]> git.proxmox.com Git - mirror_qemu.git/blame - hw/ppc/spapr.c
pseries: Simplify handling of the hash page table fd
[mirror_qemu.git] / hw / ppc / spapr.c
CommitLineData
9fdf0c29
DG
1/*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
0d75590d 27#include "qemu/osdep.h"
9c17d615 28#include "sysemu/sysemu.h"
e35704ba 29#include "sysemu/numa.h"
83c9f4ca 30#include "hw/hw.h"
71461b0f 31#include "hw/fw-path-provider.h"
9fdf0c29 32#include "elf.h"
1422e32d 33#include "net/net.h"
ad440b4a 34#include "sysemu/device_tree.h"
fa1d36df 35#include "sysemu/block-backend.h"
9c17d615
PB
36#include "sysemu/cpus.h"
37#include "sysemu/kvm.h"
c20d332a 38#include "sysemu/device_tree.h"
e97c3636 39#include "kvm_ppc.h"
ff14e817 40#include "migration/migration.h"
4be21d56 41#include "mmu-hash64.h"
3794d548 42#include "qom/cpu.h"
9fdf0c29
DG
43
44#include "hw/boards.h"
0d09e41a 45#include "hw/ppc/ppc.h"
9fdf0c29
DG
46#include "hw/loader.h"
47
0d09e41a
PB
48#include "hw/ppc/spapr.h"
49#include "hw/ppc/spapr_vio.h"
50#include "hw/pci-host/spapr.h"
51#include "hw/ppc/xics.h"
a2cb15b0 52#include "hw/pci/msi.h"
9fdf0c29 53
83c9f4ca 54#include "hw/pci/pci.h"
71461b0f
AK
55#include "hw/scsi/scsi.h"
56#include "hw/virtio/virtio-scsi.h"
f61b4bed 57
022c62cb 58#include "exec/address-spaces.h"
35139a59 59#include "hw/usb.h"
1de7afc9 60#include "qemu/config-file.h"
135a129a 61#include "qemu/error-report.h"
2a6593cb 62#include "trace.h"
34316482 63#include "hw/nmi.h"
890c2b77 64
68a27b20 65#include "hw/compat.h"
224245bf 66#include "qemu-common.h"
68a27b20 67
9fdf0c29
DG
68#include <libfdt.h>
69
4d8d5467
BH
70/* SLOF memory layout:
71 *
72 * SLOF raw image loaded at 0, copies its romfs right below the flat
73 * device-tree, then position SLOF itself 31M below that
74 *
75 * So we set FW_OVERHEAD to 40MB which should account for all of that
76 * and more
77 *
78 * We load our kernel at 4M, leaving space for SLOF initial image
79 */
38b02bd8 80#define FDT_MAX_SIZE 0x100000
39ac8455 81#define RTAS_MAX_SIZE 0x10000
b7d1f77a 82#define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
a9f8ad8f
DG
83#define FW_MAX_SIZE 0x400000
84#define FW_FILE_NAME "slof.bin"
4d8d5467
BH
85#define FW_OVERHEAD 0x2800000
86#define KERNEL_LOAD_ADDR FW_MAX_SIZE
a9f8ad8f 87
4d8d5467 88#define MIN_RMA_SLOF 128UL
9fdf0c29
DG
89
90#define TIMEBASE_FREQ 512000000ULL
91
0c103f8e
DG
92#define PHANDLE_XICP 0x00001111
93
7f763a5d
DG
94#define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
95
c04d6cfa 96static XICSState *try_create_xics(const char *type, int nr_servers,
34f2af3d 97 int nr_irqs, Error **errp)
c04d6cfa 98{
34f2af3d 99 Error *err = NULL;
c04d6cfa
AL
100 DeviceState *dev;
101
102 dev = qdev_create(NULL, type);
103 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
104 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
34f2af3d
MA
105 object_property_set_bool(OBJECT(dev), true, "realized", &err);
106 if (err) {
107 error_propagate(errp, err);
108 object_unparent(OBJECT(dev));
c04d6cfa
AL
109 return NULL;
110 }
5a3d7b23 111 return XICS_COMMON(dev);
c04d6cfa
AL
112}
113
446f16a6 114static XICSState *xics_system_init(MachineState *machine,
1e49182d 115 int nr_servers, int nr_irqs, Error **errp)
c04d6cfa
AL
116{
117 XICSState *icp = NULL;
118
11ad93f6 119 if (kvm_enabled()) {
34f2af3d
MA
120 Error *err = NULL;
121
446f16a6 122 if (machine_kernel_irqchip_allowed(machine)) {
34f2af3d 123 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
11ad93f6 124 }
446f16a6 125 if (machine_kernel_irqchip_required(machine) && !icp) {
b83baa60
MA
126 error_reportf_err(err,
127 "kernel_irqchip requested but unavailable: ");
128 } else {
129 error_free(err);
11ad93f6
DG
130 }
131 }
132
133 if (!icp) {
1e49182d 134 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, errp);
c04d6cfa
AL
135 }
136
137 return icp;
138}
139
833d4668
AK
140static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
141 int smt_threads)
142{
143 int i, ret = 0;
144 uint32_t servers_prop[smt_threads];
145 uint32_t gservers_prop[smt_threads * 2];
146 int index = ppc_get_vcpu_dt_id(cpu);
147
6d9412ea 148 if (cpu->cpu_version) {
4bce526e 149 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
6d9412ea
AK
150 if (ret < 0) {
151 return ret;
152 }
153 }
154
833d4668
AK
155 /* Build interrupt servers and gservers properties */
156 for (i = 0; i < smt_threads; i++) {
157 servers_prop[i] = cpu_to_be32(index + i);
158 /* Hack, direct the group queues back to cpu 0 */
159 gservers_prop[i*2] = cpu_to_be32(index + i);
160 gservers_prop[i*2 + 1] = 0;
161 }
162 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
163 servers_prop, sizeof(servers_prop));
164 if (ret < 0) {
165 return ret;
166 }
167 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
168 gservers_prop, sizeof(gservers_prop));
169
170 return ret;
171}
172
0da6f3fe
BR
173static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
174{
175 int ret = 0;
176 PowerPCCPU *cpu = POWERPC_CPU(cs);
177 int index = ppc_get_vcpu_dt_id(cpu);
178 uint32_t associativity[] = {cpu_to_be32(0x5),
179 cpu_to_be32(0x0),
180 cpu_to_be32(0x0),
181 cpu_to_be32(0x0),
182 cpu_to_be32(cs->numa_node),
183 cpu_to_be32(index)};
184
185 /* Advertise NUMA via ibm,associativity */
186 if (nb_numa_nodes > 1) {
187 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
188 sizeof(associativity));
189 }
190
191 return ret;
192}
193
28e02042 194static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
6e806cc3 195{
82677ed2
AK
196 int ret = 0, offset, cpus_offset;
197 CPUState *cs;
6e806cc3
BR
198 char cpu_model[32];
199 int smt = kvmppc_smt_threads();
7f763a5d 200 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
6e806cc3 201
82677ed2
AK
202 CPU_FOREACH(cs) {
203 PowerPCCPU *cpu = POWERPC_CPU(cs);
204 DeviceClass *dc = DEVICE_GET_CLASS(cs);
205 int index = ppc_get_vcpu_dt_id(cpu);
6e806cc3 206
0f20ba62 207 if ((index % smt) != 0) {
6e806cc3
BR
208 continue;
209 }
210
82677ed2 211 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
6e806cc3 212
82677ed2
AK
213 cpus_offset = fdt_path_offset(fdt, "/cpus");
214 if (cpus_offset < 0) {
215 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
216 "cpus");
217 if (cpus_offset < 0) {
218 return cpus_offset;
219 }
220 }
221 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
6e806cc3 222 if (offset < 0) {
82677ed2
AK
223 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
224 if (offset < 0) {
225 return offset;
226 }
6e806cc3
BR
227 }
228
7f763a5d
DG
229 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
230 pft_size_prop, sizeof(pft_size_prop));
6e806cc3
BR
231 if (ret < 0) {
232 return ret;
233 }
833d4668 234
0da6f3fe
BR
235 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
236 if (ret < 0) {
237 return ret;
238 }
239
82677ed2 240 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
2a48d993 241 ppc_get_compat_smt_threads(cpu));
833d4668
AK
242 if (ret < 0) {
243 return ret;
244 }
6e806cc3
BR
245 }
246 return ret;
247}
248
5af9873d
BH
249
250static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
251 size_t maxsize)
252{
253 size_t maxcells = maxsize / sizeof(uint32_t);
254 int i, j, count;
255 uint32_t *p = prop;
256
257 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
258 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
259
260 if (!sps->page_shift) {
261 break;
262 }
263 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
264 if (sps->enc[count].page_shift == 0) {
265 break;
266 }
267 }
268 if ((p - prop) >= (maxcells - 3 - count * 2)) {
269 break;
270 }
271 *(p++) = cpu_to_be32(sps->page_shift);
272 *(p++) = cpu_to_be32(sps->slb_enc);
273 *(p++) = cpu_to_be32(count);
274 for (j = 0; j < count; j++) {
275 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
276 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
277 }
278 }
279
280 return (p - prop) * sizeof(uint32_t);
281}
282
b082d65a
AK
283static hwaddr spapr_node0_size(void)
284{
fb164994
DG
285 MachineState *machine = MACHINE(qdev_get_machine());
286
b082d65a
AK
287 if (nb_numa_nodes) {
288 int i;
289 for (i = 0; i < nb_numa_nodes; ++i) {
290 if (numa_info[i].node_mem) {
fb164994
DG
291 return MIN(pow2floor(numa_info[i].node_mem),
292 machine->ram_size);
b082d65a
AK
293 }
294 }
295 }
fb164994 296 return machine->ram_size;
b082d65a
AK
297}
298
7f763a5d
DG
299#define _FDT(exp) \
300 do { \
301 int ret = (exp); \
302 if (ret < 0) { \
303 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
304 #exp, fdt_strerror(ret)); \
305 exit(1); \
306 } \
307 } while (0)
308
a1d59c0f
AK
309static void add_str(GString *s, const gchar *s1)
310{
311 g_string_append_len(s, s1, strlen(s1) + 1);
312}
7f763a5d 313
3bbf37f2 314static void *spapr_create_fdt_skel(hwaddr initrd_base,
a8170e5e
AK
315 hwaddr initrd_size,
316 hwaddr kernel_size,
16457e7f 317 bool little_endian,
74d042e5
DG
318 const char *kernel_cmdline,
319 uint32_t epow_irq)
9fdf0c29
DG
320{
321 void *fdt;
9fdf0c29
DG
322 uint32_t start_prop = cpu_to_be32(initrd_base);
323 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
a1d59c0f
AK
324 GString *hypertas = g_string_sized_new(256);
325 GString *qemu_hypertas = g_string_sized_new(256);
7f763a5d 326 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
9e734e3d 327 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
6e806cc3 328 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
ef951443 329 char *buf;
9fdf0c29 330
a1d59c0f
AK
331 add_str(hypertas, "hcall-pft");
332 add_str(hypertas, "hcall-term");
333 add_str(hypertas, "hcall-dabr");
334 add_str(hypertas, "hcall-interrupt");
335 add_str(hypertas, "hcall-tce");
336 add_str(hypertas, "hcall-vio");
337 add_str(hypertas, "hcall-splpar");
