]> git.proxmox.com Git - mirror_qemu.git/blame - hw/ppc/spapr.c
qapi: add explicit null to string input and output visitors
[mirror_qemu.git] / hw / ppc / spapr.c
CommitLineData
9fdf0c29
DG
1/*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
0d75590d 27#include "qemu/osdep.h"
da34e65c 28#include "qapi/error.h"
9c17d615 29#include "sysemu/sysemu.h"
e35704ba 30#include "sysemu/numa.h"
83c9f4ca 31#include "hw/hw.h"
03dd024f 32#include "qemu/log.h"
71461b0f 33#include "hw/fw-path-provider.h"
9fdf0c29 34#include "elf.h"
1422e32d 35#include "net/net.h"
ad440b4a 36#include "sysemu/device_tree.h"
fa1d36df 37#include "sysemu/block-backend.h"
9c17d615 38#include "sysemu/cpus.h"
b3946626 39#include "sysemu/hw_accel.h"
e97c3636 40#include "kvm_ppc.h"
c4b63b7c 41#include "migration/misc.h"
84a899de 42#include "migration/global_state.h"
f2a8f0a6 43#include "migration/register.h"
4be21d56 44#include "mmu-hash64.h"
b4db5413 45#include "mmu-book3s-v3.h"
3794d548 46#include "qom/cpu.h"
9fdf0c29
DG
47
48#include "hw/boards.h"
0d09e41a 49#include "hw/ppc/ppc.h"
9fdf0c29
DG
50#include "hw/loader.h"
51
7804c353 52#include "hw/ppc/fdt.h"
0d09e41a
PB
53#include "hw/ppc/spapr.h"
54#include "hw/ppc/spapr_vio.h"
55#include "hw/pci-host/spapr.h"
56#include "hw/ppc/xics.h"
a2cb15b0 57#include "hw/pci/msi.h"
9fdf0c29 58
83c9f4ca 59#include "hw/pci/pci.h"
71461b0f
AK
60#include "hw/scsi/scsi.h"
61#include "hw/virtio/virtio-scsi.h"
c4e13492 62#include "hw/virtio/vhost-scsi-common.h"
f61b4bed 63
022c62cb 64#include "exec/address-spaces.h"
35139a59 65#include "hw/usb.h"
1de7afc9 66#include "qemu/config-file.h"
135a129a 67#include "qemu/error-report.h"
2a6593cb 68#include "trace.h"
34316482 69#include "hw/nmi.h"
6449da45 70#include "hw/intc/intc.h"
890c2b77 71
68a27b20 72#include "hw/compat.h"
f348b6d1 73#include "qemu/cutils.h"
94a94e4c 74#include "hw/ppc/spapr_cpu_core.h"
2474bfd4 75#include "qmp-commands.h"
68a27b20 76
9fdf0c29
DG
77#include <libfdt.h>
78
4d8d5467
BH
79/* SLOF memory layout:
80 *
81 * SLOF raw image loaded at 0, copies its romfs right below the flat
82 * device-tree, then position SLOF itself 31M below that
83 *
84 * So we set FW_OVERHEAD to 40MB which should account for all of that
85 * and more
86 *
87 * We load our kernel at 4M, leaving space for SLOF initial image
88 */
38b02bd8 89#define FDT_MAX_SIZE 0x100000
39ac8455 90#define RTAS_MAX_SIZE 0x10000
b7d1f77a 91#define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
a9f8ad8f
DG
92#define FW_MAX_SIZE 0x400000
93#define FW_FILE_NAME "slof.bin"
4d8d5467
BH
94#define FW_OVERHEAD 0x2800000
95#define KERNEL_LOAD_ADDR FW_MAX_SIZE
a9f8ad8f 96
4d8d5467 97#define MIN_RMA_SLOF 128UL
9fdf0c29 98
0c103f8e
DG
99#define PHANDLE_XICP 0x00001111
100
7f763a5d
DG
101#define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
102
71cd4dac
CLG
103static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
104 const char *type_ics,
105 int nr_irqs, Error **errp)
c04d6cfa 106{
175d2aa0 107 Error *local_err = NULL;
71cd4dac 108 Object *obj;
4e4169f7 109
71cd4dac 110 obj = object_new(type_ics);
175d2aa0 111 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
ad265631
GK
112 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
113 &error_abort);
175d2aa0
GK
114 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
115 if (local_err) {
116 goto error;
117 }
71cd4dac 118 object_property_set_bool(obj, true, "realized", &local_err);
175d2aa0
GK
119 if (local_err) {
120 goto error;
4e4169f7 121 }
4e4169f7 122
71cd4dac 123 return ICS_SIMPLE(obj);
175d2aa0
GK
124
125error:
126 error_propagate(errp, local_err);
127 return NULL;
c04d6cfa
AL
128}
129
71cd4dac 130static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
c04d6cfa 131{
71cd4dac 132 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
c04d6cfa 133
11ad93f6 134 if (kvm_enabled()) {
2192a930 135 if (machine_kernel_irqchip_allowed(machine) &&
71cd4dac
CLG
136 !xics_kvm_init(spapr, errp)) {
137 spapr->icp_type = TYPE_KVM_ICP;
3d85885a 138 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
11ad93f6 139 }
71cd4dac 140 if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
3d85885a
GK
141 error_prepend(errp, "kernel_irqchip requested but unavailable: ");
142 return;
11ad93f6
DG
143 }
144 }
145
71cd4dac 146 if (!spapr->ics) {
f63ebfe0 147 xics_spapr_init(spapr);
71cd4dac
CLG
148 spapr->icp_type = TYPE_ICP;
149 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
3d85885a
GK
150 if (!spapr->ics) {
151 return;
152 }
c04d6cfa 153 }
c04d6cfa
AL
154}
155
833d4668
AK
156static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
157 int smt_threads)
158{
159 int i, ret = 0;
160 uint32_t servers_prop[smt_threads];
161 uint32_t gservers_prop[smt_threads * 2];
162 int index = ppc_get_vcpu_dt_id(cpu);
163
d6e166c0
DG
164 if (cpu->compat_pvr) {
165 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
6d9412ea
AK
166 if (ret < 0) {
167 return ret;
168 }
169 }
170
833d4668
AK
171 /* Build interrupt servers and gservers properties */
172 for (i = 0; i < smt_threads; i++) {
173 servers_prop[i] = cpu_to_be32(index + i);
174 /* Hack, direct the group queues back to cpu 0 */
175 gservers_prop[i*2] = cpu_to_be32(index + i);
176 gservers_prop[i*2 + 1] = 0;
177 }
178 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
179 servers_prop, sizeof(servers_prop));
180 if (ret < 0) {
181 return ret;
182 }
183 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
184 gservers_prop, sizeof(gservers_prop));
185
186 return ret;
187}
188
99861ecb 189static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
0da6f3fe 190{
0da6f3fe
BR
191 int index = ppc_get_vcpu_dt_id(cpu);
192 uint32_t associativity[] = {cpu_to_be32(0x5),
193 cpu_to_be32(0x0),
194 cpu_to_be32(0x0),
195 cpu_to_be32(0x0),
15f8b142 196 cpu_to_be32(cpu->node_id),
0da6f3fe
BR
197 cpu_to_be32(index)};
198
199 /* Advertise NUMA via ibm,associativity */
99861ecb 200 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
0da6f3fe 201 sizeof(associativity));
0da6f3fe
BR
202}
203
86d5771a 204/* Populate the "ibm,pa-features" property */
e957f6a9
SB
205static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset,
206 bool legacy_guest)
86d5771a
SB
207{
208 uint8_t pa_features_206[] = { 6, 0,
209 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
210 uint8_t pa_features_207[] = { 24, 0,
211 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
212 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
213 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
214 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
9fb4541f
SB
215 uint8_t pa_features_300[] = { 66, 0,
216 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
217 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
218 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
219 /* 6: DS207 */
220 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
221 /* 16: Vector */
86d5771a 222 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
9fb4541f 223 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
9bf502fe 224 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
9fb4541f
SB
225 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
226 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
227 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
228 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
229 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
230 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
231 /* 42: PM, 44: PC RA, 46: SC vec'd */
232 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
233 /* 48: SIMD, 50: QP BFP, 52: String */
234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
235 /* 54: DecFP, 56: DecI, 58: SHA */
236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
237 /* 60: NM atomic, 62: RNG */
238 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
239 };
86d5771a
SB
240 uint8_t *pa_features;
241 size_t pa_size;
242
243 switch (POWERPC_MMU_VER(env->mmu_model)) {
244 case POWERPC_MMU_VER_2_06:
245 pa_features = pa_features_206;
246 pa_size = sizeof(pa_features_206);
247 break;
248 case POWERPC_MMU_VER_2_07:
249 pa_features = pa_features_207;
250 pa_size = sizeof(pa_features_207);
251 break;
252 case POWERPC_MMU_VER_3_00:
253 pa_features = pa_features_300;
254 pa_size = sizeof(pa_features_300);
255 break;
256 default:
257 return;
258 }
259
260 if (env->ci_large_pages) {
261 /*
262 * Note: we keep CI large pages off by default because a 64K capable
263 * guest provisioned with large pages might otherwise try to map a qemu
264 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
265 * even if that qemu runs on a 4k host.
266 * We dd this bit back here if we are confident this is not an issue
267 */
268 pa_features[3] |= 0x20;
269 }
270 if (kvmppc_has_cap_htm() && pa_size > 24) {
271 pa_features[24] |= 0x80; /* Transactional memory support */
272 }
e957f6a9
SB
273 if (legacy_guest && pa_size > 40) {
274 /* Workaround for broken kernels that attempt (guest) radix
275 * mode when they can't handle it, if they see the radix bit set
276 * in pa-features. So hide it from them. */
277 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
278 }
86d5771a
SB
279
280 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
281}
282
28e02042 283static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
6e806cc3 284{
82677ed2
AK
285 int ret = 0, offset, cpus_offset;
286 CPUState *cs;
6e806cc3
BR
287 char cpu_model[32];
288 int smt = kvmppc_smt_threads();
7f763a5d 289 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
6e806cc3 290
82677ed2
AK
291 CPU_FOREACH(cs) {
292 PowerPCCPU *cpu = POWERPC_CPU(cs);
e957f6a9 293 CPUPPCState *env = &cpu->env;
82677ed2
AK
294 DeviceClass *dc = DEVICE_GET_CLASS(cs);
295 int index = ppc_get_vcpu_dt_id(cpu);
12dbeb16 296 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
6e806cc3 297
0f20ba62 298 if ((index % smt) != 0) {
6e806cc3
BR
299 continue;
300 }
301
82677ed2 302 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
6e806cc3 303
82677ed2
AK
304 cpus_offset = fdt_path_offset(fdt, "/cpus");
305 if (cpus_offset < 0) {
306 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
307 "cpus");
308 if (cpus_offset < 0) {
309 return cpus_offset;
310 }
311 }
312 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
6e806cc3 313 if (offset < 0) {
82677ed2
AK
314 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
315 if (offset < 0) {
316 return offset;
317 }
6e806cc3
BR
318 }
319
7f763a5d
DG
320 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
321 pft_size_prop, sizeof(pft_size_prop));
6e806cc3
BR
322 if (ret < 0) {
323 return ret;
324 }
833d4668 325
99861ecb
IM
326 if (nb_numa_nodes > 1) {
327 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
328 if (ret < 0) {
329 return ret;
330 }
0da6f3fe
BR
331 }
332
12dbeb16 333 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
833d4668
AK
334 if (ret < 0) {
335 return ret;
336 }
e957f6a9
SB
337
338 spapr_populate_pa_features(env, fdt, offset,
339 spapr->cas_legacy_guest_workaround);
6e806cc3
BR
340 }
341 return ret;
342}
343
b082d65a
AK
344static hwaddr spapr_node0_size(void)
345{
fb164994
DG
346 MachineState *machine = MACHINE(qdev_get_machine());
347
b082d65a
AK
348 if (nb_numa_nodes) {
349 int i;
350 for (i = 0; i < nb_numa_nodes; ++i) {
351 if (numa_info[i].node_mem) {
fb164994
DG
352 return MIN(pow2floor(numa_info[i].node_mem),
353 machine->ram_size);
b082d65a
AK
354 }
355 }
356 }
fb164994 357 return machine->ram_size;
b082d65a
AK
358}
359
a1d59c0f
AK
360static void add_str(GString *s, const gchar *s1)
361{
362 g_string_append_len(s, s1, strlen(s1) + 1);
363}
7f763a5d 364
03d196b7 365static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
26a8c353
AK
366 hwaddr size)
367{
368 uint32_t associativity[] = {
369 cpu_to_be32(0x4), /* length */
370 cpu_to_be32(0x0), cpu_to_be32(0x0),
c3b4f589 371 cpu_to_be32(0x0), cpu_to_be32(nodeid)
26a8c353
AK
372 };
373 char mem_name[32];
374 uint64_t mem_reg_property[2];
375 int off;
376
377 mem_reg_property[0] = cpu_to_be64(start);
378 mem_reg_property[1] = cpu_to_be64(size);
379
380 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
381 off = fdt_add_subnode(fdt, 0, mem_name);
382 _FDT(off);
383 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
384 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
385 sizeof(mem_reg_property))));
386 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
387 sizeof(associativity))));
03d196b7 388 return off;
26a8c353
AK
389}
390
28e02042 391static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
7f763a5d 392{
fb164994 393 MachineState *machine = MACHINE(spapr);
7db8a127
AK
394 hwaddr mem_start, node_size;
395 int i, nb_nodes = nb_numa_nodes;
396 NodeInfo *nodes = numa_info;
397 NodeInfo ramnode;
398
399 /* No NUMA nodes, assume there is just one node with whole RAM */
400 if (!nb_numa_nodes) {
401 nb_nodes = 1;
fb164994 402 ramnode.node_mem = machine->ram_size;
7db8a127 403 nodes = &ramnode;
5fe269b1 404 }
7f763a5d 405
7db8a127
AK
406 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
407 if (!nodes[i].node_mem) {
408 continue;
409 }
fb164994 410 if (mem_start >= machine->ram_size) {
5fe269b1
PM
411 node_size = 0;
412 } else {
7db8a127 413 node_size = nodes[i].node_mem;
fb164994
DG
414 if (node_size > machine->ram_size - mem_start) {
415 node_size = machine->ram_size - mem_start;
5fe269b1
PM
416 }
417 }
7db8a127
AK
418 if (!mem_start) {
419 /* ppc_spapr_init() checks for rma_size <= node0_size already */
e8f986fc 420 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
7db8a127
AK
421 mem_start += spapr->rma_size;
422 node_size -= spapr->rma_size;
423 }
6010818c
AK
424 for ( ; node_size; ) {
425 hwaddr sizetmp = pow2floor(node_size);
426
427 /* mem_start != 0 here */
428 if (ctzl(mem_start) < ctzl(sizetmp)) {
429 sizetmp = 1ULL << ctzl(mem_start);
430 }
431
432 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
433 node_size -= sizetmp;
434 mem_start += sizetmp;
435 }
7f763a5d
DG
436 }
437
438 return 0;
439}
440
0da6f3fe
BR
441static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
442 sPAPRMachineState *spapr)
443{
444 PowerPCCPU *cpu = POWERPC_CPU(cs);
445 CPUPPCState *env = &cpu->env;
446 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
447 int index = ppc_get_vcpu_dt_id(cpu);
448 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
449 0xffffffff, 0xffffffff};
afd10a0f
BR
450 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
451 : SPAPR_TIMEBASE_FREQ;
0da6f3fe
BR
452 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
453 uint32_t page_sizes_prop[64];
454 size_t page_sizes_prop_size;
22419c2a 455 uint32_t vcpus_per_socket = smp_threads * smp_cores;
0da6f3fe 456 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
12dbeb16 457 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
af81cf32 458 sPAPRDRConnector *drc;
af81cf32 459 int drc_index;
c64abd1f
SB
460 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
461 int i;
af81cf32 462
fbf55397 463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
af81cf32 464 if (drc) {
0b55aa91 465 drc_index = spapr_drc_index(drc);
af81cf32
BR
466 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
467 }
0da6f3fe
BR
468
469 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
470 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
471
472 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
473 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
474 env->dcache_line_size)));
475 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
476 env->dcache_line_size)));
477 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
478 env->icache_line_size)));
479 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
480 env->icache_line_size)));
481
482 if (pcc->l1_dcache_size) {
483 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
484 pcc->l1_dcache_size)));
485 } else {
ce9863b7 486 error_report("Warning: Unknown L1 dcache size for cpu");
0da6f3fe
BR
487 }
488 if (pcc->l1_icache_size) {
489 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
490 pcc->l1_icache_size)));
491 } else {
ce9863b7 492 error_report("Warning: Unknown L1 icache size for cpu");
0da6f3fe
BR
493 }
494
495 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
496 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
fd5da5c4 497 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
0da6f3fe
BR
498 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
499 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
500 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
501
502 if (env->spr_cb[SPR_PURR].oea_read) {
503 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
504 }
505
506 if (env->mmu_model & POWERPC_MMU_1TSEG) {
507 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
508 segs, sizeof(segs))));
509 }
510
511 /* Advertise VMX/VSX (vector extensions) if available
512 * 0 / no property == no vector extensions
513 * 1 == VMX / Altivec available
514 * 2 == VSX available */
515 if (env->insns_flags & PPC_ALTIVEC) {
516 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
517
518 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
519 }
520
521 /* Advertise DFP (Decimal Floating Point) if available
522 * 0 / no property == no DFP
523 * 1 == DFP available */
524 if (env->insns_flags2 & PPC2_DFP) {
525 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
526 }
527
3654fa95 528 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
0da6f3fe
BR
529 sizeof(page_sizes_prop));
530 if (page_sizes_prop_size) {
531 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
532 page_sizes_prop, page_sizes_prop_size)));
533 }
534
e957f6a9 535 spapr_populate_pa_features(env, fdt, offset, false);
90da0d5a 536
0da6f3fe 537 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
22419c2a 538 cs->cpu_index / vcpus_per_socket)));
0da6f3fe
BR
539
540 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
541 pft_size_prop, sizeof(pft_size_prop))));
542
99861ecb
IM
543 if (nb_numa_nodes > 1) {
544 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
545 }
0da6f3fe 546
12dbeb16 547 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
c64abd1f
SB
548
549 if (pcc->radix_page_info) {
550 for (i = 0; i < pcc->radix_page_info->count; i++) {
551 radix_AP_encodings[i] =
552 cpu_to_be32(pcc->radix_page_info->entries[i]);
553 }
554 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
555 radix_AP_encodings,
556 pcc->radix_page_info->count *
557 sizeof(radix_AP_encodings[0]))));
558 }
0da6f3fe
BR
559}
560
561static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
562{
563 CPUState *cs;
564 int cpus_offset;
565 char *nodename;
566 int smt = kvmppc_smt_threads();
567
568 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
569 _FDT(cpus_offset);
570 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
571 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
572
573 /*
574 * We walk the CPUs in reverse order to ensure that CPU DT nodes
575 * created by fdt_add_subnode() end up in the right order in FDT
576 * for the guest kernel the enumerate the CPUs correctly.
