]> git.proxmox.com Git - mirror_qemu.git/blame - hw/ppc/spapr.c
spapr: Populate ibm,associativity-lookup-arrays correctly for non-NUMA
[mirror_qemu.git] / hw / ppc / spapr.c
CommitLineData
9fdf0c29
DG
1/*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
9c17d615 27#include "sysemu/sysemu.h"
e35704ba 28#include "sysemu/numa.h"
83c9f4ca 29#include "hw/hw.h"
71461b0f 30#include "hw/fw-path-provider.h"
9fdf0c29 31#include "elf.h"
1422e32d 32#include "net/net.h"
ad440b4a 33#include "sysemu/device_tree.h"
fa1d36df 34#include "sysemu/block-backend.h"
9c17d615
PB
35#include "sysemu/cpus.h"
36#include "sysemu/kvm.h"
c20d332a 37#include "sysemu/device_tree.h"
e97c3636 38#include "kvm_ppc.h"
ff14e817 39#include "migration/migration.h"
4be21d56 40#include "mmu-hash64.h"
3794d548 41#include "qom/cpu.h"
9fdf0c29
DG
42
43#include "hw/boards.h"
0d09e41a 44#include "hw/ppc/ppc.h"
9fdf0c29
DG
45#include "hw/loader.h"
46
0d09e41a
PB
47#include "hw/ppc/spapr.h"
48#include "hw/ppc/spapr_vio.h"
49#include "hw/pci-host/spapr.h"
50#include "hw/ppc/xics.h"
a2cb15b0 51#include "hw/pci/msi.h"
9fdf0c29 52
83c9f4ca 53#include "hw/pci/pci.h"
71461b0f
AK
54#include "hw/scsi/scsi.h"
55#include "hw/virtio/virtio-scsi.h"
f61b4bed 56
022c62cb 57#include "exec/address-spaces.h"
35139a59 58#include "hw/usb.h"
1de7afc9 59#include "qemu/config-file.h"
135a129a 60#include "qemu/error-report.h"
2a6593cb 61#include "trace.h"
34316482 62#include "hw/nmi.h"
890c2b77 63
68a27b20 64#include "hw/compat.h"
224245bf 65#include "qemu-common.h"
68a27b20 66
9fdf0c29
DG
67#include <libfdt.h>
68
4d8d5467
BH
69/* SLOF memory layout:
70 *
71 * SLOF raw image loaded at 0, copies its romfs right below the flat
72 * device-tree, then position SLOF itself 31M below that
73 *
74 * So we set FW_OVERHEAD to 40MB which should account for all of that
75 * and more
76 *
77 * We load our kernel at 4M, leaving space for SLOF initial image
78 */
38b02bd8 79#define FDT_MAX_SIZE 0x100000
39ac8455 80#define RTAS_MAX_SIZE 0x10000
b7d1f77a 81#define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
a9f8ad8f
DG
82#define FW_MAX_SIZE 0x400000
83#define FW_FILE_NAME "slof.bin"
4d8d5467
BH
84#define FW_OVERHEAD 0x2800000
85#define KERNEL_LOAD_ADDR FW_MAX_SIZE
a9f8ad8f 86
4d8d5467 87#define MIN_RMA_SLOF 128UL
9fdf0c29
DG
88
89#define TIMEBASE_FREQ 512000000ULL
90
0c103f8e
DG
91#define PHANDLE_XICP 0x00001111
92
7f763a5d
DG
93#define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
94
c04d6cfa 95static XICSState *try_create_xics(const char *type, int nr_servers,
34f2af3d 96 int nr_irqs, Error **errp)
c04d6cfa 97{
34f2af3d 98 Error *err = NULL;
c04d6cfa
AL
99 DeviceState *dev;
100
101 dev = qdev_create(NULL, type);
102 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
103 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
34f2af3d
MA
104 object_property_set_bool(OBJECT(dev), true, "realized", &err);
105 if (err) {
106 error_propagate(errp, err);
107 object_unparent(OBJECT(dev));
c04d6cfa
AL
108 return NULL;
109 }
5a3d7b23 110 return XICS_COMMON(dev);
c04d6cfa
AL
111}
112
446f16a6
MA
113static XICSState *xics_system_init(MachineState *machine,
114 int nr_servers, int nr_irqs)
c04d6cfa
AL
115{
116 XICSState *icp = NULL;
117
11ad93f6 118 if (kvm_enabled()) {
34f2af3d
MA
119 Error *err = NULL;
120
446f16a6 121 if (machine_kernel_irqchip_allowed(machine)) {
34f2af3d 122 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
11ad93f6 123 }
446f16a6 124 if (machine_kernel_irqchip_required(machine) && !icp) {
34f2af3d
MA
125 error_report("kernel_irqchip requested but unavailable: %s",
126 error_get_pretty(err));
11ad93f6
DG
127 }
128 }
129
130 if (!icp) {
34f2af3d 131 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, &error_abort);
c04d6cfa
AL
132 }
133
134 return icp;
135}
136
833d4668
AK
137static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
138 int smt_threads)
139{
140 int i, ret = 0;
141 uint32_t servers_prop[smt_threads];
142 uint32_t gservers_prop[smt_threads * 2];
143 int index = ppc_get_vcpu_dt_id(cpu);
144
6d9412ea 145 if (cpu->cpu_version) {
4bce526e 146 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
6d9412ea
AK
147 if (ret < 0) {
148 return ret;
149 }
150 }
151
833d4668
AK
152 /* Build interrupt servers and gservers properties */
153 for (i = 0; i < smt_threads; i++) {
154 servers_prop[i] = cpu_to_be32(index + i);
155 /* Hack, direct the group queues back to cpu 0 */
156 gservers_prop[i*2] = cpu_to_be32(index + i);
157 gservers_prop[i*2 + 1] = 0;
158 }
159 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
160 servers_prop, sizeof(servers_prop));
161 if (ret < 0) {
162 return ret;
163 }
164 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
165 gservers_prop, sizeof(gservers_prop));
166
167 return ret;
168}
169
0da6f3fe
BR
170static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
171{
172 int ret = 0;
173 PowerPCCPU *cpu = POWERPC_CPU(cs);
174 int index = ppc_get_vcpu_dt_id(cpu);
175 uint32_t associativity[] = {cpu_to_be32(0x5),
176 cpu_to_be32(0x0),
177 cpu_to_be32(0x0),
178 cpu_to_be32(0x0),
179 cpu_to_be32(cs->numa_node),
180 cpu_to_be32(index)};
181
182 /* Advertise NUMA via ibm,associativity */
183 if (nb_numa_nodes > 1) {
184 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
185 sizeof(associativity));
186 }
187
188 return ret;
189}
190
28e02042 191static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
6e806cc3 192{
82677ed2
AK
193 int ret = 0, offset, cpus_offset;
194 CPUState *cs;
6e806cc3
BR
195 char cpu_model[32];
196 int smt = kvmppc_smt_threads();
7f763a5d 197 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
6e806cc3 198
82677ed2
AK
199 CPU_FOREACH(cs) {
200 PowerPCCPU *cpu = POWERPC_CPU(cs);
201 DeviceClass *dc = DEVICE_GET_CLASS(cs);
202 int index = ppc_get_vcpu_dt_id(cpu);
6e806cc3 203
0f20ba62 204 if ((index % smt) != 0) {
6e806cc3
BR
205 continue;
206 }
207
82677ed2 208 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
6e806cc3 209
82677ed2
AK
210 cpus_offset = fdt_path_offset(fdt, "/cpus");
211 if (cpus_offset < 0) {
212 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
213 "cpus");
214 if (cpus_offset < 0) {
215 return cpus_offset;
216 }
217 }
218 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
6e806cc3 219 if (offset < 0) {
82677ed2
AK
220 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
221 if (offset < 0) {
222 return offset;
223 }
6e806cc3
BR
224 }
225
7f763a5d
DG
226 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
227 pft_size_prop, sizeof(pft_size_prop));
6e806cc3
BR
228 if (ret < 0) {
229 return ret;
230 }
833d4668 231
0da6f3fe
BR
232 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
233 if (ret < 0) {
234 return ret;
235 }
236
82677ed2 237 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
2a48d993 238 ppc_get_compat_smt_threads(cpu));
833d4668
AK
239 if (ret < 0) {
240 return ret;
241 }
6e806cc3
BR
242 }
243 return ret;
244}
245
5af9873d
BH
246
247static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
248 size_t maxsize)
249{
250 size_t maxcells = maxsize / sizeof(uint32_t);
251 int i, j, count;
252 uint32_t *p = prop;
253
254 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
255 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
256
257 if (!sps->page_shift) {
258 break;
259 }
260 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
261 if (sps->enc[count].page_shift == 0) {
262 break;
263 }
264 }
265 if ((p - prop) >= (maxcells - 3 - count * 2)) {
266 break;
267 }
268 *(p++) = cpu_to_be32(sps->page_shift);
269 *(p++) = cpu_to_be32(sps->slb_enc);
270 *(p++) = cpu_to_be32(count);
271 for (j = 0; j < count; j++) {
272 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
273 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
274 }
275 }
276
277 return (p - prop) * sizeof(uint32_t);
278}
279
b082d65a
AK
280static hwaddr spapr_node0_size(void)
281{
fb164994
DG
282 MachineState *machine = MACHINE(qdev_get_machine());
283
b082d65a
AK
284 if (nb_numa_nodes) {
285 int i;
286 for (i = 0; i < nb_numa_nodes; ++i) {
287 if (numa_info[i].node_mem) {
fb164994
DG
288 return MIN(pow2floor(numa_info[i].node_mem),
289 machine->ram_size);
b082d65a
AK
290 }
291 }
292 }
fb164994 293 return machine->ram_size;
b082d65a
AK
294}
295
7f763a5d
DG
296#define _FDT(exp) \
297 do { \
298 int ret = (exp); \
299 if (ret < 0) { \
300 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
301 #exp, fdt_strerror(ret)); \
302 exit(1); \
303 } \
304 } while (0)
305
a1d59c0f
AK
306static void add_str(GString *s, const gchar *s1)
307{
308 g_string_append_len(s, s1, strlen(s1) + 1);
309}
7f763a5d 310
3bbf37f2 311static void *spapr_create_fdt_skel(hwaddr initrd_base,
a8170e5e
AK
312 hwaddr initrd_size,
313 hwaddr kernel_size,
16457e7f 314 bool little_endian,
74d042e5
DG
315 const char *kernel_cmdline,
316 uint32_t epow_irq)
9fdf0c29
DG
317{
318 void *fdt;
9fdf0c29
DG
319 uint32_t start_prop = cpu_to_be32(initrd_base);
320 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
a1d59c0f
AK
321 GString *hypertas = g_string_sized_new(256);
322 GString *qemu_hypertas = g_string_sized_new(256);
7f763a5d 323 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
9e734e3d 324 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
6e806cc3 325 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
ef951443 326 char *buf;
9fdf0c29 327
a1d59c0f
AK
328 add_str(hypertas, "hcall-pft");
329 add_str(hypertas, "hcall-term");
330 add_str(hypertas, "hcall-dabr");
331 add_str(hypertas, "hcall-interrupt");
332 add_str(hypertas, "hcall-tce");
333 add_str(hypertas, "hcall-vio");
334 add_str(hypertas, "hcall-splpar");
335 add_str(hypertas, "hcall-bulk");
336 add_str(hypertas, "hcall-set-mode");
337 add_str(qemu_hypertas, "hcall-memop1");
338
7267c094 339 fdt = g_malloc0(FDT_MAX_SIZE);
9fdf0c29
DG
340 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
341
4d8d5467
BH
342 if (kernel_size) {
343 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
344 }
345 if (initrd_size) {
346 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
347 }
9fdf0c29
DG
348 _FDT((fdt_finish_reservemap(fdt)));
349
350 /* Root node */
351 _FDT((fdt_begin_node(fdt, "")));
352 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
5d73dd66 353 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
d63919c9 354 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
9fdf0c29 355
ef951443
ND
356 /*
357 * Add info to guest to indentify which host is it being run on
358 * and what is the uuid of the guest
359 */
360 if (kvmppc_get_host_model(&buf)) {
361 _FDT((fdt_property_string(fdt, "host-model", buf)));
362 g_free(buf);
363 }
364 if (kvmppc_get_host_serial(&buf)) {
365 _FDT((fdt_property_string(fdt, "host-serial", buf)));
366 g_free(buf);
367 }
368
369 buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
370 qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
371 qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
372 qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
373 qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