338 add_str(hypertas, "hcall-bulk");
339 add_str(hypertas, "hcall-set-mode");
340 add_str(qemu_hypertas, "hcall-memop1");
341
7267c094 342 fdt = g_malloc0(FDT_MAX_SIZE);
9fdf0c29
DG
343 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
344
4d8d5467
BH
345 if (kernel_size) {
346 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
347 }
348 if (initrd_size) {
349 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
350 }
9fdf0c29
DG
351 _FDT((fdt_finish_reservemap(fdt)));
352
353 /* Root node */
354 _FDT((fdt_begin_node(fdt, "")));
355 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
5d73dd66 356 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
d63919c9 357 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
9fdf0c29 358
ef951443
ND
359 /*
360 * Add info to guest to indentify which host is it being run on
361 * and what is the uuid of the guest
362 */
363 if (kvmppc_get_host_model(&buf)) {
364 _FDT((fdt_property_string(fdt, "host-model", buf)));
365 g_free(buf);
366 }
367 if (kvmppc_get_host_serial(&buf)) {
368 _FDT((fdt_property_string(fdt, "host-serial", buf)));
369 g_free(buf);
370 }
371
372 buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
373 qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
374 qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
375 qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
376 qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
377 qemu_uuid[14], qemu_uuid[15]);
378
379 _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
3dc0a66d
AK
380 if (qemu_uuid_set) {
381 _FDT((fdt_property_string(fdt, "system-id", buf)));
382 }
ef951443
ND
383 g_free(buf);
384
2c1aaa81
SB
385 if (qemu_get_vm_name()) {
386 _FDT((fdt_property_string(fdt, "ibm,partition-name",
387 qemu_get_vm_name())));
388 }
389
9fdf0c29
DG
390 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
391 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
392
393 /* /chosen */
394 _FDT((fdt_begin_node(fdt, "chosen")));
395
6e806cc3
BR
396 /* Set Form1_affinity */
397 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
398
9fdf0c29
DG
399 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
400 _FDT((fdt_property(fdt, "linux,initrd-start",
401 &start_prop, sizeof(start_prop))));
402 _FDT((fdt_property(fdt, "linux,initrd-end",
403 &end_prop, sizeof(end_prop))));
4d8d5467
BH
404 if (kernel_size) {
405 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
406 cpu_to_be64(kernel_size) };
9fdf0c29 407
4d8d5467 408 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
16457e7f
BH
409 if (little_endian) {
410 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
411 }
4d8d5467 412 }
cc84c0f3
AS
413 if (boot_menu) {
414 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
415 }
f28359d8
LZ
416 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
417 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
418 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
3384f95c 419
9fdf0c29
DG
420 _FDT((fdt_end_node(fdt)));
421
f43e3525
DG
422 /* RTAS */
423 _FDT((fdt_begin_node(fdt, "rtas")));
424
da95324e
AK
425 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
426 add_str(hypertas, "hcall-multi-tce");
427 }
a1d59c0f
AK
428 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
429 hypertas->len)));
430 g_string_free(hypertas, TRUE);
431 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
432 qemu_hypertas->len)));
433 g_string_free(qemu_hypertas, TRUE);
f43e3525 434
6e806cc3
BR
435 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
436 refpoints, sizeof(refpoints))));
437
74d042e5 438 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
79853e18
TD
439 _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
440 RTAS_EVENT_SCAN_RATE)));
74d042e5 441
a95f9922
SB
442 if (msi_supported) {
443 _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
444 }
445
2e14072f 446 /*
9d632f5f 447 * According to PAPR, rtas ibm,os-term does not guarantee a return
2e14072f
ND
448 * back to the guest cpu.
449 *
450 * While an additional ibm,extended-os-term property indicates that
451 * rtas call return will always occur. Set this property.
452 */
453 _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
454
f43e3525
DG
455 _FDT((fdt_end_node(fdt)));
456
b5cec4c5 457 /* interrupt controller */
9dfef5aa 458 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
b5cec4c5
DG
459
460 _FDT((fdt_property_string(fdt, "device_type",
461 "PowerPC-External-Interrupt-Presentation")));
462 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
b5cec4c5
DG
463 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
464 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
465 interrupt_server_ranges_prop,
466 sizeof(interrupt_server_ranges_prop))));
0c103f8e
DG
467 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
468 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
469 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
b5cec4c5
DG
470
471 _FDT((fdt_end_node(fdt)));
472
4040ab72
DG
473 /* vdevice */
474 _FDT((fdt_begin_node(fdt, "vdevice")));
475
476 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
477 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
478 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
479 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
b5cec4c5
DG
480 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
481 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
4040ab72
DG
482
483 _FDT((fdt_end_node(fdt)));
484
74d042e5
DG
485 /* event-sources */
486 spapr_events_fdt_skel(fdt, epow_irq);
487
f7d69146
AG
488 /* /hypervisor node */
489 if (kvm_enabled()) {
490 uint8_t hypercall[16];
491
492 /* indicate KVM hypercall interface */
493 _FDT((fdt_begin_node(fdt, "hypervisor")));
494 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
495 if (kvmppc_has_cap_fixup_hcalls()) {
496 /*
497 * Older KVM versions with older guest kernels were broken with the
498 * magic page, don't allow the guest to map it.
499 */
500 kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
501 sizeof(hypercall));
502 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
503 sizeof(hypercall))));
504 }
505 _FDT((fdt_end_node(fdt)));
506 }
507
9fdf0c29
DG
508 _FDT((fdt_end_node(fdt))); /* close root node */
509 _FDT((fdt_finish(fdt)));
510
a3467baa
DG
511 return fdt;
512}
513
03d196b7 514static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
26a8c353
AK
515 hwaddr size)
516{
517 uint32_t associativity[] = {
518 cpu_to_be32(0x4), /* length */
519 cpu_to_be32(0x0), cpu_to_be32(0x0),
c3b4f589 520 cpu_to_be32(0x0), cpu_to_be32(nodeid)
26a8c353
AK
521 };
522 char mem_name[32];
523 uint64_t mem_reg_property[2];
524 int off;
525
526 mem_reg_property[0] = cpu_to_be64(start);
527 mem_reg_property[1] = cpu_to_be64(size);
528
529 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
530 off = fdt_add_subnode(fdt, 0, mem_name);
531 _FDT(off);
532 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
533 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
534 sizeof(mem_reg_property))));
535 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
536 sizeof(associativity))));
03d196b7 537 return off;
26a8c353
AK
538}
539
28e02042 540static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
7f763a5d 541{
fb164994 542 MachineState *machine = MACHINE(spapr);
7db8a127
AK
543 hwaddr mem_start, node_size;
544 int i, nb_nodes = nb_numa_nodes;
545 NodeInfo *nodes = numa_info;
546 NodeInfo ramnode;
547
548 /* No NUMA nodes, assume there is just one node with whole RAM */
549 if (!nb_numa_nodes) {
550 nb_nodes = 1;
fb164994 551 ramnode.node_mem = machine->ram_size;
7db8a127 552 nodes = &ramnode;
5fe269b1 553 }
7f763a5d 554
7db8a127
AK
555 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
556 if (!nodes[i].node_mem) {
557 continue;
558 }
fb164994 559 if (mem_start >= machine->ram_size) {
5fe269b1
PM
560 node_size = 0;
561 } else {
7db8a127 562 node_size = nodes[i].node_mem;
fb164994
DG
563 if (node_size > machine->ram_size - mem_start) {
564 node_size = machine->ram_size - mem_start;
5fe269b1
PM
565 }
566 }
7db8a127
AK
567 if (!mem_start) {
568 /* ppc_spapr_init() checks for rma_size <= node0_size already */
e8f986fc 569 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
7db8a127
AK
570 mem_start += spapr->rma_size;
571 node_size -= spapr->rma_size;
572 }
6010818c
AK
573 for ( ; node_size; ) {
574 hwaddr sizetmp = pow2floor(node_size);
575
576 /* mem_start != 0 here */
577 if (ctzl(mem_start) < ctzl(sizetmp)) {
578 sizetmp = 1ULL << ctzl(mem_start);
579 }
580
581 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
582 node_size -= sizetmp;
583 mem_start += sizetmp;
584 }
7f763a5d
DG
585 }
586
587 return 0;
588}
589
0da6f3fe
BR
590static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
591 sPAPRMachineState *spapr)
592{
593 PowerPCCPU *cpu = POWERPC_CPU(cs);
594 CPUPPCState *env = &cpu->env;
595 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
596 int index = ppc_get_vcpu_dt_id(cpu);
597 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
598 0xffffffff, 0xffffffff};
599 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
600 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
601 uint32_t page_sizes_prop[64];
602 size_t page_sizes_prop_size;
22419c2a 603 uint32_t vcpus_per_socket = smp_threads * smp_cores;
0da6f3fe
BR
604 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
605
90da0d5a
BH
606 /* Note: we keep CI large pages off for now because a 64K capable guest
607 * provisioned with large pages might otherwise try to map a qemu
608 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
609 * even if that qemu runs on a 4k host.
