]> git.proxmox.com Git - mirror_qemu.git/blame - hw/ppc/spapr.c
migrate_init: Call from savevm
[mirror_qemu.git] / hw / ppc / spapr.c
CommitLineData
9fdf0c29
DG
1/*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
9c17d615 27#include "sysemu/sysemu.h"
e35704ba 28#include "sysemu/numa.h"
83c9f4ca 29#include "hw/hw.h"
71461b0f 30#include "hw/fw-path-provider.h"
9fdf0c29 31#include "elf.h"
1422e32d 32#include "net/net.h"
ad440b4a 33#include "sysemu/device_tree.h"
fa1d36df 34#include "sysemu/block-backend.h"
9c17d615
PB
35#include "sysemu/cpus.h"
36#include "sysemu/kvm.h"
c20d332a 37#include "sysemu/device_tree.h"
e97c3636 38#include "kvm_ppc.h"
ff14e817 39#include "migration/migration.h"
4be21d56 40#include "mmu-hash64.h"
3794d548 41#include "qom/cpu.h"
9fdf0c29
DG
42
43#include "hw/boards.h"
0d09e41a 44#include "hw/ppc/ppc.h"
9fdf0c29
DG
45#include "hw/loader.h"
46
0d09e41a
PB
47#include "hw/ppc/spapr.h"
48#include "hw/ppc/spapr_vio.h"
49#include "hw/pci-host/spapr.h"
50#include "hw/ppc/xics.h"
a2cb15b0 51#include "hw/pci/msi.h"
9fdf0c29 52
83c9f4ca 53#include "hw/pci/pci.h"
71461b0f
AK
54#include "hw/scsi/scsi.h"
55#include "hw/virtio/virtio-scsi.h"
f61b4bed 56
022c62cb 57#include "exec/address-spaces.h"
35139a59 58#include "hw/usb.h"
1de7afc9 59#include "qemu/config-file.h"
135a129a 60#include "qemu/error-report.h"
2a6593cb 61#include "trace.h"
34316482 62#include "hw/nmi.h"
890c2b77 63
68a27b20 64#include "hw/compat.h"
224245bf 65#include "qemu-common.h"
68a27b20 66
9fdf0c29
DG
67#include <libfdt.h>
68
4d8d5467
BH
69/* SLOF memory layout:
70 *
71 * SLOF raw image loaded at 0, copies its romfs right below the flat
72 * device-tree, then position SLOF itself 31M below that
73 *
74 * So we set FW_OVERHEAD to 40MB which should account for all of that
75 * and more
76 *
77 * We load our kernel at 4M, leaving space for SLOF initial image
78 */
38b02bd8 79#define FDT_MAX_SIZE 0x100000
39ac8455 80#define RTAS_MAX_SIZE 0x10000
b7d1f77a 81#define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
a9f8ad8f
DG
82#define FW_MAX_SIZE 0x400000
83#define FW_FILE_NAME "slof.bin"
4d8d5467
BH
84#define FW_OVERHEAD 0x2800000
85#define KERNEL_LOAD_ADDR FW_MAX_SIZE
a9f8ad8f 86
4d8d5467 87#define MIN_RMA_SLOF 128UL
9fdf0c29
DG
88
89#define TIMEBASE_FREQ 512000000ULL
90
0c103f8e
DG
91#define PHANDLE_XICP 0x00001111
92
7f763a5d
DG
93#define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
94
c04d6cfa 95static XICSState *try_create_xics(const char *type, int nr_servers,
34f2af3d 96 int nr_irqs, Error **errp)
c04d6cfa 97{
34f2af3d 98 Error *err = NULL;
c04d6cfa
AL
99 DeviceState *dev;
100
101 dev = qdev_create(NULL, type);
102 qdev_prop_set_uint32(dev, "nr_servers", nr_servers);
103 qdev_prop_set_uint32(dev, "nr_irqs", nr_irqs);
34f2af3d
MA
104 object_property_set_bool(OBJECT(dev), true, "realized", &err);
105 if (err) {
106 error_propagate(errp, err);
107 object_unparent(OBJECT(dev));
c04d6cfa
AL
108 return NULL;
109 }
5a3d7b23 110 return XICS_COMMON(dev);
c04d6cfa
AL
111}
112
446f16a6
MA
113static XICSState *xics_system_init(MachineState *machine,
114 int nr_servers, int nr_irqs)
c04d6cfa
AL
115{
116 XICSState *icp = NULL;
117
11ad93f6 118 if (kvm_enabled()) {
34f2af3d
MA
119 Error *err = NULL;
120
446f16a6 121 if (machine_kernel_irqchip_allowed(machine)) {
34f2af3d 122 icp = try_create_xics(TYPE_KVM_XICS, nr_servers, nr_irqs, &err);
11ad93f6 123 }
446f16a6 124 if (machine_kernel_irqchip_required(machine) && !icp) {
34f2af3d
MA
125 error_report("kernel_irqchip requested but unavailable: %s",
126 error_get_pretty(err));
11ad93f6
DG
127 }
128 }
129
130 if (!icp) {
34f2af3d 131 icp = try_create_xics(TYPE_XICS, nr_servers, nr_irqs, &error_abort);
c04d6cfa
AL
132 }
133
134 return icp;
135}
136
833d4668
AK
137static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
138 int smt_threads)
139{
140 int i, ret = 0;
141 uint32_t servers_prop[smt_threads];
142 uint32_t gservers_prop[smt_threads * 2];
143 int index = ppc_get_vcpu_dt_id(cpu);
144
6d9412ea 145 if (cpu->cpu_version) {
4bce526e 146 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->cpu_version);
6d9412ea
AK
147 if (ret < 0) {
148 return ret;
149 }
150 }
151
833d4668
AK
152 /* Build interrupt servers and gservers properties */
153 for (i = 0; i < smt_threads; i++) {
154 servers_prop[i] = cpu_to_be32(index + i);
155 /* Hack, direct the group queues back to cpu 0 */
156 gservers_prop[i*2] = cpu_to_be32(index + i);
157 gservers_prop[i*2 + 1] = 0;
158 }
159 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
160 servers_prop, sizeof(servers_prop));
161 if (ret < 0) {
162 return ret;
163 }
164 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
165 gservers_prop, sizeof(gservers_prop));
166
167 return ret;
168}
169
0da6f3fe
BR
170static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
171{
172 int ret = 0;
173 PowerPCCPU *cpu = POWERPC_CPU(cs);
174 int index = ppc_get_vcpu_dt_id(cpu);
175 uint32_t associativity[] = {cpu_to_be32(0x5),
176 cpu_to_be32(0x0),
177 cpu_to_be32(0x0),
178 cpu_to_be32(0x0),
179 cpu_to_be32(cs->numa_node),
180 cpu_to_be32(index)};
181
182 /* Advertise NUMA via ibm,associativity */
183 if (nb_numa_nodes > 1) {
184 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
185 sizeof(associativity));
186 }
187
188 return ret;
189}
190
28e02042 191static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
6e806cc3 192{
82677ed2
AK
193 int ret = 0, offset, cpus_offset;
194 CPUState *cs;
6e806cc3
BR
195 char cpu_model[32];
196 int smt = kvmppc_smt_threads();
7f763a5d 197 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
6e806cc3 198
82677ed2
AK
199 CPU_FOREACH(cs) {
200 PowerPCCPU *cpu = POWERPC_CPU(cs);
201 DeviceClass *dc = DEVICE_GET_CLASS(cs);
202 int index = ppc_get_vcpu_dt_id(cpu);
6e806cc3 203
0f20ba62 204 if ((index % smt) != 0) {
6e806cc3
BR
205 continue;
206 }
207
82677ed2 208 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
6e806cc3 209
82677ed2
AK
210 cpus_offset = fdt_path_offset(fdt, "/cpus");
211 if (cpus_offset < 0) {
212 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
213 "cpus");
214 if (cpus_offset < 0) {
215 return cpus_offset;
216 }
217 }
218 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
6e806cc3 219 if (offset < 0) {
82677ed2
AK
220 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
221 if (offset < 0) {
222 return offset;
223 }
6e806cc3
BR
224 }
225
7f763a5d
DG
226 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
227 pft_size_prop, sizeof(pft_size_prop));
6e806cc3
BR
228 if (ret < 0) {
229 return ret;
230 }
833d4668 231
0da6f3fe
BR
232 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
233 if (ret < 0) {
234 return ret;
235 }
236
82677ed2 237 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
2a48d993 238 ppc_get_compat_smt_threads(cpu));
833d4668
AK
239 if (ret < 0) {
240 return ret;
241 }
6e806cc3
BR
242 }
243 return ret;
244}
245
5af9873d
BH
246
247static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
248 size_t maxsize)
249{
250 size_t maxcells = maxsize / sizeof(uint32_t);
251 int i, j, count;
252 uint32_t *p = prop;
253
254 for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
255 struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
256
257 if (!sps->page_shift) {
258 break;
259 }
260 for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
261 if (sps->enc[count].page_shift == 0) {
262 break;
263 }
264 }
265 if ((p - prop) >= (maxcells - 3 - count * 2)) {
266 break;
267 }
268 *(p++) = cpu_to_be32(sps->page_shift);
269 *(p++) = cpu_to_be32(sps->slb_enc);
270 *(p++) = cpu_to_be32(count);
271 for (j = 0; j < count; j++) {
272 *(p++) = cpu_to_be32(sps->enc[j].page_shift);
273 *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
274 }
275 }
276
277 return (p - prop) * sizeof(uint32_t);
278}
279
b082d65a
AK
280static hwaddr spapr_node0_size(void)
281{
fb164994
DG
282 MachineState *machine = MACHINE(qdev_get_machine());
283
b082d65a
AK
284 if (nb_numa_nodes) {
285 int i;
286 for (i = 0; i < nb_numa_nodes; ++i) {
287 if (numa_info[i].node_mem) {
fb164994
DG
288 return MIN(pow2floor(numa_info[i].node_mem),
289 machine->ram_size);
b082d65a
AK
290 }
291 }
292 }
fb164994 293 return machine->ram_size;
b082d65a
AK
294}
295
7f763a5d
DG
296#define _FDT(exp) \
297 do { \
298 int ret = (exp); \
299 if (ret < 0) { \
300 fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
301 #exp, fdt_strerror(ret)); \
302 exit(1); \
303 } \
304 } while (0)
305
a1d59c0f
AK
306static void add_str(GString *s, const gchar *s1)
307{
308 g_string_append_len(s, s1, strlen(s1) + 1);
309}
7f763a5d 310
3bbf37f2 311static void *spapr_create_fdt_skel(hwaddr initrd_base,
a8170e5e
AK
312 hwaddr initrd_size,
313 hwaddr kernel_size,
16457e7f 314 bool little_endian,
74d042e5
DG
315 const char *kernel_cmdline,
316 uint32_t epow_irq)
9fdf0c29
DG
317{
318 void *fdt;
9fdf0c29
DG
319 uint32_t start_prop = cpu_to_be32(initrd_base);
320 uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
a1d59c0f
AK
321 GString *hypertas = g_string_sized_new(256);
322 GString *qemu_hypertas = g_string_sized_new(256);
7f763a5d 323 uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
9e734e3d 324 uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(max_cpus)};
6e806cc3 325 unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
ef951443 326 char *buf;
9fdf0c29 327
a1d59c0f
AK
328 add_str(hypertas, "hcall-pft");
329 add_str(hypertas, "hcall-term");
330 add_str(hypertas, "hcall-dabr");
331 add_str(hypertas, "hcall-interrupt");
332 add_str(hypertas, "hcall-tce");
333 add_str(hypertas, "hcall-vio");
334 add_str(hypertas, "hcall-splpar");