374 qemu_uuid[14], qemu_uuid[15]);
375
376 _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
377 g_free(buf);
378
2c1aaa81
SB
379 if (qemu_get_vm_name()) {
380 _FDT((fdt_property_string(fdt, "ibm,partition-name",
381 qemu_get_vm_name())));
382 }
383
9fdf0c29
DG
384 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
385 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
386
387 /* /chosen */
388 _FDT((fdt_begin_node(fdt, "chosen")));
389
6e806cc3
BR
390 /* Set Form1_affinity */
391 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
392
9fdf0c29
DG
393 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
394 _FDT((fdt_property(fdt, "linux,initrd-start",
395 &start_prop, sizeof(start_prop))));
396 _FDT((fdt_property(fdt, "linux,initrd-end",
397 &end_prop, sizeof(end_prop))));
4d8d5467
BH
398 if (kernel_size) {
399 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
400 cpu_to_be64(kernel_size) };
9fdf0c29 401
4d8d5467 402 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
16457e7f
BH
403 if (little_endian) {
404 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
405 }
4d8d5467 406 }
cc84c0f3
AS
407 if (boot_menu) {
408 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
409 }
f28359d8
LZ
410 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
411 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
412 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
3384f95c 413
9fdf0c29
DG
414 _FDT((fdt_end_node(fdt)));
415
f43e3525
DG
416 /* RTAS */
417 _FDT((fdt_begin_node(fdt, "rtas")));
418
da95324e
AK
419 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
420 add_str(hypertas, "hcall-multi-tce");
421 }
a1d59c0f
AK
422 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
423 hypertas->len)));
424 g_string_free(hypertas, TRUE);
425 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
426 qemu_hypertas->len)));
427 g_string_free(qemu_hypertas, TRUE);
f43e3525 428
6e806cc3
BR
429 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
430 refpoints, sizeof(refpoints))));
431
74d042e5 432 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
79853e18
TD
433 _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
434 RTAS_EVENT_SCAN_RATE)));
74d042e5 435
a95f9922
SB
436 if (msi_supported) {
437 _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
438 }
439
2e14072f 440 /*
9d632f5f 441 * According to PAPR, rtas ibm,os-term does not guarantee a return
2e14072f
ND
442 * back to the guest cpu.
443 *
444 * While an additional ibm,extended-os-term property indicates that
445 * rtas call return will always occur. Set this property.
446 */
447 _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
448
f43e3525
DG
449 _FDT((fdt_end_node(fdt)));
450
b5cec4c5 451 /* interrupt controller */
9dfef5aa 452 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
b5cec4c5
DG
453
454 _FDT((fdt_property_string(fdt, "device_type",
455 "PowerPC-External-Interrupt-Presentation")));
456 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
b5cec4c5
DG
457 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
458 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
459 interrupt_server_ranges_prop,
460 sizeof(interrupt_server_ranges_prop))));
0c103f8e
DG
461 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
462 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
463 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
b5cec4c5
DG
464
465 _FDT((fdt_end_node(fdt)));
466
4040ab72
DG
467 /* vdevice */
468 _FDT((fdt_begin_node(fdt, "vdevice")));
469
470 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
471 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
472 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
473 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
b5cec4c5
DG
474 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
475 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
4040ab72
DG
476
477 _FDT((fdt_end_node(fdt)));
478
74d042e5
DG
479 /* event-sources */
480 spapr_events_fdt_skel(fdt, epow_irq);
481
f7d69146
AG
482 /* /hypervisor node */
483 if (kvm_enabled()) {
484 uint8_t hypercall[16];
485
486 /* indicate KVM hypercall interface */
487 _FDT((fdt_begin_node(fdt, "hypervisor")));
488 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
489 if (kvmppc_has_cap_fixup_hcalls()) {
490 /*
491 * Older KVM versions with older guest kernels were broken with the
492 * magic page, don't allow the guest to map it.
493 */
494 kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
495 sizeof(hypercall));
496 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
497 sizeof(hypercall))));
498 }
499 _FDT((fdt_end_node(fdt)));
500 }
501
9fdf0c29
DG
502 _FDT((fdt_end_node(fdt))); /* close root node */
503 _FDT((fdt_finish(fdt)));
504
a3467baa
DG
505 return fdt;
506}
507
03d196b7 508static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
26a8c353
AK
509 hwaddr size)
510{
511 uint32_t associativity[] = {
512 cpu_to_be32(0x4), /* length */
513 cpu_to_be32(0x0), cpu_to_be32(0x0),
c3b4f589 514 cpu_to_be32(0x0), cpu_to_be32(nodeid)
26a8c353
AK
515 };
516 char mem_name[32];
517 uint64_t mem_reg_property[2];
518 int off;
519
520 mem_reg_property[0] = cpu_to_be64(start);
521 mem_reg_property[1] = cpu_to_be64(size);
522
523 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
524 off = fdt_add_subnode(fdt, 0, mem_name);
525 _FDT(off);
526 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
527 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
528 sizeof(mem_reg_property))));
529 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
530 sizeof(associativity))));
03d196b7 531 return off;
26a8c353
AK
532}
533
28e02042 534static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
7f763a5d 535{
fb164994 536 MachineState *machine = MACHINE(spapr);
7db8a127
AK
537 hwaddr mem_start, node_size;
538 int i, nb_nodes = nb_numa_nodes;
539 NodeInfo *nodes = numa_info;
540 NodeInfo ramnode;
541
542 /* No NUMA nodes, assume there is just one node with whole RAM */
543 if (!nb_numa_nodes) {
544 nb_nodes = 1;
fb164994 545 ramnode.node_mem = machine->ram_size;
7db8a127 546 nodes = &ramnode;
5fe269b1 547 }
7f763a5d 548
7db8a127
AK
549 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
550 if (!nodes[i].node_mem) {
551 continue;
552 }
fb164994 553 if (mem_start >= machine->ram_size) {
5fe269b1
PM
554 node_size = 0;
555 } else {
7db8a127 556 node_size = nodes[i].node_mem;
fb164994
DG
557 if (node_size > machine->ram_size - mem_start) {
558 node_size = machine->ram_size - mem_start;
5fe269b1
PM
559 }
560 }
7db8a127
AK
561 if (!mem_start) {
562 /* ppc_spapr_init() checks for rma_size <= node0_size already */
7db8a127
AK
563 mem_start += spapr->rma_size;
564 node_size -= spapr->rma_size;
565 }
6010818c
AK
566 for ( ; node_size; ) {
567 hwaddr sizetmp = pow2floor(node_size);
568
569 /* mem_start != 0 here */
570 if (ctzl(mem_start) < ctzl(sizetmp)) {
571 sizetmp = 1ULL << ctzl(mem_start);
572 }
573
574 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
575 node_size -= sizetmp;
576 mem_start += sizetmp;
577 }
7f763a5d
DG
578 }
579
580 return 0;
581}
582
0da6f3fe
BR
583static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
584 sPAPRMachineState *spapr)
585{
586 PowerPCCPU *cpu = POWERPC_CPU(cs);
587 CPUPPCState *env = &cpu->env;
588 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
589 int index = ppc_get_vcpu_dt_id(cpu);
590 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
591 0xffffffff, 0xffffffff};
592 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
593 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
594 uint32_t page_sizes_prop[64];
595 size_t page_sizes_prop_size;
22419c2a 596 uint32_t vcpus_per_socket = smp_threads * smp_cores;
0da6f3fe
BR
597 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
598
599 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
600 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
601
602 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
603 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
604 env->dcache_line_size)));
605 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
606 env->dcache_line_size)));
607 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
608 env->icache_line_size)));
609 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
610 env->icache_line_size)));
611
612 if (pcc->l1_dcache_size) {
613 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
614 pcc->l1_dcache_size)));
615 } else {
616 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
617 }
618 if (pcc->l1_icache_size) {
619 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
620 pcc->l1_icache_size)));
621 } else {
622 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
623 }
624
625 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
626 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
627 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
628 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
629 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
630
631 if (env->spr_cb[SPR_PURR].oea_read) {
632 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
633 }
634
635 if (env->mmu_model & POWERPC_MMU_1TSEG) {
636 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
637 segs, sizeof(segs))));
638 }
639
640 /* Advertise VMX/VSX (vector extensions) if available
641 * 0 / no property == no vector extensions
642 * 1 == VMX / Altivec available
643 * 2 == VSX available */
644 if (env->insns_flags & PPC_ALTIVEC) {
645 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
646
647 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
648 }
649
650 /* Advertise DFP (Decimal Floating Point) if available
651 * 0 / no property == no DFP
652 * 1 == DFP available */
653 if (env->insns_flags2 & PPC2_DFP) {
654 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
655 }
656
657 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
658 sizeof(page_sizes_prop));
659 if (page_sizes_prop_size) {
660 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
661 page_sizes_prop, page_sizes_prop_size)));
662 }
663
664 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
22419c2a 665 cs->cpu_index / vcpus_per_socket)));
0da6f3fe
BR
666
667 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
668 pft_size_prop, sizeof(pft_size_prop))));
669
670 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
671
672 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
673 ppc_get_compat_smt_threads(cpu)));
674}
675
676static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
677{
678 CPUState *cs;
679 int cpus_offset;
680 char *nodename;
681 int smt = kvmppc_smt_threads();
682
683 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
684 _FDT(cpus_offset);
685 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
686 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
687
688 /*
689 * We walk the CPUs in reverse order to ensure that CPU DT nodes
690 * created by fdt_add_subnode() end up in the right order in FDT
691 * for the guest kernel the enumerate the CPUs correctly.