577 */
578 CPU_FOREACH_REVERSE(cs) {
579 PowerPCCPU *cpu = POWERPC_CPU(cs);
580 int index = ppc_get_vcpu_dt_id(cpu);
581 DeviceClass *dc = DEVICE_GET_CLASS(cs);
582 int offset;
583
584 if ((index % smt) != 0) {
585 continue;
586 }
587
588 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
589 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
590 g_free(nodename);
591 _FDT(offset);
592 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
593 }
594
595}
596
03d196b7
BR
597/*
598 * Adds ibm,dynamic-reconfiguration-memory node.
599 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
600 * of this device tree node.
601 */
602static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
603{
604 MachineState *machine = MACHINE(spapr);
605 int ret, i, offset;
606 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
607 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
d0e5a8f2
BR
608 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
609 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
610 memory_region_size(&spapr->hotplug_memory.mr)) /
611 lmb_size;
03d196b7 612 uint32_t *int_buf, *cur_index, buf_len;
6663864e 613 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
03d196b7 614
16c25aef 615 /*
d0e5a8f2 616 * Don't create the node if there is no hotpluggable memory
16c25aef 617 */
d0e5a8f2 618 if (machine->ram_size == machine->maxram_size) {
16c25aef
BR
619 return 0;
620 }
621
ef001f06
TH
622 /*
623 * Allocate enough buffer size to fit in ibm,dynamic-memory
624 * or ibm,associativity-lookup-arrays
625 */
626 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
627 * sizeof(uint32_t);
03d196b7
BR
628 cur_index = int_buf = g_malloc0(buf_len);
629
630 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
631
632 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
633 sizeof(prop_lmb_size));
634 if (ret < 0) {
635 goto out;
636 }
637
638 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
639 if (ret < 0) {
640 goto out;
641 }
642
643 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
644 if (ret < 0) {
645 goto out;
646 }
647
648 /* ibm,dynamic-memory */
649 int_buf[0] = cpu_to_be32(nr_lmbs);
650 cur_index++;
651 for (i = 0; i < nr_lmbs; i++) {
d0e5a8f2 652 uint64_t addr = i * lmb_size;
03d196b7
BR
653 uint32_t *dynamic_memory = cur_index;
654
d0e5a8f2
BR
655 if (i >= hotplug_lmb_start) {
656 sPAPRDRConnector *drc;
d0e5a8f2 657
fbf55397 658 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
d0e5a8f2 659 g_assert(drc);
d0e5a8f2
BR
660
661 dynamic_memory[0] = cpu_to_be32(addr >> 32);
662 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
0b55aa91 663 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
d0e5a8f2
BR
664 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
665 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
666 if (memory_region_present(get_system_memory(), addr)) {
667 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
668 } else {
669 dynamic_memory[5] = cpu_to_be32(0);
670 }
03d196b7 671 } else {
d0e5a8f2
BR
672 /*
673 * LMB information for RMA, boot time RAM and gap b/n RAM and
674 * hotplug memory region -- all these are marked as reserved
675 * and as having no valid DRC.
676 */
677 dynamic_memory[0] = cpu_to_be32(addr >> 32);
678 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
679 dynamic_memory[2] = cpu_to_be32(0);
680 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
681 dynamic_memory[4] = cpu_to_be32(-1);
682 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
683 SPAPR_LMB_FLAGS_DRC_INVALID);
03d196b7
BR
684 }
685
686 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
687 }
688 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
689 if (ret < 0) {
690 goto out;
691 }
692
693 /* ibm,associativity-lookup-arrays */
694 cur_index = int_buf;
6663864e 695 int_buf[0] = cpu_to_be32(nr_nodes);
03d196b7
BR
696 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
697 cur_index += 2;
6663864e 698 for (i = 0; i < nr_nodes; i++) {
03d196b7
BR
699 uint32_t associativity[] = {
700 cpu_to_be32(0x0),
701 cpu_to_be32(0x0),
702 cpu_to_be32(0x0),
703 cpu_to_be32(i)
704 };
705 memcpy(cur_index, associativity, sizeof(associativity));
706 cur_index += 4;
707 }
708 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
709 (cur_index - int_buf) * sizeof(uint32_t));
710out:
711 g_free(int_buf);
712 return ret;
713}
714
6787d27b
MR
715static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
716 sPAPROptionVector *ov5_updates)
717{
718 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
417ece33 719 int ret = 0, offset;
6787d27b
MR
720
721 /* Generate ibm,dynamic-reconfiguration-memory node if required */
722 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
723 g_assert(smc->dr_lmb_enabled);
724 ret = spapr_populate_drconf_memory(spapr, fdt);
417ece33
MR
725 if (ret) {
726 goto out;
727 }
6787d27b
MR
728 }
729
417ece33
MR
730 offset = fdt_path_offset(fdt, "/chosen");
731 if (offset < 0) {
732 offset = fdt_add_subnode(fdt, 0, "chosen");
733 if (offset < 0) {
734 return offset;
735 }
736 }
737 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
738 "ibm,architecture-vec-5");
739
740out:
6787d27b
MR
741 return ret;
742}
743
03d196b7
BR
744int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
745 target_ulong addr, target_ulong size,
6787d27b 746 sPAPROptionVector *ov5_updates)
03d196b7
BR
747{
748 void *fdt, *fdt_skel;
749 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
03d196b7
BR
750
751 size -= sizeof(hdr);
752
753 /* Create sceleton */
754 fdt_skel = g_malloc0(size);
755 _FDT((fdt_create(fdt_skel, size)));
756 _FDT((fdt_begin_node(fdt_skel, "")));
757 _FDT((fdt_end_node(fdt_skel)));
758 _FDT((fdt_finish(fdt_skel)));
759 fdt = g_malloc0(size);
760 _FDT((fdt_open_into(fdt_skel, fdt, size)));
761 g_free(fdt_skel);
762
763 /* Fixup cpu nodes */
5b120785 764 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
03d196b7 765
6787d27b
MR
766 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
767 return -1;
03d196b7
BR
768 }
769
770 /* Pack resulting tree */
771 _FDT((fdt_pack(fdt)));
772
773 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
774 trace_spapr_cas_failed(size);
775 return -1;
776 }
777
778 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
779 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
780 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
781 g_free(fdt);
782
783 return 0;
784}
785
3f5dabce
DG
786static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
787{
788 int rtas;
789 GString *hypertas = g_string_sized_new(256);
790 GString *qemu_hypertas = g_string_sized_new(256);
791 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
792 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
793 memory_region_size(&spapr->hotplug_memory.mr);
794 uint32_t lrdr_capacity[] = {
795 cpu_to_be32(max_hotplug_addr >> 32),
796 cpu_to_be32(max_hotplug_addr & 0xffffffff),
797 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
798 cpu_to_be32(max_cpus / smp_threads),
799 };
800
801 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
802
803 /* hypertas */
804 add_str(hypertas, "hcall-pft");
805 add_str(hypertas, "hcall-term");
806 add_str(hypertas, "hcall-dabr");
807 add_str(hypertas, "hcall-interrupt");
808 add_str(hypertas, "hcall-tce");
809 add_str(hypertas, "hcall-vio");
810 add_str(hypertas, "hcall-splpar");
811 add_str(hypertas, "hcall-bulk");
812 add_str(hypertas, "hcall-set-mode");
813 add_str(hypertas, "hcall-sprg0");
814 add_str(hypertas, "hcall-copy");
815 add_str(hypertas, "hcall-debug");
816 add_str(qemu_hypertas, "hcall-memop1");
817
818 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
819 add_str(hypertas, "hcall-multi-tce");
820 }
821 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
822 hypertas->str, hypertas->len));
823 g_string_free(hypertas, TRUE);
824 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
825 qemu_hypertas->str, qemu_hypertas->len));
826 g_string_free(qemu_hypertas, TRUE);
827
828 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
829 refpoints, sizeof(refpoints)));
830
831 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
832 RTAS_ERROR_LOG_MAX));
833 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
834 RTAS_EVENT_SCAN_RATE));
835
836 if (msi_nonbroken) {
837 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
838 }
839
840 /*
841 * According to PAPR, rtas ibm,os-term does not guarantee a return
842 * back to the guest cpu.
843 *
844 * While an additional ibm,extended-os-term property indicates
845 * that rtas call return will always occur. Set this property.
846 */
847 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
848
849 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
850 lrdr_capacity, sizeof(lrdr_capacity)));
851
852 spapr_dt_rtas_tokens(fdt, rtas);
853}
854
9fb4541f
SB
855/* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
856 * that the guest may request and thus the valid values for bytes 24..26 of
857 * option vector 5: */
858static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
859{
545d6e2b
SJS
860 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
861
9fb4541f
SB
862 char val[2 * 3] = {
863 24, 0x00, /* Hash/Radix, filled in below. */
864 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
865 26, 0x40, /* Radix options: GTSE == yes. */
866 };
867
868 if (kvm_enabled()) {
869 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
870 val[1] = 0x80; /* OV5_MMU_BOTH */
871 } else if (kvmppc_has_cap_mmu_radix()) {
872 val[1] = 0x40; /* OV5_MMU_RADIX_300 */
873 } else {
874 val[1] = 0x00; /* Hash */
875 }
876 } else {
545d6e2b
SJS
877 if (first_ppc_cpu->env.mmu_model & POWERPC_MMU_V3) {
878 /* V3 MMU supports both hash and radix (with dynamic switching) */
879 val[1] = 0xC0;
880 } else {
881 /* Otherwise we can only do hash */
882 val[1] = 0x00;
883 }
9fb4541f
SB
884 }
885 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
886 val, sizeof(val)));
887}
888
7c866c6a
DG
889static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
890{
891 MachineState *machine = MACHINE(spapr);
892 int chosen;
893 const char *boot_device = machine->boot_order;
894 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
895 size_t cb = 0;
896 char *bootlist = get_boot_devices_list(&cb, true);
7c866c6a
DG
897
898 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
899
7c866c6a
DG
900 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
901 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
902 spapr->initrd_base));
903 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
904 spapr->initrd_base + spapr->initrd_size));
905
906 if (spapr->kernel_size) {
907 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
908 cpu_to_be64(spapr->kernel_size) };
909
910 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
911 &kprop, sizeof(kprop)));
912 if (spapr->kernel_le) {
913 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
914 }
915 }
916 if (boot_menu) {
917 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
918 }
919 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
920 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
921 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
922
923 if (cb && bootlist) {
924 int i;
925
926 for (i = 0; i < cb; i++) {
927 if (bootlist[i] == '\n') {
928 bootlist[i] = ' ';
929 }
930 }
931 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
932 }
933
934 if (boot_device && strlen(boot_device)) {
935 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
936 }
937
938 if (!spapr->has_graphics && stdout_path) {
939 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
940 }
941
9fb4541f
SB
942 spapr_dt_ov5_platform_support(fdt, chosen);
943
7c866c6a
DG
944 g_free(stdout_path);
945 g_free(bootlist);
946}
947
fca5f2dc
DG
948static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
949{
950 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
951 * KVM to work under pHyp with some guest co-operation */
952 int hypervisor;
953 uint8_t hypercall[16];
954
955 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
956 /* indicate KVM hypercall interface */
957 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
958 if (kvmppc_has_cap_fixup_hcalls()) {
959 /*
960 * Older KVM versions with older guest kernels were broken
961 * with the magic page, don't allow the guest to map it.