335 add_str(hypertas, "hcall-bulk");
336 add_str(hypertas, "hcall-set-mode");
337 add_str(qemu_hypertas, "hcall-memop1");
338
7267c094 339 fdt = g_malloc0(FDT_MAX_SIZE);
9fdf0c29
DG
340 _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
341
4d8d5467
BH
342 if (kernel_size) {
343 _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
344 }
345 if (initrd_size) {
346 _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
347 }
9fdf0c29
DG
348 _FDT((fdt_finish_reservemap(fdt)));
349
350 /* Root node */
351 _FDT((fdt_begin_node(fdt, "")));
352 _FDT((fdt_property_string(fdt, "device_type", "chrp")));
5d73dd66 353 _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
d63919c9 354 _FDT((fdt_property_string(fdt, "compatible", "qemu,pseries")));
9fdf0c29 355
ef951443
ND
356 /*
357 * Add info to guest to indentify which host is it being run on
358 * and what is the uuid of the guest
359 */
360 if (kvmppc_get_host_model(&buf)) {
361 _FDT((fdt_property_string(fdt, "host-model", buf)));
362 g_free(buf);
363 }
364 if (kvmppc_get_host_serial(&buf)) {
365 _FDT((fdt_property_string(fdt, "host-serial", buf)));
366 g_free(buf);
367 }
368
369 buf = g_strdup_printf(UUID_FMT, qemu_uuid[0], qemu_uuid[1],
370 qemu_uuid[2], qemu_uuid[3], qemu_uuid[4],
371 qemu_uuid[5], qemu_uuid[6], qemu_uuid[7],
372 qemu_uuid[8], qemu_uuid[9], qemu_uuid[10],
373 qemu_uuid[11], qemu_uuid[12], qemu_uuid[13],
374 qemu_uuid[14], qemu_uuid[15]);
375
376 _FDT((fdt_property_string(fdt, "vm,uuid", buf)));
377 g_free(buf);
378
2c1aaa81
SB
379 if (qemu_get_vm_name()) {
380 _FDT((fdt_property_string(fdt, "ibm,partition-name",
381 qemu_get_vm_name())));
382 }
383
9fdf0c29
DG
384 _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
385 _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
386
387 /* /chosen */
388 _FDT((fdt_begin_node(fdt, "chosen")));
389
6e806cc3
BR
390 /* Set Form1_affinity */
391 _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
392
9fdf0c29
DG
393 _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
394 _FDT((fdt_property(fdt, "linux,initrd-start",
395 &start_prop, sizeof(start_prop))));
396 _FDT((fdt_property(fdt, "linux,initrd-end",
397 &end_prop, sizeof(end_prop))));
4d8d5467
BH
398 if (kernel_size) {
399 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
400 cpu_to_be64(kernel_size) };
9fdf0c29 401
4d8d5467 402 _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
16457e7f
BH
403 if (little_endian) {
404 _FDT((fdt_property(fdt, "qemu,boot-kernel-le", NULL, 0)));
405 }
4d8d5467 406 }
cc84c0f3
AS
407 if (boot_menu) {
408 _FDT((fdt_property_cell(fdt, "qemu,boot-menu", boot_menu)));
409 }
f28359d8
LZ
410 _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
411 _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
412 _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
3384f95c 413
9fdf0c29
DG
414 _FDT((fdt_end_node(fdt)));
415
f43e3525
DG
416 /* RTAS */
417 _FDT((fdt_begin_node(fdt, "rtas")));
418
da95324e
AK
419 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
420 add_str(hypertas, "hcall-multi-tce");
421 }
a1d59c0f
AK
422 _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas->str,
423 hypertas->len)));
424 g_string_free(hypertas, TRUE);
425 _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas->str,
426 qemu_hypertas->len)));
427 g_string_free(qemu_hypertas, TRUE);
f43e3525 428
6e806cc3
BR
429 _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
430 refpoints, sizeof(refpoints))));
431
74d042e5 432 _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
79853e18
TD
433 _FDT((fdt_property_cell(fdt, "rtas-event-scan-rate",
434 RTAS_EVENT_SCAN_RATE)));
74d042e5 435
a95f9922
SB
436 if (msi_supported) {
437 _FDT((fdt_property(fdt, "ibm,change-msix-capable", NULL, 0)));
438 }
439
2e14072f 440 /*
9d632f5f 441 * According to PAPR, rtas ibm,os-term does not guarantee a return
2e14072f
ND
442 * back to the guest cpu.
443 *
444 * While an additional ibm,extended-os-term property indicates that
445 * rtas call return will always occur. Set this property.
446 */
447 _FDT((fdt_property(fdt, "ibm,extended-os-term", NULL, 0)));
448
f43e3525
DG
449 _FDT((fdt_end_node(fdt)));
450
b5cec4c5 451 /* interrupt controller */
9dfef5aa 452 _FDT((fdt_begin_node(fdt, "interrupt-controller")));
b5cec4c5
DG
453
454 _FDT((fdt_property_string(fdt, "device_type",
455 "PowerPC-External-Interrupt-Presentation")));
456 _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
b5cec4c5
DG
457 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
458 _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
459 interrupt_server_ranges_prop,
460 sizeof(interrupt_server_ranges_prop))));
0c103f8e
DG
461 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
462 _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
463 _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
b5cec4c5
DG
464
465 _FDT((fdt_end_node(fdt)));
466
4040ab72
DG
467 /* vdevice */
468 _FDT((fdt_begin_node(fdt, "vdevice")));
469
470 _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
471 _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
472 _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
473 _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
b5cec4c5
DG
474 _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
475 _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
4040ab72
DG
476
477 _FDT((fdt_end_node(fdt)));
478
74d042e5
DG
479 /* event-sources */
480 spapr_events_fdt_skel(fdt, epow_irq);
481
f7d69146
AG
482 /* /hypervisor node */
483 if (kvm_enabled()) {
484 uint8_t hypercall[16];
485
486 /* indicate KVM hypercall interface */
487 _FDT((fdt_begin_node(fdt, "hypervisor")));
488 _FDT((fdt_property_string(fdt, "compatible", "linux,kvm")));
489 if (kvmppc_has_cap_fixup_hcalls()) {
490 /*
491 * Older KVM versions with older guest kernels were broken with the
492 * magic page, don't allow the guest to map it.
493 */
494 kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
495 sizeof(hypercall));
496 _FDT((fdt_property(fdt, "hcall-instructions", hypercall,
497 sizeof(hypercall))));
498 }
499 _FDT((fdt_end_node(fdt)));
500 }
501
9fdf0c29
DG
502 _FDT((fdt_end_node(fdt))); /* close root node */
503 _FDT((fdt_finish(fdt)));
504
a3467baa
DG
505 return fdt;
506}
507
03d196b7 508static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
26a8c353
AK
509 hwaddr size)
510{
511 uint32_t associativity[] = {
512 cpu_to_be32(0x4), /* length */
513 cpu_to_be32(0x0), cpu_to_be32(0x0),
c3b4f589 514 cpu_to_be32(0x0), cpu_to_be32(nodeid)
26a8c353
AK
515 };
516 char mem_name[32];
517 uint64_t mem_reg_property[2];
518 int off;
519
520 mem_reg_property[0] = cpu_to_be64(start);
521 mem_reg_property[1] = cpu_to_be64(size);
522
523 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
524 off = fdt_add_subnode(fdt, 0, mem_name);
525 _FDT(off);
526 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
527 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
528 sizeof(mem_reg_property))));
529 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
530 sizeof(associativity))));
03d196b7 531 return off;
26a8c353
AK
532}
533
28e02042 534static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
7f763a5d 535{
fb164994 536 MachineState *machine = MACHINE(spapr);
7db8a127
AK
537 hwaddr mem_start, node_size;
538 int i, nb_nodes = nb_numa_nodes;
539 NodeInfo *nodes = numa_info;
540 NodeInfo ramnode;
541
542 /* No NUMA nodes, assume there is just one node with whole RAM */
543 if (!nb_numa_nodes) {
544 nb_nodes = 1;
fb164994 545 ramnode.node_mem = machine->ram_size;
7db8a127 546 nodes = &ramnode;
5fe269b1 547 }
7f763a5d 548
7db8a127
AK
549 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
550 if (!nodes[i].node_mem) {
551 continue;
552 }
fb164994 553 if (mem_start >= machine->ram_size) {
5fe269b1
PM
554 node_size = 0;
555 } else {
7db8a127 556 node_size = nodes[i].node_mem;
fb164994
DG
557 if (node_size > machine->ram_size - mem_start) {
558 node_size = machine->ram_size - mem_start;
5fe269b1
PM
559 }
560 }
7db8a127
AK
561 if (!mem_start) {
562 /* ppc_spapr_init() checks for rma_size <= node0_size already */
e8f986fc 563 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
7db8a127
AK
564 mem_start += spapr->rma_size;
565 node_size -= spapr->rma_size;
566 }
6010818c
AK
567 for ( ; node_size; ) {
568 hwaddr sizetmp = pow2floor(node_size);
569
570 /* mem_start != 0 here */
571 if (ctzl(mem_start) < ctzl(sizetmp)) {
572 sizetmp = 1ULL << ctzl(mem_start);
573 }
574
575 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
576 node_size -= sizetmp;
577 mem_start += sizetmp;
578 }
7f763a5d
DG
579 }
580
581 return 0;
582}
583
0da6f3fe
BR
584static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
585 sPAPRMachineState *spapr)
586{
587 PowerPCCPU *cpu = POWERPC_CPU(cs);
588 CPUPPCState *env = &cpu->env;
589 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
590 int index = ppc_get_vcpu_dt_id(cpu);
591 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
592 0xffffffff, 0xffffffff};
593 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
594 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
595 uint32_t page_sizes_prop[64];
596 size_t page_sizes_prop_size;
22419c2a 597 uint32_t vcpus_per_socket = smp_threads * smp_cores;
0da6f3fe
BR
598 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
599
90da0d5a
BH
600 /* Note: we keep CI large pages off for now because a 64K capable guest
601 * provisioned with large pages might otherwise try to map a qemu
602 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
603 * even if that qemu runs on a 4k host.