692 */
693 CPU_FOREACH_REVERSE(cs) {
694 PowerPCCPU *cpu = POWERPC_CPU(cs);
695 int index = ppc_get_vcpu_dt_id(cpu);
696 DeviceClass *dc = DEVICE_GET_CLASS(cs);
697 int offset;
698
699 if ((index % smt) != 0) {
700 continue;
701 }
702
703 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
704 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
705 g_free(nodename);
706 _FDT(offset);
707 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
708 }
709
710}
711
03d196b7
BR
712/*
713 * Adds ibm,dynamic-reconfiguration-memory node.
714 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
715 * of this device tree node.
716 */
717static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
718{
719 MachineState *machine = MACHINE(spapr);
720 int ret, i, offset;
721 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
722 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
723 uint32_t nr_rma_lmbs = spapr->rma_size/lmb_size;
724 uint32_t nr_lmbs = machine->maxram_size/lmb_size - nr_rma_lmbs;
725 uint32_t nr_assigned_lmbs = machine->ram_size/lmb_size - nr_rma_lmbs;
726 uint32_t *int_buf, *cur_index, buf_len;
6663864e 727 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
03d196b7
BR
728
729 /* Allocate enough buffer size to fit in ibm,dynamic-memory */
730 buf_len = nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE * sizeof(uint32_t) +
731 sizeof(uint32_t);
732 cur_index = int_buf = g_malloc0(buf_len);
733
734 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
735
736 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
737 sizeof(prop_lmb_size));
738 if (ret < 0) {
739 goto out;
740 }
741
742 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
743 if (ret < 0) {
744 goto out;
745 }
746
747 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
748 if (ret < 0) {
749 goto out;
750 }
751
752 /* ibm,dynamic-memory */
753 int_buf[0] = cpu_to_be32(nr_lmbs);
754 cur_index++;
755 for (i = 0; i < nr_lmbs; i++) {
756 sPAPRDRConnector *drc;
757 sPAPRDRConnectorClass *drck;
758 uint64_t addr;
759 uint32_t *dynamic_memory = cur_index;
760
761 if (i < nr_assigned_lmbs) {
762 addr = (i + nr_rma_lmbs) * lmb_size;
763 } else {
764 addr = (i - nr_assigned_lmbs) * lmb_size +
765 spapr->hotplug_memory.base;
766 }
767 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
768 addr/lmb_size);
769 g_assert(drc);
770 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
771
772 dynamic_memory[0] = cpu_to_be32(addr >> 32);
773 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
774 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
775 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
776 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
777 if (addr < machine->ram_size ||
778 memory_region_present(get_system_memory(), addr)) {
779 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
780 } else {
781 dynamic_memory[5] = cpu_to_be32(0);
782 }
783
784 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
785 }
786 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
787 if (ret < 0) {
788 goto out;
789 }
790
791 /* ibm,associativity-lookup-arrays */
792 cur_index = int_buf;
6663864e 793 int_buf[0] = cpu_to_be32(nr_nodes);
03d196b7
BR
794 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
795 cur_index += 2;
6663864e 796 for (i = 0; i < nr_nodes; i++) {
03d196b7
BR
797 uint32_t associativity[] = {
798 cpu_to_be32(0x0),
799 cpu_to_be32(0x0),
800 cpu_to_be32(0x0),
801 cpu_to_be32(i)
802 };
803 memcpy(cur_index, associativity, sizeof(associativity));
804 cur_index += 4;
805 }
806 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
807 (cur_index - int_buf) * sizeof(uint32_t));
808out:
809 g_free(int_buf);
810 return ret;
811}
812
813int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
814 target_ulong addr, target_ulong size,
815 bool cpu_update, bool memory_update)
816{
817 void *fdt, *fdt_skel;
818 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
819 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
820
821 size -= sizeof(hdr);
822
823 /* Create sceleton */
824 fdt_skel = g_malloc0(size);
825 _FDT((fdt_create(fdt_skel, size)));
826 _FDT((fdt_begin_node(fdt_skel, "")));
827 _FDT((fdt_end_node(fdt_skel)));
828 _FDT((fdt_finish(fdt_skel)));
829 fdt = g_malloc0(size);
830 _FDT((fdt_open_into(fdt_skel, fdt, size)));
831 g_free(fdt_skel);
832
833 /* Fixup cpu nodes */
834 if (cpu_update) {
835 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
836 }
837
838 /* Generate memory nodes or ibm,dynamic-reconfiguration-memory node */
839 if (memory_update && smc->dr_lmb_enabled) {
840 _FDT((spapr_populate_drconf_memory(spapr, fdt)));
841 } else {
842 _FDT((spapr_populate_memory(spapr, fdt)));
843 }
844
845 /* Pack resulting tree */
846 _FDT((fdt_pack(fdt)));
847
848 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
849 trace_spapr_cas_failed(size);
850 return -1;
851 }
852
853 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
854 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
855 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
856 g_free(fdt);
857
858 return 0;
859}
860
28e02042 861static void spapr_finalize_fdt(sPAPRMachineState *spapr,
a8170e5e
AK
862 hwaddr fdt_addr,
863 hwaddr rtas_addr,
864 hwaddr rtas_size)
a3467baa 865{
5b2128d2 866 MachineState *machine = MACHINE(qdev_get_machine());
c20d332a 867 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
5b2128d2 868 const char *boot_device = machine->boot_order;
71461b0f
AK
869 int ret, i;
870 size_t cb = 0;
871 char *bootlist;
a3467baa 872 void *fdt;
3384f95c 873 sPAPRPHBState *phb;
a3467baa 874
7267c094 875 fdt = g_malloc(FDT_MAX_SIZE);
a3467baa
DG
876
877 /* open out the base tree into a temp buffer for the final tweaks */
878 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
4040ab72 879
03d196b7
BR
880 /*
881 * Add memory@0 node to represent RMA. Rest of the memory is either
882 * represented by memory nodes or ibm,dynamic-reconfiguration-memory
883 * node later during ibm,client-architecture-support call.
884 *
885 * If NUMA is configured, ensure that memory@0 ends up in the
886 * first memory-less node.