610 *
611 * We can later add this bit back when we are confident this is not
612 * an issue (!HV KVM or 64K host)
613 */
614 uint8_t pa_features_206[] = { 6, 0,
615 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
616 uint8_t pa_features_207[] = { 24, 0,
617 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
618 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
619 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
620 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
621 uint8_t *pa_features;
622 size_t pa_size;
623
0da6f3fe
BR
624 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
625 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
626
627 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
628 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
629 env->dcache_line_size)));
630 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
631 env->dcache_line_size)));
632 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
633 env->icache_line_size)));
634 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
635 env->icache_line_size)));
636
637 if (pcc->l1_dcache_size) {
638 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
639 pcc->l1_dcache_size)));
640 } else {
641 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
642 }
643 if (pcc->l1_icache_size) {
644 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
645 pcc->l1_icache_size)));
646 } else {
647 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
648 }
649
650 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
651 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
fd5da5c4 652 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
0da6f3fe
BR
653 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
654 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
655 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
656
657 if (env->spr_cb[SPR_PURR].oea_read) {
658 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
659 }
660
661 if (env->mmu_model & POWERPC_MMU_1TSEG) {
662 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
663 segs, sizeof(segs))));
664 }
665
666 /* Advertise VMX/VSX (vector extensions) if available
667 * 0 / no property == no vector extensions
668 * 1 == VMX / Altivec available
669 * 2 == VSX available */
670 if (env->insns_flags & PPC_ALTIVEC) {
671 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
672
673 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
674 }
675
676 /* Advertise DFP (Decimal Floating Point) if available
677 * 0 / no property == no DFP
678 * 1 == DFP available */
679 if (env->insns_flags2 & PPC2_DFP) {
680 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
681 }
682
683 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
684 sizeof(page_sizes_prop));
685 if (page_sizes_prop_size) {
686 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
687 page_sizes_prop, page_sizes_prop_size)));
688 }
689
90da0d5a
BH
690 /* Do the ibm,pa-features property, adjust it for ci-large-pages */
691 if (env->mmu_model == POWERPC_MMU_2_06) {
692 pa_features = pa_features_206;
693 pa_size = sizeof(pa_features_206);
694 } else /* env->mmu_model == POWERPC_MMU_2_07 */ {
695 pa_features = pa_features_207;
696 pa_size = sizeof(pa_features_207);
697 }
698 if (env->ci_large_pages) {
699 pa_features[3] |= 0x20;
700 }
701 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
702
0da6f3fe 703 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
22419c2a 704 cs->cpu_index / vcpus_per_socket)));
0da6f3fe
BR
705
706 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
707 pft_size_prop, sizeof(pft_size_prop))));
708
709 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
710
711 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
712 ppc_get_compat_smt_threads(cpu)));
713}
714
715static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
716{
717 CPUState *cs;
718 int cpus_offset;
719 char *nodename;
720 int smt = kvmppc_smt_threads();
721
722 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
723 _FDT(cpus_offset);
724 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
725 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
726
727 /*
728 * We walk the CPUs in reverse order to ensure that CPU DT nodes
729 * created by fdt_add_subnode() end up in the right order in FDT
730 * for the guest kernel the enumerate the CPUs correctly.
731 */
732 CPU_FOREACH_REVERSE(cs) {
733 PowerPCCPU *cpu = POWERPC_CPU(cs);
734 int index = ppc_get_vcpu_dt_id(cpu);
735 DeviceClass *dc = DEVICE_GET_CLASS(cs);
736 int offset;
737
738 if ((index % smt) != 0) {
739 continue;
740 }
741
742 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
743 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
744 g_free(nodename);
745 _FDT(offset);
746 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
747 }
748
749}
750
03d196b7
BR
751/*
752 * Adds ibm,dynamic-reconfiguration-memory node.
753 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
754 * of this device tree node.
755 */
756static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
757{
758 MachineState *machine = MACHINE(spapr);
759 int ret, i, offset;
760 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
761 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
e8f986fc 762 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
03d196b7 763 uint32_t *int_buf, *cur_index, buf_len;
6663864e 764 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
03d196b7 765
16c25aef
BR
766 /*
767 * Don't create the node if there are no DR LMBs.
768 */
769 if (!nr_lmbs) {
770 return 0;
771 }
772
ef001f06
TH
773 /*
774 * Allocate enough buffer size to fit in ibm,dynamic-memory
775 * or ibm,associativity-lookup-arrays
776 */
777 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
778 * sizeof(uint32_t);
03d196b7
BR
779 cur_index = int_buf = g_malloc0(buf_len);
780
781 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
782
783 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
784 sizeof(prop_lmb_size));
785 if (ret < 0) {
786 goto out;
787 }
788
789 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
790 if (ret < 0) {
791 goto out;
792 }
793
794 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
795 if (ret < 0) {
796 goto out;
797 }
798
799 /* ibm,dynamic-memory */
800 int_buf[0] = cpu_to_be32(nr_lmbs);
801 cur_index++;
802 for (i = 0; i < nr_lmbs; i++) {
803 sPAPRDRConnector *drc;
804 sPAPRDRConnectorClass *drck;
e8f986fc 805 uint64_t addr = i * lmb_size + spapr->hotplug_memory.base;;
03d196b7
BR
806 uint32_t *dynamic_memory = cur_index;
807
03d196b7
BR
808 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
809 addr/lmb_size);
810 g_assert(drc);
811 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
812
813 dynamic_memory[0] = cpu_to_be32(addr >> 32);
814 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
815 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
816 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
817 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
818 if (addr < machine->ram_size ||
819 memory_region_present(get_system_memory(), addr)) {
820 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
821 } else {
822 dynamic_memory[5] = cpu_to_be32(0);
823 }
824
825 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
826 }
827 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
828 if (ret < 0) {
829 goto out;
830 }
831
832 /* ibm,associativity-lookup-arrays */
833 cur_index = int_buf;
6663864e 834 int_buf[0] = cpu_to_be32(nr_nodes);
03d196b7
BR
835 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
836 cur_index += 2;
6663864e 837 for (i = 0; i < nr_nodes; i++) {
03d196b7
BR
838 uint32_t associativity[] = {
839 cpu_to_be32(0x0),
840 cpu_to_be32(0x0),
841 cpu_to_be32(0x0),
842 cpu_to_be32(i)
843 };
844 memcpy(cur_index, associativity, sizeof(associativity));
845 cur_index += 4;
846 }
847 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
848 (cur_index - int_buf) * sizeof(uint32_t));
849out:
850 g_free(int_buf);
851 return ret;
852}
853
854int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
855 target_ulong addr, target_ulong size,
856 bool cpu_update, bool memory_update)
857{
858 void *fdt, *fdt_skel;
859 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
860 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
861
862 size -= sizeof(hdr);
863
864 /* Create sceleton */
865 fdt_skel = g_malloc0(size);
866 _FDT((fdt_create(fdt_skel, size)));
867 _FDT((fdt_begin_node(fdt_skel, "")));
868 _FDT((fdt_end_node(fdt_skel)));
869 _FDT((fdt_finish(fdt_skel)));
870 fdt = g_malloc0(size);
871 _FDT((fdt_open_into(fdt_skel, fdt, size)));
872 g_free(fdt_skel);
873
874 /* Fixup cpu nodes */
875 if (cpu_update) {
876 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
877 }
878
16c25aef 879 /* Generate ibm,dynamic-reconfiguration-memory node if required */
03d196b7
BR
880 if (memory_update && smc->dr_lmb_enabled) {
881 _FDT((spapr_populate_drconf_memory(spapr, fdt)));
03d196b7
BR
882 }
883
884 /* Pack resulting tree */
885 _FDT((fdt_pack(fdt)));
886
887 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
888 trace_spapr_cas_failed(size);
889 return -1;
890 }
891
892 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
893 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
894 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
895 g_free(fdt);
896
897 return 0;
898}
899
28e02042 900static void spapr_finalize_fdt(sPAPRMachineState *spapr,
a8170e5e
AK
901 hwaddr fdt_addr,
902 hwaddr rtas_addr,
903 hwaddr rtas_size)
a3467baa 904{
5b2128d2 905 MachineState *machine = MACHINE(qdev_get_machine());
c20d332a 906 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
5b2128d2 907 const char *boot_device = machine->boot_order;
71461b0f
AK
908 int ret, i;
909 size_t cb = 0;
910 char *bootlist;
a3467baa 911 void *fdt;
3384f95c 912 sPAPRPHBState *phb;
a3467baa 913
7267c094 914 fdt = g_malloc(FDT_MAX_SIZE);
a3467baa
DG
915
916 /* open out the base tree into a temp buffer for the final tweaks */
917 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
4040ab72 918
e8f986fc
BR
919 ret = spapr_populate_memory(spapr, fdt);
920 if (ret < 0) {
921 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
922 exit(1);
7f763a5d
DG
923 }
924
4040ab72
DG
925 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
926 if (ret < 0) {
927 fprintf(stderr, "couldn't setup vio devices in fdt\n");
928 exit(1);
929 }
930
4d9392be
TH
931 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
932 ret = spapr_rng_populate_dt(fdt);
933 if (ret < 0) {
934 fprintf(stderr, "could not set up rng device in the fdt\n");
935 exit(1);
936 }
937 }
938
3384f95c 939 QLIST_FOREACH(phb, &spapr->phbs, list) {
e0fdbd7c 940 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
3384f95c
DG
941 }
942
943 if (ret < 0) {
944 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
945 exit(1);
946 }
947
39ac8455
DG
948 /* RTAS */
949 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
950 if (ret < 0) {
951 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
952 }
953
0da6f3fe
BR
954 /* cpus */
955 spapr_populate_cpus_dt_node(fdt, spapr);
6e806cc3 956
71461b0f
AK
957 bootlist = get_boot_devices_list(&cb, true);
958 if (cb && bootlist) {
959 int offset = fdt_path_offset(fdt, "/chosen");
960 if (offset < 0) {
961 exit(1);
962 }
963 for (i = 0; i < cb; i++) {
964 if (bootlist[i] == '\n') {
965 bootlist[i] = ' ';
966 }
967
968 }
969 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
970 }
971
5b2128d2
AG
972 if (boot_device && strlen(boot_device)) {
973 int offset = fdt_path_offset(fdt, "/chosen");
974
975 if (offset < 0) {
976 exit(1);
977 }
978 fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
979 }
980
3fc5acde 981 if (!spapr->has_graphics) {
f28359d8
LZ
982 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
983 }
68f3a94c 984
c20d332a
BR
985 if (smc->dr_lmb_enabled) {
986 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
987 }
988
4040ab72
DG
989 _FDT((fdt_pack(fdt)));
990
4d8d5467 991 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
730fce59
TH
992 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
993 fdt_totalsize(fdt), FDT_MAX_SIZE);
4d8d5467
BH
994 exit(1);
995 }
996
ad440b4a 997 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
a3467baa 998 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
9fdf0c29 999
a21a7a70 1000 g_free(bootlist);
7267c094 1001 g_free(fdt);
9fdf0c29
DG
1002}
1003
1004static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1005{
1006 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1007}
1008
1b14670a 1009static void emulate_spapr_hypercall(PowerPCCPU *cpu)
9fdf0c29 1010{
1b14670a
AF
1011 CPUPPCState *env = &cpu->env;
1012
efcb9383
DG
1013 if (msr_pr) {
1014 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1015 env->gpr[3] = H_PRIVILEGE;
1016 } else {
aa100fa4 1017 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
efcb9383 1018 }
9fdf0c29
DG
1019}
1020
e6b8fd24
SMJ
1021#define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1022#define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1023#define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1024#define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1025#define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1026
715c5407
DG
1027/*
1028 * Get the fd to access the kernel htab, re-opening it if necessary
1029 */
1030static int get_htab_fd(sPAPRMachineState *spapr)
1031{
1032 if (spapr->htab_fd >= 0) {
1033 return spapr->htab_fd;
1034 }
1035
1036 spapr->htab_fd = kvmppc_get_htab_fd(false);
1037 if (spapr->htab_fd < 0) {
1038 error_report("Unable to open fd for reading hash table from KVM: %s",
1039 strerror(errno));
1040 }
1041
1042 return spapr->htab_fd;
1043}
1044
1045static void close_htab_fd(sPAPRMachineState *spapr)
1046{
1047 if (spapr->htab_fd >= 0) {
1048 close(spapr->htab_fd);
1049 }
1050 spapr->htab_fd = -1;
1051}
1052
b817772a 1053static void spapr_alloc_htab(sPAPRMachineState *spapr)
7f763a5d
DG
1054{
1055 long shift;
e6b8fd24 1056 int index;
7f763a5d
DG
1057
1058 /* allocate hash page table. For now we always make this 16mb,
1059 * later we should probably make it scale to the size of guest
1060 * RAM */
1061
1062 shift = kvmppc_reset_htab(spapr->htab_shift);
b41d320f
BR
1063 if (shift < 0) {
1064 /*
1065 * For HV KVM, host kernel will return -ENOMEM when requested
1066 * HTAB size can't be allocated.
