load_rtas(spapr, fdt, rtas_addr);
b7d1f77a 1175
997b6cfc
DG
1176 rc = fdt_pack(fdt);
1177
1178 /* Should only fail if we've built a corrupted tree */
1179 assert(rc == 0);
1180
1181 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1182 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1183 fdt_totalsize(fdt), FDT_MAX_SIZE);
1184 exit(1);
1185 }
1186
1187 /* Load the fdt */
1188 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
cae172ab 1189 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
997b6cfc
DG
1190 g_free(fdt);
1191
a3467baa 1192 /* Set up the entry state */
182735ef 1193 first_ppc_cpu = POWERPC_CPU(first_cpu);
cae172ab 1194 first_ppc_cpu->env.gpr[3] = fdt_addr;
182735ef
AF
1195 first_ppc_cpu->env.gpr[5] = 0;
1196 first_cpu->halted = 0;
1b718907 1197 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
a3467baa 1198
6787d27b 1199 spapr->cas_reboot = false;
a3467baa
DG
1200}
1201
28e02042 1202static void spapr_create_nvram(sPAPRMachineState *spapr)
639e8102 1203{
2ff3de68 1204 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
3978b863 1205 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
639e8102 1206
3978b863 1207 if (dinfo) {
6231a6da
MA
1208 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1209 &error_fatal);
639e8102
DG
1210 }
1211
1212 qdev_init_nofail(dev);
1213
1214 spapr->nvram = (struct sPAPRNVRAM *)dev;
1215}
1216
28e02042 1217static void spapr_rtc_create(sPAPRMachineState *spapr)
28df36a1
DG
1218{
1219 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1220
1221 qdev_init_nofail(dev);
1222 spapr->rtc = dev;
74e5ae28
DG
1223
1224 object_property_add_alias(qdev_get_machine(), "rtc-time",
1225 OBJECT(spapr->rtc), "date", NULL);
28df36a1
DG
1226}
1227
8c57b867 1228/* Returns whether we want to use VGA or not */
14c6a894 1229static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
f28359d8 1230{
8c57b867 1231 switch (vga_interface_type) {
8c57b867 1232 case VGA_NONE:
7effdaa3
MW
1233 return false;
1234 case VGA_DEVICE:
1235 return true;
1ddcae82 1236 case VGA_STD:
b798c190 1237 case VGA_VIRTIO:
1ddcae82 1238 return pci_vga_init(pci_bus) != NULL;
8c57b867 1239 default:
14c6a894
DG
1240 error_setg(errp,
1241 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1242 return false;
f28359d8 1243 }
f28359d8
LZ
1244}
1245
880ae7de
DG
1246static int spapr_post_load(void *opaque, int version_id)
1247{
28e02042 1248 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
880ae7de
DG
1249 int err = 0;
1250
631b22ea 1251 /* In earlier versions, there was no separate qdev for the PAPR
880ae7de
DG
1252 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1253 * So when migrating from those versions, poke the incoming offset
1254 * value into the RTC device */
1255 if (version_id < 3) {
1256 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1257 }
1258
1259 return err;
1260}
1261
1262static bool version_before_3(void *opaque, int version_id)
1263{
1264 return version_id < 3;
1265}
1266
62ef3760
MR
1267static bool spapr_ov5_cas_needed(void *opaque)
1268{
1269 sPAPRMachineState *spapr = opaque;
1270 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1271 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1272 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1273 bool cas_needed;
1274
1275 /* Prior to the introduction of sPAPROptionVector, we had two option
1276 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1277 * Both of these options encode machine topology into the device-tree
1278 * in such a way that the now-booted OS should still be able to interact
1279 * appropriately with QEMU regardless of what options were actually
1280 * negotiatied on the source side.
1281 *
1282 * As such, we can avoid migrating the CAS-negotiated options if these
1283 * are the only options available on the current machine/platform.
1284 * Since these are the only options available for pseries-2.7 and
1285 * earlier, this allows us to maintain old->new/new->old migration
1286 * compatibility.
1287 *
1288 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1289 * via default pseries-2.8 machines and explicit command-line parameters.
1290 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1291 * of the actual CAS-negotiated values to continue working properly. For
1292 * example, availability of memory unplug depends on knowing whether
1293 * OV5_HP_EVT was negotiated via CAS.
1294 *
1295 * Thus, for any cases where the set of available CAS-negotiatable
1296 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1297 * include the CAS-negotiated options in the migration stream.
1298 */
1299 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1300 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1301
1302 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1303 * the mask itself since in the future it's possible "legacy" bits may be
1304 * removed via machine options, which could generate a false positive
1305 * that breaks migration.
1306 */
1307 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1308 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1309
1310 spapr_ovec_cleanup(ov5_mask);
1311 spapr_ovec_cleanup(ov5_legacy);
1312 spapr_ovec_cleanup(ov5_removed);
1313
1314 return cas_needed;
1315}
1316
1317static const VMStateDescription vmstate_spapr_ov5_cas = {
1318 .name = "spapr_option_vector_ov5_cas",
1319 .version_id = 1,
1320 .minimum_version_id = 1,
1321 .needed = spapr_ov5_cas_needed,
1322 .fields = (VMStateField[]) {
1323 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1324 vmstate_spapr_ovec, sPAPROptionVector),
1325 VMSTATE_END_OF_LIST()
1326 },
1327};
1328
4be21d56
DG
1329static const VMStateDescription vmstate_spapr = {
1330 .name = "spapr",
880ae7de 1331 .version_id = 3,
4be21d56 1332 .minimum_version_id = 1,
880ae7de 1333 .post_load = spapr_post_load,
3aff6c2f 1334 .fields = (VMStateField[]) {
880ae7de
DG
1335 /* used to be @next_irq */
1336 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
4be21d56
DG
1337
1338 /* RTC offset */
28e02042 1339 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
880ae7de 1340
28e02042 1341 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
4be21d56
DG
1342 VMSTATE_END_OF_LIST()
1343 },
62ef3760
MR
1344 .subsections = (const VMStateDescription*[]) {
1345 &vmstate_spapr_ov5_cas,
1346 NULL
1347 }
4be21d56
DG
1348};
1349
4be21d56
DG
1350static int htab_save_setup(QEMUFile *f, void *opaque)
1351{
28e02042 1352 sPAPRMachineState *spapr = opaque;
4be21d56 1353
4be21d56
DG
1354 /* "Iteration" header */
1355 qemu_put_be32(f, spapr->htab_shift);
1356
e68cb8b4
AK
1357 if (spapr->htab) {
1358 spapr->htab_save_index = 0;
1359 spapr->htab_first_pass = true;
1360 } else {
1361 assert(kvm_enabled());
e68cb8b4
AK
1362 }
1363
1364
4be21d56
DG
1365 return 0;
1366}
1367
28e02042 1368static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
4be21d56
DG
1369 int64_t max_ns)
1370{
378bc217 1371 bool has_timeout = max_ns != -1;
4be21d56
DG
1372 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1373 int index = spapr->htab_save_index;
bc72ad67 1374 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1375
1376 assert(spapr->htab_first_pass);
1377
1378 do {
1379 int chunkstart;
1380
1381 /* Consume invalid HPTEs */
1382 while ((index < htabslots)
1383 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1384 index++;
1385 CLEAN_HPTE(HPTE(spapr->htab, index));
1386 }
1387
1388 /* Consume valid HPTEs */
1389 chunkstart = index;
338c25b6 1390 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56
DG
1391 && HPTE_VALID(HPTE(spapr->htab, index))) {
1392 index++;