962 */
963 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
964 sizeof(hypercall))) {
965 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
966 hypercall, sizeof(hypercall)));
967 }
968 }
969}
970
997b6cfc
DG
971static void *spapr_build_fdt(sPAPRMachineState *spapr,
972 hwaddr rtas_addr,
973 hwaddr rtas_size)
a3467baa 974{
5b2128d2 975 MachineState *machine = MACHINE(qdev_get_machine());
3c0c47e3 976 MachineClass *mc = MACHINE_GET_CLASS(machine);
c20d332a 977 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
7c866c6a 978 int ret;
a3467baa 979 void *fdt;
3384f95c 980 sPAPRPHBState *phb;
398a0bd5 981 char *buf;
71cd4dac 982 int smt = kvmppc_smt_threads();
a3467baa 983
398a0bd5
DG
984 fdt = g_malloc0(FDT_MAX_SIZE);
985 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
a3467baa 986
398a0bd5
DG
987 /* Root node */
988 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
989 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
990 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
991
992 /*
993 * Add info to guest to indentify which host is it being run on
994 * and what is the uuid of the guest
995 */
996 if (kvmppc_get_host_model(&buf)) {
997 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
998 g_free(buf);
999 }
1000 if (kvmppc_get_host_serial(&buf)) {
1001 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1002 g_free(buf);
1003 }
1004
1005 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1006
1007 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1008 if (qemu_uuid_set) {
1009 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1010 }
1011 g_free(buf);
1012
1013 if (qemu_get_vm_name()) {
1014 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1015 qemu_get_vm_name()));
1016 }
1017
1018 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1019 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
4040ab72 1020
9b9a1908 1021 /* /interrupt controller */
71cd4dac 1022 spapr_dt_xics(DIV_ROUND_UP(max_cpus * smt, smp_threads), fdt, PHANDLE_XICP);
9b9a1908 1023
e8f986fc
BR
1024 ret = spapr_populate_memory(spapr, fdt);
1025 if (ret < 0) {
ce9863b7 1026 error_report("couldn't setup memory nodes in fdt");
e8f986fc 1027 exit(1);
7f763a5d
DG
1028 }
1029
bf5a6696
DG
1030 /* /vdevice */
1031 spapr_dt_vdevice(spapr->vio_bus, fdt);
4040ab72 1032
4d9392be
TH
1033 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1034 ret = spapr_rng_populate_dt(fdt);
1035 if (ret < 0) {
ce9863b7 1036 error_report("could not set up rng device in the fdt");
4d9392be
TH
1037 exit(1);
1038 }
1039 }
1040
3384f95c 1041 QLIST_FOREACH(phb, &spapr->phbs, list) {
e0fdbd7c 1042 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
da34fed7
TH
1043 if (ret < 0) {
1044 error_report("couldn't setup PCI devices in fdt");
1045 exit(1);
1046 }
3384f95c
DG
1047 }
1048
0da6f3fe
BR
1049 /* cpus */
1050 spapr_populate_cpus_dt_node(fdt, spapr);
6e806cc3 1051
c20d332a
BR
1052 if (smc->dr_lmb_enabled) {
1053 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1054 }
1055
c5514d0e 1056 if (mc->has_hotpluggable_cpus) {
af81cf32
BR
1057 int offset = fdt_path_offset(fdt, "/cpus");
1058 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1059 SPAPR_DR_CONNECTOR_TYPE_CPU);
1060 if (ret < 0) {
1061 error_report("Couldn't set up CPU DR device tree properties");
1062 exit(1);
1063 }
1064 }
1065
ffb1e275 1066 /* /event-sources */
ffbb1705 1067 spapr_dt_events(spapr, fdt);
ffb1e275 1068
3f5dabce
DG
1069 /* /rtas */
1070 spapr_dt_rtas(spapr, fdt);
1071
7c866c6a
DG
1072 /* /chosen */
1073 spapr_dt_chosen(spapr, fdt);
cf6e5223 1074
fca5f2dc
DG
1075 /* /hypervisor */
1076 if (kvm_enabled()) {
1077 spapr_dt_hypervisor(spapr, fdt);
1078 }
1079
cf6e5223
DG
1080 /* Build memory reserve map */
1081 if (spapr->kernel_size) {
1082 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1083 }
1084 if (spapr->initrd_size) {
1085 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1086 }
1087
6787d27b
MR
1088 /* ibm,client-architecture-support updates */
1089 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1090 if (ret < 0) {
1091 error_report("couldn't setup CAS properties fdt");
1092 exit(1);
1093 }
1094
997b6cfc 1095 return fdt;
9fdf0c29
DG
1096}
1097
1098static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1099{
1100 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1101}
1102
1d1be34d
DG
1103static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1104 PowerPCCPU *cpu)
9fdf0c29 1105{
1b14670a
AF
1106 CPUPPCState *env = &cpu->env;
1107
8d04fb55
JK
1108 /* The TCG path should also be holding the BQL at this point */
1109 g_assert(qemu_mutex_iothread_locked());
1110
efcb9383
DG
1111 if (msr_pr) {
1112 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1113 env->gpr[3] = H_PRIVILEGE;
1114 } else {
aa100fa4 1115 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
efcb9383 1116 }
9fdf0c29
DG
1117}
1118
9861bb3e
SJS
1119static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1120{
1121 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1122
1123 return spapr->patb_entry;
1124}
1125
e6b8fd24
SMJ
1126#define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1127#define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1128#define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1129#define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1130#define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1131
715c5407
DG
1132/*
1133 * Get the fd to access the kernel htab, re-opening it if necessary
1134 */
1135static int get_htab_fd(sPAPRMachineState *spapr)
1136{
1137 if (spapr->htab_fd >= 0) {
1138 return spapr->htab_fd;
1139 }
1140
1141 spapr->htab_fd = kvmppc_get_htab_fd(false);
1142 if (spapr->htab_fd < 0) {
1143 error_report("Unable to open fd for reading hash table from KVM: %s",
1144 strerror(errno));
1145 }
1146
1147 return spapr->htab_fd;
1148}
1149
b4db5413 1150void close_htab_fd(sPAPRMachineState *spapr)
715c5407
DG
1151{
1152 if (spapr->htab_fd >= 0) {
1153 close(spapr->htab_fd);
1154 }
1155 spapr->htab_fd = -1;
1156}
1157
e57ca75c
DG
1158static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1159{
1160 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1161
1162 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1163}
1164
1165static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1166 hwaddr ptex, int n)
1167{
1168 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1169 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1170
1171 if (!spapr->htab) {
1172 /*
1173 * HTAB is controlled by KVM. Fetch into temporary buffer
1174 */
1175 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1176 kvmppc_read_hptes(hptes, ptex, n);
1177 return hptes;
1178 }
1179
1180 /*
1181 * HTAB is controlled by QEMU. Just point to the internally
1182 * accessible PTEG.
1183 */
1184 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1185}
1186
1187static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1188 const ppc_hash_pte64_t *hptes,
1189 hwaddr ptex, int n)
1190{
1191 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1192
1193 if (!spapr->htab) {
1194 g_free((void *)hptes);
1195 }
1196
1197 /* Nothing to do for qemu managed HPT */
1198}
1199
1200static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1201 uint64_t pte0, uint64_t pte1)
1202{
1203 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1204 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1205
1206 if (!spapr->htab) {
1207 kvmppc_write_hpte(ptex, pte0, pte1);
1208 } else {
1209 stq_p(spapr->htab + offset, pte0);
1210 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1211 }
1212}
1213
8dfe8e7f
DG
1214static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1215{
1216 int shift;
1217
1218 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1219 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1220 * that's much more than is needed for Linux guests */
1221 shift = ctz64(pow2ceil(ramsize)) - 7;
1222 shift = MAX(shift, 18); /* Minimum architected size */
1223 shift = MIN(shift, 46); /* Maximum architected size */
1224 return shift;
1225}
1226
06ec79e8
BR
1227void spapr_free_hpt(sPAPRMachineState *spapr)
1228{
1229 g_free(spapr->htab);
1230 spapr->htab = NULL;
1231 spapr->htab_shift = 0;
1232 close_htab_fd(spapr);
1233}
1234
c5f54f3e
DG
1235static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1236 Error **errp)
7f763a5d 1237{
c5f54f3e
DG
1238 long rc;
1239
1240 /* Clean up any HPT info from a previous boot */
06ec79e8 1241 spapr_free_hpt(spapr);
c5f54f3e
DG
1242
1243 rc = kvmppc_reset_htab(shift);
1244 if (rc < 0) {
1245 /* kernel-side HPT needed, but couldn't allocate one */
1246 error_setg_errno(errp, errno,
1247 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1248 shift);
1249 /* This is almost certainly fatal, but if the caller really
1250 * wants to carry on with shift == 0, it's welcome to try */
1251 } else if (rc > 0) {
1252 /* kernel-side HPT allocated */
1253 if (rc != shift) {
1254 error_setg(errp,
1255 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1256 shift, rc);
7735feda
BR
1257 }
1258
7f763a5d 1259 spapr->htab_shift = shift;
c18ad9a5 1260 spapr->htab = NULL;
b817772a 1261 } else {
c5f54f3e
DG
1262 /* kernel-side HPT not needed, allocate in userspace instead */
1263 size_t size = 1ULL << shift;
1264 int i;
b817772a 1265
c5f54f3e
DG
1266 spapr->htab = qemu_memalign(size, size);
1267 if (!spapr->htab) {
1268 error_setg_errno(errp, errno,
1269 "Could not allocate HPT of order %d", shift);
1270 return;
7735feda
BR
1271 }
1272
c5f54f3e
DG
1273 memset(spapr->htab, 0, size);
1274 spapr->htab_shift = shift;
e6b8fd24 1275
c5f54f3e
DG
1276 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1277 DIRTY_HPTE(HPTE(spapr->htab, i));
e6b8fd24 1278 }
7f763a5d 1279 }
9fdf0c29
DG
1280}
1281
b4db5413
SJS
1282void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1283{
1284 spapr_reallocate_hpt(spapr,
1285 spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size),
1286 &error_fatal);
1287 if (spapr->vrma_adjust) {
1288 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1289 spapr->htab_shift);
1290 }
1291 /* We're setting up a hash table, so that means we're not radix */
1292 spapr->patb_entry = 0;
1293}
1294
4f01a637 1295static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
9e3f9733
AG
1296{
1297 bool matched = false;
1298
1299 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1300 matched = true;
1301 }
1302
1303 if (!matched) {
1304 error_report("Device %s is not supported by this machine yet.",
1305 qdev_fw_name(DEVICE(sbdev)));
1306 exit(1);
1307 }
9e3f9733
AG
1308}
1309
c8787ad4 1310static void ppc_spapr_reset(void)
a3467baa 1311{
c5f54f3e
DG
1312 MachineState *machine = MACHINE(qdev_get_machine());
1313 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
182735ef 1314 PowerPCCPU *first_ppc_cpu;
b7d1f77a 1315 uint32_t rtas_limit;
cae172ab 1316 hwaddr rtas_addr, fdt_addr;
997b6cfc
DG
1317 void *fdt;
1318 int rc;
259186a7 1319
9e3f9733
AG
1320 /* Check for unknown sysbus devices */
1321 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1322
b4db5413
SJS
1323 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1324 /* If using KVM with radix mode available, VCPUs can be started
1325 * without a HPT because KVM will start them in radix mode.
1326 * Set the GR bit in PATB so that we know there is no HPT. */
1327 spapr->patb_entry = PATBE1_GR;
1328 } else {
1329 spapr->patb_entry = 0;
1330 spapr_setup_hpt_and_vrma(spapr);
c5f54f3e 1331 }
a3467baa 1332
c8787ad4 1333 qemu_devices_reset();
a3467baa 1334
b7d1f77a
BH
1335 /*
1336 * We place the device tree and RTAS just below either the top of the RMA,
1337 * or just below 2GB, whichever is lowere, so that it can be
1338 * processed with 32-bit real mode code if necessary
1339 */
1340 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
cae172ab
DG
1341 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1342 fdt_addr = rtas_addr - FDT_MAX_SIZE;
b7d1f77a 1343
6787d27b
MR
1344 /* if this reset wasn't generated by CAS, we should reset our
1345 * negotiated options and start from scratch */
1346 if (!spapr->cas_reboot) {
1347 spapr_ovec_cleanup(spapr->ov5_cas);
1348 spapr->ov5_cas = spapr_ovec_new();
1349 }
1350
cae172ab 1351 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
a3467baa 1352
2cac78c1 1353 spapr_load_rtas(spapr, fdt, rtas_addr);
b7d1f77a 1354
997b6cfc
DG
1355 rc = fdt_pack(fdt);
1356
1357 /* Should only fail if we've built a corrupted tree */
1358 assert(rc == 0);
1359
1360 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1361 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1362 fdt_totalsize(fdt), FDT_MAX_SIZE);
1363 exit(1);
1364 }
1365
1366 /* Load the fdt */
1367 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
cae172ab 1368 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
997b6cfc
DG
1369 g_free(fdt);
1370
a3467baa 1371 /* Set up the entry state */
182735ef 1372 first_ppc_cpu = POWERPC_CPU(first_cpu);
cae172ab 1373 first_ppc_cpu->env.gpr[3] = fdt_addr;
182735ef
AF
1374 first_ppc_cpu->env.gpr[5] = 0;
1375 first_cpu->halted = 0;
1b718907 1376 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
a3467baa 1377
6787d27b 1378 spapr->cas_reboot = false;
a3467baa
DG
1379}
1380
28e02042 1381static void spapr_create_nvram(sPAPRMachineState *spapr)
639e8102 1382{
2ff3de68 1383 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
3978b863 1384 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
639e8102 1385
3978b863 1386 if (dinfo) {
6231a6da
MA
1387 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1388 &error_fatal);
639e8102
DG
1389 }
1390
1391 qdev_init_nofail(dev);
1392
1393 spapr->nvram = (struct sPAPRNVRAM *)dev;
1394}
1395
28e02042 1396static void spapr_rtc_create(sPAPRMachineState *spapr)
28df36a1 1397{
147ff807
CLG
1398 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1399 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1400 &error_fatal);
1401 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1402 &error_fatal);
1403 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1404 "date", &error_fatal);
28df36a1
DG
1405}
1406
8c57b867 1407/* Returns whether we want to use VGA or not */
14c6a894 1408static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
f28359d8 1409{
8c57b867 1410 switch (vga_interface_type) {
8c57b867 1411 case VGA_NONE:
7effdaa3
MW
1412 return false;
1413 case VGA_DEVICE:
1414 return true;
1ddcae82 1415 case VGA_STD:
b798c190 1416 case VGA_VIRTIO:
1ddcae82 1417 return pci_vga_init(pci_bus) != NULL;
8c57b867 1418 default:
14c6a894
DG
1419 error_setg(errp,
1420 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1421 return false;
f28359d8 1422 }
f28359d8
LZ
1423}
1424
880ae7de
DG
1425static int spapr_post_load(void *opaque, int version_id)
1426{
28e02042 1427 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
880ae7de
DG
1428 int err = 0;
1429
a7ff1212 1430 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
5bc8d26d
CLG
1431 CPUState *cs;
1432 CPU_FOREACH(cs) {
1433 PowerPCCPU *cpu = POWERPC_CPU(cs);
1434 icp_resend(ICP(cpu->intc));
a7ff1212
CLG
1435 }
1436 }
1437
631b22ea 1438 /* In earlier versions, there was no separate qdev for the PAPR
880ae7de
DG
1439 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1440 * So when migrating from those versions, poke the incoming offset
1441 * value into the RTC device */
1442 if (version_id < 3) {
147ff807 1443 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
880ae7de
DG
1444 }
1445
1446 return err;
1447}
1448
1449static bool version_before_3(void *opaque, int version_id)
1450{
1451 return version_id < 3;
1452}
1453
62ef3760
MR
1454static bool spapr_ov5_cas_needed(void *opaque)
1455{
1456 sPAPRMachineState *spapr = opaque;
1457 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1458 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1459 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1460 bool cas_needed;
1461
1462 /* Prior to the introduction of sPAPROptionVector, we had two option
1463 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1464 * Both of these options encode machine topology into the device-tree
1465 * in such a way that the now-booted OS should still be able to interact
1466 * appropriately with QEMU regardless of what options were actually
1467 * negotiatied on the source side.
