]> git.proxmox.com Git - mirror_qemu.git/blame - hw/ppc/spapr.c
spapr: Rename machine init functions for clarity
[mirror_qemu.git] / hw / ppc / spapr.c
CommitLineData
9fdf0c29
DG
1/*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
0d75590d 27#include "qemu/osdep.h"
da34e65c 28#include "qapi/error.h"
fa98fbfc 29#include "qapi/visitor.h"
9c17d615 30#include "sysemu/sysemu.h"
e35704ba 31#include "sysemu/numa.h"
83c9f4ca 32#include "hw/hw.h"
03dd024f 33#include "qemu/log.h"
71461b0f 34#include "hw/fw-path-provider.h"
9fdf0c29 35#include "elf.h"
1422e32d 36#include "net/net.h"
ad440b4a 37#include "sysemu/device_tree.h"
fa1d36df 38#include "sysemu/block-backend.h"
9c17d615 39#include "sysemu/cpus.h"
b3946626 40#include "sysemu/hw_accel.h"
e97c3636 41#include "kvm_ppc.h"
c4b63b7c 42#include "migration/misc.h"
84a899de 43#include "migration/global_state.h"
f2a8f0a6 44#include "migration/register.h"
4be21d56 45#include "mmu-hash64.h"
b4db5413 46#include "mmu-book3s-v3.h"
7abd43ba 47#include "cpu-models.h"
3794d548 48#include "qom/cpu.h"
9fdf0c29
DG
49
50#include "hw/boards.h"
0d09e41a 51#include "hw/ppc/ppc.h"
9fdf0c29
DG
52#include "hw/loader.h"
53
7804c353 54#include "hw/ppc/fdt.h"
0d09e41a
PB
55#include "hw/ppc/spapr.h"
56#include "hw/ppc/spapr_vio.h"
57#include "hw/pci-host/spapr.h"
58#include "hw/ppc/xics.h"
a2cb15b0 59#include "hw/pci/msi.h"
9fdf0c29 60
83c9f4ca 61#include "hw/pci/pci.h"
71461b0f
AK
62#include "hw/scsi/scsi.h"
63#include "hw/virtio/virtio-scsi.h"
c4e13492 64#include "hw/virtio/vhost-scsi-common.h"
f61b4bed 65
022c62cb 66#include "exec/address-spaces.h"
35139a59 67#include "hw/usb.h"
1de7afc9 68#include "qemu/config-file.h"
135a129a 69#include "qemu/error-report.h"
2a6593cb 70#include "trace.h"
34316482 71#include "hw/nmi.h"
6449da45 72#include "hw/intc/intc.h"
890c2b77 73
68a27b20 74#include "hw/compat.h"
f348b6d1 75#include "qemu/cutils.h"
94a94e4c 76#include "hw/ppc/spapr_cpu_core.h"
2474bfd4 77#include "qmp-commands.h"
68a27b20 78
9fdf0c29
DG
79#include <libfdt.h>
80
4d8d5467
BH
81/* SLOF memory layout:
82 *
83 * SLOF raw image loaded at 0, copies its romfs right below the flat
84 * device-tree, then position SLOF itself 31M below that
85 *
86 * So we set FW_OVERHEAD to 40MB which should account for all of that
87 * and more
88 *
89 * We load our kernel at 4M, leaving space for SLOF initial image
90 */
38b02bd8 91#define FDT_MAX_SIZE 0x100000
39ac8455 92#define RTAS_MAX_SIZE 0x10000
b7d1f77a 93#define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
a9f8ad8f
DG
94#define FW_MAX_SIZE 0x400000
95#define FW_FILE_NAME "slof.bin"
4d8d5467
BH
96#define FW_OVERHEAD 0x2800000
97#define KERNEL_LOAD_ADDR FW_MAX_SIZE
a9f8ad8f 98
4d8d5467 99#define MIN_RMA_SLOF 128UL
9fdf0c29 100
0c103f8e
DG
101#define PHANDLE_XICP 0x00001111
102
71cd4dac
CLG
103static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
104 const char *type_ics,
105 int nr_irqs, Error **errp)
c04d6cfa 106{
175d2aa0 107 Error *local_err = NULL;
71cd4dac 108 Object *obj;
4e4169f7 109
71cd4dac 110 obj = object_new(type_ics);
175d2aa0 111 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
ad265631
GK
112 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
113 &error_abort);
175d2aa0
GK
114 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
115 if (local_err) {
116 goto error;
117 }
71cd4dac 118 object_property_set_bool(obj, true, "realized", &local_err);
175d2aa0
GK
119 if (local_err) {
120 goto error;
4e4169f7 121 }
4e4169f7 122
71cd4dac 123 return ICS_SIMPLE(obj);
175d2aa0
GK
124
125error:
126 error_propagate(errp, local_err);
127 return NULL;
c04d6cfa
AL
128}
129
46f7afa3
GK
130static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
131{
132 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133 * and newer QEMUs don't even have them. In both cases, we don't want
134 * to send anything on the wire.