1393 CLEAN_HPTE(HPTE(spapr->htab, index));
1394 }
1395
1396 if (index > chunkstart) {
1397 int n_valid = index - chunkstart;
1398
1399 qemu_put_be32(f, chunkstart);
1400 qemu_put_be16(f, n_valid);
1401 qemu_put_be16(f, 0);
1402 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1403 HASH_PTE_SIZE_64 * n_valid);
1404
378bc217
DG
1405 if (has_timeout &&
1406 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1407 break;
1408 }
1409 }
1410 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1411
1412 if (index >= htabslots) {
1413 assert(index == htabslots);
1414 index = 0;
1415 spapr->htab_first_pass = false;
1416 }
1417 spapr->htab_save_index = index;
1418}
1419
28e02042 1420static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
e68cb8b4 1421 int64_t max_ns)
4be21d56
DG
1422{
1423 bool final = max_ns < 0;
1424 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1425 int examined = 0, sent = 0;
1426 int index = spapr->htab_save_index;
bc72ad67 1427 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1428
1429 assert(!spapr->htab_first_pass);
1430
1431 do {
1432 int chunkstart, invalidstart;
1433
1434 /* Consume non-dirty HPTEs */
1435 while ((index < htabslots)
1436 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1437 index++;
1438 examined++;
1439 }
1440
1441 chunkstart = index;
1442 /* Consume valid dirty HPTEs */
338c25b6 1443 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56
DG
1444 && HPTE_DIRTY(HPTE(spapr->htab, index))
1445 && HPTE_VALID(HPTE(spapr->htab, index))) {
1446 CLEAN_HPTE(HPTE(spapr->htab, index));
1447 index++;
1448 examined++;
1449 }
1450
1451 invalidstart = index;
1452 /* Consume invalid dirty HPTEs */
338c25b6 1453 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
4be21d56
DG
1454 && HPTE_DIRTY(HPTE(spapr->htab, index))
1455 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1456 CLEAN_HPTE(HPTE(spapr->htab, index));
1457 index++;
1458 examined++;
1459 }
1460
1461 if (index > chunkstart) {
1462 int n_valid = invalidstart - chunkstart;
1463 int n_invalid = index - invalidstart;
1464
1465 qemu_put_be32(f, chunkstart);
1466 qemu_put_be16(f, n_valid);
1467 qemu_put_be16(f, n_invalid);
1468 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1469 HASH_PTE_SIZE_64 * n_valid);
1470 sent += index - chunkstart;
1471
bc72ad67 1472 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1473 break;
1474 }
1475 }
1476
1477 if (examined >= htabslots) {
1478 break;
1479 }
1480
1481 if (index >= htabslots) {
1482 assert(index == htabslots);
1483 index = 0;
1484 }
1485 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1486
1487 if (index >= htabslots) {
1488 assert(index == htabslots);
1489 index = 0;
1490 }
1491
1492 spapr->htab_save_index = index;
1493
e68cb8b4 1494 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
4be21d56
DG
1495}
1496
e68cb8b4
AK
1497#define MAX_ITERATION_NS 5000000 /* 5 ms */
1498#define MAX_KVM_BUF_SIZE 2048
1499
4be21d56
DG
1500static int htab_save_iterate(QEMUFile *f, void *opaque)
1501{
28e02042 1502 sPAPRMachineState *spapr = opaque;
715c5407 1503 int fd;
e68cb8b4 1504 int rc = 0;
4be21d56
DG
1505
1506 /* Iteration header */
1507 qemu_put_be32(f, 0);
1508
e68cb8b4
AK
1509 if (!spapr->htab) {
1510 assert(kvm_enabled());
1511
715c5407
DG
1512 fd = get_htab_fd(spapr);
1513 if (fd < 0) {
1514 return fd;
01a57972
SMJ
1515 }
1516
715c5407 1517 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
e68cb8b4
AK
1518 if (rc < 0) {
1519 return rc;
1520 }
1521 } else if (spapr->htab_first_pass) {
4be21d56
DG
1522 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1523 } else {
e68cb8b4 1524 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
4be21d56
DG
1525 }
1526
1527 /* End marker */
1528 qemu_put_be32(f, 0);
1529 qemu_put_be16(f, 0);
1530 qemu_put_be16(f, 0);
1531
e68cb8b4 1532 return rc;
4be21d56
DG
1533}
1534
1535static int htab_save_complete(QEMUFile *f, void *opaque)
1536{
28e02042 1537 sPAPRMachineState *spapr = opaque;
715c5407 1538 int fd;
4be21d56
DG
1539
1540 /* Iteration header */
1541 qemu_put_be32(f, 0);
1542
e68cb8b4
AK
1543 if (!spapr->htab) {
1544 int rc;
1545
1546 assert(kvm_enabled());
1547
715c5407
DG
1548 fd = get_htab_fd(spapr);
1549 if (fd < 0) {
1550 return fd;
01a57972
SMJ
1551 }
1552
715c5407 1553 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
e68cb8b4
AK
1554 if (rc < 0) {
1555 return rc;
1556 }
e68cb8b4 1557 } else {
378bc217
DG
1558 if (spapr->htab_first_pass) {
1559 htab_save_first_pass(f, spapr, -1);
1560 }
e68cb8b4
AK
1561 htab_save_later_pass(f, spapr, -1);
1562 }
4be21d56
DG
1563
1564 /* End marker */
1565 qemu_put_be32(f, 0);
1566 qemu_put_be16(f, 0);
1567 qemu_put_be16(f, 0);
1568
1569 return 0;
1570}
1571
1572static int htab_load(QEMUFile *f, void *opaque, int version_id)
1573{
28e02042 1574 sPAPRMachineState *spapr = opaque;
4be21d56 1575 uint32_t section_hdr;
e68cb8b4 1576 int fd = -1;
4be21d56
DG
1577
1578 if (version_id < 1 || version_id > 1) {
98a5d100 1579 error_report("htab_load() bad version");
4be21d56
DG
1580 return -EINVAL;
1581 }
1582
1583 section_hdr = qemu_get_be32(f);
1584
1585 if (section_hdr) {
9897e462 1586 Error *local_err = NULL;
c5f54f3e
DG
1587
1588 /* First section gives the htab size */
1589 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1590 if (local_err) {
1591 error_report_err(local_err);
4be21d56
DG
1592 return -EINVAL;
1593 }
1594 return 0;
1595 }
1596
e68cb8b4
AK
1597 if (!spapr->htab) {
1598 assert(kvm_enabled());
1599
1600 fd = kvmppc_get_htab_fd(true);
1601 if (fd < 0) {
98a5d100
DG
1602 error_report("Unable to open fd to restore KVM hash table: %s",
1603 strerror(errno));
e68cb8b4
AK
1604 }
1605 }
1606
4be21d56
DG
1607 while (true) {
1608 uint32_t index;
1609 uint16_t n_valid, n_invalid;
1610
1611 index = qemu_get_be32(f);
1612 n_valid = qemu_get_be16(f);
1613 n_invalid = qemu_get_be16(f);
1614
1615 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1616 /* End of Stream */
1617 break;
1618 }
1619
e68cb8b4 1620 if ((index + n_valid + n_invalid) >
4be21d56
DG
1621 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1622 /* Bad index in stream */
98a5d100
DG
1623 error_report(
1624 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1625 index, n_valid, n_invalid, spapr->htab_shift);
4be21d56
DG
1626 return -EINVAL;
1627 }
1628
e68cb8b4
AK
1629 if (spapr->htab) {
1630 if (n_valid) {
1631 qemu_get_buffer(f, HPTE(spapr->htab, index),
1632 HASH_PTE_SIZE_64 * n_valid);
1633 }
1634 if (n_invalid) {
1635 memset(HPTE(spapr->htab, index + n_valid), 0,
1636 HASH_PTE_SIZE_64 * n_invalid);
1637 }
1638 } else {
1639 int rc;
1640
1641 assert(fd >= 0);
1642
1643 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1644 if (rc < 0) {
1645 return rc;
1646 }
4be21d56
DG
1647 }
1648 }
1649
e68cb8b4
AK
1650 if (!spapr->htab) {
1651 assert(fd >= 0);
1652 close(fd);
1653 }
1654
4be21d56
DG
1655 return 0;
1656}
1657
c573fc03
TH
1658static void htab_cleanup(void *opaque)
1659{
1660 sPAPRMachineState *spapr = opaque;
1661
1662 close_htab_fd(spapr);
1663}
1664
4be21d56
DG
1665static SaveVMHandlers savevm_htab_handlers = {
1666 .save_live_setup = htab_save_setup,
1667 .save_live_iterate = htab_save_iterate,
a3e06c3d 1668 .save_live_complete_precopy = htab_save_complete,
c573fc03 1669 .cleanup = htab_cleanup,
4be21d56
DG
1670 .load_state = htab_load,
1671};
1672
5b2128d2
AG
1673static void spapr_boot_set(void *opaque, const char *boot_device,
1674 Error **errp)
1675{
1676 MachineState *machine = MACHINE(qdev_get_machine());
1677 machine->boot_order = g_strdup(boot_device);
1678}
1679
224245bf
DG
1680/*
1681 * Reset routine for LMB DR devices.