887 */
888 if (nb_numa_nodes) {
889 for (i = 0; i < nb_numa_nodes; ++i) {
890 if (numa_info[i].node_mem) {
891 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
892 break;
893 }
894 }
895 } else {
896 spapr_populate_memory_node(fdt, 0, 0, spapr->rma_size);
7f763a5d
DG
897 }
898
4040ab72
DG
899 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
900 if (ret < 0) {
901 fprintf(stderr, "couldn't setup vio devices in fdt\n");
902 exit(1);
903 }
904
3384f95c 905 QLIST_FOREACH(phb, &spapr->phbs, list) {
e0fdbd7c 906 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
3384f95c
DG
907 }
908
909 if (ret < 0) {
910 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
911 exit(1);
912 }
913
39ac8455
DG
914 /* RTAS */
915 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
916 if (ret < 0) {
917 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
918 }
919
0da6f3fe
BR
920 /* cpus */
921 spapr_populate_cpus_dt_node(fdt, spapr);
6e806cc3 922
71461b0f
AK
923 bootlist = get_boot_devices_list(&cb, true);
924 if (cb && bootlist) {
925 int offset = fdt_path_offset(fdt, "/chosen");
926 if (offset < 0) {
927 exit(1);
928 }
929 for (i = 0; i < cb; i++) {
930 if (bootlist[i] == '\n') {
931 bootlist[i] = ' ';
932 }
933
934 }
935 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
936 }
937
5b2128d2
AG
938 if (boot_device && strlen(boot_device)) {
939 int offset = fdt_path_offset(fdt, "/chosen");
940
941 if (offset < 0) {
942 exit(1);
943 }
944 fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
945 }
946
3fc5acde 947 if (!spapr->has_graphics) {
f28359d8
LZ
948 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
949 }
68f3a94c 950
c20d332a
BR
951 if (smc->dr_lmb_enabled) {
952 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
953 }
954
4040ab72
DG
955 _FDT((fdt_pack(fdt)));
956
4d8d5467 957 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
730fce59
TH
958 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
959 fdt_totalsize(fdt), FDT_MAX_SIZE);
4d8d5467
BH
960 exit(1);
961 }
962
ad440b4a 963 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
a3467baa 964 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
9fdf0c29 965
a21a7a70 966 g_free(bootlist);
7267c094 967 g_free(fdt);
9fdf0c29
DG
968}
969
970static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
971{
972 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
973}
974
1b14670a 975static void emulate_spapr_hypercall(PowerPCCPU *cpu)
9fdf0c29 976{
1b14670a
AF
977 CPUPPCState *env = &cpu->env;
978
efcb9383
DG
979 if (msr_pr) {
980 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
981 env->gpr[3] = H_PRIVILEGE;
982 } else {
aa100fa4 983 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
efcb9383 984 }
9fdf0c29
DG
985}
986
e6b8fd24
SMJ
987#define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
988#define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
989#define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
990#define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
991#define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
992
28e02042 993static void spapr_reset_htab(sPAPRMachineState *spapr)
7f763a5d
DG
994{
995 long shift;
e6b8fd24 996 int index;
7f763a5d
DG
997
998 /* allocate hash page table. For now we always make this 16mb,
999 * later we should probably make it scale to the size of guest
1000 * RAM */
1001
1002 shift = kvmppc_reset_htab(spapr->htab_shift);
1003
1004 if (shift > 0) {
1005 /* Kernel handles htab, we don't need to allocate one */
1006 spapr->htab_shift = shift;
7c43bca0 1007 kvmppc_kern_htab = true;
01a57972
SMJ
1008
1009 /* Tell readers to update their file descriptor */
1010 if (spapr->htab_fd >= 0) {
1011 spapr->htab_fd_stale = true;
1012 }
7f763a5d
DG
1013 } else {
1014 if (!spapr->htab) {
1015 /* Allocate an htab if we don't yet have one */
1016 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
1017 }
1018
1019 /* And clear it */
1020 memset(spapr->htab, 0, HTAB_SIZE(spapr));
e6b8fd24
SMJ
1021
1022 for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
1023 DIRTY_HPTE(HPTE(spapr->htab, index));
1024 }
7f763a5d
DG
1025 }
1026
1027 /* Update the RMA size if necessary */
1028 if (spapr->vrma_adjust) {
b082d65a
AK
1029 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1030 spapr->htab_shift);
7f763a5d 1031 }
9fdf0c29
DG
1032}
1033
9e3f9733
AG
1034static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1035{
1036 bool matched = false;
1037
1038 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1039 matched = true;
1040 }
1041
1042 if (!matched) {
1043 error_report("Device %s is not supported by this machine yet.",
1044 qdev_fw_name(DEVICE(sbdev)));
1045 exit(1);
1046 }
1047
1048 return 0;
1049}
1050
01a57972
SMJ
1051/*
1052 * A guest reset will cause spapr->htab_fd to become stale if being used.
1053 * Reopen the file descriptor to make sure the whole HTAB is properly read.
1054 */
28e02042 1055static int spapr_check_htab_fd(sPAPRMachineState *spapr)
01a57972
SMJ
1056{
1057 int rc = 0;
1058
1059 if (spapr->htab_fd_stale) {
1060 close(spapr->htab_fd);
1061 spapr->htab_fd = kvmppc_get_htab_fd(false);
1062 if (spapr->htab_fd < 0) {
1063 error_report("Unable to open fd for reading hash table from KVM: "
730fce59 1064 "%s", strerror(errno));
01a57972
SMJ
1065 rc = -1;
1066 }
1067 spapr->htab_fd_stale = false;
1068 }
1069
1070 return rc;
1071}
1072
c8787ad4 1073static void ppc_spapr_reset(void)
a3467baa 1074{
28e02042 1075 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
182735ef 1076 PowerPCCPU *first_ppc_cpu;
b7d1f77a 1077 uint32_t rtas_limit;
259186a7 1078
9e3f9733
AG
1079 /* Check for unknown sysbus devices */
1080 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1081
7f763a5d
DG
1082 /* Reset the hash table & recalc the RMA */
1083 spapr_reset_htab(spapr);
a3467baa 1084
c8787ad4 1085 qemu_devices_reset();
a3467baa 1086
b7d1f77a
BH
1087 /*
1088 * We place the device tree and RTAS just below either the top of the RMA,
1089 * or just below 2GB, whichever is lowere, so that it can be
1090 * processed with 32-bit real mode code if necessary
1091 */
1092 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1093 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1094 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1095
a3467baa
DG
1096 /* Load the fdt */
1097 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
1098 spapr->rtas_size);
1099
b7d1f77a
BH
1100 /* Copy RTAS over */
1101 cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
1102 spapr->rtas_size);
1103
a3467baa 1104 /* Set up the entry state */
182735ef
AF
1105 first_ppc_cpu = POWERPC_CPU(first_cpu);
1106 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
1107 first_ppc_cpu->env.gpr[5] = 0;
1108 first_cpu->halted = 0;
1b718907 1109 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
a3467baa
DG
1110
1111}
1112
1bba0dc9
AF
1113static void spapr_cpu_reset(void *opaque)
1114{
28e02042 1115 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
5b2038e0 1116 PowerPCCPU *cpu = opaque;
259186a7 1117 CPUState *cs = CPU(cpu);
048706d9 1118 CPUPPCState *env = &cpu->env;
1bba0dc9 1119
259186a7 1120 cpu_reset(cs);
048706d9
DG
1121
1122 /* All CPUs start halted. CPU0 is unhalted from the machine level
1123 * reset code and the rest are explicitly started up by the guest
1124 * using an RTAS call */
259186a7 1125 cs->halted = 1;
048706d9
DG
1126
1127 env->spr[SPR_HIOR] = 0;
7f763a5d 1128
4be21d56 1129 env->external_htab = (uint8_t *)spapr->htab;
5736245c
AK
1130 if (kvm_enabled() && !env->external_htab) {
1131 /*
1132 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
1133 * functions do the right thing.
1134 */
1135 env->external_htab = (void *)1;
1136 }
7f763a5d 1137 env->htab_base = -1;
f3c75d42
AK
1138 /*
1139 * htab_mask is the mask used to normalize hash value to PTEG index.
1140 * htab_shift is log2 of hash table size.
1141 * We have 8 hpte per group, and each hpte is 16 bytes.
1142 * ie have 128 bytes per hpte entry.
1143 */
28e02042 1144 env->htab_mask = (1ULL << (spapr->htab_shift - 7)) - 1;
ec4936e1 1145 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
7f763a5d 1146 (spapr->htab_shift - 18);
1bba0dc9
AF
1147}
1148
28e02042 1149static void spapr_create_nvram(sPAPRMachineState *spapr)
639e8102 1150{
2ff3de68 1151 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
3978b863 1152 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
639e8102 1153
3978b863 1154 if (dinfo) {
4be74634 1155 qdev_prop_set_drive_nofail(dev, "drive", blk_by_legacy_dinfo(dinfo));
639e8102
DG
1156 }
1157
1158 qdev_init_nofail(dev);
1159
1160 spapr->nvram = (struct sPAPRNVRAM *)dev;
1161}
1162
28e02042 1163static void spapr_rtc_create(sPAPRMachineState *spapr)
28df36a1
DG
1164{
1165 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1166
1167 qdev_init_nofail(dev);
1168 spapr->rtc = dev;
74e5ae28
DG
1169
1170 object_property_add_alias(qdev_get_machine(), "rtc-time",
1171 OBJECT(spapr->rtc), "date", NULL);
28df36a1
DG
1172}
1173
8c57b867 1174/* Returns whether we want to use VGA or not */
f28359d8
LZ
1175static int spapr_vga_init(PCIBus *pci_bus)
1176{
8c57b867 1177 switch (vga_interface_type) {
8c57b867 1178 case VGA_NONE:
7effdaa3
MW
1179 return false;
1180 case VGA_DEVICE:
1181 return true;
1ddcae82
AJ
1182 case VGA_STD:
1183 return pci_vga_init(pci_bus) != NULL;
8c57b867 1184 default:
f28359d8
LZ
1185 fprintf(stderr, "This vga model is not supported,"
1186 "currently it only supports -vga std\n");
8c57b867 1187 exit(0);
f28359d8 1188 }
f28359d8
LZ
1189}
1190
880ae7de
DG
1191static int spapr_post_load(void *opaque, int version_id)
1192{
28e02042 1193 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
880ae7de
DG
1194 int err = 0;
1195
631b22ea 1196 /* In earlier versions, there was no separate qdev for the PAPR
880ae7de
DG
1197 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1198 * So when migrating from those versions, poke the incoming offset
1199 * value into the RTC device */
1200 if (version_id < 3) {
1201 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1202 }
1203
1204 return err;
1205}
1206
1207static bool version_before_3(void *opaque, int version_id)
1208{
1209 return version_id < 3;