1468 *
1469 * As such, we can avoid migrating the CAS-negotiated options if these
1470 * are the only options available on the current machine/platform.
1471 * Since these are the only options available for pseries-2.7 and
1472 * earlier, this allows us to maintain old->new/new->old migration
1473 * compatibility.
1474 *
1475 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1476 * via default pseries-2.8 machines and explicit command-line parameters.
1477 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1478 * of the actual CAS-negotiated values to continue working properly. For
1479 * example, availability of memory unplug depends on knowing whether
1480 * OV5_HP_EVT was negotiated via CAS.
1481 *
1482 * Thus, for any cases where the set of available CAS-negotiatable
1483 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1484 * include the CAS-negotiated options in the migration stream.
1485 */
1486 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1487 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1488
1489 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1490 * the mask itself since in the future it's possible "legacy" bits may be
1491 * removed via machine options, which could generate a false positive
1492 * that breaks migration.
1493 */
1494 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1495 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1496
1497 spapr_ovec_cleanup(ov5_mask);
1498 spapr_ovec_cleanup(ov5_legacy);
1499 spapr_ovec_cleanup(ov5_removed);
1500
1501 return cas_needed;
1502}
1503
1504static const VMStateDescription vmstate_spapr_ov5_cas = {
1505 .name = "spapr_option_vector_ov5_cas",
1506 .version_id = 1,
1507 .minimum_version_id = 1,
1508 .needed = spapr_ov5_cas_needed,
1509 .fields = (VMStateField[]) {
1510 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1511 vmstate_spapr_ovec, sPAPROptionVector),
1512 VMSTATE_END_OF_LIST()
1513 },
1514};
1515
9861bb3e
SJS
1516static bool spapr_patb_entry_needed(void *opaque)
1517{
1518 sPAPRMachineState *spapr = opaque;
1519
1520 return !!spapr->patb_entry;
1521}
1522
1523static const VMStateDescription vmstate_spapr_patb_entry = {
1524 .name = "spapr_patb_entry",
1525 .version_id = 1,
1526 .minimum_version_id = 1,
1527 .needed = spapr_patb_entry_needed,
1528 .fields = (VMStateField[]) {
1529 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1530 VMSTATE_END_OF_LIST()
1531 },
1532};
1533
4be21d56
DG
1534static const VMStateDescription vmstate_spapr = {
1535 .name = "spapr",
880ae7de 1536 .version_id = 3,
4be21d56 1537 .minimum_version_id = 1,
880ae7de 1538 .post_load = spapr_post_load,
3aff6c2f 1539 .fields = (VMStateField[]) {
880ae7de
DG
1540 /* used to be @next_irq */
1541 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
4be21d56
DG
1542
1543 /* RTC offset */
28e02042 1544 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
880ae7de 1545
28e02042 1546 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
4be21d56
DG
1547 VMSTATE_END_OF_LIST()
1548 },
62ef3760
MR
1549 .subsections = (const VMStateDescription*[]) {
1550 &vmstate_spapr_ov5_cas,
9861bb3e 1551 &vmstate_spapr_patb_entry,
62ef3760
MR
1552 NULL
1553 }
4be21d56
DG
1554};
1555
4be21d56
DG
1556static int htab_save_setup(QEMUFile *f, void *opaque)
1557{
28e02042 1558 sPAPRMachineState *spapr = opaque;
4be21d56 1559
4be21d56
DG
1560 /* "Iteration" header */
1561 qemu_put_be32(f, spapr->htab_shift);
1562
e68cb8b4
AK
1563 if (spapr->htab) {
1564 spapr->htab_save_index = 0;
1565 spapr->htab_first_pass = true;
1566 } else {
1567 assert(kvm_enabled());
e68cb8b4
AK
1568 }
1569
1570
4be21d56
DG
1571 return 0;
1572}
1573
28e02042 1574static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
4be21d56
DG
1575 int64_t max_ns)
1576{
378bc217 1577 bool has_timeout = max_ns != -1;
4be21d56
DG
1578 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1579 int index = spapr->htab_save_index;
bc72ad67 1580 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1581
1582 assert(spapr->htab_first_pass);
1583
1584 do {
1585 int chunkstart;
1586
1587 /* Consume invalid HPTEs */
1588 while ((index < htabslots)
1589 && !HPTE_VALID(HPTE(spapr->htab, index))) {
4be21d56 1590 CLEAN_HPTE(HPTE(spapr->htab, index));
24ec2863 1591 index++;
4be21d56
DG
1592 }
1593
1594 /* Consume valid HPTEs */
1595 chunkstart = index;
338c25b6 1596 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56 1597 && HPTE_VALID(HPTE(spapr->htab, index))) {
4be21d56 1598 CLEAN_HPTE(HPTE(spapr->htab, index));
24ec2863 1599 index++;
4be21d56
DG
1600 }
1601
1602 if (index > chunkstart) {
1603 int n_valid = index - chunkstart;
1604
1605 qemu_put_be32(f, chunkstart);
1606 qemu_put_be16(f, n_valid);
1607 qemu_put_be16(f, 0);
1608 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1609 HASH_PTE_SIZE_64 * n_valid);
1610
378bc217
DG
1611 if (has_timeout &&
1612 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1613 break;
1614 }
1615 }
1616 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1617
1618 if (index >= htabslots) {
1619 assert(index == htabslots);
1620 index = 0;
1621 spapr->htab_first_pass = false;
1622 }
1623 spapr->htab_save_index = index;
1624}
1625
28e02042 1626static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
e68cb8b4 1627 int64_t max_ns)
4be21d56
DG
1628{
1629 bool final = max_ns < 0;
1630 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1631 int examined = 0, sent = 0;
1632 int index = spapr->htab_save_index;
bc72ad67 1633 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1634
1635 assert(!spapr->htab_first_pass);
1636
1637 do {
1638 int chunkstart, invalidstart;
1639
1640 /* Consume non-dirty HPTEs */
1641 while ((index < htabslots)
1642 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1643 index++;
1644 examined++;
1645 }
1646
1647 chunkstart = index;
1648 /* Consume valid dirty HPTEs */
338c25b6 1649 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56
DG
1650 && HPTE_DIRTY(HPTE(spapr->htab, index))
1651 && HPTE_VALID(HPTE(spapr->htab, index))) {
1652 CLEAN_HPTE(HPTE(spapr->htab, index));
1653 index++;
1654 examined++;
1655 }
1656
1657 invalidstart = index;
1658 /* Consume invalid dirty HPTEs */
338c25b6 1659 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
4be21d56
DG
1660 && HPTE_DIRTY(HPTE(spapr->htab, index))
1661 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1662 CLEAN_HPTE(HPTE(spapr->htab, index));
1663 index++;
1664 examined++;
1665 }
1666
1667 if (index > chunkstart) {
1668 int n_valid = invalidstart - chunkstart;
1669 int n_invalid = index - invalidstart;
1670
1671 qemu_put_be32(f, chunkstart);
1672 qemu_put_be16(f, n_valid);
1673 qemu_put_be16(f, n_invalid);
1674 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1675 HASH_PTE_SIZE_64 * n_valid);
1676 sent += index - chunkstart;
1677
bc72ad67 1678 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1679 break;
1680 }
1681 }
1682
1683 if (examined >= htabslots) {
1684 break;
1685 }
1686
1687 if (index >= htabslots) {
1688 assert(index == htabslots);
1689 index = 0;
1690 }
1691 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1692
1693 if (index >= htabslots) {
1694 assert(index == htabslots);
1695 index = 0;
1696 }
1697
1698 spapr->htab_save_index = index;
1699
e68cb8b4 1700 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
4be21d56
DG
1701}
1702
e68cb8b4
AK
1703#define MAX_ITERATION_NS 5000000 /* 5 ms */
1704#define MAX_KVM_BUF_SIZE 2048
1705
4be21d56
DG
1706static int htab_save_iterate(QEMUFile *f, void *opaque)
1707{
28e02042 1708 sPAPRMachineState *spapr = opaque;
715c5407 1709 int fd;
e68cb8b4 1710 int rc = 0;
4be21d56
DG
1711
1712 /* Iteration header */
1713 qemu_put_be32(f, 0);
1714
e68cb8b4
AK
1715 if (!spapr->htab) {
1716 assert(kvm_enabled());
1717
715c5407
DG
1718 fd = get_htab_fd(spapr);
1719 if (fd < 0) {
1720 return fd;
01a57972
SMJ
1721 }
1722
715c5407 1723 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
e68cb8b4
AK
1724 if (rc < 0) {
1725 return rc;
1726 }
1727 } else if (spapr->htab_first_pass) {
4be21d56
DG
1728 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1729 } else {
e68cb8b4 1730 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
4be21d56
DG
1731 }
1732
1733 /* End marker */
1734 qemu_put_be32(f, 0);
1735 qemu_put_be16(f, 0);
1736 qemu_put_be16(f, 0);
1737
e68cb8b4 1738 return rc;
4be21d56
DG
1739}
1740
1741static int htab_save_complete(QEMUFile *f, void *opaque)
1742{
28e02042 1743 sPAPRMachineState *spapr = opaque;
715c5407 1744 int fd;
4be21d56
DG
1745
1746 /* Iteration header */
1747 qemu_put_be32(f, 0);
1748
e68cb8b4
AK
1749 if (!spapr->htab) {
1750 int rc;
1751
1752 assert(kvm_enabled());
1753
715c5407
DG
1754 fd = get_htab_fd(spapr);
1755 if (fd < 0) {
1756 return fd;
01a57972
SMJ
1757 }
1758
715c5407 1759 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
e68cb8b4
AK
1760 if (rc < 0) {
1761 return rc;
1762 }
e68cb8b4 1763 } else {
378bc217
DG
1764 if (spapr->htab_first_pass) {
1765 htab_save_first_pass(f, spapr, -1);
1766 }
e68cb8b4
AK
1767 htab_save_later_pass(f, spapr, -1);
1768 }
4be21d56
DG
1769
1770 /* End marker */
1771 qemu_put_be32(f, 0);
1772 qemu_put_be16(f, 0);
1773 qemu_put_be16(f, 0);
1774
1775 return 0;
1776}
1777
1778static int htab_load(QEMUFile *f, void *opaque, int version_id)
1779{
28e02042 1780 sPAPRMachineState *spapr = opaque;
4be21d56 1781 uint32_t section_hdr;
e68cb8b4 1782 int fd = -1;
4be21d56
DG
1783
1784 if (version_id < 1 || version_id > 1) {
98a5d100 1785 error_report("htab_load() bad version");
4be21d56
DG
1786 return -EINVAL;
1787 }
1788
1789 section_hdr = qemu_get_be32(f);
1790
1791 if (section_hdr) {
9897e462 1792 Error *local_err = NULL;
c5f54f3e
DG
1793
1794 /* First section gives the htab size */
1795 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1796 if (local_err) {
1797 error_report_err(local_err);
4be21d56
DG
1798 return -EINVAL;
1799 }
1800 return 0;
1801 }
1802
e68cb8b4
AK
1803 if (!spapr->htab) {
1804 assert(kvm_enabled());
1805
1806 fd = kvmppc_get_htab_fd(true);
1807 if (fd < 0) {
98a5d100
DG
1808 error_report("Unable to open fd to restore KVM hash table: %s",
1809 strerror(errno));
e68cb8b4
AK
1810 }
1811 }
1812
4be21d56
DG
1813 while (true) {
1814 uint32_t index;
1815 uint16_t n_valid, n_invalid;
1816
1817 index = qemu_get_be32(f);
1818 n_valid = qemu_get_be16(f);
1819 n_invalid = qemu_get_be16(f);
1820
1821 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1822 /* End of Stream */
1823 break;
1824 }
1825
e68cb8b4 1826 if ((index + n_valid + n_invalid) >
4be21d56
DG
1827 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1828 /* Bad index in stream */
98a5d100
DG
1829 error_report(
1830 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1831 index, n_valid, n_invalid, spapr->htab_shift);
4be21d56
DG
1832 return -EINVAL;
1833 }
1834
e68cb8b4
AK
1835 if (spapr->htab) {
1836 if (n_valid) {
1837 qemu_get_buffer(f, HPTE(spapr->htab, index),
1838 HASH_PTE_SIZE_64 * n_valid);
1839 }
1840 if (n_invalid) {
1841 memset(HPTE(spapr->htab, index + n_valid), 0,
1842 HASH_PTE_SIZE_64 * n_invalid);
1843 }
1844 } else {
1845 int rc;
1846
1847 assert(fd >= 0);
1848
1849 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1850 if (rc < 0) {
1851 return rc;
1852 }
4be21d56
DG
1853 }
1854 }
1855
e68cb8b4
AK
1856 if (!spapr->htab) {
1857 assert(fd >= 0);
1858 close(fd);
1859 }
1860
4be21d56
DG
1861 return 0;
1862}
1863
c573fc03
TH
1864static void htab_cleanup(void *opaque)
1865{
1866 sPAPRMachineState *spapr = opaque;
1867
1868 close_htab_fd(spapr);
1869}
1870
4be21d56
DG
1871static SaveVMHandlers savevm_htab_handlers = {
1872 .save_live_setup = htab_save_setup,
1873 .save_live_iterate = htab_save_iterate,
a3e06c3d 1874 .save_live_complete_precopy = htab_save_complete,
c573fc03 1875 .cleanup = htab_cleanup,
4be21d56
DG
1876 .load_state = htab_load,
1877};
1878
5b2128d2
AG
1879static void spapr_boot_set(void *opaque, const char *boot_device,
1880 Error **errp)
1881{
1882 MachineState *machine = MACHINE(qdev_get_machine());
1883 machine->boot_order = g_strdup(boot_device);
1884}
1885
224245bf
DG
1886/*
1887 * Reset routine for LMB DR devices.
1888 *
1889 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1890 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1891 * when it walks all its children devices. LMB devices reset occurs
1892 * as part of spapr_ppc_reset().