1067 */
1068 error_setg(&error_abort, "Failed to allocate HTAB of requested size, try with smaller maxmem");
1069 } else if (shift > 0) {
1070 /*
1071 * Kernel handles htab, we don't need to allocate one
1072 *
1073 * Older kernels can fall back to lower HTAB shift values,
1074 * but we don't allow booting of such guests.
1075 */
7735feda
BR
1076 if (shift != spapr->htab_shift) {
1077 error_setg(&error_abort, "Failed to allocate HTAB of requested size, try with smaller maxmem");
1078 }
1079
7f763a5d 1080 spapr->htab_shift = shift;
7c43bca0 1081 kvmppc_kern_htab = true;
b817772a
BR
1082 } else {
1083 /* Allocate htab */
1084 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
1085
1086 /* And clear it */
1087 memset(spapr->htab, 0, HTAB_SIZE(spapr));
1088
1089 for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
1090 DIRTY_HPTE(HPTE(spapr->htab, index));
1091 }
1092 }
1093}
1094
1095/*
1096 * Clear HTAB entries during reset.
1097 *
1098 * If host kernel has allocated HTAB, KVM_PPC_ALLOCATE_HTAB ioctl is
1099 * used to clear HTAB. Otherwise QEMU-allocated HTAB is cleared manually.
1100 */
1101static void spapr_reset_htab(sPAPRMachineState *spapr)
1102{
1103 long shift;
1104 int index;
01a57972 1105
b817772a 1106 shift = kvmppc_reset_htab(spapr->htab_shift);
b41d320f
BR
1107 if (shift < 0) {
1108 error_setg(&error_abort, "Failed to reset HTAB");
1109 } else if (shift > 0) {
7735feda
BR
1110 if (shift != spapr->htab_shift) {
1111 error_setg(&error_abort, "Requested HTAB allocation failed during reset");
1112 }
1113
715c5407 1114 close_htab_fd(spapr);
7f763a5d 1115 } else {
7f763a5d 1116 memset(spapr->htab, 0, HTAB_SIZE(spapr));
e6b8fd24
SMJ
1117
1118 for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
1119 DIRTY_HPTE(HPTE(spapr->htab, index));
1120 }
7f763a5d
DG
1121 }
1122
1123 /* Update the RMA size if necessary */
1124 if (spapr->vrma_adjust) {
b082d65a
AK
1125 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1126 spapr->htab_shift);
7f763a5d 1127 }
9fdf0c29
DG
1128}
1129
9e3f9733
AG
1130static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1131{
1132 bool matched = false;
1133
1134 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1135 matched = true;
1136 }
1137
1138 if (!matched) {
1139 error_report("Device %s is not supported by this machine yet.",
1140 qdev_fw_name(DEVICE(sbdev)));
1141 exit(1);
1142 }
1143
1144 return 0;
1145}
1146
c8787ad4 1147static void ppc_spapr_reset(void)
a3467baa 1148{
28e02042 1149 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
182735ef 1150 PowerPCCPU *first_ppc_cpu;
b7d1f77a 1151 uint32_t rtas_limit;
259186a7 1152
9e3f9733
AG
1153 /* Check for unknown sysbus devices */
1154 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1155
7f763a5d
DG
1156 /* Reset the hash table & recalc the RMA */
1157 spapr_reset_htab(spapr);
a3467baa 1158
c8787ad4 1159 qemu_devices_reset();
a3467baa 1160
b7d1f77a
BH
1161 /*
1162 * We place the device tree and RTAS just below either the top of the RMA,
1163 * or just below 2GB, whichever is lowere, so that it can be
1164 * processed with 32-bit real mode code if necessary
1165 */
1166 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1167 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1168 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1169
a3467baa
DG
1170 /* Load the fdt */
1171 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
1172 spapr->rtas_size);
1173
b7d1f77a
BH
1174 /* Copy RTAS over */
1175 cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
1176 spapr->rtas_size);
1177
a3467baa 1178 /* Set up the entry state */
182735ef
AF
1179 first_ppc_cpu = POWERPC_CPU(first_cpu);
1180 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
1181 first_ppc_cpu->env.gpr[5] = 0;
1182 first_cpu->halted = 0;
1b718907 1183 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
a3467baa
DG
1184
1185}
1186
1bba0dc9
AF
1187static void spapr_cpu_reset(void *opaque)
1188{
28e02042 1189 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
5b2038e0 1190 PowerPCCPU *cpu = opaque;
259186a7 1191 CPUState *cs = CPU(cpu);
048706d9 1192 CPUPPCState *env = &cpu->env;
1bba0dc9 1193
259186a7 1194 cpu_reset(cs);
048706d9
DG
1195
1196 /* All CPUs start halted. CPU0 is unhalted from the machine level
1197 * reset code and the rest are explicitly started up by the guest
1198 * using an RTAS call */
259186a7 1199 cs->halted = 1;
048706d9
DG
1200
1201 env->spr[SPR_HIOR] = 0;
7f763a5d 1202
4be21d56 1203 env->external_htab = (uint8_t *)spapr->htab;
5736245c
AK
1204 if (kvm_enabled() && !env->external_htab) {
1205 /*
1206 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
1207 * functions do the right thing.
1208 */
1209 env->external_htab = (void *)1;
1210 }
7f763a5d 1211 env->htab_base = -1;
f3c75d42
AK
1212 /*
1213 * htab_mask is the mask used to normalize hash value to PTEG index.
1214 * htab_shift is log2 of hash table size.
1215 * We have 8 hpte per group, and each hpte is 16 bytes.
1216 * ie have 128 bytes per hpte entry.