1210}
1211
4be21d56
DG
1212static const VMStateDescription vmstate_spapr = {
1213 .name = "spapr",
880ae7de 1214 .version_id = 3,
4be21d56 1215 .minimum_version_id = 1,
880ae7de 1216 .post_load = spapr_post_load,
3aff6c2f 1217 .fields = (VMStateField[]) {
880ae7de
DG
1218 /* used to be @next_irq */
1219 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
4be21d56
DG
1220
1221 /* RTC offset */
28e02042 1222 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
880ae7de 1223
28e02042 1224 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
4be21d56
DG
1225 VMSTATE_END_OF_LIST()
1226 },
1227};
1228
4be21d56
DG
1229static int htab_save_setup(QEMUFile *f, void *opaque)
1230{
28e02042 1231 sPAPRMachineState *spapr = opaque;
4be21d56 1232
4be21d56
DG
1233 /* "Iteration" header */
1234 qemu_put_be32(f, spapr->htab_shift);
1235
e68cb8b4
AK
1236 if (spapr->htab) {
1237 spapr->htab_save_index = 0;
1238 spapr->htab_first_pass = true;
1239 } else {
1240 assert(kvm_enabled());
1241
1242 spapr->htab_fd = kvmppc_get_htab_fd(false);
01a57972 1243 spapr->htab_fd_stale = false;
e68cb8b4
AK
1244 if (spapr->htab_fd < 0) {
1245 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
1246 strerror(errno));
1247 return -1;
1248 }
1249 }
1250
1251
4be21d56
DG
1252 return 0;
1253}
1254
28e02042 1255static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
4be21d56
DG
1256 int64_t max_ns)
1257{
1258 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1259 int index = spapr->htab_save_index;
bc72ad67 1260 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1261
1262 assert(spapr->htab_first_pass);
1263
1264 do {
1265 int chunkstart;
1266
1267 /* Consume invalid HPTEs */
1268 while ((index < htabslots)
1269 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1270 index++;
1271 CLEAN_HPTE(HPTE(spapr->htab, index));
1272 }
1273
1274 /* Consume valid HPTEs */
1275 chunkstart = index;
338c25b6 1276 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56
DG
1277 && HPTE_VALID(HPTE(spapr->htab, index))) {
1278 index++;
1279 CLEAN_HPTE(HPTE(spapr->htab, index));
1280 }
1281
1282 if (index > chunkstart) {
1283 int n_valid = index - chunkstart;
1284
1285 qemu_put_be32(f, chunkstart);
1286 qemu_put_be16(f, n_valid);
1287 qemu_put_be16(f, 0);
1288 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1289 HASH_PTE_SIZE_64 * n_valid);
1290
bc72ad67 1291 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1292 break;
1293 }
1294 }
1295 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1296
1297 if (index >= htabslots) {
1298 assert(index == htabslots);
1299 index = 0;
1300 spapr->htab_first_pass = false;
1301 }
1302 spapr->htab_save_index = index;
1303}
1304
28e02042 1305static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
e68cb8b4 1306 int64_t max_ns)
4be21d56
DG
1307{
1308 bool final = max_ns < 0;
1309 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1310 int examined = 0, sent = 0;
1311 int index = spapr->htab_save_index;
bc72ad67 1312 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1313
1314 assert(!spapr->htab_first_pass);
1315
1316 do {
1317 int chunkstart, invalidstart;
1318
1319 /* Consume non-dirty HPTEs */
1320 while ((index < htabslots)
1321 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1322 index++;
1323 examined++;
1324 }
1325
1326 chunkstart = index;
1327 /* Consume valid dirty HPTEs */
338c25b6 1328 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56
DG
1329 && HPTE_DIRTY(HPTE(spapr->htab, index))
1330 && HPTE_VALID(HPTE(spapr->htab, index))) {
1331 CLEAN_HPTE(HPTE(spapr->htab, index));
1332 index++;
1333 examined++;
1334 }
1335
1336 invalidstart = index;
1337 /* Consume invalid dirty HPTEs */
338c25b6 1338 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
4be21d56
DG
1339 && HPTE_DIRTY(HPTE(spapr->htab, index))
1340 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1341 CLEAN_HPTE(HPTE(spapr->htab, index));
1342 index++;
1343 examined++;
1344 }
1345
1346 if (index > chunkstart) {
1347 int n_valid = invalidstart - chunkstart;
1348 int n_invalid = index - invalidstart;
1349
1350 qemu_put_be32(f, chunkstart);
1351 qemu_put_be16(f, n_valid);
1352 qemu_put_be16(f, n_invalid);
1353 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1354 HASH_PTE_SIZE_64 * n_valid);
1355 sent += index - chunkstart;
1356
bc72ad67 1357 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1358 break;
1359 }
1360 }
1361
1362 if (examined >= htabslots) {
1363 break;
1364 }
1365
1366 if (index >= htabslots) {
1367 assert(index == htabslots);
1368 index = 0;
1369 }
1370 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1371
1372 if (index >= htabslots) {
1373 assert(index == htabslots);
1374 index = 0;
1375 }
1376
1377 spapr->htab_save_index = index;
1378
e68cb8b4 1379 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
4be21d56
DG
1380}
1381
e68cb8b4
AK
1382#define MAX_ITERATION_NS 5000000 /* 5 ms */
1383#define MAX_KVM_BUF_SIZE 2048
1384
4be21d56
DG
1385static int htab_save_iterate(QEMUFile *f, void *opaque)
1386{
28e02042 1387 sPAPRMachineState *spapr = opaque;
e68cb8b4 1388 int rc = 0;
4be21d56
DG
1389
1390 /* Iteration header */
1391 qemu_put_be32(f, 0);
1392
e68cb8b4
AK
1393 if (!spapr->htab) {
1394 assert(kvm_enabled());
1395
01a57972
SMJ
1396 rc = spapr_check_htab_fd(spapr);
1397 if (rc < 0) {
1398 return rc;
1399 }
1400
e68cb8b4
AK
1401 rc = kvmppc_save_htab(f, spapr->htab_fd,
1402 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1403 if (rc < 0) {
1404 return rc;
1405 }
1406 } else if (spapr->htab_first_pass) {
4be21d56
DG
1407 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1408 } else {
e68cb8b4 1409 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
4be21d56
DG
1410 }
1411
1412 /* End marker */
1413 qemu_put_be32(f, 0);
1414 qemu_put_be16(f, 0);
1415 qemu_put_be16(f, 0);
1416
e68cb8b4 1417 return rc;
4be21d56
DG
1418}
1419
1420static int htab_save_complete(QEMUFile *f, void *opaque)
1421{
28e02042 1422 sPAPRMachineState *spapr = opaque;
4be21d56
DG
1423
1424 /* Iteration header */
1425 qemu_put_be32(f, 0);
1426
e68cb8b4
AK
1427 if (!spapr->htab) {
1428 int rc;
1429
1430 assert(kvm_enabled());
1431
01a57972
SMJ
1432 rc = spapr_check_htab_fd(spapr);
1433 if (rc < 0) {
1434 return rc;
1435 }
1436
e68cb8b4
AK
1437 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1438 if (rc < 0) {
1439 return rc;
1440 }
1441 close(spapr->htab_fd);
1442 spapr->htab_fd = -1;
1443 } else {
1444 htab_save_later_pass(f, spapr, -1);
1445 }
4be21d56
DG
1446
1447 /* End marker */
1448 qemu_put_be32(f, 0);
1449 qemu_put_be16(f, 0);
1450 qemu_put_be16(f, 0);
1451
1452 return 0;
1453}
1454
1455static int htab_load(QEMUFile *f, void *opaque, int version_id)
1456{
28e02042 1457 sPAPRMachineState *spapr = opaque;
4be21d56 1458 uint32_t section_hdr;
e68cb8b4 1459 int fd = -1;
4be21d56
DG
1460
1461 if (version_id < 1 || version_id > 1) {
1462 fprintf(stderr, "htab_load() bad version\n");
1463 return -EINVAL;
1464 }
1465
1466 section_hdr = qemu_get_be32(f);
1467
1468 if (section_hdr) {
1469 /* First section, just the hash shift */
1470 if (spapr->htab_shift != section_hdr) {
613e7a76
BR
1471 error_report("htab_shift mismatch: source %d target %d",
1472 section_hdr, spapr->htab_shift);
4be21d56
DG
1473 return -EINVAL;
1474 }
1475 return 0;
1476 }
1477
e68cb8b4
AK
1478 if (!spapr->htab) {
1479 assert(kvm_enabled());
1480
1481 fd = kvmppc_get_htab_fd(true);
1482 if (fd < 0) {
1483 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1484 strerror(errno));
1485 }
1486 }
1487
4be21d56
DG
1488 while (true) {
1489 uint32_t index;
1490 uint16_t n_valid, n_invalid;
1491
1492 index = qemu_get_be32(f);
1493 n_valid = qemu_get_be16(f);
1494 n_invalid = qemu_get_be16(f);
1495
1496 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1497 /* End of Stream */
1498 break;
1499 }
1500
e68cb8b4 1501 if ((index + n_valid + n_invalid) >
4be21d56
DG
1502 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1503 /* Bad index in stream */
1504 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
e68cb8b4
AK
1505 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1506 spapr->htab_shift);
4be21d56
DG
1507 return -EINVAL;
1508 }
1509
e68cb8b4
AK
1510 if (spapr->htab) {
1511 if (n_valid) {
1512 qemu_get_buffer(f, HPTE(spapr->htab, index),
1513 HASH_PTE_SIZE_64 * n_valid);
1514 }
1515 if (n_invalid) {
1516 memset(HPTE(spapr->htab, index + n_valid), 0,
1517 HASH_PTE_SIZE_64 * n_invalid);
1518 }
1519 } else {
1520 int rc;
1521
1522 assert(fd >= 0);
1523
1524 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1525 if (rc < 0) {
1526 return rc;
1527 }
4be21d56
DG
1528 }
1529 }
1530
e68cb8b4
AK
1531 if (!spapr->htab) {
1532 assert(fd >= 0);
1533 close(fd);
1534 }
1535
4be21d56
DG
1536 return 0;
1537}
1538
1539static SaveVMHandlers savevm_htab_handlers = {
1540 .save_live_setup = htab_save_setup,
1541 .save_live_iterate = htab_save_iterate,
1542 .save_live_complete = htab_save_complete,
1543 .load_state = htab_load,
1544};
1545
5b2128d2
AG
1546static void spapr_boot_set(void *opaque, const char *boot_device,
1547 Error **errp)
1548{
1549 MachineState *machine = MACHINE(qdev_get_machine());
1550 machine->boot_order = g_strdup(boot_device);
1551}
1552
bab99ea0
BR
1553static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu)
1554{
1555 CPUPPCState *env = &cpu->env;
1556
1557 /* Set time-base frequency to 512 MHz */
1558 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1559
1560 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1561 * MSR[IP] should never be set.
1562 */
1563 env->msr_mask &= ~(1 << 6);
1564
1565 /* Tell KVM that we're in PAPR mode */
1566 if (kvm_enabled()) {
1567 kvmppc_set_papr(cpu);
1568 }
1569
1570 if (cpu->max_compat) {
1571 if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
1572 exit(1);
1573 }
1574 }
1575
1576 xics_cpu_setup(spapr->icp, cpu);
1577
1578 qemu_register_reset(spapr_cpu_reset, cpu);
1579}
1580
224245bf
DG
1581/*
1582 * Reset routine for LMB DR devices.
1583 *
1584 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1585 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1586 * when it walks all its children devices. LMB devices reset occurs
1587 * as part of spapr_ppc_reset().