1682 *
1683 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1684 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1685 * when it walks all its children devices. LMB devices reset occurs
1686 * as part of spapr_ppc_reset().
1687 */
1688static void spapr_drc_reset(void *opaque)
1689{
1690 sPAPRDRConnector *drc = opaque;
1691 DeviceState *d = DEVICE(drc);
1692
1693 if (d) {
1694 device_reset(d);
1695 }
1696}
1697
1698static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1699{
1700 MachineState *machine = MACHINE(spapr);
1701 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
e8f986fc 1702 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
224245bf
DG
1703 int i;
1704
1705 for (i = 0; i < nr_lmbs; i++) {
1706 sPAPRDRConnector *drc;
1707 uint64_t addr;
1708
e8f986fc 1709 addr = i * lmb_size + spapr->hotplug_memory.base;
224245bf
DG
1710 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1711 addr/lmb_size);
1712 qemu_register_reset(spapr_drc_reset, drc);
1713 }
1714}
1715
1716/*
1717 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1718 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1719 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1720 */
7c150d6f 1721static void spapr_validate_node_memory(MachineState *machine, Error **errp)
224245bf
DG
1722{
1723 int i;
1724
7c150d6f
DG
1725 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1726 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1727 " is not aligned to %llu MiB",
1728 machine->ram_size,
1729 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1730 return;
1731 }
1732
1733 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1734 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1735 " is not aligned to %llu MiB",
1736 machine->ram_size,
1737 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1738 return;
224245bf
DG
1739 }
1740
1741 for (i = 0; i < nb_numa_nodes; i++) {
1742 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
7c150d6f
DG
1743 error_setg(errp,
1744 "Node %d memory size 0x%" PRIx64
1745 " is not aligned to %llu MiB",
1746 i, numa_info[i].node_mem,
1747 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1748 return;
224245bf
DG
1749 }
1750 }
1751}
1752
0c86d0fd
DG
1753static void spapr_init_cpus(sPAPRMachineState *spapr)
1754{
1755 MachineState *machine = MACHINE(spapr);
1756 MachineClass *mc = MACHINE_GET_CLASS(machine);
1757 char *type = spapr_get_cpu_core_type(machine->cpu_model);
1758 int smt = kvmppc_smt_threads();
1759 int spapr_max_cores, spapr_cores;
1760 int i;
1761
1762 if (!type) {
1763 error_report("Unable to find sPAPR CPU Core definition");
1764 exit(1);
1765 }
1766
1767 if (mc->query_hotpluggable_cpus) {
1768 if (smp_cpus % smp_threads) {
1769 error_report("smp_cpus (%u) must be multiple of threads (%u)",
1770 smp_cpus, smp_threads);
1771 exit(1);
1772 }
1773 if (max_cpus % smp_threads) {
1774 error_report("max_cpus (%u) must be multiple of threads (%u)",
1775 max_cpus, smp_threads);
1776 exit(1);
1777 }
1778
1779 spapr_max_cores = max_cpus / smp_threads;
1780 spapr_cores = smp_cpus / smp_threads;
1781 } else {
1782 if (max_cpus != smp_cpus) {
1783 error_report("This machine version does not support CPU hotplug");
1784 exit(1);
1785 }
1786
1787 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
1788 spapr_cores = spapr_max_cores;
1789 }
1790
1791 spapr->cores = g_new0(Object *, spapr_max_cores);
1792 for (i = 0; i < spapr_max_cores; i++) {
1793 int core_id = i * smp_threads;
1794
1795 if (mc->query_hotpluggable_cpus) {
1796 sPAPRDRConnector *drc =
1797 spapr_dr_connector_new(OBJECT(spapr),
1798 SPAPR_DR_CONNECTOR_TYPE_CPU,
1799 (core_id / smp_threads) * smt);
1800
1801 qemu_register_reset(spapr_drc_reset, drc);
1802 }
1803
1804 if (i < spapr_cores) {
1805 Object *core = object_new(type);
1806 int nr_threads = smp_threads;
1807
1808 /* Handle the partially filled core for older machine types */
1809 if ((i + 1) * smp_threads >= smp_cpus) {
1810 nr_threads = smp_cpus - i * smp_threads;
1811 }
1812
1813 object_property_set_int(core, nr_threads, "nr-threads",
1814 &error_fatal);
1815 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
1816 &error_fatal);
1817 object_property_set_bool(core, true, "realized", &error_fatal);
1818 }
1819 }
1820 g_free(type);
1821}
1822
9fdf0c29 1823/* pSeries LPAR / sPAPR hardware init */
3ef96221 1824static void ppc_spapr_init(MachineState *machine)
9fdf0c29 1825{
28e02042 1826 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
224245bf 1827 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
3ef96221 1828 const char *kernel_filename = machine->kernel_filename;
3ef96221 1829 const char *initrd_filename = machine->initrd_filename;
8c9f64df 1830 PCIHostState *phb;
9fdf0c29 1831 int i;
890c2b77
AK
1832 MemoryRegion *sysmem = get_system_memory();
1833 MemoryRegion *ram = g_new(MemoryRegion, 1);
658fa66b
AK
1834 MemoryRegion *rma_region;
1835 void *rma = NULL;
a8170e5e 1836 hwaddr rma_alloc_size;
b082d65a 1837 hwaddr node0_size = spapr_node0_size();
b7d1f77a 1838 long load_limit, fw_size;
39ac8455 1839 char *filename;
94a94e4c 1840 int smt = kvmppc_smt_threads();
9fdf0c29 1841
226419d6 1842 msi_nonbroken = true;
0ee2c058 1843
d43b45e2
DG
1844 QLIST_INIT(&spapr->phbs);
1845
9fdf0c29
DG
1846 cpu_ppc_hypercall = emulate_spapr_hypercall;
1847
354ac20a 1848 /* Allocate RMA if necessary */
658fa66b 1849 rma_alloc_size = kvmppc_alloc_rma(&rma);
354ac20a
DG
1850
1851 if (rma_alloc_size == -1) {
730fce59 1852 error_report("Unable to create RMA");
354ac20a
DG
1853 exit(1);
1854 }
7f763a5d 1855
c4177479 1856 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
7f763a5d 1857 spapr->rma_size = rma_alloc_size;
354ac20a 1858 } else {
c4177479 1859 spapr->rma_size = node0_size;
7f763a5d
DG
1860
1861 /* With KVM, we don't actually know whether KVM supports an
1862 * unbounded RMA (PR KVM) or is limited by the hash table size
1863 * (HV KVM using VRMA), so we always assume the latter
1864 *
1865 * In that case, we also limit the initial allocations for RTAS
1866 * etc... to 256M since we have no way to know what the VRMA size
1867 * is going to be as it depends on the size of the hash table
1868 * isn't determined yet.