1893 */
1894static void spapr_drc_reset(void *opaque)
1895{
1896 sPAPRDRConnector *drc = opaque;
1897 DeviceState *d = DEVICE(drc);
1898
1899 if (d) {
1900 device_reset(d);
1901 }
1902}
1903
1904static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1905{
1906 MachineState *machine = MACHINE(spapr);
1907 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
e8f986fc 1908 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
224245bf
DG
1909 int i;
1910
1911 for (i = 0; i < nr_lmbs; i++) {
1912 sPAPRDRConnector *drc;
1913 uint64_t addr;
1914
e8f986fc 1915 addr = i * lmb_size + spapr->hotplug_memory.base;
2d335818 1916 drc = spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
224245bf
DG
1917 addr/lmb_size);
1918 qemu_register_reset(spapr_drc_reset, drc);
1919 }
1920}
1921
1922/*
1923 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1924 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1925 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1926 */
7c150d6f 1927static void spapr_validate_node_memory(MachineState *machine, Error **errp)
224245bf
DG
1928{
1929 int i;
1930
7c150d6f
DG
1931 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1932 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1933 " is not aligned to %llu MiB",
1934 machine->ram_size,
1935 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1936 return;
1937 }
1938
1939 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1940 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1941 " is not aligned to %llu MiB",
1942 machine->ram_size,
1943 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1944 return;
224245bf
DG
1945 }
1946
1947 for (i = 0; i < nb_numa_nodes; i++) {
1948 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
7c150d6f
DG
1949 error_setg(errp,
1950 "Node %d memory size 0x%" PRIx64
1951 " is not aligned to %llu MiB",
1952 i, numa_info[i].node_mem,
1953 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1954 return;
224245bf
DG
1955 }
1956 }
1957}
1958
535455fd
IM
1959/* find cpu slot in machine->possible_cpus by core_id */
1960static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1961{
1962 int index = id / smp_threads;
1963
1964 if (index >= ms->possible_cpus->len) {
1965 return NULL;
1966 }
1967 if (idx) {
1968 *idx = index;
1969 }
1970 return &ms->possible_cpus->cpus[index];
1971}
1972
0c86d0fd
DG
1973static void spapr_init_cpus(sPAPRMachineState *spapr)
1974{
1975 MachineState *machine = MACHINE(spapr);
1976 MachineClass *mc = MACHINE_GET_CLASS(machine);
1977 char *type = spapr_get_cpu_core_type(machine->cpu_model);
1978 int smt = kvmppc_smt_threads();
535455fd
IM
1979 const CPUArchIdList *possible_cpus;
1980 int boot_cores_nr = smp_cpus / smp_threads;
0c86d0fd
DG
1981 int i;
1982
1983 if (!type) {
1984 error_report("Unable to find sPAPR CPU Core definition");
1985 exit(1);
1986 }
1987
535455fd 1988 possible_cpus = mc->possible_cpu_arch_ids(machine);
c5514d0e 1989 if (mc->has_hotpluggable_cpus) {
0c86d0fd
DG
1990 if (smp_cpus % smp_threads) {
1991 error_report("smp_cpus (%u) must be multiple of threads (%u)",
1992 smp_cpus, smp_threads);
1993 exit(1);
1994 }
1995 if (max_cpus % smp_threads) {
1996 error_report("max_cpus (%u) must be multiple of threads (%u)",
1997 max_cpus, smp_threads);
1998 exit(1);
1999 }
0c86d0fd
DG
2000 } else {
2001 if (max_cpus != smp_cpus) {
2002 error_report("This machine version does not support CPU hotplug");
2003 exit(1);
2004 }
535455fd 2005 boot_cores_nr = possible_cpus->len;
0c86d0fd
DG
2006 }
2007
535455fd 2008 for (i = 0; i < possible_cpus->len; i++) {
0c86d0fd
DG
2009 int core_id = i * smp_threads;
2010
c5514d0e 2011 if (mc->has_hotpluggable_cpus) {
0c86d0fd 2012 sPAPRDRConnector *drc =
2d335818 2013 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
0c86d0fd
DG
2014 (core_id / smp_threads) * smt);
2015
2016 qemu_register_reset(spapr_drc_reset, drc);
2017 }
2018
535455fd 2019 if (i < boot_cores_nr) {
0c86d0fd
DG
2020 Object *core = object_new(type);
2021 int nr_threads = smp_threads;
2022
2023 /* Handle the partially filled core for older machine types */
2024 if ((i + 1) * smp_threads >= smp_cpus) {
2025 nr_threads = smp_cpus - i * smp_threads;
2026 }
2027
2028 object_property_set_int(core, nr_threads, "nr-threads",
2029 &error_fatal);
2030 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2031 &error_fatal);
2032 object_property_set_bool(core, true, "realized", &error_fatal);
2033 }
2034 }
2035 g_free(type);
2036}
2037
9fdf0c29 2038/* pSeries LPAR / sPAPR hardware init */
3ef96221 2039static void ppc_spapr_init(MachineState *machine)
9fdf0c29 2040{
28e02042 2041 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
224245bf 2042 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
3ef96221 2043 const char *kernel_filename = machine->kernel_filename;
3ef96221 2044 const char *initrd_filename = machine->initrd_filename;
8c9f64df 2045 PCIHostState *phb;
9fdf0c29 2046 int i;
890c2b77
AK
2047 MemoryRegion *sysmem = get_system_memory();
2048 MemoryRegion *ram = g_new(MemoryRegion, 1);
658fa66b
AK
2049 MemoryRegion *rma_region;
2050 void *rma = NULL;
a8170e5e 2051 hwaddr rma_alloc_size;
b082d65a 2052 hwaddr node0_size = spapr_node0_size();
b7d1f77a 2053 long load_limit, fw_size;
39ac8455 2054 char *filename;
9fdf0c29 2055
226419d6 2056 msi_nonbroken = true;
0ee2c058 2057
d43b45e2 2058 QLIST_INIT(&spapr->phbs);
0cffce56 2059 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
d43b45e2 2060
354ac20a 2061 /* Allocate RMA if necessary */
658fa66b 2062 rma_alloc_size = kvmppc_alloc_rma(&rma);
354ac20a
DG
2063
2064 if (rma_alloc_size == -1) {
730fce59 2065 error_report("Unable to create RMA");
354ac20a
DG
2066 exit(1);
2067 }
7f763a5d 2068
c4177479 2069 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
7f763a5d 2070 spapr->rma_size = rma_alloc_size;
354ac20a 2071 } else {
c4177479 2072 spapr->rma_size = node0_size;
7f763a5d
DG
2073
2074 /* With KVM, we don't actually know whether KVM supports an
2075 * unbounded RMA (PR KVM) or is limited by the hash table size
2076 * (HV KVM using VRMA), so we always assume the latter
2077 *
2078 * In that case, we also limit the initial allocations for RTAS
2079 * etc... to 256M since we have no way to know what the VRMA size
2080 * is going to be as it depends on the size of the hash table
2081 * isn't determined yet.
2082 */
2083 if (kvm_enabled()) {
2084 spapr->vrma_adjust = 1;
2085 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2086 }
912acdf4
BH
2087
2088 /* Actually we don't support unbounded RMA anymore since we
2089 * added proper emulation of HV mode. The max we can get is
2090 * 16G which also happens to be what we configure for PAPR
2091 * mode so make sure we don't do anything bigger than that
2092 */
2093 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
354ac20a
DG
2094 }
2095
c4177479 2096 if (spapr->rma_size > node0_size) {
d54e4d76
DG
2097 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2098 spapr->rma_size);
c4177479
AK
2099 exit(1);
2100 }
2101
b7d1f77a
BH
2102 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2103 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
9fdf0c29 2104
7b565160 2105 /* Set up Interrupt Controller before we create the VCPUs */
71cd4dac 2106 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
7b565160 2107
facdb8b6
MR
2108 /* Set up containers for ibm,client-set-architecture negotiated options */
2109 spapr->ov5 = spapr_ovec_new();
2110 spapr->ov5_cas = spapr_ovec_new();
2111
224245bf 2112 if (smc->dr_lmb_enabled) {
facdb8b6 2113 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
7c150d6f 2114 spapr_validate_node_memory(machine, &error_fatal);
224245bf
DG
2115 }
2116
417ece33 2117 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
545d6e2b
SJS
2118 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2119 /* KVM and TCG always allow GTSE with radix... */
9fb4541f
SB
2120 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2121 }
2122 /* ... but not with hash (currently). */
417ece33 2123
ffbb1705
MR
2124 /* advertise support for dedicated HP event source to guests */
2125 if (spapr->use_hotplug_event_source) {
2126 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2127 }
2128
9fdf0c29 2129 /* init CPUs */
19fb2c36 2130 if (machine->cpu_model == NULL) {
3daa4a9f 2131 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
9fdf0c29 2132 }
94a94e4c 2133
e703d2f7
GK
2134 ppc_cpu_parse_features(machine->cpu_model);
2135
0c86d0fd 2136 spapr_init_cpus(spapr);
9fdf0c29 2137
026bfd89
DG
2138 if (kvm_enabled()) {
2139 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2140 kvmppc_enable_logical_ci_hcalls();
ef9971dd 2141 kvmppc_enable_set_mode_hcall();
5145ad4f
NW
2142
2143 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2144 kvmppc_enable_clear_ref_mod_hcalls();
026bfd89
DG
2145 }
2146
9fdf0c29 2147 /* allocate RAM */
f92f5da1 2148 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
fb164994 2149 machine->ram_size);
f92f5da1 2150 memory_region_add_subregion(sysmem, 0, ram);
9fdf0c29 2151
658fa66b
AK
2152 if (rma_alloc_size && rma) {
2153 rma_region = g_new(MemoryRegion, 1);
2154 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2155 rma_alloc_size, rma);
2156 vmstate_register_ram_global(rma_region);
2157 memory_region_add_subregion(sysmem, 0, rma_region);
2158 }
2159
4a1c9cf0
BR
2160 /* initialize hotplug memory address space */
2161 if (machine->ram_size < machine->maxram_size) {
2162 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
71c9a3dd
BR
2163 /*
2164 * Limit the number of hotpluggable memory slots to half the number
2165 * slots that KVM supports, leaving the other half for PCI and other
2166 * devices. However ensure that number of slots doesn't drop below 32.
2167 */
2168 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2169 SPAPR_MAX_RAM_SLOTS;
4a1c9cf0 2170
71c9a3dd
BR
2171 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2172 max_memslots = SPAPR_MAX_RAM_SLOTS;
2173 }
2174 if (machine->ram_slots > max_memslots) {
d54e4d76
DG
2175 error_report("Specified number of memory slots %"
2176 PRIu64" exceeds max supported %d",
71c9a3dd 2177 machine->ram_slots, max_memslots);
d54e4d76 2178 exit(1);
4a1c9cf0
BR
2179 }
2180
2181 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2182 SPAPR_HOTPLUG_MEM_ALIGN);
2183 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2184 "hotplug-memory", hotplug_mem_size);
2185 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2186 &spapr->hotplug_memory.mr);
2187 }
2188
224245bf
DG
2189 if (smc->dr_lmb_enabled) {
2190 spapr_create_lmb_dr_connectors(spapr);
2191 }
2192
39ac8455 2193 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
4c56440d 2194 if (!filename) {
730fce59 2195 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
4c56440d
SW
2196 exit(1);
2197 }
b7d1f77a 2198 spapr->rtas_size = get_image_size(filename);
8afc22a2
ZJ
2199 if (spapr->rtas_size < 0) {
2200 error_report("Could not get size of LPAR rtas '%s'", filename);
2201 exit(1);
2202 }
b7d1f77a
BH
2203 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2204 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
730fce59 2205 error_report("Could not load LPAR rtas '%s'", filename);
39ac8455
DG
2206 exit(1);
2207 }
4d8d5467 2208 if (spapr->rtas_size > RTAS_MAX_SIZE) {
730fce59
TH
2209 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2210 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
4d8d5467
BH
2211 exit(1);
2212 }
7267c094 2213 g_free(filename);
39ac8455 2214
ffbb1705 2215 /* Set up RTAS event infrastructure */
74d042e5
DG
2216 spapr_events_init(spapr);
2217
12f42174 2218 /* Set up the RTC RTAS interfaces */
28df36a1 2219 spapr_rtc_create(spapr);
12f42174 2220
b5cec4c5 2221 /* Set up VIO bus */
4040ab72
DG
2222 spapr->vio_bus = spapr_vio_bus_init();
2223
277f9acf 2224 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
4040ab72 2225 if (serial_hds[i]) {
d601fac4 2226 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
4040ab72
DG
2227 }
2228 }
9fdf0c29 2229
639e8102
DG
2230 /* We always have at least the nvram device on VIO */
2231 spapr_create_nvram(spapr);
2232
3384f95c 2233 /* Set up PCI */
fa28f71b
AK
2234 spapr_pci_rtas_init();
2235
89dfd6e1 2236 phb = spapr_create_phb(spapr, 0);
3384f95c 2237
277f9acf 2238 for (i = 0; i < nb_nics; i++) {
8d90ad90
DG
2239 NICInfo *nd = &nd_table[i];
2240
2241 if (!nd->model) {
7267c094 2242 nd->model = g_strdup("ibmveth");
8d90ad90
DG
2243 }
2244
2245 if (strcmp(nd->model, "ibmveth") == 0) {
d601fac4 2246 spapr_vlan_create(spapr->vio_bus, nd);
8d90ad90 2247 } else {
29b358f9 2248 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
8d90ad90
DG
2249 }
2250 }
2251
6e270446 2252 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
d601fac4 2253 spapr_vscsi_create(spapr->vio_bus);
6e270446
BH
2254 }
2255
f28359d8 2256 /* Graphics */
14c6a894 2257 if (spapr_vga_init(phb->bus, &error_fatal)) {
3fc5acde 2258 spapr->has_graphics = true;
c6e76503 2259 machine->usb |= defaults_enabled() && !machine->usb_disabled;
f28359d8
LZ
2260 }
2261
4ee9ced9 2262 if (machine->usb) {
57040d45
TH
2263 if (smc->use_ohci_by_default) {
2264 pci_create_simple(phb->bus, -1, "pci-ohci");
2265 } else {
2266 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2267 }
c86580b8 2268
35139a59 2269 if (spapr->has_graphics) {
c86580b8
MA
2270 USBBus *usb_bus = usb_bus_find(-1);
2271
2272 usb_create_simple(usb_bus, "usb-kbd");
2273 usb_create_simple(usb_bus, "usb-mouse");
35139a59
DG
2274 }
2275 }
2276
7f763a5d 2277 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
d54e4d76
DG
2278 error_report(
2279 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2280 MIN_RMA_SLOF);
4d8d5467
BH
2281 exit(1);
2282 }
2283
9fdf0c29
DG
2284 if (kernel_filename) {
2285 uint64_t lowaddr = 0;
2286
a19f7fb0
DG
2287 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2288 NULL, NULL, &lowaddr, NULL, 1,
2289 PPC_ELF_MACHINE, 0, 0);
2290 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2291 spapr->kernel_size = load_elf(kernel_filename,
2292 translate_kernel_address, NULL, NULL,
2293 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2294 0, 0);
2295 spapr->kernel_le = spapr->kernel_size > 0;
16457e7f 2296 }
a19f7fb0
DG
2297 if (spapr->kernel_size < 0) {
2298 error_report("error loading %s: %s", kernel_filename,
2299 load_elf_strerror(spapr->kernel_size));
9fdf0c29
DG
2300 exit(1);
2301 }
2302
2303 /* load initrd */
2304 if (initrd_filename) {
4d8d5467
BH
2305 /* Try to locate the initrd in the gap between the kernel
2306 * and the firmware. Add a bit of space just in case
2307 */
a19f7fb0
DG
2308 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2309 + 0x1ffff) & ~0xffff;
2310 spapr->initrd_size = load_image_targphys(initrd_filename,
2311 spapr->initrd_base,
2312 load_limit
2313 - spapr->initrd_base);
2314 if (spapr->initrd_size < 0) {
d54e4d76
DG
2315 error_report("could not load initial ram disk '%s'",
2316 initrd_filename);
9fdf0c29
DG
2317 exit(1);
2318 }
9fdf0c29 2319 }
4d8d5467 2320 }
a3467baa 2321
8e7ea787
AF
2322 if (bios_name == NULL) {
2323 bios_name = FW_FILE_NAME;
2324 }
2325 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
4c56440d 2326 if (!filename) {
68fea5a0 2327 error_report("Could not find LPAR firmware '%s'", bios_name);
4c56440d
SW
2328 exit(1);
2329 }
4d8d5467 2330 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
68fea5a0
TH
2331 if (fw_size <= 0) {
2332 error_report("Could not load LPAR firmware '%s'", filename);
4d8d5467
BH
2333 exit(1);
2334 }
2335 g_free(filename);
4d8d5467 2336
28e02042
DG
2337 /* FIXME: Should register things through the MachineState's qdev
2338 * interface, this is a legacy from the sPAPREnvironment structure
2339 * which predated MachineState but had a similar function */
4be21d56
DG
2340 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2341 register_savevm_live(NULL, "spapr/htab", -1, 1,
2342 &savevm_htab_handlers, spapr);
2343
5b2128d2 2344 qemu_register_boot_set(spapr_boot_set, spapr);
42043e4f 2345
42043e4f 2346 if (kvm_enabled()) {
3dc410ae 2347 /* to stop and start vmclock */
42043e4f
LV
2348 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2349 &spapr->tb);
3dc410ae
AK
2350
2351 kvmppc_spapr_enable_inkernel_multitce();
42043e4f 2352 }
9fdf0c29
DG
2353}
2354
135a129a
AK
2355static int spapr_kvm_type(const char *vm_type)
2356{
2357 if (!vm_type) {
2358 return 0;
2359 }
2360
2361 if (!strcmp(vm_type, "HV")) {
2362 return 1;
2363 }
2364
2365 if (!strcmp(vm_type, "PR")) {
2366 return 2;
2367 }
2368
2369 error_report("Unknown kvm-type specified '%s'", vm_type);
2370 exit(1);
2371}
2372
71461b0f 2373/*
627b84f4 2374 * Implementation of an interface to adjust firmware path
71461b0f
AK
2375 * for the bootindex property handling.