604 *
605 * We can later add this bit back when we are confident this is not
606 * an issue (!HV KVM or 64K host)
607 */
608 uint8_t pa_features_206[] = { 6, 0,
609 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
610 uint8_t pa_features_207[] = { 24, 0,
611 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
612 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
613 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
614 0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
615 uint8_t *pa_features;
616 size_t pa_size;
617
0da6f3fe
BR
618 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
619 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
620
621 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
622 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
623 env->dcache_line_size)));
624 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
625 env->dcache_line_size)));
626 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
627 env->icache_line_size)));
628 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
629 env->icache_line_size)));
630
631 if (pcc->l1_dcache_size) {
632 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
633 pcc->l1_dcache_size)));
634 } else {
635 fprintf(stderr, "Warning: Unknown L1 dcache size for cpu\n");
636 }
637 if (pcc->l1_icache_size) {
638 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
639 pcc->l1_icache_size)));
640 } else {
641 fprintf(stderr, "Warning: Unknown L1 icache size for cpu\n");
642 }
643
644 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
645 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
fd5da5c4 646 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
0da6f3fe
BR
647 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
648 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
649 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
650
651 if (env->spr_cb[SPR_PURR].oea_read) {
652 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
653 }
654
655 if (env->mmu_model & POWERPC_MMU_1TSEG) {
656 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
657 segs, sizeof(segs))));
658 }
659
660 /* Advertise VMX/VSX (vector extensions) if available
661 * 0 / no property == no vector extensions
662 * 1 == VMX / Altivec available
663 * 2 == VSX available */
664 if (env->insns_flags & PPC_ALTIVEC) {
665 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
666
667 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
668 }
669
670 /* Advertise DFP (Decimal Floating Point) if available
671 * 0 / no property == no DFP
672 * 1 == DFP available */
673 if (env->insns_flags2 & PPC2_DFP) {
674 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
675 }
676
677 page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
678 sizeof(page_sizes_prop));
679 if (page_sizes_prop_size) {
680 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
681 page_sizes_prop, page_sizes_prop_size)));
682 }
683
90da0d5a
BH
684 /* Do the ibm,pa-features property, adjust it for ci-large-pages */
685 if (env->mmu_model == POWERPC_MMU_2_06) {
686 pa_features = pa_features_206;
687 pa_size = sizeof(pa_features_206);
688 } else /* env->mmu_model == POWERPC_MMU_2_07 */ {
689 pa_features = pa_features_207;
690 pa_size = sizeof(pa_features_207);
691 }
692 if (env->ci_large_pages) {
693 pa_features[3] |= 0x20;
694 }
695 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
696
0da6f3fe 697 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
22419c2a 698 cs->cpu_index / vcpus_per_socket)));
0da6f3fe
BR
699
700 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
701 pft_size_prop, sizeof(pft_size_prop))));
702
703 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
704
705 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu,
706 ppc_get_compat_smt_threads(cpu)));
707}
708
709static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
710{
711 CPUState *cs;
712 int cpus_offset;
713 char *nodename;
714 int smt = kvmppc_smt_threads();
715
716 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
717 _FDT(cpus_offset);
718 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
719 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
720
721 /*
722 * We walk the CPUs in reverse order to ensure that CPU DT nodes
723 * created by fdt_add_subnode() end up in the right order in FDT
724 * for the guest kernel the enumerate the CPUs correctly.
725 */
726 CPU_FOREACH_REVERSE(cs) {
727 PowerPCCPU *cpu = POWERPC_CPU(cs);
728 int index = ppc_get_vcpu_dt_id(cpu);
729 DeviceClass *dc = DEVICE_GET_CLASS(cs);
730 int offset;
731
732 if ((index % smt) != 0) {
733 continue;
734 }
735
736 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
737 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
738 g_free(nodename);
739 _FDT(offset);
740 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
741 }
742
743}
744
03d196b7
BR
745/*
746 * Adds ibm,dynamic-reconfiguration-memory node.
747 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
748 * of this device tree node.
749 */
750static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
751{
752 MachineState *machine = MACHINE(spapr);
753 int ret, i, offset;
754 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
755 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
e8f986fc 756 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
03d196b7 757 uint32_t *int_buf, *cur_index, buf_len;
6663864e 758 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
03d196b7 759
ef001f06
TH
760 /*
761 * Allocate enough buffer size to fit in ibm,dynamic-memory
762 * or ibm,associativity-lookup-arrays
763 */
764 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
765 * sizeof(uint32_t);
03d196b7
BR
766 cur_index = int_buf = g_malloc0(buf_len);
767
768 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
769
770 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
771 sizeof(prop_lmb_size));
772 if (ret < 0) {
773 goto out;
774 }
775
776 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
777 if (ret < 0) {
778 goto out;
779 }
780
781 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
782 if (ret < 0) {
783 goto out;
784 }
785
786 /* ibm,dynamic-memory */
787 int_buf[0] = cpu_to_be32(nr_lmbs);
788 cur_index++;
789 for (i = 0; i < nr_lmbs; i++) {
790 sPAPRDRConnector *drc;
791 sPAPRDRConnectorClass *drck;
e8f986fc 792 uint64_t addr = i * lmb_size + spapr->hotplug_memory.base;;
03d196b7
BR
793 uint32_t *dynamic_memory = cur_index;
794
03d196b7
BR
795 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
796 addr/lmb_size);
797 g_assert(drc);
798 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
799
800 dynamic_memory[0] = cpu_to_be32(addr >> 32);
801 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
802 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
803 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
804 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
805 if (addr < machine->ram_size ||
806 memory_region_present(get_system_memory(), addr)) {
807 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
808 } else {
809 dynamic_memory[5] = cpu_to_be32(0);
810 }
811
812 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
813 }
814 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
815 if (ret < 0) {
816 goto out;
817 }
818
819 /* ibm,associativity-lookup-arrays */
820 cur_index = int_buf;
6663864e 821 int_buf[0] = cpu_to_be32(nr_nodes);
03d196b7
BR
822 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
823 cur_index += 2;
6663864e 824 for (i = 0; i < nr_nodes; i++) {
03d196b7
BR
825 uint32_t associativity[] = {
826 cpu_to_be32(0x0),
827 cpu_to_be32(0x0),
828 cpu_to_be32(0x0),
829 cpu_to_be32(i)
830 };
831 memcpy(cur_index, associativity, sizeof(associativity));
832 cur_index += 4;
833 }
834 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
835 (cur_index - int_buf) * sizeof(uint32_t));
836out:
837 g_free(int_buf);
838 return ret;
839}
840
841int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
842 target_ulong addr, target_ulong size,
843 bool cpu_update, bool memory_update)
844{
845 void *fdt, *fdt_skel;
846 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
847 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
848
849 size -= sizeof(hdr);
850
851 /* Create sceleton */
852 fdt_skel = g_malloc0(size);
853 _FDT((fdt_create(fdt_skel, size)));
854 _FDT((fdt_begin_node(fdt_skel, "")));
855 _FDT((fdt_end_node(fdt_skel)));
856 _FDT((fdt_finish(fdt_skel)));
857 fdt = g_malloc0(size);
858 _FDT((fdt_open_into(fdt_skel, fdt, size)));
859 g_free(fdt_skel);
860
861 /* Fixup cpu nodes */
862 if (cpu_update) {
863 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
864 }
865
866 /* Generate memory nodes or ibm,dynamic-reconfiguration-memory node */
867 if (memory_update && smc->dr_lmb_enabled) {
868 _FDT((spapr_populate_drconf_memory(spapr, fdt)));
03d196b7
BR
869 }
870
871 /* Pack resulting tree */
872 _FDT((fdt_pack(fdt)));
873
874 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
875 trace_spapr_cas_failed(size);
876 return -1;
877 }
878
879 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
880 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
881 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
882 g_free(fdt);
883
884 return 0;
885}
886
28e02042 887static void spapr_finalize_fdt(sPAPRMachineState *spapr,
a8170e5e
AK
888 hwaddr fdt_addr,
889 hwaddr rtas_addr,
890 hwaddr rtas_size)
a3467baa 891{
5b2128d2 892 MachineState *machine = MACHINE(qdev_get_machine());
c20d332a 893 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
5b2128d2 894 const char *boot_device = machine->boot_order;
71461b0f
AK
895 int ret, i;
896 size_t cb = 0;
897 char *bootlist;
a3467baa 898 void *fdt;
3384f95c 899 sPAPRPHBState *phb;
a3467baa 900
7267c094 901 fdt = g_malloc(FDT_MAX_SIZE);
a3467baa
DG
902
903 /* open out the base tree into a temp buffer for the final tweaks */
904 _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
4040ab72 905
e8f986fc
BR
906 ret = spapr_populate_memory(spapr, fdt);
907 if (ret < 0) {
908 fprintf(stderr, "couldn't setup memory nodes in fdt\n");
909 exit(1);
7f763a5d
DG
910 }
911
4040ab72
DG
912 ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
913 if (ret < 0) {
914 fprintf(stderr, "couldn't setup vio devices in fdt\n");
915 exit(1);
916 }
917
4d9392be
TH
918 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
919 ret = spapr_rng_populate_dt(fdt);
920 if (ret < 0) {
921 fprintf(stderr, "could not set up rng device in the fdt\n");
922 exit(1);
923 }
924 }
925
3384f95c 926 QLIST_FOREACH(phb, &spapr->phbs, list) {
e0fdbd7c 927 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
3384f95c
DG
928 }
929
930 if (ret < 0) {
931 fprintf(stderr, "couldn't setup PCI devices in fdt\n");
932 exit(1);
933 }
934
39ac8455
DG
935 /* RTAS */
936 ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
937 if (ret < 0) {
938 fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
939 }
940
0da6f3fe
BR
941 /* cpus */
942 spapr_populate_cpus_dt_node(fdt, spapr);
6e806cc3 943
71461b0f
AK
944 bootlist = get_boot_devices_list(&cb, true);
945 if (cb && bootlist) {
946 int offset = fdt_path_offset(fdt, "/chosen");
947 if (offset < 0) {
948 exit(1);
949 }
950 for (i = 0; i < cb; i++) {
951 if (bootlist[i] == '\n') {
952 bootlist[i] = ' ';
953 }
954
955 }
956 ret = fdt_setprop_string(fdt, offset, "qemu,boot-list", bootlist);
957 }
958
5b2128d2
AG
959 if (boot_device && strlen(boot_device)) {
960 int offset = fdt_path_offset(fdt, "/chosen");
961
962 if (offset < 0) {
963 exit(1);
964 }
965 fdt_setprop_string(fdt, offset, "qemu,boot-device", boot_device);
966 }
967
3fc5acde 968 if (!spapr->has_graphics) {
f28359d8
LZ
969 spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
970 }
68f3a94c 971
c20d332a
BR
972 if (smc->dr_lmb_enabled) {
973 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
974 }
975
4040ab72
DG
976 _FDT((fdt_pack(fdt)));
977
4d8d5467 978 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
730fce59
TH
979 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
980 fdt_totalsize(fdt), FDT_MAX_SIZE);
4d8d5467
BH
981 exit(1);
982 }
983
ad440b4a 984 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
a3467baa 985 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
9fdf0c29 986
a21a7a70 987 g_free(bootlist);
7267c094 988 g_free(fdt);
9fdf0c29
DG
989}
990
991static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
992{
993 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
994}
995
1b14670a 996static void emulate_spapr_hypercall(PowerPCCPU *cpu)
9fdf0c29 997{
1b14670a
AF
998 CPUPPCState *env = &cpu->env;
999
efcb9383
DG
1000 if (msr_pr) {
1001 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1002 env->gpr[3] = H_PRIVILEGE;
1003 } else {
aa100fa4 1004 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
efcb9383 1005 }
9fdf0c29
DG
1006}
1007
e6b8fd24
SMJ
1008#define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1009#define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1010#define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1011#define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1012#define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1013
b817772a 1014static void spapr_alloc_htab(sPAPRMachineState *spapr)
7f763a5d
DG
1015{
1016 long shift;
e6b8fd24 1017 int index;
7f763a5d
DG
1018
1019 /* allocate hash page table. For now we always make this 16mb,
1020 * later we should probably make it scale to the size of guest
1021 * RAM */
1022
1023 shift = kvmppc_reset_htab(spapr->htab_shift);
1024
1025 if (shift > 0) {
1026 /* Kernel handles htab, we don't need to allocate one */
7735feda
BR
1027 if (shift != spapr->htab_shift) {
1028 error_setg(&error_abort, "Failed to allocate HTAB of requested size, try with smaller maxmem");
1029 }
1030
7f763a5d 1031 spapr->htab_shift = shift;
7c43bca0 1032 kvmppc_kern_htab = true;
b817772a
BR
1033 } else {
1034 /* Allocate htab */
1035 spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
1036
1037 /* And clear it */
1038 memset(spapr->htab, 0, HTAB_SIZE(spapr));
1039
1040 for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
1041 DIRTY_HPTE(HPTE(spapr->htab, index));
1042 }
1043 }
1044}
1045
1046/*
1047 * Clear HTAB entries during reset.