1588 */
1589static void spapr_drc_reset(void *opaque)
1590{
1591 sPAPRDRConnector *drc = opaque;
1592 DeviceState *d = DEVICE(drc);
1593
1594 if (d) {
1595 device_reset(d);
1596 }
1597}
1598
1599static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1600{
1601 MachineState *machine = MACHINE(spapr);
1602 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
1603 uint32_t nr_rma_lmbs = spapr->rma_size/lmb_size;
1604 uint32_t nr_lmbs = machine->maxram_size/lmb_size - nr_rma_lmbs;
1605 uint32_t nr_assigned_lmbs = machine->ram_size/lmb_size - nr_rma_lmbs;
1606 int i;
1607
1608 for (i = 0; i < nr_lmbs; i++) {
1609 sPAPRDRConnector *drc;
1610 uint64_t addr;
1611
1612 if (i < nr_assigned_lmbs) {
1613 addr = (i + nr_rma_lmbs) * lmb_size;
1614 } else {
1615 addr = (i - nr_assigned_lmbs) * lmb_size +
1616 spapr->hotplug_memory.base;
1617 }
1618 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1619 addr/lmb_size);
1620 qemu_register_reset(spapr_drc_reset, drc);
1621 }
1622}
1623
1624/*
1625 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1626 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1627 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1628 */
1629static void spapr_validate_node_memory(MachineState *machine)
1630{
1631 int i;
1632
1633 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE ||
1634 machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1635 error_report("Can't support memory configuration where RAM size "
1636 "0x" RAM_ADDR_FMT " or maxmem size "
1637 "0x" RAM_ADDR_FMT " isn't aligned to %llu MB",
1638 machine->ram_size, machine->maxram_size,
1639 SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
1640 exit(EXIT_FAILURE);
1641 }
1642
1643 for (i = 0; i < nb_numa_nodes; i++) {
1644 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1645 error_report("Can't support memory configuration where memory size"
1646 " %" PRIx64 " of node %d isn't aligned to %llu MB",
1647 numa_info[i].node_mem, i,
1648 SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
1649 exit(EXIT_FAILURE);
1650 }
1651 }
1652}
1653
9fdf0c29 1654/* pSeries LPAR / sPAPR hardware init */
3ef96221 1655static void ppc_spapr_init(MachineState *machine)
9fdf0c29 1656{
28e02042 1657 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
224245bf 1658 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
3ef96221
MA
1659 const char *kernel_filename = machine->kernel_filename;
1660 const char *kernel_cmdline = machine->kernel_cmdline;
1661 const char *initrd_filename = machine->initrd_filename;
05769733 1662 PowerPCCPU *cpu;
8c9f64df 1663 PCIHostState *phb;
9fdf0c29 1664 int i;
890c2b77
AK
1665 MemoryRegion *sysmem = get_system_memory();
1666 MemoryRegion *ram = g_new(MemoryRegion, 1);
658fa66b
AK
1667 MemoryRegion *rma_region;
1668 void *rma = NULL;
a8170e5e 1669 hwaddr rma_alloc_size;
b082d65a 1670 hwaddr node0_size = spapr_node0_size();
4d8d5467
BH
1671 uint32_t initrd_base = 0;
1672 long kernel_size = 0, initrd_size = 0;
b7d1f77a 1673 long load_limit, fw_size;
16457e7f 1674 bool kernel_le = false;
39ac8455 1675 char *filename;
9fdf0c29 1676
0ee2c058
AK
1677 msi_supported = true;
1678
d43b45e2
DG
1679 QLIST_INIT(&spapr->phbs);
1680
9fdf0c29
DG
1681 cpu_ppc_hypercall = emulate_spapr_hypercall;
1682
354ac20a 1683 /* Allocate RMA if necessary */
658fa66b 1684 rma_alloc_size = kvmppc_alloc_rma(&rma);
354ac20a
DG
1685
1686 if (rma_alloc_size == -1) {
730fce59 1687 error_report("Unable to create RMA");
354ac20a
DG
1688 exit(1);
1689 }
7f763a5d 1690
c4177479 1691 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
7f763a5d 1692 spapr->rma_size = rma_alloc_size;
354ac20a 1693 } else {
c4177479 1694 spapr->rma_size = node0_size;
7f763a5d
DG
1695
1696 /* With KVM, we don't actually know whether KVM supports an
1697 * unbounded RMA (PR KVM) or is limited by the hash table size
1698 * (HV KVM using VRMA), so we always assume the latter
1699 *
1700 * In that case, we also limit the initial allocations for RTAS
1701 * etc... to 256M since we have no way to know what the VRMA size
1702 * is going to be as it depends on the size of the hash table
1703 * isn't determined yet.
1704 */
1705 if (kvm_enabled()) {
1706 spapr->vrma_adjust = 1;
1707 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1708 }
354ac20a
DG
1709 }
1710
c4177479
AK
1711 if (spapr->rma_size > node0_size) {
1712 fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1713 spapr->rma_size);
1714 exit(1);
1715 }
1716
b7d1f77a
BH
1717 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1718 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
9fdf0c29 1719
382be75d
DG
1720 /* We aim for a hash table of size 1/128 the size of RAM. The
1721 * normal rule of thumb is 1/64 the size of RAM, but that's much
1722 * more than needed for the Linux guests we support. */
1723 spapr->htab_shift = 18; /* Minimum architected size */
1724 while (spapr->htab_shift <= 46) {
ce881f77 1725 if ((1ULL << (spapr->htab_shift + 7)) >= machine->maxram_size) {
382be75d
DG
1726 break;
1727 }
1728 spapr->htab_shift++;
1729 }
7f763a5d 1730
7b565160 1731 /* Set up Interrupt Controller before we create the VCPUs */
446f16a6 1732 spapr->icp = xics_system_init(machine,
9e734e3d 1733 DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(),
f303f117 1734 smp_threads),
7b565160 1735 XICS_IRQS);
7b565160 1736
224245bf
DG
1737 if (smc->dr_lmb_enabled) {
1738 spapr_validate_node_memory(machine);
1739 }
1740
9fdf0c29 1741 /* init CPUs */
19fb2c36
BR
1742 if (machine->cpu_model == NULL) {
1743 machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
9fdf0c29
DG
1744 }
1745 for (i = 0; i < smp_cpus; i++) {
19fb2c36 1746 cpu = cpu_ppc_init(machine->cpu_model);
05769733 1747 if (cpu == NULL) {
9fdf0c29
DG
1748 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1749 exit(1);
1750 }
bab99ea0 1751 spapr_cpu_init(spapr, cpu);
9fdf0c29
DG
1752 }
1753
026bfd89
DG
1754 if (kvm_enabled()) {
1755 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1756 kvmppc_enable_logical_ci_hcalls();
ef9971dd 1757 kvmppc_enable_set_mode_hcall();
026bfd89
DG
1758 }
1759
9fdf0c29 1760 /* allocate RAM */
f92f5da1 1761 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
fb164994 1762 machine->ram_size);
f92f5da1 1763 memory_region_add_subregion(sysmem, 0, ram);
9fdf0c29 1764
658fa66b
AK
1765 if (rma_alloc_size && rma) {
1766 rma_region = g_new(MemoryRegion, 1);
1767 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1768 rma_alloc_size, rma);
1769 vmstate_register_ram_global(rma_region);
1770 memory_region_add_subregion(sysmem, 0, rma_region);
1771 }
1772
4a1c9cf0
BR
1773 /* initialize hotplug memory address space */
1774 if (machine->ram_size < machine->maxram_size) {
1775 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1776
1777 if (machine->ram_slots > SPAPR_MAX_RAM_SLOTS) {
19a35c9e
BR
1778 error_report("Specified number of memory slots %"PRIu64" exceeds max supported %d\n",
1779 machine->ram_slots, SPAPR_MAX_RAM_SLOTS);
4a1c9cf0
BR
1780 exit(EXIT_FAILURE);
1781 }
1782
1783 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1784 SPAPR_HOTPLUG_MEM_ALIGN);
1785 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1786 "hotplug-memory", hotplug_mem_size);
1787 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1788 &spapr->hotplug_memory.mr);
1789 }
1790
224245bf
DG
1791 if (smc->dr_lmb_enabled) {
1792 spapr_create_lmb_dr_connectors(spapr);
1793 }
1794
39ac8455 1795 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
4c56440d 1796 if (!filename) {
730fce59 1797 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
4c56440d
SW
1798 exit(1);
1799 }
b7d1f77a
BH
1800 spapr->rtas_size = get_image_size(filename);
1801 spapr->rtas_blob = g_malloc(spapr->rtas_size);
1802 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
730fce59 1803 error_report("Could not load LPAR rtas '%s'", filename);
39ac8455
DG
1804 exit(1);
1805 }
4d8d5467 1806 if (spapr->rtas_size > RTAS_MAX_SIZE) {
730fce59
TH
1807 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1808 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
4d8d5467
BH
1809 exit(1);
1810 }
7267c094 1811 g_free(filename);
39ac8455 1812
74d042e5
DG
1813 /* Set up EPOW events infrastructure */
1814 spapr_events_init(spapr);
1815
12f42174 1816 /* Set up the RTC RTAS interfaces */
28df36a1 1817 spapr_rtc_create(spapr);
12f42174 1818
b5cec4c5 1819 /* Set up VIO bus */
4040ab72
DG
1820 spapr->vio_bus = spapr_vio_bus_init();
1821
277f9acf 1822 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
4040ab72 1823 if (serial_hds[i]) {
d601fac4 1824 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
4040ab72
DG
1825 }
1826 }
9fdf0c29 1827
639e8102
DG
1828 /* We always have at least the nvram device on VIO */
1829 spapr_create_nvram(spapr);
1830
3384f95c 1831 /* Set up PCI */
fa28f71b
AK
1832 spapr_pci_rtas_init();
1833
89dfd6e1 1834 phb = spapr_create_phb(spapr, 0);
3384f95c 1835
277f9acf 1836 for (i = 0; i < nb_nics; i++) {
8d90ad90
DG
1837 NICInfo *nd = &nd_table[i];
1838
1839 if (!nd->model) {
7267c094 1840 nd->model = g_strdup("ibmveth");
8d90ad90
DG
1841 }
1842
1843 if (strcmp(nd->model, "ibmveth") == 0) {
d601fac4 1844 spapr_vlan_create(spapr->vio_bus, nd);
8d90ad90 1845 } else {
29b358f9 1846 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
8d90ad90
DG
1847 }
1848 }
1849
6e270446 1850 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
d601fac4 1851 spapr_vscsi_create(spapr->vio_bus);
6e270446
BH
1852 }
1853
f28359d8 1854 /* Graphics */
8c9f64df 1855 if (spapr_vga_init(phb->bus)) {
3fc5acde 1856 spapr->has_graphics = true;
c6e76503 1857 machine->usb |= defaults_enabled() && !machine->usb_disabled;