2376 */
2377static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2378 DeviceState *dev)
2379{
2380#define CAST(type, obj, name) \
2381 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2382 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2383 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
c4e13492 2384 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
71461b0f
AK
2385
2386 if (d) {
2387 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2388 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2389 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2390
2391 if (spapr) {
2392 /*
2393 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2394 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2395 * in the top 16 bits of the 64-bit LUN
2396 */
2397 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2398 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2399 (uint64_t)id << 48);
2400 } else if (virtio) {
2401 /*
2402 * We use SRP luns of the form 01000000 | (target << 8) | lun
2403 * in the top 32 bits of the 64-bit LUN
2404 * Note: the quote above is from SLOF and it is wrong,
2405 * the actual binding is:
2406 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2407 */
2408 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2409 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2410 (uint64_t)id << 32);
2411 } else if (usb) {
2412 /*
2413 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2414 * in the top 32 bits of the 64-bit LUN
2415 */
2416 unsigned usb_port = atoi(usb->port->path);
2417 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2418 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2419 (uint64_t)id << 32);
2420 }
2421 }
2422
b99260eb
TH
2423 /*
2424 * SLOF probes the USB devices, and if it recognizes that the device is a
2425 * storage device, it changes its name to "storage" instead of "usb-host",
2426 * and additionally adds a child node for the SCSI LUN, so the correct
2427 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2428 */
2429 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2430 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2431 if (usb_host_dev_is_scsi_storage(usbdev)) {
2432 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2433 }
2434 }
2435
71461b0f
AK
2436 if (phb) {
2437 /* Replace "pci" with "pci@800000020000000" */
2438 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2439 }
2440
c4e13492
FF
2441 if (vsc) {
2442 /* Same logic as virtio above */
2443 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2444 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2445 }
2446
4871dd4c
TH
2447 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2448 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2449 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2450 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2451 }
2452
71461b0f
AK
2453 return NULL;
2454}
2455
23825581
EH
2456static char *spapr_get_kvm_type(Object *obj, Error **errp)
2457{
28e02042 2458 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2459
28e02042 2460 return g_strdup(spapr->kvm_type);
23825581
EH
2461}
2462
2463static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2464{
28e02042 2465 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2466
28e02042
DG
2467 g_free(spapr->kvm_type);
2468 spapr->kvm_type = g_strdup(value);
23825581
EH
2469}
2470
f6229214
MR
2471static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2472{
2473 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2474
2475 return spapr->use_hotplug_event_source;
2476}
2477
2478static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2479 Error **errp)
2480{
2481 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2482
2483 spapr->use_hotplug_event_source = value;
2484}
2485
23825581
EH
2486static void spapr_machine_initfn(Object *obj)
2487{
715c5407
DG
2488 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2489
2490 spapr->htab_fd = -1;
f6229214 2491 spapr->use_hotplug_event_source = true;
23825581
EH
2492 object_property_add_str(obj, "kvm-type",
2493 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
49d2e648
MA
2494 object_property_set_description(obj, "kvm-type",
2495 "Specifies the KVM virtualization mode (HV, PR)",
2496 NULL);
f6229214
MR
2497 object_property_add_bool(obj, "modern-hotplug-events",
2498 spapr_get_modern_hotplug_events,
2499 spapr_set_modern_hotplug_events,
2500 NULL);
2501 object_property_set_description(obj, "modern-hotplug-events",
2502 "Use dedicated hotplug event mechanism in"
2503 " place of standard EPOW events when possible"
2504 " (required for memory hot-unplug support)",
2505 NULL);
23825581
EH
2506}
2507
87bbdd9c
DG
2508static void spapr_machine_finalizefn(Object *obj)
2509{
2510 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2511
2512 g_free(spapr->kvm_type);
2513}
2514
1c7ad77e 2515void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
34316482 2516{
34316482
AK
2517 cpu_synchronize_state(cs);
2518 ppc_cpu_do_system_reset(cs);
2519}
2520
2521static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2522{
2523 CPUState *cs;
2524
2525 CPU_FOREACH(cs) {
1c7ad77e 2526 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
34316482
AK
2527 }
2528}
2529
79b78a6b
MR
2530static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2531 uint32_t node, bool dedicated_hp_event_source,
2532 Error **errp)
c20d332a
BR
2533{
2534 sPAPRDRConnector *drc;
c20d332a
BR
2535 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2536 int i, fdt_offset, fdt_size;
2537 void *fdt;
79b78a6b 2538 uint64_t addr = addr_start;
c20d332a 2539
c20d332a 2540 for (i = 0; i < nr_lmbs; i++) {
fbf55397
DG
2541 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2542 addr / SPAPR_MEMORY_BLOCK_SIZE);
c20d332a
BR
2543 g_assert(drc);
2544
2545 fdt = create_device_tree(&fdt_size);
2546 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2547 SPAPR_MEMORY_BLOCK_SIZE);
2548
0be4e886 2549 spapr_drc_attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
c20d332a 2550 addr += SPAPR_MEMORY_BLOCK_SIZE;
5c0139a8 2551 if (!dev->hotplugged) {
0be4e886 2552 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
5c0139a8
MR
2553 /* guests expect coldplugged LMBs to be pre-allocated */
2554 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2555 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2556 }
c20d332a 2557 }
5dd5238c
JD
2558 /* send hotplug notification to the
2559 * guest only in case of hotplugged memory
2560 */
2561 if (dev->hotplugged) {
79b78a6b 2562 if (dedicated_hp_event_source) {
fbf55397
DG
2563 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2564 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
79b78a6b
MR
2565 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2566 nr_lmbs,
0b55aa91 2567 spapr_drc_index(drc));
79b78a6b
MR
2568 } else {
2569 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2570 nr_lmbs);
2571 }
5dd5238c 2572 }
c20d332a
BR
2573}
2574
2575static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2576 uint32_t node, Error **errp)
2577{
2578 Error *local_err = NULL;
2579 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2580 PCDIMMDevice *dimm = PC_DIMM(dev);
2581 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2582 MemoryRegion *mr = ddc->get_memory_region(dimm);
2583 uint64_t align = memory_region_get_alignment(mr);
2584 uint64_t size = memory_region_size(mr);
2585 uint64_t addr;
df587133 2586
d6a9b0b8 2587 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
c20d332a
BR
2588 if (local_err) {
2589 goto out;
2590 }
2591
9ed442b8
MAL
2592 addr = object_property_get_uint(OBJECT(dimm),
2593 PC_DIMM_ADDR_PROP, &local_err);
c20d332a
BR
2594 if (local_err) {
2595 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2596 goto out;
2597 }
2598
79b78a6b
MR
2599 spapr_add_lmbs(dev, addr, size, node,
2600 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2601 &error_abort);
c20d332a
BR
2602
2603out:
2604 error_propagate(errp, local_err);
2605}
2606
c871bc70
LV
2607static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2608 Error **errp)
2609{
2610 PCDIMMDevice *dimm = PC_DIMM(dev);
2611 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2612 MemoryRegion *mr = ddc->get_memory_region(dimm);
2613 uint64_t size = memory_region_size(mr);
2614 char *mem_dev;
2615
2616 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2617 error_setg(errp, "Hotplugged memory size must be a multiple of "
2618 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2619 return;
2620 }
2621
2622 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2623 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2624 error_setg(errp, "Memory backend has bad page size. "
2625 "Use 'memory-backend-file' with correct mem-path.");
8a9e0e7b 2626 goto out;
c871bc70 2627 }
8a9e0e7b
GK
2628
2629out:
2630 g_free(mem_dev);
c871bc70
LV
2631}
2632
0cffce56
DG
2633struct sPAPRDIMMState {
2634 PCDIMMDevice *dimm;
cf632463 2635 uint32_t nr_lmbs;
0cffce56
DG
2636 QTAILQ_ENTRY(sPAPRDIMMState) next;
2637};
2638
2639static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
2640 PCDIMMDevice *dimm)
2641{
2642 sPAPRDIMMState *dimm_state = NULL;
2643
2644 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
2645 if (dimm_state->dimm == dimm) {
2646 break;
2647 }
2648 }
2649 return dimm_state;
2650}
2651
2652static void spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
2653 sPAPRDIMMState *dimm_state)
2654{
2655 g_assert(!spapr_pending_dimm_unplugs_find(spapr, dimm_state->dimm));
2656 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, dimm_state, next);
2657}
2658
2659static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
2660 sPAPRDIMMState *dimm_state)
2661{
2662 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
2663 g_free(dimm_state);
2664}
cf632463 2665
16ee9980
DHB
2666static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
2667 PCDIMMDevice *dimm)
2668{
2669 sPAPRDRConnector *drc;
2670 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2671 MemoryRegion *mr = ddc->get_memory_region(dimm);
2672 uint64_t size = memory_region_size(mr);
2673 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2674 uint32_t avail_lmbs = 0;
2675 uint64_t addr_start, addr;
2676 int i;
2677 sPAPRDIMMState *ds;
2678
2679 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
2680 &error_abort);
2681
2682 addr = addr_start;
2683 for (i = 0; i < nr_lmbs; i++) {
fbf55397
DG
2684 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2685 addr / SPAPR_MEMORY_BLOCK_SIZE);
16ee9980 2686 g_assert(drc);
454b580a 2687 if (drc->dev) {
16ee9980
DHB
2688 avail_lmbs++;
2689 }
2690 addr += SPAPR_MEMORY_BLOCK_SIZE;
2691 }
2692
2693 ds = g_malloc0(sizeof(sPAPRDIMMState));
2694 ds->nr_lmbs = avail_lmbs;
2695 ds->dimm = dimm;
2696 spapr_pending_dimm_unplugs_add(ms, ds);
2697 return ds;
2698}
2699
31834723
DHB
2700/* Callback to be called during DRC release. */
2701void spapr_lmb_release(DeviceState *dev)
cf632463 2702{
0cffce56
DG
2703 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
2704 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
2705 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
cf632463 2706
16ee9980
DHB
2707 /* This information will get lost if a migration occurs
2708 * during the unplug process. In this case recover it. */
2709 if (ds == NULL) {
2710 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
454b580a
DG
2711 /* The DRC being examined by the caller at least must be counted */
2712 g_assert(ds->nr_lmbs);
2713 }
2714
2715 if (--ds->nr_lmbs) {
cf632463
BR
2716 return;
2717 }
2718
0cffce56 2719 spapr_pending_dimm_unplugs_remove(spapr, ds);
cf632463
BR
2720
2721 /*
2722 * Now that all the LMBs have been removed by the guest, call the
2723 * pc-dimm unplug handler to cleanup up the pc-dimm device.