1048 *
1049 * If host kernel has allocated HTAB, KVM_PPC_ALLOCATE_HTAB ioctl is
1050 * used to clear HTAB. Otherwise QEMU-allocated HTAB is cleared manually.
1051 */
1052static void spapr_reset_htab(sPAPRMachineState *spapr)
1053{
1054 long shift;
1055 int index;
01a57972 1056
b817772a
BR
1057 shift = kvmppc_reset_htab(spapr->htab_shift);
1058 if (shift > 0) {
7735feda
BR
1059 if (shift != spapr->htab_shift) {
1060 error_setg(&error_abort, "Requested HTAB allocation failed during reset");
1061 }
1062
01a57972
SMJ
1063 /* Tell readers to update their file descriptor */
1064 if (spapr->htab_fd >= 0) {
1065 spapr->htab_fd_stale = true;
1066 }
7f763a5d 1067 } else {
7f763a5d 1068 memset(spapr->htab, 0, HTAB_SIZE(spapr));
e6b8fd24
SMJ
1069
1070 for (index = 0; index < HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; index++) {
1071 DIRTY_HPTE(HPTE(spapr->htab, index));
1072 }
7f763a5d
DG
1073 }
1074
1075 /* Update the RMA size if necessary */
1076 if (spapr->vrma_adjust) {
b082d65a
AK
1077 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1078 spapr->htab_shift);
7f763a5d 1079 }
9fdf0c29
DG
1080}
1081
9e3f9733
AG
1082static int find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
1083{
1084 bool matched = false;
1085
1086 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1087 matched = true;
1088 }
1089
1090 if (!matched) {
1091 error_report("Device %s is not supported by this machine yet.",
1092 qdev_fw_name(DEVICE(sbdev)));
1093 exit(1);
1094 }
1095
1096 return 0;
1097}
1098
01a57972
SMJ
1099/*
1100 * A guest reset will cause spapr->htab_fd to become stale if being used.
1101 * Reopen the file descriptor to make sure the whole HTAB is properly read.
1102 */
28e02042 1103static int spapr_check_htab_fd(sPAPRMachineState *spapr)
01a57972
SMJ
1104{
1105 int rc = 0;
1106
1107 if (spapr->htab_fd_stale) {
1108 close(spapr->htab_fd);
1109 spapr->htab_fd = kvmppc_get_htab_fd(false);
1110 if (spapr->htab_fd < 0) {
1111 error_report("Unable to open fd for reading hash table from KVM: "
730fce59 1112 "%s", strerror(errno));
01a57972
SMJ
1113 rc = -1;
1114 }
1115 spapr->htab_fd_stale = false;
1116 }
1117
1118 return rc;
1119}
1120
c8787ad4 1121static void ppc_spapr_reset(void)
a3467baa 1122{
28e02042 1123 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
182735ef 1124 PowerPCCPU *first_ppc_cpu;
b7d1f77a 1125 uint32_t rtas_limit;
259186a7 1126
9e3f9733
AG
1127 /* Check for unknown sysbus devices */
1128 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1129
7f763a5d
DG
1130 /* Reset the hash table & recalc the RMA */
1131 spapr_reset_htab(spapr);
a3467baa 1132
c8787ad4 1133 qemu_devices_reset();
a3467baa 1134
b7d1f77a
BH
1135 /*
1136 * We place the device tree and RTAS just below either the top of the RMA,
1137 * or just below 2GB, whichever is lowere, so that it can be
1138 * processed with 32-bit real mode code if necessary
1139 */
1140 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1141 spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1142 spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
1143
a3467baa
DG
1144 /* Load the fdt */
1145 spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
1146 spapr->rtas_size);
1147
b7d1f77a
BH
1148 /* Copy RTAS over */
1149 cpu_physical_memory_write(spapr->rtas_addr, spapr->rtas_blob,
1150 spapr->rtas_size);
1151
a3467baa 1152 /* Set up the entry state */
182735ef
AF
1153 first_ppc_cpu = POWERPC_CPU(first_cpu);
1154 first_ppc_cpu->env.gpr[3] = spapr->fdt_addr;
1155 first_ppc_cpu->env.gpr[5] = 0;
1156 first_cpu->halted = 0;
1b718907 1157 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
a3467baa
DG
1158
1159}
1160
1bba0dc9
AF
1161static void spapr_cpu_reset(void *opaque)
1162{
28e02042 1163 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
5b2038e0 1164 PowerPCCPU *cpu = opaque;
259186a7 1165 CPUState *cs = CPU(cpu);
048706d9 1166 CPUPPCState *env = &cpu->env;
1bba0dc9 1167
259186a7 1168 cpu_reset(cs);
048706d9
DG
1169
1170 /* All CPUs start halted. CPU0 is unhalted from the machine level
1171 * reset code and the rest are explicitly started up by the guest
1172 * using an RTAS call */
259186a7 1173 cs->halted = 1;
048706d9
DG
1174
1175 env->spr[SPR_HIOR] = 0;
7f763a5d 1176
4be21d56 1177 env->external_htab = (uint8_t *)spapr->htab;
5736245c
AK
1178 if (kvm_enabled() && !env->external_htab) {
1179 /*
1180 * HV KVM, set external_htab to 1 so our ppc_hash64_load_hpte*
1181 * functions do the right thing.
1182 */
1183 env->external_htab = (void *)1;
1184 }
7f763a5d 1185 env->htab_base = -1;
f3c75d42
AK
1186 /*
1187 * htab_mask is the mask used to normalize hash value to PTEG index.
1188 * htab_shift is log2 of hash table size.
1189 * We have 8 hpte per group, and each hpte is 16 bytes.
1190 * ie have 128 bytes per hpte entry.