f28359d8
LZ
1858 }
1859
4ee9ced9 1860 if (machine->usb) {
8c9f64df 1861 pci_create_simple(phb->bus, -1, "pci-ohci");
c86580b8 1862
35139a59 1863 if (spapr->has_graphics) {
c86580b8
MA
1864 USBBus *usb_bus = usb_bus_find(-1);
1865
1866 usb_create_simple(usb_bus, "usb-kbd");
1867 usb_create_simple(usb_bus, "usb-mouse");
35139a59
DG
1868 }
1869 }
1870
7f763a5d 1871 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
4d8d5467
BH
1872 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1873 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1874 exit(1);
1875 }
1876
9fdf0c29
DG
1877 if (kernel_filename) {
1878 uint64_t lowaddr = 0;
1879
9fdf0c29
DG
1880 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
1881 NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
3b66da82 1882 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
16457e7f
BH
1883 kernel_size = load_elf(kernel_filename,
1884 translate_kernel_address, NULL,
1885 NULL, &lowaddr, NULL, 0, ELF_MACHINE, 0);
1886 kernel_le = kernel_size > 0;
1887 }
9fdf0c29 1888 if (kernel_size < 0) {
3b66da82
AK
1889 fprintf(stderr, "qemu: error loading %s: %s\n",
1890 kernel_filename, load_elf_strerror(kernel_size));
9fdf0c29
DG
1891 exit(1);
1892 }
1893
1894 /* load initrd */
1895 if (initrd_filename) {
4d8d5467
BH
1896 /* Try to locate the initrd in the gap between the kernel
1897 * and the firmware. Add a bit of space just in case
1898 */
1899 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
9fdf0c29 1900 initrd_size = load_image_targphys(initrd_filename, initrd_base,
4d8d5467 1901 load_limit - initrd_base);
9fdf0c29
DG
1902 if (initrd_size < 0) {
1903 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1904 initrd_filename);
1905 exit(1);
1906 }
1907 } else {
1908 initrd_base = 0;
1909 initrd_size = 0;
1910 }
4d8d5467 1911 }
a3467baa 1912
8e7ea787
AF
1913 if (bios_name == NULL) {
1914 bios_name = FW_FILE_NAME;
1915 }
1916 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
4c56440d 1917 if (!filename) {
68fea5a0 1918 error_report("Could not find LPAR firmware '%s'", bios_name);
4c56440d
SW
1919 exit(1);
1920 }
4d8d5467 1921 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
68fea5a0
TH
1922 if (fw_size <= 0) {
1923 error_report("Could not load LPAR firmware '%s'", filename);
4d8d5467
BH
1924 exit(1);
1925 }
1926 g_free(filename);
4d8d5467 1927
28e02042
DG
1928 /* FIXME: Should register things through the MachineState's qdev
1929 * interface, this is a legacy from the sPAPREnvironment structure
1930 * which predated MachineState but had a similar function */
4be21d56
DG
1931 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1932 register_savevm_live(NULL, "spapr/htab", -1, 1,
1933 &savevm_htab_handlers, spapr);
1934
9fdf0c29 1935 /* Prepare the device tree */
3bbf37f2 1936 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
16457e7f 1937 kernel_size, kernel_le,
31fe14d1
NF
1938 kernel_cmdline,
1939 spapr->check_exception_irq);
a3467baa 1940 assert(spapr->fdt_skel != NULL);
5b2128d2 1941
46503c2b
MR
1942 /* used by RTAS */
1943 QTAILQ_INIT(&spapr->ccs_list);
1944 qemu_register_reset(spapr_ccs_reset_hook, spapr);
1945
5b2128d2 1946 qemu_register_boot_set(spapr_boot_set, spapr);
9fdf0c29
DG
1947}
1948
135a129a
AK
1949static int spapr_kvm_type(const char *vm_type)
1950{
1951 if (!vm_type) {
1952 return 0;
1953 }
1954
1955 if (!strcmp(vm_type, "HV")) {
1956 return 1;
1957 }
1958
1959 if (!strcmp(vm_type, "PR")) {
1960 return 2;
1961 }
1962
1963 error_report("Unknown kvm-type specified '%s'", vm_type);
1964 exit(1);
1965}
1966
71461b0f 1967/*
627b84f4 1968 * Implementation of an interface to adjust firmware path
71461b0f
AK
1969 * for the bootindex property handling.
1970 */
1971static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
1972 DeviceState *dev)
1973{
1974#define CAST(type, obj, name) \
1975 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
1976 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
1977 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
1978
1979 if (d) {
1980 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
1981 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
1982 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
1983
1984 if (spapr) {
1985 /*
1986 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
1987 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
1988 * in the top 16 bits of the 64-bit LUN
1989 */
1990 unsigned id = 0x8000 | (d->id << 8) | d->lun;
1991 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
1992 (uint64_t)id << 48);
1993 } else if (virtio) {
1994 /*
1995 * We use SRP luns of the form 01000000 | (target << 8) | lun
1996 * in the top 32 bits of the 64-bit LUN
1997 * Note: the quote above is from SLOF and it is wrong,
1998 * the actual binding is:
1999 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2000 */
2001 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2002 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2003 (uint64_t)id << 32);
2004 } else if (usb) {
2005 /*
2006 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2007 * in the top 32 bits of the 64-bit LUN
2008 */
2009 unsigned usb_port = atoi(usb->port->path);
2010 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2011 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2012 (uint64_t)id << 32);
2013 }
2014 }
2015
2016 if (phb) {
2017 /* Replace "pci" with "pci@800000020000000" */
2018 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2019 }
2020
2021 return NULL;
2022}
2023
23825581
EH
2024static char *spapr_get_kvm_type(Object *obj, Error **errp)
2025{
28e02042 2026 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2027
28e02042 2028 return g_strdup(spapr->kvm_type);
23825581
EH
2029}
2030
2031static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2032{
28e02042 2033 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2034
28e02042
DG
2035 g_free(spapr->kvm_type);
2036 spapr->kvm_type = g_strdup(value);
23825581
EH
2037}
2038
2039static void spapr_machine_initfn(Object *obj)
2040{
2041 object_property_add_str(obj, "kvm-type",
2042 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
49d2e648
MA
2043 object_property_set_description(obj, "kvm-type",
2044 "Specifies the KVM virtualization mode (HV, PR)",
2045 NULL);
23825581
EH
2046}
2047
34316482
AK
2048static void ppc_cpu_do_nmi_on_cpu(void *arg)
2049{
2050 CPUState *cs = arg;
2051
2052 cpu_synchronize_state(cs);
2053 ppc_cpu_do_system_reset(cs);
2054}
2055
2056static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2057{
2058 CPUState *cs;
2059
2060 CPU_FOREACH(cs) {
2061 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
2062 }
2063}
2064
c20d332a
BR
2065static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
2066 uint32_t node, Error **errp)
2067{
2068 sPAPRDRConnector *drc;
2069 sPAPRDRConnectorClass *drck;
2070 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2071 int i, fdt_offset, fdt_size;
2072 void *fdt;
2073
2074 /*
2075 * Check for DRC connectors and send hotplug notification to the
2076 * guest only in case of hotplugged memory. This allows cold plugged
2077 * memory to be specified at boot time.
2078 */
2079 if (!dev->hotplugged) {
2080 return;
2081 }
2082
2083 for (i = 0; i < nr_lmbs; i++) {
2084 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2085 addr/SPAPR_MEMORY_BLOCK_SIZE);
2086 g_assert(drc);
2087
2088 fdt = create_device_tree(&fdt_size);
2089 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2090 SPAPR_MEMORY_BLOCK_SIZE);
2091
2092 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2093 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
2094 spapr_hotplug_req_add_event(drc);
2095 addr += SPAPR_MEMORY_BLOCK_SIZE;
2096 }
2097}
2098
2099static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2100 uint32_t node, Error **errp)
2101{
2102 Error *local_err = NULL;
2103 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2104 PCDIMMDevice *dimm = PC_DIMM(dev);
2105 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2106 MemoryRegion *mr = ddc->get_memory_region(dimm);
2107 uint64_t align = memory_region_get_alignment(mr);
2108 uint64_t size = memory_region_size(mr);
2109 uint64_t addr;
2110
2111 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2112 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2113 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2114 goto out;
2115 }
2116
2117 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
2118 if (local_err) {
2119 goto out;
2120 }
2121
2122 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2123 if (local_err) {
2124 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2125 goto out;
2126 }
2127
2128 spapr_add_lmbs(dev, addr, size, node, &error_abort);
2129
2130out:
2131 error_propagate(errp, local_err);
2132}
2133
2134static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2135 DeviceState *dev, Error **errp)
2136{
2137 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2138
2139 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
b556854b 2140 int node;
c20d332a
BR
2141
2142 if (!smc->dr_lmb_enabled) {
2143 error_setg(errp, "Memory hotplug not supported for this machine");
2144 return;
2145 }
2146 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2147 if (*errp) {
2148 return;
2149 }
2150
b556854b
BR
2151 /*
2152 * Currently PowerPC kernel doesn't allow hot-adding memory to
2153 * memory-less node, but instead will silently add the memory
2154 * to the first node that has some memory. This causes two
2155 * unexpected behaviours for the user.
2156 *
2157 * - Memory gets hotplugged to a different node than what the user
2158 * specified.