1869 */
1870 if (kvm_enabled()) {
1871 spapr->vrma_adjust = 1;
1872 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1873 }
912acdf4
BH
1874
1875 /* Actually we don't support unbounded RMA anymore since we
1876 * added proper emulation of HV mode. The max we can get is
1877 * 16G which also happens to be what we configure for PAPR
1878 * mode so make sure we don't do anything bigger than that
1879 */
1880 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
354ac20a
DG
1881 }
1882
c4177479 1883 if (spapr->rma_size > node0_size) {
d54e4d76
DG
1884 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
1885 spapr->rma_size);
c4177479
AK
1886 exit(1);
1887 }
1888
b7d1f77a
BH
1889 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1890 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
9fdf0c29 1891
7b565160 1892 /* Set up Interrupt Controller before we create the VCPUs */
27f24582
BH
1893 spapr->xics = xics_system_init(machine,
1894 DIV_ROUND_UP(max_cpus * smt, smp_threads),
1895 XICS_IRQS_SPAPR, &error_fatal);
7b565160 1896
facdb8b6
MR
1897 /* Set up containers for ibm,client-set-architecture negotiated options */
1898 spapr->ov5 = spapr_ovec_new();
1899 spapr->ov5_cas = spapr_ovec_new();
1900
224245bf 1901 if (smc->dr_lmb_enabled) {
facdb8b6 1902 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
7c150d6f 1903 spapr_validate_node_memory(machine, &error_fatal);
224245bf
DG
1904 }
1905
417ece33
MR
1906 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
1907
ffbb1705
MR
1908 /* advertise support for dedicated HP event source to guests */
1909 if (spapr->use_hotplug_event_source) {
1910 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
1911 }
1912
9fdf0c29 1913 /* init CPUs */
19fb2c36 1914 if (machine->cpu_model == NULL) {
3daa4a9f 1915 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
9fdf0c29 1916 }
94a94e4c 1917
e703d2f7
GK
1918 ppc_cpu_parse_features(machine->cpu_model);
1919
0c86d0fd 1920 spapr_init_cpus(spapr);
9fdf0c29 1921
026bfd89
DG
1922 if (kvm_enabled()) {
1923 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1924 kvmppc_enable_logical_ci_hcalls();
ef9971dd 1925 kvmppc_enable_set_mode_hcall();
5145ad4f
NW
1926
1927 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
1928 kvmppc_enable_clear_ref_mod_hcalls();
026bfd89
DG
1929 }
1930
9fdf0c29 1931 /* allocate RAM */
f92f5da1 1932 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
fb164994 1933 machine->ram_size);
f92f5da1 1934 memory_region_add_subregion(sysmem, 0, ram);
9fdf0c29 1935
658fa66b
AK
1936 if (rma_alloc_size && rma) {
1937 rma_region = g_new(MemoryRegion, 1);
1938 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1939 rma_alloc_size, rma);
1940 vmstate_register_ram_global(rma_region);
1941 memory_region_add_subregion(sysmem, 0, rma_region);
1942 }
1943
4a1c9cf0
BR
1944 /* initialize hotplug memory address space */
1945 if (machine->ram_size < machine->maxram_size) {
1946 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
71c9a3dd
BR
1947 /*
1948 * Limit the number of hotpluggable memory slots to half the number
1949 * slots that KVM supports, leaving the other half for PCI and other
1950 * devices. However ensure that number of slots doesn't drop below 32.
1951 */
1952 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
1953 SPAPR_MAX_RAM_SLOTS;
4a1c9cf0 1954
71c9a3dd
BR
1955 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
1956 max_memslots = SPAPR_MAX_RAM_SLOTS;
1957 }
1958 if (machine->ram_slots > max_memslots) {
d54e4d76
DG
1959 error_report("Specified number of memory slots %"
1960 PRIu64" exceeds max supported %d",
71c9a3dd 1961 machine->ram_slots, max_memslots);
d54e4d76 1962 exit(1);
4a1c9cf0
BR
1963 }
1964
1965 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1966 SPAPR_HOTPLUG_MEM_ALIGN);
1967 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1968 "hotplug-memory", hotplug_mem_size);
1969 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1970 &spapr->hotplug_memory.mr);
1971 }
1972
224245bf
DG
1973 if (smc->dr_lmb_enabled) {
1974 spapr_create_lmb_dr_connectors(spapr);
1975 }
1976
39ac8455 1977 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
4c56440d 1978 if (!filename) {
730fce59 1979 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
4c56440d
SW
1980 exit(1);
1981 }
b7d1f77a 1982 spapr->rtas_size = get_image_size(filename);
8afc22a2
ZJ
1983 if (spapr->rtas_size < 0) {
1984 error_report("Could not get size of LPAR rtas '%s'", filename);
1985 exit(1);
1986 }
b7d1f77a
BH
1987 spapr->rtas_blob = g_malloc(spapr->rtas_size);
1988 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
730fce59 1989 error_report("Could not load LPAR rtas '%s'", filename);
39ac8455
DG
1990 exit(1);
1991 }
4d8d5467 1992 if (spapr->rtas_size > RTAS_MAX_SIZE) {
730fce59
TH
1993 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1994 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
4d8d5467
BH
1995 exit(1);
1996 }
7267c094 1997 g_free(filename);
39ac8455 1998
ffbb1705 1999 /* Set up RTAS event infrastructure */
74d042e5
DG
2000 spapr_events_init(spapr);
2001
12f42174 2002 /* Set up the RTC RTAS interfaces */
28df36a1 2003 spapr_rtc_create(spapr);
12f42174 2004
b5cec4c5 2005 /* Set up VIO bus */
4040ab72
DG
2006 spapr->vio_bus = spapr_vio_bus_init();
2007
277f9acf 2008 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
4040ab72 2009 if (serial_hds[i]) {
d601fac4 2010 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
4040ab72
DG
2011 }
2012 }
9fdf0c29 2013
639e8102
DG
2014 /* We always have at least the nvram device on VIO */
2015 spapr_create_nvram(spapr);
2016
3384f95c 2017 /* Set up PCI */
fa28f71b
AK
2018 spapr_pci_rtas_init();
2019
89dfd6e1 2020 phb = spapr_create_phb(spapr, 0);
3384f95c 2021
277f9acf 2022 for (i = 0; i < nb_nics; i++) {
8d90ad90
DG
2023 NICInfo *nd = &nd_table[i];
2024
2025 if (!nd->model) {
7267c094 2026 nd->model = g_strdup("ibmveth");
8d90ad90
DG
2027 }
2028
2029 if (strcmp(nd->model, "ibmveth") == 0) {
d601fac4 2030 spapr_vlan_create(spapr->vio_bus, nd);
8d90ad90 2031 } else {
29b358f9 2032 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
8d90ad90
DG
2033 }
2034 }
2035
6e270446 2036 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
d601fac4 2037 spapr_vscsi_create(spapr->vio_bus);
6e270446
BH
2038 }
2039
f28359d8 2040 /* Graphics */
14c6a894 2041 if (spapr_vga_init(phb->bus, &error_fatal)) {
3fc5acde 2042 spapr->has_graphics = true;
c6e76503 2043 machine->usb |= defaults_enabled() && !machine->usb_disabled;
f28359d8
LZ
2044 }
2045
4ee9ced9 2046 if (machine->usb) {
57040d45
TH
2047 if (smc->use_ohci_by_default) {
2048 pci_create_simple(phb->bus, -1, "pci-ohci");
2049 } else {
2050 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2051 }
c86580b8 2052
35139a59 2053 if (spapr->has_graphics) {
c86580b8
MA
2054 USBBus *usb_bus = usb_bus_find(-1);
2055
2056 usb_create_simple(usb_bus, "usb-kbd");
2057 usb_create_simple(usb_bus, "usb-mouse");
35139a59
DG
2058 }
2059 }
2060
7f763a5d 2061 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
d54e4d76
DG
2062 error_report(
2063 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2064 MIN_RMA_SLOF);
4d8d5467
BH
2065 exit(1);
2066 }
2067
9fdf0c29
DG
2068 if (kernel_filename) {
2069 uint64_t lowaddr = 0;
2070
a19f7fb0
DG
2071 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2072 NULL, NULL, &lowaddr, NULL, 1,
2073 PPC_ELF_MACHINE, 0, 0);
2074 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2075 spapr->kernel_size = load_elf(kernel_filename,
2076 translate_kernel_address, NULL, NULL,
2077 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2078 0, 0);
2079 spapr->kernel_le = spapr->kernel_size > 0;
16457e7f 2080 }
a19f7fb0
DG
2081 if (spapr->kernel_size < 0) {
2082 error_report("error loading %s: %s", kernel_filename,
2083 load_elf_strerror(spapr->kernel_size));
9fdf0c29
DG
2084 exit(1);
2085 }
2086
2087 /* load initrd */
2088 if (initrd_filename) {
4d8d5467
BH
2089 /* Try to locate the initrd in the gap between the kernel
2090 * and the firmware. Add a bit of space just in case
2091 */
a19f7fb0
DG
2092 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2093 + 0x1ffff) & ~0xffff;
2094 spapr->initrd_size = load_image_targphys(initrd_filename,
2095 spapr->initrd_base,
2096 load_limit
2097 - spapr->initrd_base);
2098 if (spapr->initrd_size < 0) {
d54e4d76
DG
2099 error_report("could not load initial ram disk '%s'",
2100 initrd_filename);
9fdf0c29
DG
2101 exit(1);
2102 }
9fdf0c29 2103 }
4d8d5467 2104 }
a3467baa 2105
8e7ea787
AF
2106 if (bios_name == NULL) {
2107 bios_name = FW_FILE_NAME;
2108 }
2109 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
4c56440d 2110 if (!filename) {
68fea5a0 2111 error_report("Could not find LPAR firmware '%s'", bios_name);
4c56440d
SW
2112 exit(1);
2113 }