1191 */
28e02042 1192 env->htab_mask = (1ULL << (spapr->htab_shift - 7)) - 1;
ec4936e1 1193 env->spr[SPR_SDR1] = (target_ulong)(uintptr_t)spapr->htab |
7f763a5d 1194 (spapr->htab_shift - 18);
1bba0dc9
AF
1195}
1196
28e02042 1197static void spapr_create_nvram(sPAPRMachineState *spapr)
639e8102 1198{
2ff3de68 1199 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
3978b863 1200 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
639e8102 1201
3978b863 1202 if (dinfo) {
4be74634 1203 qdev_prop_set_drive_nofail(dev, "drive", blk_by_legacy_dinfo(dinfo));
639e8102
DG
1204 }
1205
1206 qdev_init_nofail(dev);
1207
1208 spapr->nvram = (struct sPAPRNVRAM *)dev;
1209}
1210
28e02042 1211static void spapr_rtc_create(sPAPRMachineState *spapr)
28df36a1
DG
1212{
1213 DeviceState *dev = qdev_create(NULL, TYPE_SPAPR_RTC);
1214
1215 qdev_init_nofail(dev);
1216 spapr->rtc = dev;
74e5ae28
DG
1217
1218 object_property_add_alias(qdev_get_machine(), "rtc-time",
1219 OBJECT(spapr->rtc), "date", NULL);
28df36a1
DG
1220}
1221
8c57b867 1222/* Returns whether we want to use VGA or not */
f28359d8
LZ
1223static int spapr_vga_init(PCIBus *pci_bus)
1224{
8c57b867 1225 switch (vga_interface_type) {
8c57b867 1226 case VGA_NONE:
7effdaa3
MW
1227 return false;
1228 case VGA_DEVICE:
1229 return true;
1ddcae82 1230 case VGA_STD:
b798c190 1231 case VGA_VIRTIO:
1ddcae82 1232 return pci_vga_init(pci_bus) != NULL;
8c57b867 1233 default:
f28359d8
LZ
1234 fprintf(stderr, "This vga model is not supported,"
1235 "currently it only supports -vga std\n");
8c57b867 1236 exit(0);
f28359d8 1237 }
f28359d8
LZ
1238}
1239
880ae7de
DG
1240static int spapr_post_load(void *opaque, int version_id)
1241{
28e02042 1242 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
880ae7de
DG
1243 int err = 0;
1244
631b22ea 1245 /* In earlier versions, there was no separate qdev for the PAPR
880ae7de
DG
1246 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1247 * So when migrating from those versions, poke the incoming offset
1248 * value into the RTC device */
1249 if (version_id < 3) {
1250 err = spapr_rtc_import_offset(spapr->rtc, spapr->rtc_offset);
1251 }
1252
1253 return err;
1254}
1255
1256static bool version_before_3(void *opaque, int version_id)
1257{
1258 return version_id < 3;
1259}
1260
4be21d56
DG
1261static const VMStateDescription vmstate_spapr = {
1262 .name = "spapr",
880ae7de 1263 .version_id = 3,
4be21d56 1264 .minimum_version_id = 1,
880ae7de 1265 .post_load = spapr_post_load,
3aff6c2f 1266 .fields = (VMStateField[]) {
880ae7de
DG
1267 /* used to be @next_irq */
1268 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
4be21d56
DG
1269
1270 /* RTC offset */
28e02042 1271 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
880ae7de 1272
28e02042 1273 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
4be21d56
DG
1274 VMSTATE_END_OF_LIST()
1275 },
1276};
1277
4be21d56
DG
1278static int htab_save_setup(QEMUFile *f, void *opaque)
1279{
28e02042 1280 sPAPRMachineState *spapr = opaque;
4be21d56 1281
4be21d56
DG
1282 /* "Iteration" header */
1283 qemu_put_be32(f, spapr->htab_shift);
1284
e68cb8b4
AK
1285 if (spapr->htab) {
1286 spapr->htab_save_index = 0;
1287 spapr->htab_first_pass = true;
1288 } else {
1289 assert(kvm_enabled());
1290
1291 spapr->htab_fd = kvmppc_get_htab_fd(false);
01a57972 1292 spapr->htab_fd_stale = false;
e68cb8b4
AK
1293 if (spapr->htab_fd < 0) {
1294 fprintf(stderr, "Unable to open fd for reading hash table from KVM: %s\n",
1295 strerror(errno));
1296 return -1;
1297 }
1298 }
1299
1300
4be21d56
DG
1301 return 0;
1302}
1303
28e02042 1304static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
4be21d56
DG
1305 int64_t max_ns)
1306{
1307 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1308 int index = spapr->htab_save_index;
bc72ad67 1309 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1310
1311 assert(spapr->htab_first_pass);
1312
1313 do {
1314 int chunkstart;
1315
1316 /* Consume invalid HPTEs */
1317 while ((index < htabslots)
1318 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1319 index++;
1320 CLEAN_HPTE(HPTE(spapr->htab, index));
1321 }
1322
1323 /* Consume valid HPTEs */
1324 chunkstart = index;
338c25b6 1325 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56
DG
1326 && HPTE_VALID(HPTE(spapr->htab, index))) {
1327 index++;
1328 CLEAN_HPTE(HPTE(spapr->htab, index));
1329 }
1330
1331 if (index > chunkstart) {
1332 int n_valid = index - chunkstart;
1333
1334 qemu_put_be32(f, chunkstart);
1335 qemu_put_be16(f, n_valid);
1336 qemu_put_be16(f, 0);
1337 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1338 HASH_PTE_SIZE_64 * n_valid);
1339
bc72ad67 1340 if ((qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1341 break;
1342 }
1343 }
1344 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1345
1346 if (index >= htabslots) {
1347 assert(index == htabslots);
1348 index = 0;
1349 spapr->htab_first_pass = false;
1350 }
1351 spapr->htab_save_index = index;
1352}
1353
28e02042 1354static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
e68cb8b4 1355 int64_t max_ns)
4be21d56
DG
1356{
1357 bool final = max_ns < 0;
1358 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1359 int examined = 0, sent = 0;
1360 int index = spapr->htab_save_index;
bc72ad67 1361 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1362
1363 assert(!spapr->htab_first_pass);
1364
1365 do {
1366 int chunkstart, invalidstart;
1367
1368 /* Consume non-dirty HPTEs */
1369 while ((index < htabslots)
1370 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1371 index++;
1372 examined++;
1373 }
1374
1375 chunkstart = index;
1376 /* Consume valid dirty HPTEs */
338c25b6 1377 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56
DG
1378 && HPTE_DIRTY(HPTE(spapr->htab, index))
1379 && HPTE_VALID(HPTE(spapr->htab, index))) {
1380 CLEAN_HPTE(HPTE(spapr->htab, index));
1381 index++;
1382 examined++;
1383 }
1384
1385 invalidstart = index;
1386 /* Consume invalid dirty HPTEs */
338c25b6 1387 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
4be21d56
DG
1388 && HPTE_DIRTY(HPTE(spapr->htab, index))
1389 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1390 CLEAN_HPTE(HPTE(spapr->htab, index));
1391 index++;
1392 examined++;
1393 }
1394
1395 if (index > chunkstart) {
1396 int n_valid = invalidstart - chunkstart;
1397 int n_invalid = index - invalidstart;
1398
1399 qemu_put_be32(f, chunkstart);
1400 qemu_put_be16(f, n_valid);
1401 qemu_put_be16(f, n_invalid);
1402 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1403 HASH_PTE_SIZE_64 * n_valid);
1404 sent += index - chunkstart;
1405
bc72ad67 1406 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1407 break;
1408 }
1409 }
1410
1411 if (examined >= htabslots) {
1412 break;
1413 }
1414
1415 if (index >= htabslots) {
1416 assert(index == htabslots);
1417 index = 0;
1418 }
1419 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1420
1421 if (index >= htabslots) {
1422 assert(index == htabslots);
1423 index = 0;
1424 }
1425
1426 spapr->htab_save_index = index;
1427
e68cb8b4 1428 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
4be21d56
DG
1429}
1430
e68cb8b4
AK
1431#define MAX_ITERATION_NS 5000000 /* 5 ms */
1432#define MAX_KVM_BUF_SIZE 2048
1433
4be21d56
DG
1434static int htab_save_iterate(QEMUFile *f, void *opaque)
1435{
28e02042 1436 sPAPRMachineState *spapr = opaque;
e68cb8b4 1437 int rc = 0;
4be21d56
DG
1438
1439 /* Iteration header */
1440 qemu_put_be32(f, 0);
1441
e68cb8b4
AK
1442 if (!spapr->htab) {
1443 assert(kvm_enabled());
1444
01a57972
SMJ
1445 rc = spapr_check_htab_fd(spapr);
1446 if (rc < 0) {
1447 return rc;
1448 }
1449
e68cb8b4
AK
1450 rc = kvmppc_save_htab(f, spapr->htab_fd,
1451 MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1452 if (rc < 0) {
1453 return rc;
1454 }
1455 } else if (spapr->htab_first_pass) {
4be21d56
DG
1456 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1457 } else {
e68cb8b4 1458 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
4be21d56
DG
1459 }
1460
1461 /* End marker */
1462 qemu_put_be32(f, 0);
1463 qemu_put_be16(f, 0);
1464 qemu_put_be16(f, 0);
1465
e68cb8b4 1466 return rc;
4be21d56
DG
1467}
1468
1469static int htab_save_complete(QEMUFile *f, void *opaque)
1470{
28e02042 1471 sPAPRMachineState *spapr = opaque;
4be21d56
DG
1472
1473 /* Iteration header */
1474 qemu_put_be32(f, 0);
1475
e68cb8b4
AK
1476 if (!spapr->htab) {
1477 int rc;
1478
1479 assert(kvm_enabled());
1480
01a57972
SMJ
1481 rc = spapr_check_htab_fd(spapr);
1482 if (rc < 0) {
1483 return rc;
1484 }
1485
e68cb8b4
AK
1486 rc = kvmppc_save_htab(f, spapr->htab_fd, MAX_KVM_BUF_SIZE, -1);
1487 if (rc < 0) {
1488 return rc;
1489 }
1490 close(spapr->htab_fd);
1491 spapr->htab_fd = -1;
1492 } else {
1493 htab_save_later_pass(f, spapr, -1);
1494 }
4be21d56
DG
1495
1496 /* End marker */
1497 qemu_put_be32(f, 0);
1498 qemu_put_be16(f, 0);
1499 qemu_put_be16(f, 0);
1500
1501 return 0;
1502}
1503
1504static int htab_load(QEMUFile *f, void *opaque, int version_id)
1505{
28e02042 1506 sPAPRMachineState *spapr = opaque;
4be21d56 1507 uint32_t section_hdr;
e68cb8b4 1508 int fd = -1;
4be21d56
DG
1509
1510 if (version_id < 1 || version_id > 1) {
1511 fprintf(stderr, "htab_load() bad version\n");
1512 return -EINVAL;
1513 }
1514
1515 section_hdr = qemu_get_be32(f);
1516
1517 if (section_hdr) {
1518 /* First section, just the hash shift */
1519 if (spapr->htab_shift != section_hdr) {
613e7a76
BR
1520 error_report("htab_shift mismatch: source %d target %d",
1521 section_hdr, spapr->htab_shift);
4be21d56
DG
1522 return -EINVAL;
1523 }
1524 return 0;
1525 }
1526
e68cb8b4
AK
1527 if (!spapr->htab) {
1528 assert(kvm_enabled());
1529
1530 fd = kvmppc_get_htab_fd(true);
1531 if (fd < 0) {
1532 fprintf(stderr, "Unable to open fd to restore KVM hash table: %s\n",
1533 strerror(errno));
1534 }
1535 }
1536
4be21d56
DG
1537 while (true) {
1538 uint32_t index;
1539 uint16_t n_valid, n_invalid;
1540
1541 index = qemu_get_be32(f);
1542 n_valid = qemu_get_be16(f);
1543 n_invalid = qemu_get_be16(f);
1544
1545 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1546 /* End of Stream */
1547 break;
1548 }
1549
e68cb8b4 1550 if ((index + n_valid + n_invalid) >
4be21d56
DG
1551 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1552 /* Bad index in stream */
1553 fprintf(stderr, "htab_load() bad index %d (%hd+%hd entries) "
e68cb8b4
AK
1554 "in htab stream (htab_shift=%d)\n", index, n_valid, n_invalid,
1555 spapr->htab_shift);
4be21d56
DG
1556 return -EINVAL;
1557 }
1558
e68cb8b4
AK
1559 if (spapr->htab) {
1560 if (n_valid) {
1561 qemu_get_buffer(f, HPTE(spapr->htab, index),
1562 HASH_PTE_SIZE_64 * n_valid);
1563 }
1564 if (n_invalid) {
1565 memset(HPTE(spapr->htab, index + n_valid), 0,
1566 HASH_PTE_SIZE_64 * n_invalid);
1567 }
1568 } else {
1569 int rc;
1570
1571 assert(fd >= 0);
1572
1573 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1574 if (rc < 0) {
1575 return rc;
1576 }
4be21d56
DG
1577 }
1578 }
1579
e68cb8b4
AK
1580 if (!spapr->htab) {
1581 assert(fd >= 0);
1582 close(fd);
1583 }
1584
4be21d56
DG
1585 return 0;
1586}
1587
1588static SaveVMHandlers savevm_htab_handlers = {
1589 .save_live_setup = htab_save_setup,
1590 .save_live_iterate = htab_save_iterate,
1591 .save_live_complete = htab_save_complete,
1592 .load_state = htab_load,
1593};
1594
5b2128d2
AG
1595static void spapr_boot_set(void *opaque, const char *boot_device,
1596 Error **errp)
1597{
1598 MachineState *machine = MACHINE(qdev_get_machine());
1599 machine->boot_order = g_strdup(boot_device);
1600}
1601
bab99ea0
BR
1602static void spapr_cpu_init(sPAPRMachineState *spapr, PowerPCCPU *cpu)
1603{
1604 CPUPPCState *env = &cpu->env;
1605
1606 /* Set time-base frequency to 512 MHz */
1607 cpu_ppc_tb_init(env, TIMEBASE_FREQ);
1608
1609 /* PAPR always has exception vectors in RAM not ROM. To ensure this,
1610 * MSR[IP] should never be set.