1217 */
28e02042 1218 env->htab_mask = (1ULL << (spapr->htab_shift - 7)) - 1;
ec4936e1 1219 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
7f763a5d 1220 (spapr->htab_shift - 18);
1bba0dc9
AF
1221}
1222
28e02042 1223static void spapr_create_nvram(sPAPRMachineState *spapr)
639e8102 1224{
2ff3de68 1225 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
3978b863 1226 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
639e8102 1227
3978b863 1228 if (dinfo) {
6231a6da
MA
1229 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1230 &error_fatal);
639e8102
DG
1231 }
1232
1233 qdev_init_nofail(dev);
1234
1235 spapr->nvram = (struct sPAPRNVRAM *)dev;
1236}
1237
28e02042 1238static void spapr_rtc_create(sPAPRMachineState *spapr)
28df36a1
DG
1239{
1240 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1241
1242 qdev_init_nofail(dev);
1243 spapr->rtc = dev;
74e5ae28
DG
1244
1245 object_property_add_alias(qdev_get_machine(), "rtc-time",
1246 OBJECT(spapr->rtc), "date", NULL);
28df36a1
DG
1247}
1248
8c57b867 1249/* Returns whether we want to use VGA or not */
14c6a894 1250static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
f28359d8 1251{
8c57b867 1252 switch (vga_interface_type) {
8c57b867 1253 case VGA_NONE:
7effdaa3
MW
1254 return false;
1255 case VGA_DEVICE:
1256 return true;
1ddcae82 1257 case VGA_STD:
b798c190 1258 case VGA_VIRTIO:
1ddcae82 1259 return pci_vga_init(pci_bus) != NULL;
8c57b867 1260 default:
14c6a894
DG
1261 error_setg(errp,
1262 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1263 return false;
f28359d8 1264 }
f28359d8
LZ
1265}
1266
880ae7de
DG
1267static int spapr_post_load(void *opaque, int version_id)
1268{
28e02042 1269 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
880ae7de
DG
1270 int err = 0;
1271
631b22ea 1272 /* In earlier versions, there was no separate qdev for the PAPR
880ae7de
DG
1273 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1274 * So when migrating from those versions, poke the incoming offset
1275 * value into the RTC device */
1276 if (version_id < 3) {
1277 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1278 }
1279
1280 return err;
1281}
1282
1283static bool version_before_3(void *opaque, int version_id)
1284{
1285 return version_id < 3;
1286}
1287
4be21d56
DG
1288static const VMStateDescription vmstate_spapr = {
1289 .name = "spapr",
880ae7de 1290 .version_id = 3,
4be21d56 1291 .minimum_version_id = 1,
880ae7de 1292 .post_load = spapr_post_load,
3aff6c2f 1293 .fields = (VMStateField[]) {
880ae7de
DG
1294 /* used to be @next_irq */
1295 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
4be21d56
DG
1296
1297 /* RTC offset */
28e02042 1298 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
880ae7de 1299
28e02042 1300 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
4be21d56
DG
1301 VMSTATE_END_OF_LIST()
1302 },
1303};
1304
4be21d56
DG
1305static int htab_save_setup(QEMUFile *f, void *opaque)
1306{
28e02042 1307 sPAPRMachineState *spapr = opaque;
4be21d56 1308
4be21d56
DG
1309 /* "Iteration" header */
1310 qemu_put_be32(f, spapr->htab_shift);
1311
e68cb8b4
AK
1312 if (spapr->htab) {
1313 spapr->htab_save_index = 0;
1314 spapr->htab_first_pass = true;
1315 } else {
1316 assert(kvm_enabled());
e68cb8b4
AK
1317 }
1318
1319
4be21d56
DG
1320 return 0;
1321}
1322
28e02042 1323static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
4be21d56
DG
1324 int64_t max_ns)
1325{
1326 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1327 int index = spapr->htab_save_index;
bc72ad67 1328 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1329
1330 assert(spapr->htab_first_pass);
1331
1332 do {
1333 int chunkstart;
1334
1335 /* Consume invalid HPTEs */
1336 while ((index < htabslots)
1337 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1338 index++;
1339 CLEAN_HPTE(HPTE(spapr->htab, index));
1340 }
1341
1342 /* Consume valid HPTEs */
1343 chunkstart = index;
338c25b6 1344 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56
DG
1345 && HPTE_VALID(HPTE(spapr->htab, index))) {
1346 index++;
1347 CLEAN_HPTE(HPTE(spapr->htab, index));
1348 }
1349
1350 if (index > chunkstart) {
1351 int n_valid = index - chunkstart;
1352
1353 qemu_put_be32(f, chunkstart);
1354 qemu_put_be16(f, n_valid);
1355 qemu_put_be16(f, 0);
1356 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1357 HASH_PTE_SIZE_64 * n_valid);
1358
bc72ad67 1359 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1360 break;
1361 }
1362 }
1363 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1364
1365 if (index >= htabslots) {
1366 assert(index == htabslots);
1367 index = 0;
1368 spapr->htab_first_pass = false;
1369 }
1370 spapr->htab_save_index = index;
1371}
1372
28e02042 1373static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
e68cb8b4 1374 int64_t max_ns)
4be21d56
DG
1375{
1376 bool final = max_ns < 0;
1377 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1378 int examined = 0, sent = 0;
1379 int index = spapr->htab_save_index;
bc72ad67 1380 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1381
1382 assert(!spapr->htab_first_pass);
1383
1384 do {
1385 int chunkstart, invalidstart;
1386
1387 /* Consume non-dirty HPTEs */
1388 while ((index < htabslots)
1389 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1390 index++;
1391 examined++;
1392 }
1393
1394 chunkstart = index;
1395 /* Consume valid dirty HPTEs */
338c25b6 1396 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56
DG
1397 && HPTE_DIRTY(HPTE(spapr->htab, index))
1398 && HPTE_VALID(HPTE(spapr->htab, index))) {
1399 CLEAN_HPTE(HPTE(spapr->htab, index));
1400 index++;
1401 examined++;
1402 }
1403
1404 invalidstart = index;
1405 /* Consume invalid dirty HPTEs */
338c25b6 1406 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
4be21d56
DG
1407 && HPTE_DIRTY(HPTE(spapr->htab, index))
1408 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1409 CLEAN_HPTE(HPTE(spapr->htab, index));
1410 index++;
1411 examined++;
1412 }
1413
1414 if (index > chunkstart) {
1415 int n_valid = invalidstart - chunkstart;
1416 int n_invalid = index - invalidstart;
1417
1418 qemu_put_be32(f, chunkstart);
1419 qemu_put_be16(f, n_valid);
1420 qemu_put_be16(f, n_invalid);
1421 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1422 HASH_PTE_SIZE_64 * n_valid);
1423 sent += index - chunkstart;
1424
bc72ad67 1425 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1426 break;
1427 }
1428 }
1429
1430 if (examined >= htabslots) {
1431 break;
1432 }
1433
1434 if (index >= htabslots) {
1435 assert(index == htabslots);
1436 index = 0;
1437 }
1438 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1439
1440 if (index >= htabslots) {
1441 assert(index == htabslots);
1442 index = 0;
1443 }
1444
1445 spapr->htab_save_index = index;
1446
e68cb8b4 1447 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
4be21d56
DG
1448}
1449
e68cb8b4
AK
1450#define MAX_ITERATION_NS 5000000 /* 5 ms */
1451#define MAX_KVM_BUF_SIZE 2048
1452
4be21d56
DG
1453static int htab_save_iterate(QEMUFile *f, void *opaque)
1454{
28e02042 1455 sPAPRMachineState *spapr = opaque;
715c5407 1456 int fd;
e68cb8b4 1457 int rc = 0;
4be21d56
DG
1458
1459 /* Iteration header */
1460 qemu_put_be32(f, 0);
1461
e68cb8b4
AK
1462 if (!spapr->htab) {
1463 assert(kvm_enabled());
1464
715c5407
DG
1465 fd = get_htab_fd(spapr);
1466 if (fd < 0) {
1467 return fd;
01a57972
SMJ
1468 }
1469
715c5407 1470 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
e68cb8b4
AK
1471 if (rc < 0) {
1472 return rc;
1473 }
1474 } else if (spapr->htab_first_pass) {
4be21d56
DG
1475 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1476 } else {
e68cb8b4 1477 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
4be21d56
DG
1478 }
1479
1480 /* End marker */
1481 qemu_put_be32(f, 0);
1482 qemu_put_be16(f, 0);
1483 qemu_put_be16(f, 0);
1484
e68cb8b4 1485 return rc;
4be21d56
DG
1486}
1487
1488static int htab_save_complete(QEMUFile *f, void *opaque)
1489{
28e02042 1490 sPAPRMachineState *spapr = opaque;
715c5407 1491 int fd;
4be21d56
DG
1492
1493 /* Iteration header */
1494 qemu_put_be32(f, 0);
1495
e68cb8b4
AK
1496 if (!spapr->htab) {
1497 int rc;
1498
1499 assert(kvm_enabled());
1500
715c5407
DG
1501 fd = get_htab_fd(spapr);
1502 if (fd < 0) {
1503 return fd;
01a57972
SMJ
1504 }
1505
715c5407 1506 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
e68cb8b4
AK
1507 if (rc < 0) {
1508 return rc;
1509 }
715c5407 1510 close_htab_fd(spapr);
e68cb8b4
AK
1511 } else {
1512 htab_save_later_pass(f, spapr, -1);
1513 }
4be21d56
DG
1514
1515 /* End marker */
1516 qemu_put_be32(f, 0);
1517 qemu_put_be16(f, 0);
1518 qemu_put_be16(f, 0);
1519
1520 return 0;
1521}
1522
1523static int htab_load(QEMUFile *f, void *opaque, int version_id)
1524{
28e02042 1525 sPAPRMachineState *spapr = opaque;
4be21d56 1526 uint32_t section_hdr;
e68cb8b4 1527 int fd = -1;
4be21d56
DG
1528
1529 if (version_id < 1 || version_id > 1) {
98a5d100 1530 error_report("htab_load() bad version");
4be21d56
DG
1531 return -EINVAL;
1532 }
1533
1534 section_hdr = qemu_get_be32(f);
1535
1536 if (section_hdr) {
1537 /* First section, just the hash shift */
1538 if (spapr->htab_shift != section_hdr) {
613e7a76
BR
1539 error_report("htab_shift mismatch: source %d target %d",
1540 section_hdr, spapr->htab_shift);
4be21d56
DG
1541 return -EINVAL;
1542 }
1543 return 0;
1544 }
1545
e68cb8b4
AK
1546 if (!spapr->htab) {
1547 assert(kvm_enabled());
1548
1549 fd = kvmppc_get_htab_fd(true);
1550 if (fd < 0) {
98a5d100
DG
1551 error_report("Unable to open fd to restore KVM hash table: %s",
1552 strerror(errno));
e68cb8b4
AK
1553 }
1554 }
1555
4be21d56
DG
1556 while (true) {
1557 uint32_t index;
1558 uint16_t n_valid, n_invalid;
1559
1560 index = qemu_get_be32(f);
1561 n_valid = qemu_get_be16(f);
1562 n_invalid = qemu_get_be16(f);
1563
1564 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1565 /* End of Stream */
1566 break;
1567 }
1568
e68cb8b4 1569 if ((index + n_valid + n_invalid) >
4be21d56
DG
1570 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1571 /* Bad index in stream */
98a5d100
DG
1572 error_report(
1573 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1574 index, n_valid, n_invalid, spapr->htab_shift);
4be21d56
DG
1575 return -EINVAL;
1576 }
1577
e68cb8b4
AK
1578 if (spapr->htab) {
1579 if (n_valid) {
1580 qemu_get_buffer(f, HPTE(spapr->htab, index),
1581 HASH_PTE_SIZE_64 * n_valid);
1582 }
1583 if (n_invalid) {
1584 memset(HPTE(spapr->htab, index + n_valid), 0,
1585 HASH_PTE_SIZE_64 * n_invalid);
1586 }
1587 } else {
1588 int rc;
1589
1590 assert(fd >= 0);
1591
1592 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1593 if (rc < 0) {
1594 return rc;
1595 }
4be21d56
DG
1596 }
1597 }
1598
e68cb8b4
AK
1599 if (!spapr->htab) {
1600 assert(fd >= 0);
1601 close(fd);
1602 }
1603
4be21d56
DG
1604 return 0;
1605}
1606
1607static SaveVMHandlers savevm_htab_handlers = {
1608 .save_live_setup = htab_save_setup,
1609 .save_live_iterate = htab_save_iterate,
a3e06c3d 1610 .save_live_complete_precopy = htab_save_complete,
4be21d56
DG
1611 .load_state = htab_load,
1612};
1613
5b2128d2
AG
1614static void spapr_boot_set(void *opaque, const char *boot_device,
1615 Error **errp)
1616{
1617 MachineState *machine = MACHINE(qdev_get_machine());
1618 machine->boot_order = g_strdup(boot_device);
1619}
1620
569f4967
DG
1621static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu,
1622 Error **errp)
bab99ea0
BR
1623{
1624 CPUPPCState *env = &cpu->env;
1625
1626 /* Set time-base frequency to 512 MHz */
1627 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1628
1629 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1630 * MSR[IP] should never be set.