4d8d5467 2114 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
68fea5a0
TH
2115 if (fw_size <= 0) {
2116 error_report("Could not load LPAR firmware '%s'", filename);
4d8d5467
BH
2117 exit(1);
2118 }
2119 g_free(filename);
4d8d5467 2120
28e02042
DG
2121 /* FIXME: Should register things through the MachineState's qdev
2122 * interface, this is a legacy from the sPAPREnvironment structure
2123 * which predated MachineState but had a similar function */
4be21d56
DG
2124 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2125 register_savevm_live(NULL, "spapr/htab", -1, 1,
2126 &savevm_htab_handlers, spapr);
2127
46503c2b
MR
2128 /* used by RTAS */
2129 QTAILQ_INIT(&spapr->ccs_list);
2130 qemu_register_reset(spapr_ccs_reset_hook, spapr);
2131
5b2128d2 2132 qemu_register_boot_set(spapr_boot_set, spapr);
9fdf0c29
DG
2133}
2134
135a129a
AK
2135static int spapr_kvm_type(const char *vm_type)
2136{
2137 if (!vm_type) {
2138 return 0;
2139 }
2140
2141 if (!strcmp(vm_type, "HV")) {
2142 return 1;
2143 }
2144
2145 if (!strcmp(vm_type, "PR")) {
2146 return 2;
2147 }
2148
2149 error_report("Unknown kvm-type specified '%s'", vm_type);
2150 exit(1);
2151}
2152
71461b0f 2153/*
627b84f4 2154 * Implementation of an interface to adjust firmware path
71461b0f
AK
2155 * for the bootindex property handling.
2156 */
2157static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2158 DeviceState *dev)
2159{
2160#define CAST(type, obj, name) \
2161 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2162 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2163 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2164
2165 if (d) {
2166 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2167 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2168 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2169
2170 if (spapr) {
2171 /*
2172 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2173 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2174 * in the top 16 bits of the 64-bit LUN
2175 */
2176 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2177 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2178 (uint64_t)id << 48);
2179 } else if (virtio) {
2180 /*
2181 * We use SRP luns of the form 01000000 | (target << 8) | lun
2182 * in the top 32 bits of the 64-bit LUN
2183 * Note: the quote above is from SLOF and it is wrong,
2184 * the actual binding is:
2185 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2186 */
2187 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2188 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2189 (uint64_t)id << 32);
2190 } else if (usb) {
2191 /*
2192 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2193 * in the top 32 bits of the 64-bit LUN
2194 */
2195 unsigned usb_port = atoi(usb->port->path);
2196 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2197 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2198 (uint64_t)id << 32);
2199 }
2200 }
2201
2202 if (phb) {
2203 /* Replace "pci" with "pci@800000020000000" */
2204 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2205 }
2206
2207 return NULL;
2208}
2209
23825581
EH
2210static char *spapr_get_kvm_type(Object *obj, Error **errp)
2211{
28e02042 2212 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2213
28e02042 2214 return g_strdup(spapr->kvm_type);
23825581
EH
2215}
2216
2217static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2218{
28e02042 2219 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2220
28e02042
DG
2221 g_free(spapr->kvm_type);
2222 spapr->kvm_type = g_strdup(value);
23825581
EH
2223}
2224
f6229214
MR
2225static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2226{
2227 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2228
2229 return spapr->use_hotplug_event_source;
2230}
2231
2232static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2233 Error **errp)
2234{
2235 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2236
2237 spapr->use_hotplug_event_source = value;
2238}
2239
23825581
EH
2240static void spapr_machine_initfn(Object *obj)
2241{
715c5407
DG
2242 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2243
2244 spapr->htab_fd = -1;
f6229214 2245 spapr->use_hotplug_event_source = true;
23825581
EH
2246 object_property_add_str(obj, "kvm-type",
2247 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
49d2e648
MA
2248 object_property_set_description(obj, "kvm-type",
2249 "Specifies the KVM virtualization mode (HV, PR)",
2250 NULL);
f6229214
MR
2251 object_property_add_bool(obj, "modern-hotplug-events",
2252 spapr_get_modern_hotplug_events,
2253 spapr_set_modern_hotplug_events,
2254 NULL);
2255 object_property_set_description(obj, "modern-hotplug-events",
2256 "Use dedicated hotplug event mechanism in"
2257 " place of standard EPOW events when possible"
2258 " (required for memory hot-unplug support)",
2259 NULL);
23825581
EH
2260}
2261
87bbdd9c
DG
2262static void spapr_machine_finalizefn(Object *obj)
2263{
2264 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2265
2266 g_free(spapr->kvm_type);
2267}
2268
14e6fe12 2269static void ppc_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
34316482 2270{
34316482
AK
2271 cpu_synchronize_state(cs);
2272 ppc_cpu_do_system_reset(cs);
2273}
2274
2275static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2276{
2277 CPUState *cs;
2278
2279 CPU_FOREACH(cs) {
14e6fe12 2280 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
34316482
AK
2281 }
2282}
2283
79b78a6b
MR
2284static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2285 uint32_t node, bool dedicated_hp_event_source,
2286 Error **errp)
c20d332a
BR
2287{
2288 sPAPRDRConnector *drc;
2289 sPAPRDRConnectorClass *drck;
2290 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2291 int i, fdt_offset, fdt_size;
2292 void *fdt;
79b78a6b 2293 uint64_t addr = addr_start;
c20d332a 2294
c20d332a
BR
2295 for (i = 0; i < nr_lmbs; i++) {
2296 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2297 addr/SPAPR_MEMORY_BLOCK_SIZE);
2298 g_assert(drc);
2299
2300 fdt = create_device_tree(&fdt_size);
2301 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2302 SPAPR_MEMORY_BLOCK_SIZE);
2303
2304 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2305 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
c20d332a 2306 addr += SPAPR_MEMORY_BLOCK_SIZE;
5c0139a8
MR
2307 if (!dev->hotplugged) {
2308 /* guests expect coldplugged LMBs to be pre-allocated */
2309 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2310 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2311 }
c20d332a 2312 }
5dd5238c
JD
2313 /* send hotplug notification to the
2314 * guest only in case of hotplugged memory
2315 */
2316 if (dev->hotplugged) {
79b78a6b
MR
2317 if (dedicated_hp_event_source) {
2318 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2319 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2320 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2321 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2322 nr_lmbs,
2323 drck->get_index(drc));
2324 } else {
2325 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2326 nr_lmbs);
2327 }
5dd5238c 2328 }
c20d332a
BR
2329}
2330
2331static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2332 uint32_t node, Error **errp)
2333{
2334 Error *local_err = NULL;
2335 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2336 PCDIMMDevice *dimm = PC_DIMM(dev);
2337 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2338 MemoryRegion *mr = ddc->get_memory_region(dimm);
2339 uint64_t align = memory_region_get_alignment(mr);
2340 uint64_t size = memory_region_size(mr);
2341 uint64_t addr;
2342
2343 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2344 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2345 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2346 goto out;
2347 }
2348
d6a9b0b8 2349 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
c20d332a
BR
2350 if (local_err) {
2351 goto out;
2352 }
2353
2354 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2355 if (local_err) {
2356 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2357 goto out;
2358 }
2359
79b78a6b
MR
2360 spapr_add_lmbs(dev, addr, size, node,
2361 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2362 &error_abort);
c20d332a
BR
2363
2364out:
2365 error_propagate(errp, local_err);
2366}
2367
cf632463
BR
2368typedef struct sPAPRDIMMState {
2369 uint32_t nr_lmbs;
2370} sPAPRDIMMState;
2371
2372static void spapr_lmb_release(DeviceState *dev, void *opaque)
2373{
2374 sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque;
2375 HotplugHandler *hotplug_ctrl;
2376
2377 if (--ds->nr_lmbs) {
2378 return;
2379 }
2380
2381 g_free(ds);
2382
2383 /*
2384 * Now that all the LMBs have been removed by the guest, call the
2385 * pc-dimm unplug handler to cleanup up the pc-dimm device.