1611 */
1612 env->msr_mask &= ~(1 << 6);
1613
1614 /* Tell KVM that we're in PAPR mode */
1615 if (kvm_enabled()) {
1616 kvmppc_set_papr(cpu);
1617 }
1618
1619 if (cpu->max_compat) {
1620 if (ppc_set_compat(cpu, cpu->max_compat) < 0) {
1621 exit(1);
1622 }
1623 }
1624
1625 xics_cpu_setup(spapr->icp, cpu);
1626
1627 qemu_register_reset(spapr_cpu_reset, cpu);
1628}
1629
224245bf
DG
1630/*
1631 * Reset routine for LMB DR devices.
1632 *
1633 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1634 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1635 * when it walks all its children devices. LMB devices reset occurs
1636 * as part of spapr_ppc_reset().
1637 */
1638static void spapr_drc_reset(void *opaque)
1639{
1640 sPAPRDRConnector *drc = opaque;
1641 DeviceState *d = DEVICE(drc);
1642
1643 if (d) {
1644 device_reset(d);
1645 }
1646}
1647
1648static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1649{
1650 MachineState *machine = MACHINE(spapr);
1651 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
e8f986fc 1652 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
224245bf
DG
1653 int i;
1654
1655 for (i = 0; i < nr_lmbs; i++) {
1656 sPAPRDRConnector *drc;
1657 uint64_t addr;
1658
e8f986fc 1659 addr = i * lmb_size + spapr->hotplug_memory.base;
224245bf
DG
1660 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1661 addr/lmb_size);
1662 qemu_register_reset(spapr_drc_reset, drc);
1663 }
1664}
1665
1666/*
1667 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1668 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1669 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1670 */
1671static void spapr_validate_node_memory(MachineState *machine)
1672{
1673 int i;
1674
1675 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE ||
1676 machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1677 error_report("Can't support memory configuration where RAM size "
1678 "0x" RAM_ADDR_FMT " or maxmem size "
1679 "0x" RAM_ADDR_FMT " isn't aligned to %llu MB",
1680 machine->ram_size, machine->maxram_size,
1681 SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
1682 exit(EXIT_FAILURE);
1683 }
1684
1685 for (i = 0; i < nb_numa_nodes; i++) {
1686 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
1687 error_report("Can't support memory configuration where memory size"
1688 " %" PRIx64 " of node %d isn't aligned to %llu MB",
1689 numa_info[i].node_mem, i,
1690 SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
1691 exit(EXIT_FAILURE);
1692 }
1693 }
1694}
1695
9fdf0c29 1696/* pSeries LPAR / sPAPR hardware init */
3ef96221 1697static void ppc_spapr_init(MachineState *machine)
9fdf0c29 1698{
28e02042 1699 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
224245bf 1700 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
3ef96221
MA
1701 const char *kernel_filename = machine->kernel_filename;
1702 const char *kernel_cmdline = machine->kernel_cmdline;
1703 const char *initrd_filename = machine->initrd_filename;
05769733 1704 PowerPCCPU *cpu;
8c9f64df 1705 PCIHostState *phb;
9fdf0c29 1706 int i;
890c2b77
AK
1707 MemoryRegion *sysmem = get_system_memory();
1708 MemoryRegion *ram = g_new(MemoryRegion, 1);
658fa66b
AK
1709 MemoryRegion *rma_region;
1710 void *rma = NULL;
a8170e5e 1711 hwaddr rma_alloc_size;
b082d65a 1712 hwaddr node0_size = spapr_node0_size();
4d8d5467
BH
1713 uint32_t initrd_base = 0;
1714 long kernel_size = 0, initrd_size = 0;
b7d1f77a 1715 long load_limit, fw_size;
16457e7f 1716 bool kernel_le = false;
39ac8455 1717 char *filename;
9fdf0c29 1718
0ee2c058
AK
1719 msi_supported = true;
1720
d43b45e2
DG
1721 QLIST_INIT(&spapr->phbs);
1722
9fdf0c29
DG
1723 cpu_ppc_hypercall = emulate_spapr_hypercall;
1724
354ac20a 1725 /* Allocate RMA if necessary */
658fa66b 1726 rma_alloc_size = kvmppc_alloc_rma(&rma);
354ac20a
DG
1727
1728 if (rma_alloc_size == -1) {
730fce59 1729 error_report("Unable to create RMA");
354ac20a
DG
1730 exit(1);
1731 }
7f763a5d 1732
c4177479 1733 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
7f763a5d 1734 spapr->rma_size = rma_alloc_size;
354ac20a 1735 } else {
c4177479 1736 spapr->rma_size = node0_size;
7f763a5d
DG
1737
1738 /* With KVM, we don't actually know whether KVM supports an
1739 * unbounded RMA (PR KVM) or is limited by the hash table size
1740 * (HV KVM using VRMA), so we always assume the latter
1741 *
1742 * In that case, we also limit the initial allocations for RTAS
1743 * etc... to 256M since we have no way to know what the VRMA size
1744 * is going to be as it depends on the size of the hash table
1745 * isn't determined yet.
1746 */
1747 if (kvm_enabled()) {
1748 spapr->vrma_adjust = 1;
1749 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
1750 }
354ac20a
DG
1751 }
1752
c4177479
AK
1753 if (spapr->rma_size > node0_size) {
1754 fprintf(stderr, "Error: Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")\n",
1755 spapr->rma_size);
1756 exit(1);
1757 }
1758
b7d1f77a
BH
1759 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
1760 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
9fdf0c29 1761
382be75d
DG
1762 /* We aim for a hash table of size 1/128 the size of RAM. The
1763 * normal rule of thumb is 1/64 the size of RAM, but that's much
1764 * more than needed for the Linux guests we support. */
1765 spapr->htab_shift = 18; /* Minimum architected size */
1766 while (spapr->htab_shift <= 46) {
ce881f77 1767 if ((1ULL << (spapr->htab_shift + 7)) >= machine->maxram_size) {
382be75d
DG
1768 break;
1769 }
1770 spapr->htab_shift++;
1771 }
b817772a 1772 spapr_alloc_htab(spapr);
7f763a5d 1773
7b565160 1774 /* Set up Interrupt Controller before we create the VCPUs */
446f16a6 1775 spapr->icp = xics_system_init(machine,
9e734e3d 1776 DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(),
f303f117 1777 smp_threads),
7b565160 1778 XICS_IRQS);
7b565160 1779
224245bf
DG
1780 if (smc->dr_lmb_enabled) {
1781 spapr_validate_node_memory(machine);
1782 }
1783
9fdf0c29 1784 /* init CPUs */
19fb2c36
BR
1785 if (machine->cpu_model == NULL) {
1786 machine->cpu_model = kvm_enabled() ? "host" : "POWER7";
9fdf0c29
DG
1787 }
1788 for (i = 0; i < smp_cpus; i++) {
19fb2c36 1789 cpu = cpu_ppc_init(machine->cpu_model);
05769733 1790 if (cpu == NULL) {
9fdf0c29
DG
1791 fprintf(stderr, "Unable to find PowerPC CPU definition\n");
1792 exit(1);
1793 }
bab99ea0 1794 spapr_cpu_init(spapr, cpu);
9fdf0c29
DG
1795 }
1796
026bfd89
DG
1797 if (kvm_enabled()) {
1798 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
1799 kvmppc_enable_logical_ci_hcalls();
ef9971dd 1800 kvmppc_enable_set_mode_hcall();
026bfd89
DG
1801 }
1802
9fdf0c29 1803 /* allocate RAM */
f92f5da1 1804 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
fb164994 1805 machine->ram_size);
f92f5da1 1806 memory_region_add_subregion(sysmem, 0, ram);
9fdf0c29 1807
658fa66b
AK
1808 if (rma_alloc_size && rma) {
1809 rma_region = g_new(MemoryRegion, 1);
1810 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
1811 rma_alloc_size, rma);
1812 vmstate_register_ram_global(rma_region);
1813 memory_region_add_subregion(sysmem, 0, rma_region);
1814 }
1815
4a1c9cf0
BR
1816 /* initialize hotplug memory address space */
1817 if (machine->ram_size < machine->maxram_size) {
1818 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
1819
1820 if (machine->ram_slots > SPAPR_MAX_RAM_SLOTS) {
19a35c9e
BR
1821 error_report("Specified number of memory slots %"PRIu64" exceeds max supported %d\n",
1822 machine->ram_slots, SPAPR_MAX_RAM_SLOTS);
4a1c9cf0
BR
1823 exit(EXIT_FAILURE);
1824 }
1825
1826 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
1827 SPAPR_HOTPLUG_MEM_ALIGN);
1828 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
1829 "hotplug-memory", hotplug_mem_size);
1830 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
1831 &spapr->hotplug_memory.mr);
1832 }
1833
224245bf
DG
1834 if (smc->dr_lmb_enabled) {
1835 spapr_create_lmb_dr_connectors(spapr);
1836 }
1837
39ac8455 1838 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
4c56440d 1839 if (!filename) {
730fce59 1840 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
4c56440d
SW
1841 exit(1);
1842 }
b7d1f77a
BH
1843 spapr->rtas_size = get_image_size(filename);
1844 spapr->rtas_blob = g_malloc(spapr->rtas_size);
1845 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
730fce59 1846 error_report("Could not load LPAR rtas '%s'", filename);
39ac8455
DG
1847 exit(1);
1848 }
4d8d5467 1849 if (spapr->rtas_size > RTAS_MAX_SIZE) {
730fce59
TH
1850 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
1851 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
4d8d5467
BH
1852 exit(1);
1853 }
7267c094 1854 g_free(filename);
39ac8455 1855
74d042e5
DG
1856 /* Set up EPOW events infrastructure */
1857 spapr_events_init(spapr);
1858
12f42174 1859 /* Set up the RTC RTAS interfaces */
28df36a1 1860 spapr_rtc_create(spapr);
12f42174 1861
b5cec4c5 1862 /* Set up VIO bus */
4040ab72
DG
1863 spapr->vio_bus = spapr_vio_bus_init();
1864
277f9acf 1865 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
4040ab72 1866 if (serial_hds[i]) {
d601fac4 1867 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
4040ab72
DG
1868 }
1869 }
9fdf0c29 1870
639e8102
DG
1871 /* We always have at least the nvram device on VIO */
1872 spapr_create_nvram(spapr);
1873
3384f95c 1874 /* Set up PCI */
fa28f71b
AK
1875 spapr_pci_rtas_init();
1876
89dfd6e1 1877 phb = spapr_create_phb(spapr, 0);
3384f95c 1878
277f9acf 1879 for (i = 0; i < nb_nics; i++) {
8d90ad90
DG
1880 NICInfo *nd = &nd_table[i];
1881
1882 if (!nd->model) {
7267c094 1883 nd->model = g_strdup("ibmveth");
8d90ad90
DG
1884 }
1885
1886 if (strcmp(nd->model, "ibmveth") == 0) {
d601fac4 1887 spapr_vlan_create(spapr->vio_bus, nd);
8d90ad90 1888 } else {
29b358f9 1889 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
8d90ad90
DG
1890 }
1891 }
1892
6e270446 1893 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
d601fac4 1894 spapr_vscsi_create(spapr->vio_bus);
6e270446
BH
1895 }
1896
f28359d8 1897 /* Graphics */
8c9f64df 1898 if (spapr_vga_init(phb->bus)) {