1631 */
1632 env->msr_mask &= ~(1 << 6);
1633
1634 /* Tell KVM that we're in PAPR mode */
1635 if (kvm_enabled()) {
1636 kvmppc_set_papr(cpu);
1637 }
1638
1639 if (cpu->max_compat) {
569f4967
DG
1640 Error *local_err = NULL;
1641
1642 ppc_set_compat(cpu, cpu->max_compat, &local_err);
1643 if (local_err) {
1644 error_propagate(errp, local_err);
1645 return;
1646 }
bab99ea0
BR
1647 }
1648
1649 xics_cpu_setup(spapr->icp, cpu);
1650
1651 qemu_register_reset(spapr_cpu_reset, cpu);
1652}
1653
224245bf
DG
1654/*
1655 * Reset routine for LMB DR devices.
1656 *
1657 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1658 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1659 * when it walks all its children devices. LMB devices reset occurs
1660 * as part of spapr_ppc_reset().
1661 */
1662static void spapr_drc_reset(void *opaque)
1663{
1664 sPAPRDRConnector *drc = opaque;
1665 DeviceState *d = DEVICE(drc);
1666
1667 if (d) {
1668 device_reset(d);
1669 }
1670}
1671
1672static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1673{
1674 MachineState *machine = MACHINE(spapr);
1675 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
e8f986fc 1676 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
224245bf
DG
1677 int i;
1678
1679 for (i = 0; i < nr_lmbs; i++) {
1680 sPAPRDRConnector *drc;
1681 uint64_t addr;
1682
e8f986fc 1683 addr = i * lmb_size + spapr->hotplug_memory.base;
224245bf
DG
1684 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1685 addr/lmb_size);
1686 qemu_register_reset(spapr_drc_reset, drc);
1687 }
1688}
1689
1690/*
1691 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1692 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1693 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1694 */
7c150d6f 1695static void spapr_validate_node_memory(MachineState *machine, Error **errp)
224245bf
DG
1696{
1697 int i;
1698
7c150d6f
DG
1699 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1700 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1701 " is not aligned to %llu MiB",
1702 machine->ram_size,
1703 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1704 return;
1705 }
1706
1707 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1708 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1709 " is not aligned to %llu MiB",
1710 machine->ram_size,
1711 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1712 return;
224245bf
DG
1713 }
1714
1715 for (i = 0; i < nb_numa_nodes; i++) {
1716 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
7c150d6f
DG
1717 error_setg(errp,
1718 "Node %d memory size 0x%" PRIx64
1719 " is not aligned to %llu MiB",
1720 i, numa_info[i].node_mem,
1721 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1722 return;
224245bf
DG
1723 }
1724 }
1725}
1726
9fdf0c29 1727/* pSeries LPAR / sPAPR hardware init */
3ef96221 1728static void ppc_spapr_init(MachineState *machine)
9fdf0c29 1729{
28e02042 1730 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
224245bf 1731 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
3ef96221
MA
1732 const char *kernel_filename = machine->kernel_filename;
1733 const char *kernel_cmdline = machine->kernel_cmdline;
1734 const char *initrd_filename = machine->initrd_filename;
05769733 1735 PowerPCCPU *cpu;
8c9f64df 1736 PCIHostState *phb;
9fdf0c29 1737 int i;
890c2b77
AK
1738 MemoryRegion *sysmem = get_system_memory();
1739 MemoryRegion *ram = g_new(MemoryRegion, 1);
658fa66b
AK
1740 MemoryRegion *rma_region;
1741 void *rma = NULL;
a8170e5e 1742 hwaddr rma_alloc_size;
b082d65a 1743 hwaddr node0_size = spapr_node0_size();
4d8d5467
BH
1744 uint32_t initrd_base = 0;
1745 long kernel_size = 0, initrd_size = 0;
b7d1f77a 1746 long load_limit, fw_size;
16457e7f 1747 bool kernel_le = false;
39ac8455 1748 char *filename;
9fdf0c29 1749
0ee2c058
AK
1750 msi_supported = true;
1751
d43b45e2
DG
1752 QLIST_INIT(&spapr->phbs);
1753
9fdf0c29
DG
1754 cpu_ppc_hypercall = emulate_spapr_hypercall;
1755
354ac20a 1756 /* Allocate RMA if necessary */
658fa66b 1757 rma_alloc_size = kvmppc_alloc_rma(&rma);
354ac20a
DG
1758
1759 if (rma_alloc_size == -1) {
730fce59 1760 error_report("Unable to create RMA");
354ac20a
DG
1761 exit(1);
1762 }
7f763a5d 1763
c4177479 1764 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
7f763a5d 1765 spapr->rma_size = rma_alloc_size;
354ac20a 1766 } else {
c4177479 1767 spapr->rma_size = node0_size;
7f763a5d
DG
1768
1769 /* With KVM, we don't actually know whether KVM supports an
1770 * unbounded RMA (PR KVM) or is limited by the hash table size
1771 * (HV KVM using VRMA), so we always assume the latter
1772 *
1773 * In that case, we also limit the initial allocations for RTAS
1774 * etc... to 256M since we have no way to know what the VRMA size
1775 * is going to be as it depends on the size of the hash table
1776 * isn't determined yet.
1777 */
1778 if (kvm_enabled()) {
1779 spapr->vrma_adjust = 1;
1780 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1781 }
354ac20a
DG
1782 }
1783
c4177479 1784 if (spapr->rma_size > node0_size) {
d54e4d76
DG
1785 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
1786 spapr->rma_size);
c4177479
AK
1787 exit(1);
1788 }
1789
b7d1f77a
BH
1790 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1791 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
9fdf0c29 1792
382be75d
DG
1793 /* We aim for a hash table of size 1/128 the size of RAM. The
1794 * normal rule of thumb is 1/64 the size of RAM, but that's much
1795 * more than needed for the Linux guests we support. */
1796 spapr->htab_shift = 18; /* Minimum architected size */
1797 while (spapr->htab_shift <= 46) {
ce881f77 1798 if ((1ULL << (spapr->htab_shift + 7)) >= machine->maxram_size) {
382be75d
DG
1799 break;
1800 }
1801 spapr->htab_shift++;
1802 }
b817772a 1803 spapr_alloc_htab(spapr);
7f763a5d 1804
7b565160 1805 /* Set up Interrupt Controller before we create the VCPUs */
446f16a6 1806 spapr->icp = xics_system_init(machine,
9e734e3d 1807 DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(),
f303f117 1808 smp_threads),
1e49182d 1809 XICS_IRQS, &error_fatal);
7b565160 1810
224245bf 1811 if (smc->dr_lmb_enabled) {
7c150d6f 1812 spapr_validate_node_memory(machine, &error_fatal);
224245bf
DG
1813 }
1814
9fdf0c29 1815 /* init CPUs */
19fb2c36
BR
1816 if (machine->cpu_model == NULL) {
1817 machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
9fdf0c29
DG
1818 }
1819 for (i = 0; i < smp_cpus; i++) {
19fb2c36 1820 cpu = cpu_ppc_init(machine->cpu_model);
05769733 1821 if (cpu == NULL) {
569f4967 1822 error_report("Unable to find PowerPC CPU definition");
9fdf0c29
DG
1823 exit(1);
1824 }
569f4967 1825 spapr_cpu_init(spapr, cpu, &error_fatal);
9fdf0c29
DG
1826 }
1827
026bfd89
DG
1828 if (kvm_enabled()) {
1829 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1830 kvmppc_enable_logical_ci_hcalls();
ef9971dd 1831 kvmppc_enable_set_mode_hcall();
026bfd89
DG
1832 }
1833
9fdf0c29 1834 /* allocate RAM */
f92f5da1 1835 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
fb164994 1836 machine->ram_size);
f92f5da1 1837 memory_region_add_subregion(sysmem, 0, ram);
9fdf0c29 1838
658fa66b
AK
1839 if (rma_alloc_size && rma) {
1840 rma_region = g_new(MemoryRegion, 1);
1841 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1842 rma_alloc_size, rma);
1843 vmstate_register_ram_global(rma_region);
1844 memory_region_add_subregion(sysmem, 0, rma_region);
1845 }
1846
4a1c9cf0
BR
1847 /* initialize hotplug memory address space */
1848 if (machine->ram_size < machine->maxram_size) {
1849 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1850
1851 if (machine->ram_slots > SPAPR_MAX_RAM_SLOTS) {
d54e4d76
DG
1852 error_report("Specified number of memory slots %"
1853 PRIu64" exceeds max supported %d",
19a35c9e 1854 machine->ram_slots, SPAPR_MAX_RAM_SLOTS);
d54e4d76 1855 exit(1);
4a1c9cf0
BR
1856 }
1857
1858 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1859 SPAPR_HOTPLUG_MEM_ALIGN);
1860 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1861 "hotplug-memory", hotplug_mem_size);
1862 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1863 &spapr->hotplug_memory.mr);
1864 }
1865
224245bf
DG
1866 if (smc->dr_lmb_enabled) {
1867 spapr_create_lmb_dr_connectors(spapr);
1868 }
1869
39ac8455 1870 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
4c56440d 1871 if (!filename) {
730fce59 1872 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
4c56440d
SW
1873 exit(1);
1874 }
b7d1f77a
BH
1875 spapr->rtas_size = get_image_size(filename);
1876 spapr->rtas_blob = g_malloc(spapr->rtas_size);
1877 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
730fce59 1878 error_report("Could not load LPAR rtas '%s'", filename);
39ac8455
DG
1879 exit(1);
1880 }
4d8d5467 1881 if (spapr->rtas_size > RTAS_MAX_SIZE) {
730fce59
TH
1882 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1883 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
4d8d5467
BH
1884 exit(1);
1885 }
7267c094 1886 g_free(filename);
39ac8455 1887
74d042e5
DG
1888 /* Set up EPOW events infrastructure */
1889 spapr_events_init(spapr);
1890
12f42174 1891 /* Set up the RTC RTAS interfaces */
28df36a1 1892 spapr_rtc_create(spapr);
12f42174 1893
b5cec4c5 1894 /* Set up VIO bus */
4040ab72
DG
1895 spapr->vio_bus = spapr_vio_bus_init();
1896
277f9acf 1897 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
4040ab72 1898 if (serial_hds[i]) {
d601fac4 1899 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
4040ab72
DG
1900 }
1901 }
9fdf0c29 1902
639e8102
DG
1903 /* We always have at least the nvram device on VIO */
1904 spapr_create_nvram(spapr);
1905
3384f95c 1906 /* Set up PCI */
fa28f71b
AK
1907 spapr_pci_rtas_init();
1908
89dfd6e1 1909 phb = spapr_create_phb(spapr, 0);
3384f95c 1910
277f9acf 1911 for (i = 0; i < nb_nics; i++) {
8d90ad90
DG
1912 NICInfo *nd = &nd_table[i];
1913
1914 if (!nd->model) {
7267c094 1915 nd->model = g_strdup("ibmveth");
8d90ad90
DG
1916 }
1917
1918 if (strcmp(nd->model, "ibmveth") == 0) {
d601fac4 1919 spapr_vlan_create(spapr->vio_bus, nd);
8d90ad90 1920 } else {
29b358f9 1921 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
8d90ad90
DG
1922 }
1923 }
1924
6e270446 1925 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
d601fac4 1926 spapr_vscsi_create(spapr->vio_bus);
6e270446
BH
1927 }
1928