2724 */
cf632463
BR
2725 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2726}
2727
cf632463
BR
2728static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2729 Error **errp)
2730{
2731 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2732 PCDIMMDevice *dimm = PC_DIMM(dev);
2733 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2734 MemoryRegion *mr = ddc->get_memory_region(dimm);
2735
2736 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2737 object_unparent(OBJECT(dev));
2738}
2739
2740static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2741 DeviceState *dev, Error **errp)
2742{
0cffce56 2743 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
cf632463
BR
2744 Error *local_err = NULL;
2745 PCDIMMDevice *dimm = PC_DIMM(dev);
2746 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2747 MemoryRegion *mr = ddc->get_memory_region(dimm);
2748 uint64_t size = memory_region_size(mr);
0cffce56
DG
2749 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2750 uint64_t addr_start, addr;
2751 int i;
2752 sPAPRDRConnector *drc;
0cffce56 2753 sPAPRDIMMState *ds;
cf632463 2754
9ed442b8 2755 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
0cffce56 2756 &local_err);
cf632463
BR
2757 if (local_err) {
2758 goto out;
2759 }
2760
0cffce56
DG
2761 ds = g_malloc0(sizeof(sPAPRDIMMState));
2762 ds->nr_lmbs = nr_lmbs;
2763 ds->dimm = dimm;
2764 spapr_pending_dimm_unplugs_add(spapr, ds);
2765
2766 addr = addr_start;
2767 for (i = 0; i < nr_lmbs; i++) {
fbf55397
DG
2768 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2769 addr / SPAPR_MEMORY_BLOCK_SIZE);
0cffce56
DG
2770 g_assert(drc);
2771
0be4e886 2772 spapr_drc_detach(drc, dev, errp);
0cffce56
DG
2773 addr += SPAPR_MEMORY_BLOCK_SIZE;
2774 }
2775
fbf55397
DG
2776 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2777 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
0cffce56 2778 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
0b55aa91 2779 nr_lmbs, spapr_drc_index(drc));
cf632463
BR
2780out:
2781 error_propagate(errp, local_err);
2782}
2783
af81cf32
BR
2784void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2785 sPAPRMachineState *spapr)
2786{
2787 PowerPCCPU *cpu = POWERPC_CPU(cs);
2788 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2789 int id = ppc_get_vcpu_dt_id(cpu);
2790 void *fdt;
2791 int offset, fdt_size;
2792 char *nodename;
2793
2794 fdt = create_device_tree(&fdt_size);
2795 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2796 offset = fdt_add_subnode(fdt, 0, nodename);
2797
2798 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2799 g_free(nodename);
2800
2801 *fdt_offset = offset;
2802 return fdt;
2803}
2804
115debf2
IM
2805static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2806 Error **errp)
ff9006dd 2807{
535455fd 2808 MachineState *ms = MACHINE(qdev_get_machine());
ff9006dd 2809 CPUCore *cc = CPU_CORE(dev);
535455fd 2810 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
ff9006dd 2811
07572c06 2812 assert(core_slot);
535455fd 2813 core_slot->cpu = NULL;
ff9006dd
IM
2814 object_unparent(OBJECT(dev));
2815}
2816
31834723
DHB
2817/* Callback to be called during DRC release. */
2818void spapr_core_release(DeviceState *dev)
115debf2
IM
2819{
2820 HotplugHandler *hotplug_ctrl;
2821
2822 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2823 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2824}
2825
2826static
2827void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
2828 Error **errp)
ff9006dd 2829{
535455fd
IM
2830 int index;
2831 sPAPRDRConnector *drc;
ff9006dd 2832 Error *local_err = NULL;
535455fd
IM
2833 CPUCore *cc = CPU_CORE(dev);
2834 int smt = kvmppc_smt_threads();
ff9006dd 2835
535455fd
IM
2836 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
2837 error_setg(errp, "Unable to find CPU core with core-id: %d",
2838 cc->core_id);
2839 return;
2840 }
ff9006dd
IM
2841 if (index == 0) {
2842 error_setg(errp, "Boot CPU core may not be unplugged");
2843 return;
2844 }
2845
fbf55397 2846 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
ff9006dd
IM
2847 g_assert(drc);
2848
0be4e886 2849 spapr_drc_detach(drc, dev, &local_err);
ff9006dd
IM
2850 if (local_err) {
2851 error_propagate(errp, local_err);
2852 return;
2853 }
2854
2855 spapr_hotplug_req_remove_by_index(drc);
2856}
2857
2858static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2859 Error **errp)
2860{
2861 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
2862 MachineClass *mc = MACHINE_GET_CLASS(spapr);
2863 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
2864 CPUCore *cc = CPU_CORE(dev);
2865 CPUState *cs = CPU(core->threads);
2866 sPAPRDRConnector *drc;
2867 Error *local_err = NULL;
2868 void *fdt = NULL;
2869 int fdt_offset = 0;
ff9006dd 2870 int smt = kvmppc_smt_threads();
535455fd
IM
2871 CPUArchId *core_slot;
2872 int index;
ff9006dd 2873
535455fd
IM
2874 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2875 if (!core_slot) {
2876 error_setg(errp, "Unable to find CPU core with core-id: %d",
2877 cc->core_id);
2878 return;
2879 }
fbf55397 2880 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
ff9006dd 2881
c5514d0e 2882 g_assert(drc || !mc->has_hotpluggable_cpus);
ff9006dd
IM
2883
2884 /*
2885 * Setup CPU DT entries only for hotplugged CPUs. For boot time or
2886 * coldplugged CPUs DT entries are setup in spapr_build_fdt().
2887 */
2888 if (dev->hotplugged) {
2889 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
2890 }
2891
2892 if (drc) {
0be4e886
DG
2893 spapr_drc_attach(drc, dev, fdt, fdt_offset, !dev->hotplugged,
2894 &local_err);
ff9006dd
IM
2895 if (local_err) {
2896 g_free(fdt);
ff9006dd
IM
2897 error_propagate(errp, local_err);
2898 return;
2899 }
2900 }
2901
2902 if (dev->hotplugged) {
2903 /*
2904 * Send hotplug notification interrupt to the guest only in case
2905 * of hotplugged CPUs.
2906 */
2907 spapr_hotplug_req_add_by_index(drc);
2908 } else {
2909 /*
2910 * Set the right DRC states for cold plugged CPU.
2911 */
2912 if (drc) {
2913 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2914 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2915 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2916 }
2917 }
535455fd 2918 core_slot->cpu = OBJECT(dev);
ff9006dd
IM
2919}
2920
2921static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2922 Error **errp)
2923{
2924 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
2925 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
ff9006dd
IM
2926 Error *local_err = NULL;
2927 CPUCore *cc = CPU_CORE(dev);
2928 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
2929 const char *type = object_get_typename(OBJECT(dev));
535455fd
IM
2930 CPUArchId *core_slot;
2931 int index;
ff9006dd 2932
c5514d0e 2933 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
ff9006dd
IM
2934 error_setg(&local_err, "CPU hotplug not supported for this machine");
2935 goto out;
2936 }
2937
2938 if (strcmp(base_core_type, type)) {
2939 error_setg(&local_err, "CPU core type should be %s", base_core_type);
2940 goto out;
2941 }
2942
2943 if (cc->core_id % smp_threads) {
2944 error_setg(&local_err, "invalid core id %d", cc->core_id);
2945 goto out;
2946 }
2947
459264ef
DG
2948 /*
2949 * In general we should have homogeneous threads-per-core, but old
2950 * (pre hotplug support) machine types allow the last core to have
2951 * reduced threads as a compatibility hack for when we allowed
2952 * total vcpus not a multiple of threads-per-core.
2953 */
2954 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
8149e299
DG
2955 error_setg(errp, "invalid nr-threads %d, must be %d",
2956 cc->nr_threads, smp_threads);
2957 return;
2958 }
2959
535455fd
IM
2960 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2961 if (!core_slot) {
ff9006dd
IM
2962 error_setg(&local_err, "core id %d out of range", cc->core_id);
2963 goto out;
2964 }
2965
535455fd 2966 if (core_slot->cpu) {
ff9006dd
IM
2967 error_setg(&local_err, "core %d already populated", cc->core_id);
2968 goto out;
2969 }
2970
a0ceb640 2971 numa_cpu_pre_plug(core_slot, dev, &local_err);
0b8497f0 2972
ff9006dd
IM
2973out:
2974 g_free(base_core_type);
2975 error_propagate(errp, local_err);
2976}
2977
c20d332a
BR
2978static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2979 DeviceState *dev, Error **errp)
2980{
2981 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2982
2983 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
b556854b 2984 int node;
c20d332a
BR
2985
2986 if (!smc->dr_lmb_enabled) {
2987 error_setg(errp, "Memory hotplug not supported for this machine");
2988 return;
2989 }
9ed442b8 2990 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
c20d332a
BR
2991 if (*errp) {
2992 return;
2993 }
1a5512bb
GA
2994 if (node < 0 || node >= MAX_NODES) {
2995 error_setg(errp, "Invaild node %d", node);
2996 return;
2997 }
c20d332a 2998
b556854b
BR
2999 /*
3000 * Currently PowerPC kernel doesn't allow hot-adding memory to
3001 * memory-less node, but instead will silently add the memory
3002 * to the first node that has some memory. This causes two
3003 * unexpected behaviours for the user.
3004 *
3005 * - Memory gets hotplugged to a different node than what the user
3006 * specified.
3007 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3008 * to memory-less node, a reboot will set things accordingly
3009 * and the previously hotplugged memory now ends in the right node.
3010 * This appears as if some memory moved from one node to another.
3011 *
3012 * So until kernel starts supporting memory hotplug to memory-less
3013 * nodes, just prevent such attempts upfront in QEMU.
3014 */
3015 if (nb_numa_nodes && !numa_info[node].node_mem) {
3016 error_setg(errp, "Can't hotplug memory to memory-less node %d",
3017 node);
3018 return;
3019 }
3020
c20d332a 3021 spapr_memory_plug(hotplug_dev, dev, node, errp);
af81cf32
BR
3022 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3023 spapr_core_plug(hotplug_dev, dev, errp);
c20d332a
BR
3024 }
3025}
3026
3027static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3028 DeviceState *dev, Error **errp)
3029{
cf632463 3030 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
3c0c47e3 3031 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
6f4b5c3e 3032
c20d332a 3033 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
cf632463
BR
3034 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3035 spapr_memory_unplug(hotplug_dev, dev, errp);
3036 } else {
3037 error_setg(errp, "Memory hot unplug not supported for this guest");
3038 }
3039 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
c5514d0e 3040 if (!mc->has_hotpluggable_cpus) {
cf632463
BR
3041 error_setg(errp, "CPU hot unplug not supported on this machine");
3042 return;
3043 }
3044 spapr_core_unplug(hotplug_dev, dev, errp);
3045 }
3046}
3047
3048static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3049 DeviceState *dev, Error **errp)
3050{
3051 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
3052 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
3053
3054 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3055 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3056 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3057 } else {
3058 /* NOTE: this means there is a window after guest reset, prior to
3059 * CAS negotiation, where unplug requests will fail due to the
3060 * capability not being detected yet. This is a bit different than
3061 * the case with PCI unplug, where the events will be queued and
3062 * eventually handled by the guest after boot
3063 */
3064 error_setg(errp, "Memory hot unplug not supported for this guest");
3065 }
6f4b5c3e 3066 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
c5514d0e 3067 if (!mc->has_hotpluggable_cpus) {
6f4b5c3e
BR
3068 error_setg(errp, "CPU hot unplug not supported on this machine");
3069 return;
3070 }
115debf2 3071 spapr_core_unplug_request(hotplug_dev, dev, errp);
c20d332a
BR
3072 }
3073}
3074
94a94e4c
BR
3075static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3076 DeviceState *dev, Error **errp)
3077{
c871bc70
LV
3078 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3079 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3080 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
94a94e4c
BR
3081 spapr_core_pre_plug(hotplug_dev, dev, errp);
3082 }
3083}
3084
7ebaf795
BR
3085static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3086 DeviceState *dev)
c20d332a 3087{
94a94e4c
BR
3088 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3089 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
c20d332a
BR
3090 return HOTPLUG_HANDLER(machine);
3091 }
3092 return NULL;
3093}
3094
ea089eeb
IM
3095static CpuInstanceProperties
3096spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
20bb648d 3097{
ea089eeb
IM
3098 CPUArchId *core_slot;
3099 MachineClass *mc = MACHINE_GET_CLASS(machine);
3100
3101 /* make sure possible_cpu are intialized */
3102 mc->possible_cpu_arch_ids(machine);
3103 /* get CPU core slot containing thread that matches cpu_index */
3104 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3105 assert(core_slot);
3106 return core_slot->props;
20bb648d
DG
3107}
3108
535455fd
IM
3109static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3110{
3111 int i;
3112 int spapr_max_cores = max_cpus / smp_threads;
3113 MachineClass *mc = MACHINE_GET_CLASS(machine);
3114
c5514d0e 3115 if (!mc->has_hotpluggable_cpus) {
535455fd
IM
3116 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3117 }
3118 if (machine->possible_cpus) {
3119 assert(machine->possible_cpus->len == spapr_max_cores);
3120 return machine->possible_cpus;
3121 }
3122
3123 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3124 sizeof(CPUArchId) * spapr_max_cores);
3125 machine->possible_cpus->len = spapr_max_cores;
3126 for (i = 0; i < machine->possible_cpus->len; i++) {
3127 int core_id = i * smp_threads;
3128
f2d672c2 3129 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
535455fd
IM
3130 machine->possible_cpus->cpus[i].arch_id = core_id;
3131 machine->possible_cpus->cpus[i].props.has_core_id = true;
3132 machine->possible_cpus->cpus[i].props.core_id = core_id;
ea089eeb
IM
3133
3134 /* default distribution of CPUs over NUMA nodes */
3135 if (nb_numa_nodes) {
3136 /* preset values but do not enable them i.e. 'has_node_id = false',
3137 * numa init code will enable them later if manual mapping wasn't
3138 * present on CLI */
3139 machine->possible_cpus->cpus[i].props.node_id =
3140 core_id / smp_threads / smp_cores % nb_numa_nodes;
3141 }
535455fd
IM
3142 }
3143 return machine->possible_cpus;
3144}
3145
6737d9ad 3146static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
daa23699
DG
3147 uint64_t *buid, hwaddr *pio,
3148 hwaddr *mmio32, hwaddr *mmio64,
6737d9ad
DG
3149 unsigned n_dma, uint32_t *liobns, Error **errp)
3150{
357d1e3b
DG
3151 /*
3152 * New-style PHB window placement.
3153 *
3154 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3155 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3156 * windows.
3157 *
3158 * Some guest kernels can't work with MMIO windows above 1<<46
3159 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3160 *
3161 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3162 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3163 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3164 * 1TiB 64-bit MMIO windows for each PHB.