3fc5acde 1899 spapr->has_graphics = true;
c6e76503 1900 machine->usb |= defaults_enabled() && !machine->usb_disabled;
f28359d8
LZ
1901 }
1902
4ee9ced9 1903 if (machine->usb) {
8c9f64df 1904 pci_create_simple(phb->bus, -1, "pci-ohci");
c86580b8 1905
35139a59 1906 if (spapr->has_graphics) {
c86580b8
MA
1907 USBBus *usb_bus = usb_bus_find(-1);
1908
1909 usb_create_simple(usb_bus, "usb-kbd");
1910 usb_create_simple(usb_bus, "usb-mouse");
35139a59
DG
1911 }
1912 }
1913
7f763a5d 1914 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
4d8d5467
BH
1915 fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
1916 "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
1917 exit(1);
1918 }
1919
9fdf0c29
DG
1920 if (kernel_filename) {
1921 uint64_t lowaddr = 0;
1922
9fdf0c29 1923 kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
4ecd4d16 1924 NULL, &lowaddr, NULL, 1, PPC_ELF_MACHINE, 0);
3b66da82 1925 if (kernel_size == ELF_LOAD_WRONG_ENDIAN) {
16457e7f
BH
1926 kernel_size = load_elf(kernel_filename,
1927 translate_kernel_address, NULL,
4ecd4d16 1928 NULL, &lowaddr, NULL, 0, PPC_ELF_MACHINE, 0);
16457e7f
BH
1929 kernel_le = kernel_size > 0;
1930 }
9fdf0c29 1931 if (kernel_size < 0) {
3b66da82
AK
1932 fprintf(stderr, "qemu: error loading %s: %s\n",
1933 kernel_filename, load_elf_strerror(kernel_size));
9fdf0c29
DG
1934 exit(1);
1935 }
1936
1937 /* load initrd */
1938 if (initrd_filename) {
4d8d5467
BH
1939 /* Try to locate the initrd in the gap between the kernel
1940 * and the firmware. Add a bit of space just in case
1941 */
1942 initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
9fdf0c29 1943 initrd_size = load_image_targphys(initrd_filename, initrd_base,
4d8d5467 1944 load_limit - initrd_base);
9fdf0c29
DG
1945 if (initrd_size < 0) {
1946 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
1947 initrd_filename);
1948 exit(1);
1949 }
1950 } else {
1951 initrd_base = 0;
1952 initrd_size = 0;
1953 }
4d8d5467 1954 }
a3467baa 1955
8e7ea787
AF
1956 if (bios_name == NULL) {
1957 bios_name = FW_FILE_NAME;
1958 }
1959 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
4c56440d 1960 if (!filename) {
68fea5a0 1961 error_report("Could not find LPAR firmware '%s'", bios_name);
4c56440d
SW
1962 exit(1);
1963 }
4d8d5467 1964 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
68fea5a0
TH
1965 if (fw_size <= 0) {
1966 error_report("Could not load LPAR firmware '%s'", filename);
4d8d5467
BH
1967 exit(1);
1968 }
1969 g_free(filename);
4d8d5467 1970
28e02042
DG
1971 /* FIXME: Should register things through the MachineState's qdev
1972 * interface, this is a legacy from the sPAPREnvironment structure
1973 * which predated MachineState but had a similar function */
4be21d56
DG
1974 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
1975 register_savevm_live(NULL, "spapr/htab", -1, 1,
1976 &savevm_htab_handlers, spapr);
1977
9fdf0c29 1978 /* Prepare the device tree */
3bbf37f2 1979 spapr->fdt_skel = spapr_create_fdt_skel(initrd_base, initrd_size,
16457e7f 1980 kernel_size, kernel_le,
31fe14d1
NF
1981 kernel_cmdline,
1982 spapr->check_exception_irq);
a3467baa 1983 assert(spapr->fdt_skel != NULL);
5b2128d2 1984
46503c2b
MR
1985 /* used by RTAS */
1986 QTAILQ_INIT(&spapr->ccs_list);
1987 qemu_register_reset(spapr_ccs_reset_hook, spapr);
1988
5b2128d2 1989 qemu_register_boot_set(spapr_boot_set, spapr);
9fdf0c29
DG
1990}
1991
135a129a
AK
1992static int spapr_kvm_type(const char *vm_type)
1993{
1994 if (!vm_type) {
1995 return 0;
1996 }
1997
1998 if (!strcmp(vm_type, "HV")) {
1999 return 1;
2000 }
2001
2002 if (!strcmp(vm_type, "PR")) {
2003 return 2;
2004 }
2005
2006 error_report("Unknown kvm-type specified '%s'", vm_type);
2007 exit(1);
2008}
2009
71461b0f 2010/*
627b84f4 2011 * Implementation of an interface to adjust firmware path
71461b0f
AK
2012 * for the bootindex property handling.
2013 */
2014static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2015 DeviceState *dev)
2016{
2017#define CAST(type, obj, name) \
2018 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2019 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2020 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2021
2022 if (d) {
2023 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2024 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2025 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2026
2027 if (spapr) {
2028 /*
2029 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2030 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2031 * in the top 16 bits of the 64-bit LUN
2032 */
2033 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2034 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2035 (uint64_t)id << 48);
2036 } else if (virtio) {
2037 /*
2038 * We use SRP luns of the form 01000000 | (target << 8) | lun
2039 * in the top 32 bits of the 64-bit LUN
2040 * Note: the quote above is from SLOF and it is wrong,
2041 * the actual binding is:
2042 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2043 */
2044 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2045 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2046 (uint64_t)id << 32);
2047 } else if (usb) {
2048 /*
2049 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2050 * in the top 32 bits of the 64-bit LUN
2051 */
2052 unsigned usb_port = atoi(usb->port->path);
2053 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2054 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2055 (uint64_t)id << 32);
2056 }
2057 }
2058
2059 if (phb) {
2060 /* Replace "pci" with "pci@800000020000000" */
2061 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2062 }
2063
2064 return NULL;
2065}
2066
23825581
EH
2067static char *spapr_get_kvm_type(Object *obj, Error **errp)
2068{
28e02042 2069 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2070
28e02042 2071 return g_strdup(spapr->kvm_type);
23825581
EH
2072}
2073
2074static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2075{
28e02042 2076 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2077
28e02042
DG
2078 g_free(spapr->kvm_type);
2079 spapr->kvm_type = g_strdup(value);
23825581
EH
2080}
2081
2082static void spapr_machine_initfn(Object *obj)
2083{
2084 object_property_add_str(obj, "kvm-type",
2085 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
49d2e648
MA
2086 object_property_set_description(obj, "kvm-type",
2087 "Specifies the KVM virtualization mode (HV, PR)",
2088 NULL);
23825581
EH
2089}
2090
34316482
AK
2091static void ppc_cpu_do_nmi_on_cpu(void *arg)
2092{
2093 CPUState *cs = arg;
2094
2095 cpu_synchronize_state(cs);
2096 ppc_cpu_do_system_reset(cs);
2097}
2098
2099static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2100{
2101 CPUState *cs;
2102
2103 CPU_FOREACH(cs) {
2104 async_run_on_cpu(cs, ppc_cpu_do_nmi_on_cpu, cs);
2105 }
2106}
2107
c20d332a
BR
2108static void spapr_add_lmbs(DeviceState *dev, uint64_t addr, uint64_t size,
2109 uint32_t node, Error **errp)
2110{
2111 sPAPRDRConnector *drc;
2112 sPAPRDRConnectorClass *drck;
2113 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2114 int i, fdt_offset, fdt_size;
2115 void *fdt;
2116
2117 /*
2118 * Check for DRC connectors and send hotplug notification to the
2119 * guest only in case of hotplugged memory. This allows cold plugged
2120 * memory to be specified at boot time.
2121 */
2122 if (!dev->hotplugged) {
2123 return;
2124 }
2125
2126 for (i = 0; i < nr_lmbs; i++) {
2127 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2128 addr/SPAPR_MEMORY_BLOCK_SIZE);
2129 g_assert(drc);
2130
2131 fdt = create_device_tree(&fdt_size);
2132 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2133 SPAPR_MEMORY_BLOCK_SIZE);
2134
2135 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2136 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
c20d332a
BR
2137 addr += SPAPR_MEMORY_BLOCK_SIZE;
2138 }
0a417869 2139 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, nr_lmbs);
c20d332a
BR
2140}
2141
2142static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2143 uint32_t node, Error **errp)
2144{
2145 Error *local_err = NULL;
2146 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2147 PCDIMMDevice *dimm = PC_DIMM(dev);
2148 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2149 MemoryRegion *mr = ddc->get_memory_region(dimm);
2150 uint64_t align = memory_region_get_alignment(mr);
2151 uint64_t size = memory_region_size(mr);
2152 uint64_t addr;
2153
2154 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2155 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2156 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2157 goto out;
2158 }
2159
d6a9b0b8 2160 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
c20d332a
BR
2161 if (local_err) {
2162 goto out;
2163 }
2164
2165 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2166 if (local_err) {
2167 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2168 goto out;
2169 }
2170
2171 spapr_add_lmbs(dev, addr, size, node, &error_abort);
2172
2173out:
2174 error_propagate(errp, local_err);
2175}
2176
2177static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2178 DeviceState *dev, Error **errp)
2179{
2180 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2181
2182 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
b556854b 2183 int node;
c20d332a
BR
2184
2185 if (!smc->dr_lmb_enabled) {
2186 error_setg(errp, "Memory hotplug not supported for this machine");
2187 return;
2188 }
2189 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2190 if (*errp) {
2191 return;
2192 }
2193
b556854b
BR
2194 /*
2195 * Currently PowerPC kernel doesn't allow hot-adding memory to
2196 * memory-less node, but instead will silently add the memory
2197 * to the first node that has some memory. This causes two
2198 * unexpected behaviours for the user.
2199 *
2200 * - Memory gets hotplugged to a different node than what the user
2201 * specified.
2202 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2203 * to memory-less node, a reboot will set things accordingly
2204 * and the previously hotplugged memory now ends in the right node.