2386 */
2387 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2388 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2389}
2390
2391static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2392 Error **errp)
2393{
2394 sPAPRDRConnector *drc;
2395 sPAPRDRConnectorClass *drck;
2396 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2397 int i;
2398 sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState));
2399 uint64_t addr = addr_start;
2400
2401 ds->nr_lmbs = nr_lmbs;
2402 for (i = 0; i < nr_lmbs; i++) {
2403 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2404 addr / SPAPR_MEMORY_BLOCK_SIZE);
2405 g_assert(drc);
2406
2407 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2408 drck->detach(drc, dev, spapr_lmb_release, ds, errp);
2409 addr += SPAPR_MEMORY_BLOCK_SIZE;
2410 }
2411
2412 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2413 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2414 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2415 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2416 nr_lmbs,
2417 drck->get_index(drc));
2418}
2419
2420static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2421 Error **errp)
2422{
2423 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2424 PCDIMMDevice *dimm = PC_DIMM(dev);
2425 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2426 MemoryRegion *mr = ddc->get_memory_region(dimm);
2427
2428 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2429 object_unparent(OBJECT(dev));
2430}
2431
2432static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2433 DeviceState *dev, Error **errp)
2434{
2435 Error *local_err = NULL;
2436 PCDIMMDevice *dimm = PC_DIMM(dev);
2437 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2438 MemoryRegion *mr = ddc->get_memory_region(dimm);
2439 uint64_t size = memory_region_size(mr);
2440 uint64_t addr;
2441
2442 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2443 if (local_err) {
2444 goto out;
2445 }
2446
2447 spapr_del_lmbs(dev, addr, size, &error_abort);
2448out:
2449 error_propagate(errp, local_err);
2450}
2451
af81cf32
BR
2452void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2453 sPAPRMachineState *spapr)
2454{
2455 PowerPCCPU *cpu = POWERPC_CPU(cs);
2456 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2457 int id = ppc_get_vcpu_dt_id(cpu);
2458 void *fdt;
2459 int offset, fdt_size;
2460 char *nodename;
2461
2462 fdt = create_device_tree(&fdt_size);
2463 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2464 offset = fdt_add_subnode(fdt, 0, nodename);
2465
2466 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2467 g_free(nodename);
2468
2469 *fdt_offset = offset;
2470 return fdt;
2471}
2472
c20d332a
BR
2473static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2474 DeviceState *dev, Error **errp)
2475{
2476 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2477
2478 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
b556854b 2479 int node;
c20d332a
BR
2480
2481 if (!smc->dr_lmb_enabled) {
2482 error_setg(errp, "Memory hotplug not supported for this machine");
2483 return;
2484 }
2485 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2486 if (*errp) {
2487 return;
2488 }
1a5512bb
GA
2489 if (node < 0 || node >= MAX_NODES) {
2490 error_setg(errp, "Invaild node %d", node);
2491 return;
2492 }
c20d332a 2493
b556854b
BR
2494 /*
2495 * Currently PowerPC kernel doesn't allow hot-adding memory to
2496 * memory-less node, but instead will silently add the memory
2497 * to the first node that has some memory. This causes two
2498 * unexpected behaviours for the user.
2499 *
2500 * - Memory gets hotplugged to a different node than what the user
2501 * specified.
2502 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2503 * to memory-less node, a reboot will set things accordingly
2504 * and the previously hotplugged memory now ends in the right node.
2505 * This appears as if some memory moved from one node to another.
2506 *
2507 * So until kernel starts supporting memory hotplug to memory-less
2508 * nodes, just prevent such attempts upfront in QEMU.
2509 */
2510 if (nb_numa_nodes && !numa_info[node].node_mem) {
2511 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2512 node);
2513 return;
2514 }
2515
c20d332a 2516 spapr_memory_plug(hotplug_dev, dev, node, errp);
af81cf32
BR
2517 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2518 spapr_core_plug(hotplug_dev, dev, errp);
c20d332a
BR
2519 }
2520}
2521
2522static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2523 DeviceState *dev, Error **errp)
2524{
cf632463 2525 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
3c0c47e3 2526 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
6f4b5c3e 2527
c20d332a 2528 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
cf632463
BR
2529 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2530 spapr_memory_unplug(hotplug_dev, dev, errp);
2531 } else {
2532 error_setg(errp, "Memory hot unplug not supported for this guest");
2533 }
2534 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2535 if (!mc->query_hotpluggable_cpus) {
2536 error_setg(errp, "CPU hot unplug not supported on this machine");
2537 return;
2538 }
2539 spapr_core_unplug(hotplug_dev, dev, errp);
2540 }
2541}
2542
2543static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
2544 DeviceState *dev, Error **errp)
2545{
2546 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2547 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2548
2549 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2550 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2551 spapr_memory_unplug_request(hotplug_dev, dev, errp);
2552 } else {
2553 /* NOTE: this means there is a window after guest reset, prior to
2554 * CAS negotiation, where unplug requests will fail due to the
2555 * capability not being detected yet. This is a bit different than
2556 * the case with PCI unplug, where the events will be queued and
2557 * eventually handled by the guest after boot
2558 */
2559 error_setg(errp, "Memory hot unplug not supported for this guest");
2560 }
6f4b5c3e 2561 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3c0c47e3 2562 if (!mc->query_hotpluggable_cpus) {
6f4b5c3e
BR
2563 error_setg(errp, "CPU hot unplug not supported on this machine");
2564 return;
2565 }
2566 spapr_core_unplug(hotplug_dev, dev, errp);
c20d332a
BR
2567 }
2568}
2569
94a94e4c
BR
2570static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2571 DeviceState *dev, Error **errp)
2572{
2573 if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2574 spapr_core_pre_plug(hotplug_dev, dev, errp);
2575 }
2576}
2577
7ebaf795
BR
2578static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
2579 DeviceState *dev)
c20d332a 2580{
94a94e4c
BR
2581 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2582 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
c20d332a
BR
2583 return HOTPLUG_HANDLER(machine);
2584 }
2585 return NULL;
2586}
2587
20bb648d
DG
2588static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2589{
2590 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2591 * socket means much for the paravirtualized PAPR platform) */
2592 return cpu_index / smp_threads / smp_cores;
2593}
2594
2474bfd4
IM
2595static HotpluggableCPUList *spapr_query_hotpluggable_cpus(MachineState *machine)
2596{
2597 int i;
2598 HotpluggableCPUList *head = NULL;
2599 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2600 int spapr_max_cores = max_cpus / smp_threads;
2474bfd4
IM
2601
2602 for (i = 0; i < spapr_max_cores; i++) {
2603 HotpluggableCPUList *list_item = g_new0(typeof(*list_item), 1);
2604 HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1);
2605 CpuInstanceProperties *cpu_props = g_new0(typeof(*cpu_props), 1);
2606
2607 cpu_item->type = spapr_get_cpu_core_type(machine->cpu_model);
2608 cpu_item->vcpus_count = smp_threads;
27393c33 2609 cpu_props->has_core_id = true;
12bf2d33 2610 cpu_props->core_id = i * smp_threads;
2474bfd4
IM
2611 /* TODO: add 'has_node/node' here to describe
2612 to which node core belongs */
2613
2614 cpu_item->props = cpu_props;
2615 if (spapr->cores[i]) {
2616 cpu_item->has_qom_path = true;
2617 cpu_item->qom_path = object_get_canonical_path(spapr->cores[i]);
2618 }
2619 list_item->value = cpu_item;
2620 list_item->next = head;
2621 head = list_item;
2622 }
2623 return head;
2624}
2625
6737d9ad 2626static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
daa23699
DG
2627 uint64_t *buid, hwaddr *pio,
2628 hwaddr *mmio32, hwaddr *mmio64,
6737d9ad
DG
2629 unsigned n_dma, uint32_t *liobns, Error **errp)
2630{
357d1e3b
DG
2631 /*
2632 * New-style PHB window placement.