f28359d8 1929 /* Graphics */
14c6a894 1930 if (spapr_vga_init(phb->bus, &error_fatal)) {
3fc5acde 1931 spapr->has_graphics = true;
c6e76503 1932 machine->usb |= defaults_enabled() && !machine->usb_disabled;
f28359d8
LZ
1933 }
1934
4ee9ced9 1935 if (machine->usb) {
57040d45
TH
1936 if (smc->use_ohci_by_default) {
1937 pci_create_simple(phb->bus, -1, "pci-ohci");
1938 } else {
1939 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
1940 }
c86580b8 1941
35139a59 1942 if (spapr->has_graphics) {
c86580b8
MA
1943 USBBus *usb_bus = usb_bus_find(-1);
1944
1945 usb_create_simple(usb_bus, "usb-kbd");
1946 usb_create_simple(usb_bus, "usb-mouse");
35139a59
DG
1947 }
1948 }
1949
7f763a5d 1950 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
d54e4d76
DG
1951 error_report(
1952 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
1953 MIN_RMA_SLOF);
4d8d5467
BH
1954 exit(1);
1955 }
1956
9fdf0c29
DG
1957 if (kernel_filename) {
1958 uint64_t lowaddr = 0;
1959
9fdf0c29 1960 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
4ecd4d16 1961 NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE, 0);
3b66da82 1962 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
16457e7f
BH
1963 kernel_size = load_elf(kernel_filename,
1964 translate_kernel_address, NULL,
4ecd4d16 1965 NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE, 0);
16457e7f
BH
1966 kernel_le = kernel_size > 0;
1967 }
9fdf0c29 1968 if (kernel_size < 0) {
d54e4d76
DG
1969 error_report("error loading %s: %s",
1970 kernel_filename, load_elf_strerror(kernel_size));
9fdf0c29
DG
1971 exit(1);
1972 }
1973
1974 /* load initrd */
1975 if (initrd_filename) {
4d8d5467
BH
1976 /* Try to locate the initrd in the gap between the kernel
1977 * and the firmware. Add a bit of space just in case
1978 */
1979 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
9fdf0c29 1980 initrd_size = load_image_targphys(initrd_filename, initrd_base,
4d8d5467 1981 load_limit - initrd_base);
9fdf0c29 1982 if (initrd_size < 0) {
d54e4d76
DG
1983 error_report("could not load initial ram disk '%s'",
1984 initrd_filename);
9fdf0c29
DG
1985 exit(1);
1986 }
1987 } else {
1988 initrd_base = 0;
1989 initrd_size = 0;
1990 }
4d8d5467 1991 }
a3467baa 1992
8e7ea787
AF
1993 if (bios_name == NULL) {
1994 bios_name = FW_FILE_NAME;
1995 }
1996 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
4c56440d 1997 if (!filename) {
68fea5a0 1998 error_report("Could not find LPAR firmware '%s'", bios_name);
4c56440d
SW
1999 exit(1);
2000 }
4d8d5467 2001 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
68fea5a0
TH
2002 if (fw_size <= 0) {
2003 error_report("Could not load LPAR firmware '%s'", filename);
4d8d5467
BH
2004 exit(1);
2005 }
2006 g_free(filename);
4d8d5467 2007
28e02042
DG
2008 /* FIXME: Should register things through the MachineState's qdev
2009 * interface, this is a legacy from the sPAPREnvironment structure
2010 * which predated MachineState but had a similar function */
4be21d56
DG
2011 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2012 register_savevm_live(NULL, "spapr/htab", -1, 1,
2013 &savevm_htab_handlers, spapr);
2014
9fdf0c29 2015 /* Prepare the device tree */
3bbf37f2 2016 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
16457e7f 2017 kernel_size, kernel_le,
31fe14d1
NF
2018 kernel_cmdline,
2019 spapr->check_exception_irq);
a3467baa 2020 assert(spapr->fdt_skel != NULL);
5b2128d2 2021
46503c2b
MR
2022 /* used by RTAS */
2023 QTAILQ_INIT(&spapr->ccs_list);
2024 qemu_register_reset(spapr_ccs_reset_hook, spapr);
2025
5b2128d2 2026 qemu_register_boot_set(spapr_boot_set, spapr);
9fdf0c29
DG
2027}
2028
135a129a
AK
2029static int spapr_kvm_type(const char *vm_type)
2030{
2031 if (!vm_type) {
2032 return 0;
2033 }
2034
2035 if (!strcmp(vm_type, "HV")) {
2036 return 1;
2037 }
2038
2039 if (!strcmp(vm_type, "PR")) {
2040 return 2;
2041 }
2042
2043 error_report("Unknown kvm-type specified '%s'", vm_type);
2044 exit(1);
2045}
2046
71461b0f 2047/*
627b84f4 2048 * Implementation of an interface to adjust firmware path
71461b0f
AK
2049 * for the bootindex property handling.
2050 */
2051static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2052 DeviceState *dev)
2053{
2054#define CAST(type, obj, name) \
2055 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2056 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2057 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2058
2059 if (d) {
2060 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2061 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2062 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2063
2064 if (spapr) {
2065 /*
2066 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2067 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2068 * in the top 16 bits of the 64-bit LUN
2069 */
2070 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2071 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2072 (uint64_t)id << 48);
2073 } else if (virtio) {
2074 /*
2075 * We use SRP luns of the form 01000000 | (target << 8) | lun
2076 * in the top 32 bits of the 64-bit LUN
2077 * Note: the quote above is from SLOF and it is wrong,
2078 * the actual binding is:
2079 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2080 */
2081 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2082 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2083 (uint64_t)id << 32);
2084 } else if (usb) {
2085 /*
2086 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2087 * in the top 32 bits of the 64-bit LUN
2088 */
2089 unsigned usb_port = atoi(usb->port->path);
2090 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2091 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2092 (uint64_t)id << 32);
2093 }
2094 }
2095
2096 if (phb) {
2097 /* Replace "pci" with "pci@800000020000000" */
2098 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2099 }
2100
2101 return NULL;
2102}
2103
23825581
EH
2104static char *spapr_get_kvm_type(Object *obj, Error **errp)
2105{
28e02042 2106 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2107
28e02042 2108 return g_strdup(spapr->kvm_type);
23825581
EH
2109}
2110
2111static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2112{
28e02042 2113 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2114
28e02042
DG
2115 g_free(spapr->kvm_type);
2116 spapr->kvm_type = g_strdup(value);
23825581
EH
2117}
2118
2119static void spapr_machine_initfn(Object *obj)
2120{
715c5407
DG
2121 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2122
2123 spapr->htab_fd = -1;
23825581
EH
2124 object_property_add_str(obj, "kvm-type",
2125 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
49d2e648
MA
2126 object_property_set_description(obj, "kvm-type",
2127 "Specifies the KVM virtualization mode (HV, PR)",
2128 NULL);
23825581
EH
2129}
2130
87bbdd9c
DG
2131static void spapr_machine_finalizefn(Object *obj)
2132{
2133 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2134
2135 g_free(spapr->kvm_type);
2136}
2137
34316482
AK
2138static void ppc_cpu_do_nmi_on_cpu(void *arg)
2139{
2140 CPUState *cs = arg;
2141
2142 cpu_synchronize_state(cs);
2143 ppc_cpu_do_system_reset(cs);
2144}
2145
2146static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2147{
2148 CPUState *cs;
2149
2150 CPU_FOREACH(cs) {
2151 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
2152 }
2153}
2154
c20d332a
BR
2155static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
2156 uint32_t node, Error **errp)
2157{
2158 sPAPRDRConnector *drc;
2159 sPAPRDRConnectorClass *drck;
2160 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2161 int i, fdt_offset, fdt_size;
2162 void *fdt;
2163
2164 /*
2165 * Check for DRC connectors and send hotplug notification to the
2166 * guest only in case of hotplugged memory. This allows cold plugged
2167 * memory to be specified at boot time.
2168 */
2169 if (!dev->hotplugged) {
2170 return;
2171 }
2172
2173 for (i = 0; i < nr_lmbs; i++) {
2174 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2175 addr/SPAPR_MEMORY_BLOCK_SIZE);
2176 g_assert(drc);
2177
2178 fdt = create_device_tree(&fdt_size);
2179 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2180 SPAPR_MEMORY_BLOCK_SIZE);
2181
2182 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2183 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
c20d332a
BR
2184 addr += SPAPR_MEMORY_BLOCK_SIZE;
2185 }
0a417869 2186 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
c20d332a
BR
2187}
2188
2189static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2190 uint32_t node, Error **errp)
2191{
2192 Error *local_err = NULL;
2193 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2194 PCDIMMDevice *dimm = PC_DIMM(dev);
2195 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2196 MemoryRegion *mr = ddc->get_memory_region(dimm);
2197 uint64_t align = memory_region_get_alignment(mr);
2198 uint64_t size = memory_region_size(mr);
2199 uint64_t addr;
2200
2201 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2202 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2203 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2204 goto out;
2205 }
2206
d6a9b0b8 2207 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
c20d332a
BR
2208 if (local_err) {
2209 goto out;
2210 }
2211
2212 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2213 if (local_err) {
2214 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2215 goto out;
2216 }
2217
2218 spapr_add_lmbs(dev, addr, size, node, &error_abort);
2219
2220out:
2221 error_propagate(errp, local_err);
2222}
2223
2224static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2225 DeviceState *dev, Error **errp)
2226{
2227 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2228
2229 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
b556854b 2230 int node;
c20d332a
BR
2231
2232 if (!smc->dr_lmb_enabled) {
2233 error_setg(errp, "Memory hotplug not supported for this machine");
2234 return;
2235 }
2236 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2237 if (*errp) {
2238 return;
2239 }
2240
b556854b
BR
2241 /*
2242 * Currently PowerPC kernel doesn't allow hot-adding memory to
2243 * memory-less node, but instead will silently add the memory
2244 * to the first node that has some memory. This causes two
2245 * unexpected behaviours for the user.