3165 */
6737d9ad 3166 const uint64_t base_buid = 0x800000020000000ULL;
25e6a118
MT
3167#define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3168 SPAPR_PCI_MEM64_WIN_SIZE - 1)
6737d9ad
DG
3169 int i;
3170
357d1e3b
DG
3171 /* Sanity check natural alignments */
3172 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3173 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3174 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3175 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3176 /* Sanity check bounds */
25e6a118
MT
3177 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3178 SPAPR_PCI_MEM32_WIN_SIZE);
3179 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3180 SPAPR_PCI_MEM64_WIN_SIZE);
3181
3182 if (index >= SPAPR_MAX_PHBS) {
3183 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3184 SPAPR_MAX_PHBS - 1);
6737d9ad
DG
3185 return;
3186 }
3187
3188 *buid = base_buid + index;
3189 for (i = 0; i < n_dma; ++i) {
3190 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3191 }
3192
357d1e3b
DG
3193 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3194 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3195 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
6737d9ad
DG
3196}
3197
7844e12b
CLG
3198static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3199{
3200 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3201
3202 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3203}
3204
3205static void spapr_ics_resend(XICSFabric *dev)
3206{
3207 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3208
3209 ics_resend(spapr->ics);
3210}
3211
06747ba6 3212static ICPState *spapr_icp_get(XICSFabric *xi, int cpu_dt_id)
b2fc59aa 3213{
5bc8d26d 3214 PowerPCCPU *cpu = ppc_get_vcpu_by_dt_id(cpu_dt_id);
b2fc59aa 3215
5bc8d26d 3216 return cpu ? ICP(cpu->intc) : NULL;
b2fc59aa
CLG
3217}
3218
6449da45
CLG
3219static void spapr_pic_print_info(InterruptStatsProvider *obj,
3220 Monitor *mon)
3221{
3222 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
5bc8d26d
CLG
3223 CPUState *cs;
3224
3225 CPU_FOREACH(cs) {
3226 PowerPCCPU *cpu = POWERPC_CPU(cs);
6449da45 3227
5bc8d26d 3228 icp_pic_print_info(ICP(cpu->intc), mon);
6449da45
CLG
3229 }
3230
3231 ics_pic_print_info(spapr->ics, mon);
3232}
3233
29ee3247
AK
3234static void spapr_machine_class_init(ObjectClass *oc, void *data)
3235{
3236 MachineClass *mc = MACHINE_CLASS(oc);
224245bf 3237 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
71461b0f 3238 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
34316482 3239 NMIClass *nc = NMI_CLASS(oc);
c20d332a 3240 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1d1be34d 3241 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
7844e12b 3242 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
6449da45 3243 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
958db90c 3244
0eb9054c 3245 mc->desc = "pSeries Logical Partition (PAPR compliant)";
fc9f38c3
DG
3246
3247 /*
3248 * We set up the default / latest behaviour here. The class_init
3249 * functions for the specific versioned machine types can override
3250 * these details for backwards compatibility
3251 */
958db90c
MA
3252 mc->init = ppc_spapr_init;
3253 mc->reset = ppc_spapr_reset;
3254 mc->block_default_type = IF_SCSI;
6244bb7e 3255 mc->max_cpus = 1024;
958db90c 3256 mc->no_parallel = 1;
5b2128d2 3257 mc->default_boot_order = "";
a34944fe 3258 mc->default_ram_size = 512 * M_BYTE;
958db90c 3259 mc->kvm_type = spapr_kvm_type;
9e3f9733 3260 mc->has_dynamic_sysbus = true;
e4024630 3261 mc->pci_allow_0_address = true;
7ebaf795 3262 mc->get_hotplug_handler = spapr_get_hotplug_handler;
94a94e4c 3263 hc->pre_plug = spapr_machine_device_pre_plug;
c20d332a
BR
3264 hc->plug = spapr_machine_device_plug;
3265 hc->unplug = spapr_machine_device_unplug;
ea089eeb 3266 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
535455fd 3267 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
cf632463 3268 hc->unplug_request = spapr_machine_device_unplug_request;
00b4fbe2 3269
fc9f38c3 3270 smc->dr_lmb_enabled = true;
3daa4a9f 3271 smc->tcg_default_cpu = "POWER8";
c5514d0e 3272 mc->has_hotpluggable_cpus = true;
71461b0f 3273 fwc->get_dev_path = spapr_get_fw_dev_path;
34316482 3274 nc->nmi_monitor_handler = spapr_nmi;
6737d9ad 3275 smc->phb_placement = spapr_phb_placement;
1d1be34d 3276 vhc->hypercall = emulate_spapr_hypercall;
e57ca75c
DG
3277 vhc->hpt_mask = spapr_hpt_mask;
3278 vhc->map_hptes = spapr_map_hptes;
3279 vhc->unmap_hptes = spapr_unmap_hptes;
3280 vhc->store_hpte = spapr_store_hpte;
9861bb3e 3281 vhc->get_patbe = spapr_get_patbe;
7844e12b
CLG
3282 xic->ics_get = spapr_ics_get;
3283 xic->ics_resend = spapr_ics_resend;
b2fc59aa 3284 xic->icp_get = spapr_icp_get;
6449da45 3285 ispc->print_info = spapr_pic_print_info;
55641213
LV
3286 /* Force NUMA node memory size to be a multiple of
3287 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3288 * in which LMBs are represented and hot-added
3289 */
3290 mc->numa_mem_align_shift = 28;
29ee3247
AK
3291}
3292
3293static const TypeInfo spapr_machine_info = {
3294 .name = TYPE_SPAPR_MACHINE,
3295 .parent = TYPE_MACHINE,
4aee7362 3296 .abstract = true,
6ca1502e 3297 .instance_size = sizeof(sPAPRMachineState),
23825581 3298 .instance_init = spapr_machine_initfn,
87bbdd9c 3299 .instance_finalize = spapr_machine_finalizefn,
183930c0 3300 .class_size = sizeof(sPAPRMachineClass),
29ee3247 3301 .class_init = spapr_machine_class_init,
71461b0f
AK
3302 .interfaces = (InterfaceInfo[]) {
3303 { TYPE_FW_PATH_PROVIDER },
34316482 3304 { TYPE_NMI },
c20d332a 3305 { TYPE_HOTPLUG_HANDLER },
1d1be34d 3306 { TYPE_PPC_VIRTUAL_HYPERVISOR },
7844e12b 3307 { TYPE_XICS_FABRIC },
6449da45 3308 { TYPE_INTERRUPT_STATS_PROVIDER },
71461b0f
AK
3309 { }
3310 },
29ee3247
AK
3311};
3312
fccbc785 3313#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
5013c547
DG
3314 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3315 void *data) \
3316 { \
3317 MachineClass *mc = MACHINE_CLASS(oc); \
3318 spapr_machine_##suffix##_class_options(mc); \
fccbc785
DG
3319 if (latest) { \
3320 mc->alias = "pseries"; \
3321 mc->is_default = 1; \
3322 } \
5013c547
DG
3323 } \
3324 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3325 { \
3326 MachineState *machine = MACHINE(obj); \
3327 spapr_machine_##suffix##_instance_options(machine); \
3328 } \
3329 static const TypeInfo spapr_machine_##suffix##_info = { \
3330 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3331 .parent = TYPE_SPAPR_MACHINE, \
3332 .class_init = spapr_machine_##suffix##_class_init, \
3333 .instance_init = spapr_machine_##suffix##_instance_init, \
3334 }; \
3335 static void spapr_machine_register_##suffix(void) \
3336 { \
3337 type_register(&spapr_machine_##suffix##_info); \
3338 } \
0e6aac87 3339 type_init(spapr_machine_register_##suffix)
5013c547 3340
3fa14fbe
DG
3341/*
3342 * pseries-2.10
3343 */
3344static void spapr_machine_2_10_instance_options(MachineState *machine)
3345{
3346}
3347
3348static void spapr_machine_2_10_class_options(MachineClass *mc)
3349{
3350 /* Defaults for the latest behaviour inherited from the base class */
3351}
3352
3353DEFINE_SPAPR_MACHINE(2_10, "2.10", true);
3354
fa325e6c
DG
3355/*
3356 * pseries-2.9
3357 */
3fa14fbe
DG
3358#define SPAPR_COMPAT_2_9 \
3359 HW_COMPAT_2_9
3360
fa325e6c
DG
3361static void spapr_machine_2_9_instance_options(MachineState *machine)
3362{
3fa14fbe 3363 spapr_machine_2_10_instance_options(machine);
fa325e6c
DG
3364}
3365
3366static void spapr_machine_2_9_class_options(MachineClass *mc)
3367{
3fa14fbe
DG
3368 spapr_machine_2_10_class_options(mc);
3369 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3bfe5716 3370 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
fa325e6c
DG
3371}
3372
3fa14fbe 3373DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
fa325e6c 3374
db800b21
DG
3375/*
3376 * pseries-2.8
3377 */
82516263
DG
3378#define SPAPR_COMPAT_2_8 \
3379 HW_COMPAT_2_8 \
3380 { \
3381 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3382 .property = "pcie-extended-configuration-space", \
3383 .value = "off", \
3384 },
fa325e6c 3385
db800b21
DG
3386static void spapr_machine_2_8_instance_options(MachineState *machine)
3387{
fa325e6c 3388 spapr_machine_2_9_instance_options(machine);
db800b21
DG
3389}
3390
3391static void spapr_machine_2_8_class_options(MachineClass *mc)
3392{
fa325e6c
DG
3393 spapr_machine_2_9_class_options(mc);
3394 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
55641213 3395 mc->numa_mem_align_shift = 23;
db800b21
DG
3396}
3397
fa325e6c 3398DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
db800b21 3399
1ea1eefc
BR
3400/*
3401 * pseries-2.7
3402 */
357d1e3b
DG
3403#define SPAPR_COMPAT_2_7 \
3404 HW_COMPAT_2_7 \
3405 { \
3406 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3407 .property = "mem_win_size", \
3408 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3409 }, \
3410 { \
3411 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3412 .property = "mem64_win_size", \
3413 .value = "0", \
146c11f1
DG
3414 }, \
3415 { \
3416 .driver = TYPE_POWERPC_CPU, \
3417 .property = "pre-2.8-migration", \
3418 .value = "on", \
5c4537bd
DG
3419 }, \
3420 { \
3421 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3422 .property = "pre-2.8-migration", \
3423 .value = "on", \
357d1e3b
DG
3424 },
3425
3426static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3427 uint64_t *buid, hwaddr *pio,
3428 hwaddr *mmio32, hwaddr *mmio64,
3429 unsigned n_dma, uint32_t *liobns, Error **errp)
3430{
3431 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3432 const uint64_t base_buid = 0x800000020000000ULL;
3433 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3434 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3435 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3436 const uint32_t max_index = 255;
3437 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3438
3439 uint64_t ram_top = MACHINE(spapr)->ram_size;
3440 hwaddr phb0_base, phb_base;
3441 int i;
3442
3443 /* Do we have hotpluggable memory? */
3444 if (MACHINE(spapr)->maxram_size > ram_top) {
3445 /* Can't just use maxram_size, because there may be an
3446 * alignment gap between normal and hotpluggable memory
3447 * regions */
3448 ram_top = spapr->hotplug_memory.base +
3449 memory_region_size(&spapr->hotplug_memory.mr);
3450 }
3451
3452 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3453
3454 if (index > max_index) {
3455 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3456 max_index);
3457 return;
3458 }
3459
3460 *buid = base_buid + index;
3461 for (i = 0; i < n_dma; ++i) {
3462 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3463 }
3464
3465 phb_base = phb0_base + index * phb_spacing;
3466 *pio = phb_base + pio_offset;
3467 *mmio32 = phb_base + mmio_offset;
3468 /*
3469 * We don't set the 64-bit MMIO window, relying on the PHB's
3470 * fallback behaviour of automatically splitting a large "32-bit"
3471 * window into contiguous 32-bit and 64-bit windows
3472 */
3473}
db800b21 3474
1ea1eefc
BR
3475static void spapr_machine_2_7_instance_options(MachineState *machine)
3476{
f6229214
MR
3477 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3478
672de881 3479 spapr_machine_2_8_instance_options(machine);
f6229214 3480 spapr->use_hotplug_event_source = false;
1ea1eefc
BR
3481}
3482
3483static void spapr_machine_2_7_class_options(MachineClass *mc)
3484{
3daa4a9f
TH
3485 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3486
db800b21 3487 spapr_machine_2_8_class_options(mc);
3daa4a9f 3488 smc->tcg_default_cpu = "POWER7";
db800b21 3489 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
357d1e3b 3490 smc->phb_placement = phb_placement_2_7;
1ea1eefc
BR
3491}
3492
db800b21 3493DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
1ea1eefc 3494
4b23699c
DG
3495/*
3496 * pseries-2.6
3497 */
1ea1eefc 3498#define SPAPR_COMPAT_2_6 \
ae4de14c
AK
3499 HW_COMPAT_2_6 \
3500 { \
3501 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3502 .property = "ddw",\
3503 .value = stringify(off),\
3504 },
1ea1eefc 3505
4b23699c
DG
3506static void spapr_machine_2_6_instance_options(MachineState *machine)
3507{
672de881 3508 spapr_machine_2_7_instance_options(machine);
4b23699c
DG
3509}
3510
3511static void spapr_machine_2_6_class_options(MachineClass *mc)
3512{
1ea1eefc 3513 spapr_machine_2_7_class_options(mc);
c5514d0e 3514 mc->has_hotpluggable_cpus = false;
1ea1eefc 3515 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4b23699c
DG
3516}
3517
1ea1eefc 3518DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4b23699c 3519
1c5f29bb
DG
3520/*
3521 * pseries-2.5
3522 */
4b23699c 3523#define SPAPR_COMPAT_2_5 \
57c522f4
TH
3524 HW_COMPAT_2_5 \
3525 { \
3526 .driver = "spapr-vlan", \
3527 .property = "use-rx-buffer-pools", \
3528 .value = "off", \
3529 },
4b23699c 3530
5013c547 3531static void spapr_machine_2_5_instance_options(MachineState *machine)
1c5f29bb 3532{
672de881 3533 spapr_machine_2_6_instance_options(machine);
5013c547
DG
3534}
3535
3536static void spapr_machine_2_5_class_options(MachineClass *mc)
3537{
57040d45
TH
3538 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3539
4b23699c 3540 spapr_machine_2_6_class_options(mc);
57040d45 3541 smc->use_ohci_by_default = true;
4b23699c 3542 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
1c5f29bb
DG
3543}
3544
4b23699c 3545DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
1c5f29bb
DG
3546
3547/*
3548 * pseries-2.4
3549 */
80fd50f9
CH
3550#define SPAPR_COMPAT_2_4 \
3551 HW_COMPAT_2_4
3552
5013c547 3553static void spapr_machine_2_4_instance_options(MachineState *machine)
1c5f29bb 3554{
5013c547
DG
3555 spapr_machine_2_5_instance_options(machine);
3556}
1c5f29bb 3557
5013c547
DG
3558static void spapr_machine_2_4_class_options(MachineClass *mc)
3559{
fc9f38c3
DG
3560 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3561
3562 spapr_machine_2_5_class_options(mc);
fc9f38c3 3563 smc->dr_lmb_enabled = false;
f949b4e5 3564 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
1c5f29bb
DG
3565}
3566
fccbc785 3567DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
1c5f29bb
DG
3568
3569/*
3570 * pseries-2.3
3571 */
38ff32c6 3572#define SPAPR_COMPAT_2_3 \
7619c7b0
MR
3573 HW_COMPAT_2_3 \
3574 {\
3575 .driver = "spapr-pci-host-bridge",\
3576 .property = "dynamic-reconfiguration",\
3577 .value = "off",\
3578 },
38ff32c6 3579
5013c547 3580static void spapr_machine_2_3_instance_options(MachineState *machine)
d25228e7 3581{
5013c547 3582 spapr_machine_2_4_instance_options(machine);
d25228e7
JW
3583}
3584
5013c547 3585static void spapr_machine_2_3_class_options(MachineClass *mc)
6026db45 3586{
fc9f38c3 3587 spapr_machine_2_4_class_options(mc);
f949b4e5 3588 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
6026db45 3589}
fccbc785 3590DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
6026db45 3591
1c5f29bb
DG
3592/*
3593 * pseries-2.2
3594 */
3595
3596#define SPAPR_COMPAT_2_2 \
1c5f29bb
DG
3597 HW_COMPAT_2_2 \
3598 {\
3599 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3600 .property = "mem_win_size",\
3601 .value = "0x20000000",\
3602 },
3603
5013c547 3604static void spapr_machine_2_2_instance_options(MachineState *machine)
1c5f29bb 3605{
5013c547 3606 spapr_machine_2_3_instance_options(machine);
cba0e779 3607 machine->suppress_vmdesc = true;
1c5f29bb
DG
3608}
3609
5013c547 3610static void spapr_machine_2_2_class_options(MachineClass *mc)
4aee7362 3611{
fc9f38c3 3612 spapr_machine_2_3_class_options(mc);
f949b4e5 3613 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4aee7362 3614}
fccbc785 3615DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4aee7362 3616
1c5f29bb
DG
3617/*
3618 * pseries-2.1
3619 */
3620#define SPAPR_COMPAT_2_1 \
1c5f29bb 3621 HW_COMPAT_2_1
3dab0244 3622
5013c547 3623static void spapr_machine_2_1_instance_options(MachineState *machine)
1c5f29bb 3624{
5013c547 3625 spapr_machine_2_2_instance_options(machine);
1c5f29bb 3626}
d25228e7 3627
5013c547 3628static void spapr_machine_2_1_class_options(MachineClass *mc)
d25228e7 3629{
fc9f38c3 3630 spapr_machine_2_2_class_options(mc);
f949b4e5 3631 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
d25228e7 3632}
fccbc785 3633DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
fb0fc8f6 3634
29ee3247 3635static void spapr_machine_register_types(void)
9fdf0c29 3636{
29ee3247 3637 type_register_static(&spapr_machine_info);
9fdf0c29
DG
3638}
3639
29ee3247 3640type_init(spapr_machine_register_types)