135 */
136 return false;
137}
138
139static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
140 .name = "icp/server",
141 .version_id = 1,
142 .minimum_version_id = 1,
143 .needed = pre_2_10_vmstate_dummy_icp_needed,
144 .fields = (VMStateField[]) {
145 VMSTATE_UNUSED(4), /* uint32_t xirr */
146 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147 VMSTATE_UNUSED(1), /* uint8_t mfrr */
148 VMSTATE_END_OF_LIST()
149 },
150};
151
152static void pre_2_10_vmstate_register_dummy_icp(int i)
153{
154 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
155 (void *)(uintptr_t) i);
156}
157
158static void pre_2_10_vmstate_unregister_dummy_icp(int i)
159{
160 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
161 (void *)(uintptr_t) i);
162}
163
164static inline int xics_max_server_number(void)
165{
166 return DIV_ROUND_UP(max_cpus * kvmppc_smt_threads(), smp_threads);
167}
168
71cd4dac 169static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
c04d6cfa 170{
71cd4dac 171 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
46f7afa3 172 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
c04d6cfa 173
11ad93f6 174 if (kvm_enabled()) {
2192a930 175 if (machine_kernel_irqchip_allowed(machine) &&
71cd4dac
CLG
176 !xics_kvm_init(spapr, errp)) {
177 spapr->icp_type = TYPE_KVM_ICP;
3d85885a 178 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
11ad93f6 179 }
71cd4dac 180 if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
3d85885a
GK
181 error_prepend(errp, "kernel_irqchip requested but unavailable: ");
182 return;
11ad93f6
DG
183 }
184 }
185
71cd4dac 186 if (!spapr->ics) {
f63ebfe0 187 xics_spapr_init(spapr);
71cd4dac
CLG
188 spapr->icp_type = TYPE_ICP;
189 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
3d85885a
GK
190 if (!spapr->ics) {
191 return;
192 }
c04d6cfa 193 }
46f7afa3
GK
194
195 if (smc->pre_2_10_has_unused_icps) {
196 int i;
197
198 for (i = 0; i < xics_max_server_number(); i++) {
199 /* Dummy entries get deregistered when real ICPState objects
200 * are registered during CPU core hotplug.