2205 * This appears as if some memory moved from one node to another.
2206 *
2207 * So until kernel starts supporting memory hotplug to memory-less
2208 * nodes, just prevent such attempts upfront in QEMU.
2209 */
2210 if (nb_numa_nodes && !numa_info[node].node_mem) {
2211 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2212 node);
2213 return;
2214 }
2215
c20d332a
BR
2216 spapr_memory_plug(hotplug_dev, dev, node, errp);
2217 }
2218}
2219
2220static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2221 DeviceState *dev, Error **errp)
2222{
2223 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2224 error_setg(errp, "Memory hot unplug not supported by sPAPR");
2225 }
2226}
2227
2228static HotplugHandler *spapr_get_hotpug_handler(MachineState *machine,
2229 DeviceState *dev)
2230{
2231 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2232 return HOTPLUG_HANDLER(machine);
2233 }
2234 return NULL;
2235}
2236
20bb648d
DG
2237static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2238{
2239 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2240 * socket means much for the paravirtualized PAPR platform) */
2241 return cpu_index / smp_threads / smp_cores;
2242}
2243
29ee3247
AK
2244static void spapr_machine_class_init(ObjectClass *oc, void *data)
2245{
2246 MachineClass *mc = MACHINE_CLASS(oc);
224245bf 2247 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
71461b0f 2248 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
34316482 2249 NMIClass *nc = NMI_CLASS(oc);
c20d332a 2250 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
958db90c 2251
958db90c
MA
2252 mc->init = ppc_spapr_init;
2253 mc->reset = ppc_spapr_reset;
2254 mc->block_default_type = IF_SCSI;
38b02bd8 2255 mc->max_cpus = MAX_CPUMASK_BITS;
958db90c 2256 mc->no_parallel = 1;
5b2128d2 2257 mc->default_boot_order = "";
a34944fe 2258 mc->default_ram_size = 512 * M_BYTE;
958db90c 2259 mc->kvm_type = spapr_kvm_type;
9e3f9733 2260 mc->has_dynamic_sysbus = true;
e4024630 2261 mc->pci_allow_0_address = true;
c20d332a
BR
2262 mc->get_hotplug_handler = spapr_get_hotpug_handler;
2263 hc->plug = spapr_machine_device_plug;
2264 hc->unplug = spapr_machine_device_unplug;
20bb648d 2265 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
00b4fbe2 2266
224245bf 2267 smc->dr_lmb_enabled = false;
71461b0f 2268 fwc->get_dev_path = spapr_get_fw_dev_path;
34316482 2269 nc->nmi_monitor_handler = spapr_nmi;
29ee3247
AK
2270}
2271
2272static const TypeInfo spapr_machine_info = {
2273 .name = TYPE_SPAPR_MACHINE,
2274 .parent = TYPE_MACHINE,
4aee7362 2275 .abstract = true,
6ca1502e 2276 .instance_size = sizeof(sPAPRMachineState),
23825581 2277 .instance_init = spapr_machine_initfn,
183930c0 2278 .class_size = sizeof(sPAPRMachineClass),
29ee3247 2279 .class_init = spapr_machine_class_init,
71461b0f
AK
2280 .interfaces = (InterfaceInfo[]) {
2281 { TYPE_FW_PATH_PROVIDER },
34316482 2282 { TYPE_NMI },
c20d332a 2283 { TYPE_HOTPLUG_HANDLER },
71461b0f
AK
2284 { }
2285 },
29ee3247
AK
2286};
2287
80fd50f9
CH
2288#define SPAPR_COMPAT_2_4 \
2289 HW_COMPAT_2_4
2290
38ff32c6 2291#define SPAPR_COMPAT_2_3 \
80fd50f9 2292 SPAPR_COMPAT_2_4 \
7619c7b0
MR
2293 HW_COMPAT_2_3 \
2294 {\
2295 .driver = "spapr-pci-host-bridge",\
2296 .property = "dynamic-reconfiguration",\
2297 .value = "off",\
2298 },
38ff32c6 2299
b194df47 2300#define SPAPR_COMPAT_2_2 \
38ff32c6 2301 SPAPR_COMPAT_2_3 \
4dfd8eaa 2302 HW_COMPAT_2_2 \
b194df47
AK
2303 {\
2304 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
2305 .property = "mem_win_size",\
2306 .value = "0x20000000",\
dd754baf 2307 },
b194df47
AK
2308
2309#define SPAPR_COMPAT_2_1 \
4dfd8eaa
EH
2310 SPAPR_COMPAT_2_2 \
2311 HW_COMPAT_2_1
b194df47 2312
d25228e7
JW
2313static void spapr_compat_2_3(Object *obj)
2314{
ff14e817 2315 savevm_skip_section_footers();
13d16814 2316 global_state_set_optional();
d25228e7
JW
2317}
2318
b0e966d0
JW
2319static void spapr_compat_2_2(Object *obj)
2320{
d25228e7 2321 spapr_compat_2_3(obj);
b0e966d0
JW
2322}
2323
2324static void spapr_compat_2_1(Object *obj)
2325{
2326 spapr_compat_2_2(obj);
2327}
2328
d25228e7
JW
2329static void spapr_machine_2_3_instance_init(Object *obj)
2330{
2331 spapr_compat_2_3(obj);
2332 spapr_machine_initfn(obj);
2333}
2334
b0e966d0
JW
2335static void spapr_machine_2_2_instance_init(Object *obj)
2336{
2337 spapr_compat_2_2(obj);
2338 spapr_machine_initfn(obj);
2339}
2340
2341static void spapr_machine_2_1_instance_init(Object *obj)
2342{
2343 spapr_compat_2_1(obj);
2344 spapr_machine_initfn(obj);
2345}
2346
6026db45
AK
2347static void spapr_machine_2_1_class_init(ObjectClass *oc, void *data)
2348{
2349 MachineClass *mc = MACHINE_CLASS(oc);
68a27b20 2350 static GlobalProperty compat_props[] = {
dd754baf 2351 SPAPR_COMPAT_2_1
68a27b20
MT
2352 { /* end of list */ }
2353 };
6026db45 2354
6026db45 2355 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.1";
68a27b20 2356 mc->compat_props = compat_props;
6026db45
AK
2357}
2358
2359static const TypeInfo spapr_machine_2_1_info = {
b9f072d0 2360 .name = MACHINE_TYPE_NAME("pseries-2.1"),
6026db45
AK
2361 .parent = TYPE_SPAPR_MACHINE,
2362 .class_init = spapr_machine_2_1_class_init,
b0e966d0 2363 .instance_init = spapr_machine_2_1_instance_init,
6026db45
AK
2364};
2365
4aee7362
DG
2366static void spapr_machine_2_2_class_init(ObjectClass *oc, void *data)
2367{
b194df47 2368 static GlobalProperty compat_props[] = {
dd754baf 2369 SPAPR_COMPAT_2_2
b194df47
AK
2370 { /* end of list */ }
2371 };
4aee7362
DG
2372 MachineClass *mc = MACHINE_CLASS(oc);
2373
4aee7362 2374 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.2";
b194df47 2375 mc->compat_props = compat_props;
4aee7362
DG
2376}
2377
2378static const TypeInfo spapr_machine_2_2_info = {
b9f072d0 2379 .name = MACHINE_TYPE_NAME("pseries-2.2"),
4aee7362
DG
2380 .parent = TYPE_SPAPR_MACHINE,
2381 .class_init = spapr_machine_2_2_class_init,
b0e966d0 2382 .instance_init = spapr_machine_2_2_instance_init,
4aee7362
DG
2383};
2384
3dab0244
AK
2385static void spapr_machine_2_3_class_init(ObjectClass *oc, void *data)
2386{
a1a45612 2387 static GlobalProperty compat_props[] = {
7619c7b0 2388 SPAPR_COMPAT_2_3
a1a45612
DG
2389 { /* end of list */ }
2390 };
3dab0244
AK
2391 MachineClass *mc = MACHINE_CLASS(oc);
2392
3dab0244 2393 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.3";
a1a45612 2394 mc->compat_props = compat_props;
3dab0244
AK
2395}
2396
2397static const TypeInfo spapr_machine_2_3_info = {
b9f072d0 2398 .name = MACHINE_TYPE_NAME("pseries-2.3"),
3dab0244
AK
2399 .parent = TYPE_SPAPR_MACHINE,
2400 .class_init = spapr_machine_2_3_class_init,
d25228e7
JW
2401 .instance_init = spapr_machine_2_3_instance_init,
2402};
2403
2404static void spapr_machine_2_4_class_init(ObjectClass *oc, void *data)
2405{
80fd50f9
CH
2406 static GlobalProperty compat_props[] = {
2407 SPAPR_COMPAT_2_4
2408 { /* end of list */ }
2409 };
d25228e7
JW
2410 MachineClass *mc = MACHINE_CLASS(oc);
2411
d25228e7
JW
2412 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.4";
2413 mc->alias = "pseries";
fb0fc8f6 2414 mc->is_default = 0;
80fd50f9 2415 mc->compat_props = compat_props;
d25228e7
JW
2416}
2417
2418static const TypeInfo spapr_machine_2_4_info = {
b9f072d0 2419 .name = MACHINE_TYPE_NAME("pseries-2.4"),
d25228e7
JW
2420 .parent = TYPE_SPAPR_MACHINE,
2421 .class_init = spapr_machine_2_4_class_init,
3dab0244
AK
2422};
2423
fb0fc8f6
DG
2424static void spapr_machine_2_5_class_init(ObjectClass *oc, void *data)
2425{
2426 MachineClass *mc = MACHINE_CLASS(oc);
224245bf 2427 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
fb0fc8f6
DG
2428
2429 mc->name = "pseries-2.5";
2430 mc->desc = "pSeries Logical Partition (PAPR compliant) v2.5";
2431 mc->alias = "pseries";
2432 mc->is_default = 1;
224245bf 2433 smc->dr_lmb_enabled = true;
fb0fc8f6
DG
2434}
2435
2436static const TypeInfo spapr_machine_2_5_info = {
2437 .name = MACHINE_TYPE_NAME("pseries-2.5"),
2438 .parent = TYPE_SPAPR_MACHINE,
2439 .class_init = spapr_machine_2_5_class_init,
2440};
2441
29ee3247 2442static void spapr_machine_register_types(void)
9fdf0c29 2443{
29ee3247 2444 type_register_static(&spapr_machine_info);
6026db45 2445 type_register_static(&spapr_machine_2_1_info);
4aee7362 2446 type_register_static(&spapr_machine_2_2_info);
3dab0244 2447 type_register_static(&spapr_machine_2_3_info);
d25228e7 2448 type_register_static(&spapr_machine_2_4_info);
fb0fc8f6 2449 type_register_static(&spapr_machine_2_5_info);
9fdf0c29
DG
2450}
2451
29ee3247 2452type_init(spapr_machine_register_types)