2246 *
2247 * - Memory gets hotplugged to a different node than what the user
2248 * specified.
2249 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2250 * to memory-less node, a reboot will set things accordingly
2251 * and the previously hotplugged memory now ends in the right node.
2252 * This appears as if some memory moved from one node to another.
2253 *
2254 * So until kernel starts supporting memory hotplug to memory-less
2255 * nodes, just prevent such attempts upfront in QEMU.
2256 */
2257 if (nb_numa_nodes && !numa_info[node].node_mem) {
2258 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2259 node);
2260 return;
2261 }
2262
c20d332a
BR
2263 spapr_memory_plug(hotplug_dev, dev, node, errp);
2264 }
2265}
2266
2267static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2268 DeviceState *dev, Error **errp)
2269{
2270 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2271 error_setg(errp, "Memory hot unplug not supported by sPAPR");
2272 }
2273}
2274
2275static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine,
2276 DeviceState *dev)
2277{
2278 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2279 return HOTPLUG_HANDLER(machine);
2280 }
2281 return NULL;
2282}
2283
20bb648d
DG
2284static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2285{
2286 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2287 * socket means much for the paravirtualized PAPR platform) */
2288 return cpu_index / smp_threads / smp_cores;
2289}
2290
29ee3247
AK
2291static void spapr_machine_class_init(ObjectClass *oc, void *data)
2292{
2293 MachineClass *mc = MACHINE_CLASS(oc);
224245bf 2294 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
71461b0f 2295 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
34316482 2296 NMIClass *nc = NMI_CLASS(oc);
c20d332a 2297 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
958db90c 2298
0eb9054c 2299 mc->desc = "pSeries Logical Partition (PAPR compliant)";
fc9f38c3
DG
2300
2301 /*
2302 * We set up the default / latest behaviour here. The class_init
2303 * functions for the specific versioned machine types can override
2304 * these details for backwards compatibility
2305 */
958db90c
MA
2306 mc->init = ppc_spapr_init;
2307 mc->reset = ppc_spapr_reset;
2308 mc->block_default_type = IF_SCSI;
38b02bd8 2309 mc->max_cpus = MAX_CPUMASK_BITS;
958db90c 2310 mc->no_parallel = 1;
5b2128d2 2311 mc->default_boot_order = "";
a34944fe 2312 mc->default_ram_size = 512 * M_BYTE;
958db90c 2313 mc->kvm_type = spapr_kvm_type;
9e3f9733 2314 mc->has_dynamic_sysbus = true;
e4024630 2315 mc->pci_allow_0_address = true;
c20d332a
BR
2316 mc->get_hotplug_handler = spapr_get_hotpug_handler;
2317 hc->plug = spapr_machine_device_plug;
2318 hc->unplug = spapr_machine_device_unplug;
20bb648d 2319 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
00b4fbe2 2320
fc9f38c3 2321 smc->dr_lmb_enabled = true;
71461b0f 2322 fwc->get_dev_path = spapr_get_fw_dev_path;
34316482 2323 nc->nmi_monitor_handler = spapr_nmi;
29ee3247
AK
2324}
2325
2326static const TypeInfo spapr_machine_info = {
2327 .name = TYPE_SPAPR_MACHINE,
2328 .parent = TYPE_MACHINE,
4aee7362 2329 .abstract = true,
6ca1502e 2330 .instance_size = sizeof(sPAPRMachineState),
23825581 2331 .instance_init = spapr_machine_initfn,
87bbdd9c 2332 .instance_finalize = spapr_machine_finalizefn,
183930c0 2333 .class_size = sizeof(sPAPRMachineClass),
29ee3247 2334 .class_init = spapr_machine_class_init,
71461b0f
AK
2335 .interfaces = (InterfaceInfo[]) {
2336 { TYPE_FW_PATH_PROVIDER },
34316482 2337 { TYPE_NMI },
c20d332a 2338 { TYPE_HOTPLUG_HANDLER },
71461b0f
AK
2339 { }
2340 },
29ee3247
AK
2341};
2342
fccbc785 2343#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
5013c547
DG
2344 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
2345 void *data) \
2346 { \
2347 MachineClass *mc = MACHINE_CLASS(oc); \
2348 spapr_machine_##suffix##_class_options(mc); \
fccbc785
DG
2349 if (latest) { \
2350 mc->alias = "pseries"; \
2351 mc->is_default = 1; \
2352 } \
5013c547
DG
2353 } \
2354 static void spapr_machine_##suffix##_instance_init(Object *obj) \
2355 { \
2356 MachineState *machine = MACHINE(obj); \
2357 spapr_machine_##suffix##_instance_options(machine); \
2358 } \
2359 static const TypeInfo spapr_machine_##suffix##_info = { \
2360 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
2361 .parent = TYPE_SPAPR_MACHINE, \
2362 .class_init = spapr_machine_##suffix##_class_init, \
2363 .instance_init = spapr_machine_##suffix##_instance_init, \
2364 }; \
2365 static void spapr_machine_register_##suffix(void) \
2366 { \
2367 type_register(&spapr_machine_##suffix##_info); \
2368 } \
2369 machine_init(spapr_machine_register_##suffix)
2370
4b23699c
DG
2371/*
2372 * pseries-2.6
2373 */
2374static void spapr_machine_2_6_instance_options(MachineState *machine)
2375{
2376}
2377
2378static void spapr_machine_2_6_class_options(MachineClass *mc)
2379{
2380 /* Defaults for the latest behaviour inherited from the base class */
2381}
2382
2383DEFINE_SPAPR_MACHINE(2_6, "2.6", true);
2384
1c5f29bb
DG
2385/*
2386 * pseries-2.5
2387 */
4b23699c
DG
2388#define SPAPR_COMPAT_2_5 \
2389 HW_COMPAT_2_5
2390
5013c547 2391static void spapr_machine_2_5_instance_options(MachineState *machine)
1c5f29bb 2392{
5013c547
DG
2393}
2394
2395static void spapr_machine_2_5_class_options(MachineClass *mc)
2396{
57040d45
TH
2397 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2398
4b23699c 2399 spapr_machine_2_6_class_options(mc);
57040d45 2400 smc->use_ohci_by_default = true;
4b23699c 2401 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
1c5f29bb
DG
2402}
2403
4b23699c 2404DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
1c5f29bb
DG
2405
2406/*
2407 * pseries-2.4
2408 */
80fd50f9
CH
2409#define SPAPR_COMPAT_2_4 \
2410 HW_COMPAT_2_4
2411
5013c547 2412static void spapr_machine_2_4_instance_options(MachineState *machine)
1c5f29bb 2413{
5013c547
DG
2414 spapr_machine_2_5_instance_options(machine);
2415}
1c5f29bb 2416
5013c547
DG
2417static void spapr_machine_2_4_class_options(MachineClass *mc)
2418{
fc9f38c3
DG
2419 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
2420
2421 spapr_machine_2_5_class_options(mc);
fc9f38c3 2422 smc->dr_lmb_enabled = false;
f949b4e5 2423 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
1c5f29bb
DG
2424}
2425
fccbc785 2426DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
1c5f29bb
DG
2427
2428/*
2429 * pseries-2.3
2430 */
38ff32c6 2431#define SPAPR_COMPAT_2_3 \
80fd50f9 2432 SPAPR_COMPAT_2_4 \
7619c7b0
MR
2433 HW_COMPAT_2_3 \
2434 {\
2435 .driver = "spapr-pci-host-bridge",\
2436 .property = "dynamic-reconfiguration",\
2437 .value = "off",\
2438 },
38ff32c6 2439
5013c547 2440static void spapr_machine_2_3_instance_options(MachineState *machine)
d25228e7 2441{
5013c547 2442 spapr_machine_2_4_instance_options(machine);
ff14e817 2443 savevm_skip_section_footers();
13d16814 2444 global_state_set_optional();
d25228e7
JW
2445}
2446
5013c547 2447static void spapr_machine_2_3_class_options(MachineClass *mc)
6026db45 2448{
fc9f38c3 2449 spapr_machine_2_4_class_options(mc);
f949b4e5 2450 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
6026db45 2451}
fccbc785 2452DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
6026db45 2453
1c5f29bb
DG
2454/*
2455 * pseries-2.2
2456 */
2457
2458#define SPAPR_COMPAT_2_2 \
2459 SPAPR_COMPAT_2_3 \
2460 HW_COMPAT_2_2 \
2461 {\
2462 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2463 .property = "mem_win_size",\
2464 .value = "0x20000000",\
2465 },
2466
5013c547 2467static void spapr_machine_2_2_instance_options(MachineState *machine)
1c5f29bb 2468{
5013c547 2469 spapr_machine_2_3_instance_options(machine);
1c5f29bb
DG
2470}
2471
5013c547 2472static void spapr_machine_2_2_class_options(MachineClass *mc)
4aee7362 2473{
fc9f38c3 2474 spapr_machine_2_3_class_options(mc);
f949b4e5 2475 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4aee7362 2476}
fccbc785 2477DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4aee7362 2478
1c5f29bb
DG
2479/*
2480 * pseries-2.1
2481 */
2482#define SPAPR_COMPAT_2_1 \
2483 SPAPR_COMPAT_2_2 \
2484 HW_COMPAT_2_1
3dab0244 2485
5013c547 2486static void spapr_machine_2_1_instance_options(MachineState *machine)
1c5f29bb 2487{
5013c547 2488 spapr_machine_2_2_instance_options(machine);
1c5f29bb 2489}
d25228e7 2490
5013c547 2491static void spapr_machine_2_1_class_options(MachineClass *mc)
d25228e7 2492{
fc9f38c3 2493 spapr_machine_2_2_class_options(mc);
f949b4e5 2494 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
d25228e7 2495}
fccbc785 2496DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
fb0fc8f6 2497
29ee3247 2498static void spapr_machine_register_types(void)
9fdf0c29 2499{
29ee3247 2500 type_register_static(&spapr_machine_info);
9fdf0c29
DG
2501}
2502
29ee3247 2503type_init(spapr_machine_register_types)