2159 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2160 * to memory-less node, a reboot will set things accordingly
2161 * and the previously hotplugged memory now ends in the right node.
2162 * This appears as if some memory moved from one node to another.
2163 *
2164 * So until kernel starts supporting memory hotplug to memory-less
2165 * nodes, just prevent such attempts upfront in QEMU.
2166 */
2167 if (nb_numa_nodes && !numa_info[node].node_mem) {
2168 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2169 node);
2170 return;
2171 }
2172
c20d332a
BR
2173 spapr_memory_plug(hotplug_dev, dev, node, errp);
2174 }
2175}
2176
2177static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2178 DeviceState *dev, Error **errp)
2179{
2180 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2181 error_setg(errp, "Memory hot unplug not supported by sPAPR");
2182 }
2183}
2184
2185static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine,
2186 DeviceState *dev)
2187{
2188 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2189 return HOTPLUG_HANDLER(machine);
2190 }
2191 return NULL;
2192}
2193
29ee3247
AK
2194static void spapr_machine_class_init(ObjectClass *oc, void *data)
2195{
2196 MachineClass *mc = MACHINE_CLASS(oc);
224245bf 2197 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
71461b0f 2198 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
34316482 2199 NMIClass *nc = NMI_CLASS(oc);
c20d332a 2200 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
958db90c 2201
958db90c
MA
2202 mc->init = ppc_spapr_init;
2203 mc->reset = ppc_spapr_reset;
2204 mc->block_default_type = IF_SCSI;
38b02bd8 2205 mc->max_cpus = MAX_CPUMASK_BITS;
958db90c 2206 mc->no_parallel = 1;
5b2128d2 2207 mc->default_boot_order = "";
a34944fe 2208 mc->default_ram_size = 512 * M_BYTE;
958db90c 2209 mc->kvm_type = spapr_kvm_type;
9e3f9733 2210 mc->has_dynamic_sysbus = true;
e4024630 2211 mc->pci_allow_0_address = true;
c20d332a
BR
2212 mc->get_hotplug_handler = spapr_get_hotpug_handler;
2213 hc->plug = spapr_machine_device_plug;
2214 hc->unplug = spapr_machine_device_unplug;
00b4fbe2 2215
224245bf 2216 smc->dr_lmb_enabled = false;
71461b0f 2217 fwc->get_dev_path = spapr_get_fw_dev_path;
34316482 2218 nc->nmi_monitor_handler = spapr_nmi;
29ee3247
AK
2219}
2220
2221static const TypeInfo spapr_machine_info = {
2222 .name = TYPE_SPAPR_MACHINE,
2223 .parent = TYPE_MACHINE,
4aee7362 2224 .abstract = true,
6ca1502e 2225 .instance_size = sizeof(sPAPRMachineState),
23825581 2226 .instance_init = spapr_machine_initfn,
183930c0 2227 .class_size = sizeof(sPAPRMachineClass),
29ee3247 2228 .class_init = spapr_machine_class_init,
71461b0f
AK
2229 .interfaces = (InterfaceInfo[]) {
2230 { TYPE_FW_PATH_PROVIDER },
34316482 2231 { TYPE_NMI },
c20d332a 2232 { TYPE_HOTPLUG_HANDLER },
71461b0f
AK
2233 { }
2234 },
29ee3247
AK
2235};
2236
38ff32c6 2237#define SPAPR_COMPAT_2_3 \
7619c7b0
MR
2238 HW_COMPAT_2_3 \
2239 {\
2240 .driver = "spapr-pci-host-bridge",\
2241 .property = "dynamic-reconfiguration",\
2242 .value = "off",\
2243 },
38ff32c6 2244
b194df47 2245#define SPAPR_COMPAT_2_2 \
38ff32c6 2246 SPAPR_COMPAT_2_3 \
4dfd8eaa 2247 HW_COMPAT_2_2 \
b194df47
AK
2248 {\
2249 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2250 .property = "mem_win_size",\
2251 .value = "0x20000000",\
dd754baf 2252 },
b194df47
AK
2253
2254#define SPAPR_COMPAT_2_1 \
4dfd8eaa
EH
2255 SPAPR_COMPAT_2_2 \
2256 HW_COMPAT_2_1
b194df47 2257
d25228e7
JW
2258static void spapr_compat_2_3(Object *obj)
2259{
ff14e817 2260 savevm_skip_section_footers();
13d16814 2261 global_state_set_optional();
d25228e7
JW
2262}
2263
b0e966d0
JW
2264static void spapr_compat_2_2(Object *obj)
2265{
d25228e7 2266 spapr_compat_2_3(obj);
b0e966d0
JW
2267}
2268
2269static void spapr_compat_2_1(Object *obj)
2270{
2271 spapr_compat_2_2(obj);
2272}
2273
d25228e7
JW
2274static void spapr_machine_2_3_instance_init(Object *obj)
2275{
2276 spapr_compat_2_3(obj);
2277 spapr_machine_initfn(obj);
2278}
2279
b0e966d0
JW
2280static void spapr_machine_2_2_instance_init(Object *obj)
2281{
2282 spapr_compat_2_2(obj);
2283 spapr_machine_initfn(obj);
2284}
2285
2286static void spapr_machine_2_1_instance_init(Object *obj)
2287{
2288 spapr_compat_2_1(obj);
2289 spapr_machine_initfn(obj);
2290}
2291
6026db45
AK
2292static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
2293{
2294 MachineClass *mc = MACHINE_CLASS(oc);
68a27b20 2295 static GlobalProperty compat_props[] = {
dd754baf 2296 SPAPR_COMPAT_2_1
68a27b20
MT
2297 { /* end of list */ }
2298 };
6026db45 2299
6026db45 2300 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
68a27b20 2301 mc->compat_props = compat_props;
6026db45
AK
2302}
2303
2304static const TypeInfo spapr_machine_2_1_info = {
b9f072d0 2305 .name = MACHINE_TYPE_NAME("pseries-2.1"),
6026db45
AK
2306 .parent = TYPE_SPAPR_MACHINE,
2307 .class_init = spapr_machine_2_1_class_init,
b0e966d0 2308 .instance_init = spapr_machine_2_1_instance_init,
6026db45
AK
2309};
2310
4aee7362
DG
2311static void spapr_machine_2_2_class_init(ObjectClass *oc, void *data)
2312{
b194df47 2313 static GlobalProperty compat_props[] = {
dd754baf 2314 SPAPR_COMPAT_2_2
b194df47
AK
2315 { /* end of list */ }
2316 };
4aee7362
DG
2317 MachineClass *mc = MACHINE_CLASS(oc);
2318
4aee7362 2319 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.2";
b194df47 2320 mc->compat_props = compat_props;
4aee7362
DG
2321}
2322
2323static const TypeInfo spapr_machine_2_2_info = {
b9f072d0 2324 .name = MACHINE_TYPE_NAME("pseries-2.2"),
4aee7362
DG
2325 .parent = TYPE_SPAPR_MACHINE,
2326 .class_init = spapr_machine_2_2_class_init,
b0e966d0 2327 .instance_init = spapr_machine_2_2_instance_init,
4aee7362
DG
2328};
2329
3dab0244
AK
2330static void spapr_machine_2_3_class_init(ObjectClass *oc, void *data)
2331{
a1a45612 2332 static GlobalProperty compat_props[] = {
7619c7b0 2333 SPAPR_COMPAT_2_3
a1a45612
DG
2334 { /* end of list */ }
2335 };
3dab0244
AK
2336 MachineClass *mc = MACHINE_CLASS(oc);
2337
3dab0244 2338 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.3";
a1a45612 2339 mc->compat_props = compat_props;
3dab0244
AK
2340}
2341
2342static const TypeInfo spapr_machine_2_3_info = {
b9f072d0 2343 .name = MACHINE_TYPE_NAME("pseries-2.3"),
3dab0244
AK
2344 .parent = TYPE_SPAPR_MACHINE,
2345 .class_init = spapr_machine_2_3_class_init,
d25228e7
JW
2346 .instance_init = spapr_machine_2_3_instance_init,
2347};
2348
2349static void spapr_machine_2_4_class_init(ObjectClass *oc, void *data)
2350{
2351 MachineClass *mc = MACHINE_CLASS(oc);
2352
d25228e7
JW
2353 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.4";
2354 mc->alias = "pseries";
fb0fc8f6 2355 mc->is_default = 0;
d25228e7
JW
2356}
2357
2358static const TypeInfo spapr_machine_2_4_info = {
b9f072d0 2359 .name = MACHINE_TYPE_NAME("pseries-2.4"),
d25228e7
JW
2360 .parent = TYPE_SPAPR_MACHINE,
2361 .class_init = spapr_machine_2_4_class_init,
3dab0244
AK
2362};
2363
fb0fc8f6
DG
2364static void spapr_machine_2_5_class_init(ObjectClass *oc, void *data)
2365{
2366 MachineClass *mc = MACHINE_CLASS(oc);
224245bf 2367 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
fb0fc8f6
DG
2368
2369 mc->name = "pseries-2.5";
2370 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.5";
2371 mc->alias = "pseries";
2372 mc->is_default = 1;
224245bf 2373 smc->dr_lmb_enabled = true;
fb0fc8f6
DG
2374}
2375
2376static const TypeInfo spapr_machine_2_5_info = {
2377 .name = MACHINE_TYPE_NAME("pseries-2.5"),
2378 .parent = TYPE_SPAPR_MACHINE,
2379 .class_init = spapr_machine_2_5_class_init,
2380};
2381
29ee3247 2382static void spapr_machine_register_types(void)
9fdf0c29 2383{
29ee3247 2384 type_register_static(&spapr_machine_info);
6026db45 2385 type_register_static(&spapr_machine_2_1_info);
4aee7362 2386 type_register_static(&spapr_machine_2_2_info);
3dab0244 2387 type_register_static(&spapr_machine_2_3_info);
d25228e7 2388 type_register_static(&spapr_machine_2_4_info);
fb0fc8f6 2389 type_register_static(&spapr_machine_2_5_info);
9fdf0c29
DG
2390}
2391
29ee3247 2392type_init(spapr_machine_register_types)