2633 *
2634 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
2635 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
2636 * windows.
2637 *
2638 * Some guest kernels can't work with MMIO windows above 1<<46
2639 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
2640 *
2641 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
2642 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
2643 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
2644 * 1TiB 64-bit MMIO windows for each PHB.
2645 */
6737d9ad 2646 const uint64_t base_buid = 0x800000020000000ULL;
357d1e3b
DG
2647 const int max_phbs =
2648 (SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / SPAPR_PCI_MEM64_WIN_SIZE - 1;
6737d9ad
DG
2649 int i;
2650
357d1e3b
DG
2651 /* Sanity check natural alignments */
2652 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
2653 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
2654 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
2655 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
2656 /* Sanity check bounds */
2657 QEMU_BUILD_BUG_ON((max_phbs * SPAPR_PCI_IO_WIN_SIZE) > SPAPR_PCI_MEM32_WIN_SIZE);
2658 QEMU_BUILD_BUG_ON((max_phbs * SPAPR_PCI_MEM32_WIN_SIZE) > SPAPR_PCI_MEM64_WIN_SIZE);
2efff1c0 2659
357d1e3b 2660 if (index >= max_phbs) {
6737d9ad 2661 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
357d1e3b 2662 max_phbs - 1);
6737d9ad
DG
2663 return;
2664 }
2665
2666 *buid = base_buid + index;
2667 for (i = 0; i < n_dma; ++i) {
2668 liobns[i] = SPAPR_PCI_LIOBN(index, i);
2669 }
2670
357d1e3b
DG
2671 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
2672 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
2673 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
6737d9ad
DG
2674}
2675
29ee3247
AK
2676static void spapr_machine_class_init(ObjectClass *oc, void *data)
2677{
2678 MachineClass *mc = MACHINE_CLASS(oc);
224245bf 2679 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
71461b0f 2680 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
34316482 2681 NMIClass *nc = NMI_CLASS(oc);
c20d332a 2682 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
958db90c 2683
0eb9054c 2684 mc->desc = "pSeries Logical Partition (PAPR compliant)";
fc9f38c3
DG
2685
2686 /*
2687 * We set up the default / latest behaviour here. The class_init
2688 * functions for the specific versioned machine types can override
2689 * these details for backwards compatibility
2690 */
958db90c
MA
2691 mc->init = ppc_spapr_init;
2692 mc->reset = ppc_spapr_reset;
2693 mc->block_default_type = IF_SCSI;
079019f2 2694 mc->max_cpus = 255;
958db90c 2695 mc->no_parallel = 1;
5b2128d2 2696 mc->default_boot_order = "";
a34944fe 2697 mc->default_ram_size = 512 * M_BYTE;
958db90c 2698 mc->kvm_type = spapr_kvm_type;
9e3f9733 2699 mc->has_dynamic_sysbus = true;
e4024630 2700 mc->pci_allow_0_address = true;
7ebaf795 2701 mc->get_hotplug_handler = spapr_get_hotplug_handler;
94a94e4c 2702 hc->pre_plug = spapr_machine_device_pre_plug;
c20d332a
BR
2703 hc->plug = spapr_machine_device_plug;
2704 hc->unplug = spapr_machine_device_unplug;
20bb648d 2705 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
cf632463 2706 hc->unplug_request = spapr_machine_device_unplug_request;
00b4fbe2 2707
fc9f38c3 2708 smc->dr_lmb_enabled = true;
3daa4a9f 2709 smc->tcg_default_cpu = "POWER8";
3c0c47e3 2710 mc->query_hotpluggable_cpus = spapr_query_hotpluggable_cpus;
71461b0f 2711 fwc->get_dev_path = spapr_get_fw_dev_path;
34316482 2712 nc->nmi_monitor_handler = spapr_nmi;
6737d9ad 2713 smc->phb_placement = spapr_phb_placement;
29ee3247
AK
2714}
2715
2716static const TypeInfo spapr_machine_info = {
2717 .name = TYPE_SPAPR_MACHINE,
2718 .parent = TYPE_MACHINE,
4aee7362 2719 .abstract = true,
6ca1502e 2720 .instance_size = sizeof(sPAPRMachineState),
23825581 2721 .instance_init = spapr_machine_initfn,
87bbdd9c 2722 .instance_finalize = spapr_machine_finalizefn,
183930c0 2723 .class_size = sizeof(sPAPRMachineClass),
29ee3247 2724 .class_init = spapr_machine_class_init,
71461b0f
AK
2725 .interfaces = (InterfaceInfo[]) {
2726 { TYPE_FW_PATH_PROVIDER },
34316482 2727 { TYPE_NMI },
c20d332a 2728 { TYPE_HOTPLUG_HANDLER },
71461b0f
AK
2729 { }
2730 },
29ee3247
AK
2731};
2732
fccbc785 2733#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
5013c547
DG
2734 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
2735 void *data) \
2736 { \
2737 MachineClass *mc = MACHINE_CLASS(oc); \
2738 spapr_machine_##suffix##_class_options(mc); \
fccbc785
DG
2739 if (latest) { \
2740 mc->alias = "pseries"; \
2741 mc->is_default = 1; \
2742 } \
5013c547
DG
2743 } \
2744 static void spapr_machine_##suffix##_instance_init(Object *obj) \
2745 { \
2746 MachineState *machine = MACHINE(obj); \
2747 spapr_machine_##suffix##_instance_options(machine); \
2748 } \
2749 static const TypeInfo spapr_machine_##suffix##_info = { \
2750 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
2751 .parent = TYPE_SPAPR_MACHINE, \
2752 .class_init = spapr_machine_##suffix##_class_init, \
2753 .instance_init = spapr_machine_##suffix##_instance_init, \
2754 }; \
2755 static void spapr_machine_register_##suffix(void) \
2756 { \
2757 type_register(&spapr_machine_##suffix##_info); \
2758 } \
0e6aac87 2759 type_init(spapr_machine_register_##suffix)
5013c547 2760
db800b21
DG
2761/*
2762 * pseries-2.8
2763 */
2764static void spapr_machine_2_8_instance_options(MachineState *machine)
2765{
2766}
2767
2768static void spapr_machine_2_8_class_options(MachineClass *mc)
2769{
2770 /* Defaults for the latest behaviour inherited from the base class */
2771}
2772
2773DEFINE_SPAPR_MACHINE(2_8, "2.8", true);
2774
1ea1eefc
BR
2775/*
2776 * pseries-2.7
2777 */
357d1e3b
DG
2778#define SPAPR_COMPAT_2_7 \
2779 HW_COMPAT_2_7 \
2780 { \
2781 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
2782 .property = "mem_win_size", \
2783 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
2784 }, \
2785 { \
2786 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
2787 .property = "mem64_win_size", \
2788 .value = "0", \
146c11f1
DG
2789 }, \
2790 { \
2791 .driver = TYPE_POWERPC_CPU, \
2792 .property = "pre-2.8-migration", \
2793 .value = "on", \
5c4537bd
DG
2794 }, \
2795 { \
2796 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
2797 .property = "pre-2.8-migration", \
2798 .value = "on", \
357d1e3b
DG
2799 },
2800
2801static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
2802 uint64_t *buid, hwaddr *pio,
2803 hwaddr *mmio32, hwaddr *mmio64,
2804 unsigned n_dma, uint32_t *liobns, Error **errp)
2805{
2806 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
2807 const uint64_t base_buid = 0x800000020000000ULL;
2808 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
2809 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
2810 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
2811 const uint32_t max_index = 255;
2812 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
2813
2814 uint64_t ram_top = MACHINE(spapr)->ram_size;
2815 hwaddr phb0_base, phb_base;
2816 int i;
2817
2818 /* Do we have hotpluggable memory? */
2819 if (MACHINE(spapr)->maxram_size > ram_top) {
2820 /* Can't just use maxram_size, because there may be an
2821 * alignment gap between normal and hotpluggable memory
2822 * regions */
2823 ram_top = spapr->hotplug_memory.base +
2824 memory_region_size(&spapr->hotplug_memory.mr);
2825 }
2826
2827 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
2828
2829 if (index > max_index) {
2830 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
2831 max_index);
2832 return;
2833 }
2834
2835 *buid = base_buid + index;
2836 for (i = 0; i < n_dma; ++i) {
2837 liobns[i] = SPAPR_PCI_LIOBN(index, i);
2838 }
2839
2840 phb_base = phb0_base + index * phb_spacing;
2841 *pio = phb_base + pio_offset;
2842 *mmio32 = phb_base + mmio_offset;
2843 /*
2844 * We don't set the 64-bit MMIO window, relying on the PHB's
2845 * fallback behaviour of automatically splitting a large "32-bit"
2846 * window into contiguous 32-bit and 64-bit windows
2847 */
2848}
db800b21 2849
1ea1eefc
BR
2850static void spapr_machine_2_7_instance_options(MachineState *machine)
2851{
f6229214
MR
2852 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2853
672de881 2854 spapr_machine_2_8_instance_options(machine);
f6229214 2855 spapr->use_hotplug_event_source = false;
1ea1eefc
BR
2856}
2857
2858static void spapr_machine_2_7_class_options(MachineClass *mc)
2859{
3daa4a9f
TH
2860 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2861
db800b21 2862 spapr_machine_2_8_class_options(mc);
3daa4a9f 2863 smc->tcg_default_cpu = "POWER7";
db800b21 2864 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
357d1e3b 2865 smc->phb_placement = phb_placement_2_7;
1ea1eefc
BR
2866}
2867
db800b21 2868DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
1ea1eefc 2869
4b23699c
DG
2870/*
2871 * pseries-2.6
2872 */
1ea1eefc 2873#define SPAPR_COMPAT_2_6 \
ae4de14c
AK
2874 HW_COMPAT_2_6 \
2875 { \
2876 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2877 .property = "ddw",\
2878 .value = stringify(off),\
2879 },
1ea1eefc 2880
4b23699c
DG
2881static void spapr_machine_2_6_instance_options(MachineState *machine)
2882{
672de881 2883 spapr_machine_2_7_instance_options(machine);
4b23699c
DG
2884}
2885
2886static void spapr_machine_2_6_class_options(MachineClass *mc)
2887{
1ea1eefc 2888 spapr_machine_2_7_class_options(mc);
3c0c47e3 2889 mc->query_hotpluggable_cpus = NULL;
1ea1eefc 2890 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4b23699c
DG
2891}
2892
1ea1eefc 2893DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4b23699c 2894
1c5f29bb
DG
2895/*
2896 * pseries-2.5
2897 */
4b23699c 2898#define SPAPR_COMPAT_2_5 \
57c522f4
TH
2899 HW_COMPAT_2_5 \
2900 { \
2901 .driver = "spapr-vlan", \
2902 .property = "use-rx-buffer-pools", \
2903 .value = "off", \
2904 },
4b23699c 2905
5013c547 2906static void spapr_machine_2_5_instance_options(MachineState *machine)
1c5f29bb 2907{
672de881 2908 spapr_machine_2_6_instance_options(machine);
5013c547
DG
2909}
2910
2911static void spapr_machine_2_5_class_options(MachineClass *mc)
2912{
57040d45
TH
2913 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2914
4b23699c 2915 spapr_machine_2_6_class_options(mc);
57040d45 2916 smc->use_ohci_by_default = true;
4b23699c 2917 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
1c5f29bb
DG
2918}
2919
4b23699c 2920DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
1c5f29bb
DG
2921
2922/*
2923 * pseries-2.4
2924 */
80fd50f9
CH
2925#define SPAPR_COMPAT_2_4 \
2926 HW_COMPAT_2_4
2927
5013c547 2928static void spapr_machine_2_4_instance_options(MachineState *machine)
1c5f29bb 2929{
5013c547
DG
2930 spapr_machine_2_5_instance_options(machine);
2931}
1c5f29bb 2932
5013c547
DG
2933static void spapr_machine_2_4_class_options(MachineClass *mc)
2934{
fc9f38c3
DG
2935 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2936
2937 spapr_machine_2_5_class_options(mc);
fc9f38c3 2938 smc->dr_lmb_enabled = false;
f949b4e5 2939 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
1c5f29bb
DG
2940}
2941
fccbc785 2942DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
1c5f29bb
DG
2943
2944/*
2945 * pseries-2.3
2946 */
38ff32c6 2947#define SPAPR_COMPAT_2_3 \
7619c7b0
MR
2948 HW_COMPAT_2_3 \
2949 {\
2950 .driver = "spapr-pci-host-bridge",\
2951 .property = "dynamic-reconfiguration",\
2952 .value = "off",\
2953 },
38ff32c6 2954
5013c547 2955static void spapr_machine_2_3_instance_options(MachineState *machine)
d25228e7 2956{
5013c547 2957 spapr_machine_2_4_instance_options(machine);
ff14e817 2958 savevm_skip_section_footers();
13d16814 2959 global_state_set_optional();
09b5e30d 2960 savevm_skip_configuration();
d25228e7
JW
2961}
2962
5013c547 2963static void spapr_machine_2_3_class_options(MachineClass *mc)
6026db45 2964{
fc9f38c3 2965 spapr_machine_2_4_class_options(mc);
f949b4e5 2966 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
6026db45 2967}
fccbc785 2968DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
6026db45 2969
1c5f29bb
DG
2970/*
2971 * pseries-2.2
2972 */
2973
2974#define SPAPR_COMPAT_2_2 \
1c5f29bb
DG
2975 HW_COMPAT_2_2 \
2976 {\
2977 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2978 .property = "mem_win_size",\
2979 .value = "0x20000000",\
2980 },
2981
5013c547 2982static void spapr_machine_2_2_instance_options(MachineState *machine)
1c5f29bb 2983{
5013c547 2984 spapr_machine_2_3_instance_options(machine);
cba0e779 2985 machine->suppress_vmdesc = true;
1c5f29bb
DG
2986}
2987
5013c547 2988static void spapr_machine_2_2_class_options(MachineClass *mc)
4aee7362 2989{
fc9f38c3 2990 spapr_machine_2_3_class_options(mc);
f949b4e5 2991 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4aee7362 2992}
fccbc785 2993DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4aee7362 2994
1c5f29bb
DG
2995/*
2996 * pseries-2.1
2997 */
2998#define SPAPR_COMPAT_2_1 \
1c5f29bb 2999 HW_COMPAT_2_1
3dab0244 3000
5013c547 3001static void spapr_machine_2_1_instance_options(MachineState *machine)
1c5f29bb 3002{
5013c547 3003 spapr_machine_2_2_instance_options(machine);
1c5f29bb 3004}
d25228e7 3005
5013c547 3006static void spapr_machine_2_1_class_options(MachineClass *mc)
d25228e7 3007{
fc9f38c3 3008 spapr_machine_2_2_class_options(mc);
f949b4e5 3009 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
d25228e7 3010}
fccbc785 3011DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
fb0fc8f6 3012
29ee3247 3013static void spapr_machine_register_types(void)
9fdf0c29 3014{
29ee3247 3015 type_register_static(&spapr_machine_info);
9fdf0c29
DG
3016}
3017
29ee3247 3018type_init(spapr_machine_register_types)