201 */
202 pre_2_10_vmstate_register_dummy_icp(i);
203 }
204 }
c04d6cfa
AL
205}
206
833d4668
AK
207static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
208 int smt_threads)
209{
210 int i, ret = 0;
211 uint32_t servers_prop[smt_threads];
212 uint32_t gservers_prop[smt_threads * 2];
2e886fb3 213 int index = spapr_vcpu_id(cpu);
833d4668 214
d6e166c0
DG
215 if (cpu->compat_pvr) {
216 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
6d9412ea
AK
217 if (ret < 0) {
218 return ret;
219 }
220 }
221
833d4668
AK
222 /* Build interrupt servers and gservers properties */
223 for (i = 0; i < smt_threads; i++) {
224 servers_prop[i] = cpu_to_be32(index + i);
225 /* Hack, direct the group queues back to cpu 0 */
226 gservers_prop[i*2] = cpu_to_be32(index + i);
227 gservers_prop[i*2 + 1] = 0;
228 }
229 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
230 servers_prop, sizeof(servers_prop));
231 if (ret < 0) {
232 return ret;
233 }
234 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
235 gservers_prop, sizeof(gservers_prop));
236
237 return ret;
238}
239
99861ecb 240static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
0da6f3fe 241{
2e886fb3 242 int index = spapr_vcpu_id(cpu);
0da6f3fe
BR
243 uint32_t associativity[] = {cpu_to_be32(0x5),
244 cpu_to_be32(0x0),
245 cpu_to_be32(0x0),
246 cpu_to_be32(0x0),
15f8b142 247 cpu_to_be32(cpu->node_id),
0da6f3fe
BR
248 cpu_to_be32(index)};
249
250 /* Advertise NUMA via ibm,associativity */
99861ecb 251 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
0da6f3fe 252 sizeof(associativity));
0da6f3fe
BR
253}
254
86d5771a 255/* Populate the "ibm,pa-features" property */
7abd43ba
SJS
256static void spapr_populate_pa_features(PowerPCCPU *cpu, void *fdt, int offset,
257 bool legacy_guest)
86d5771a 258{
7abd43ba 259 CPUPPCState *env = &cpu->env;
86d5771a
SB
260 uint8_t pa_features_206[] = { 6, 0,
261 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
262 uint8_t pa_features_207[] = { 24, 0,
263 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
264 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
265 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
266 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
9fb4541f
SB
267 uint8_t pa_features_300[] = { 66, 0,
268 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
269 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
270 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
271 /* 6: DS207 */
272 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
273 /* 16: Vector */
86d5771a 274 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
9fb4541f 275 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
9bf502fe 276 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
9fb4541f
SB
277 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
278 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
279 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
280 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
281 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
282 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
283 /* 42: PM, 44: PC RA, 46: SC vec'd */
284 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
285 /* 48: SIMD, 50: QP BFP, 52: String */
286 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
287 /* 54: DecFP, 56: DecI, 58: SHA */
288 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
289 /* 60: NM atomic, 62: RNG */
290 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
291 };
7abd43ba 292 uint8_t *pa_features = NULL;
86d5771a
SB
293 size_t pa_size;
294
7abd43ba 295 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
86d5771a
SB
296 pa_features = pa_features_206;
297 pa_size = sizeof(pa_features_206);
7abd43ba
SJS
298 }
299 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
86d5771a
SB
300 pa_features = pa_features_207;
301 pa_size = sizeof(pa_features_207);
7abd43ba
SJS
302 }
303 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
86d5771a
SB
304 pa_features = pa_features_300;
305 pa_size = sizeof(pa_features_300);
7abd43ba
SJS
306 }
307 if (!pa_features) {
86d5771a
SB
308 return;
309 }
310
311 if (env->ci_large_pages) {
312 /*
313 * Note: we keep CI large pages off by default because a 64K capable
314 * guest provisioned with large pages might otherwise try to map a qemu
315 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
316 * even if that qemu runs on a 4k host.
317 * We dd this bit back here if we are confident this is not an issue
318 */
319 pa_features[3] |= 0x20;
320 }
321 if (kvmppc_has_cap_htm() && pa_size > 24) {
322 pa_features[24] |= 0x80; /* Transactional memory support */
323 }
e957f6a9
SB
324 if (legacy_guest && pa_size > 40) {
325 /* Workaround for broken kernels that attempt (guest) radix
326 * mode when they can't handle it, if they see the radix bit set
327 * in pa-features. So hide it from them. */
328 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
329 }
86d5771a
SB
330
331 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
332}
333
28e02042 334static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
6e806cc3 335{
82677ed2
AK
336 int ret = 0, offset, cpus_offset;
337 CPUState *cs;
6e806cc3
BR
338 char cpu_model[32];
339 int smt = kvmppc_smt_threads();
7f763a5d 340 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
6e806cc3 341
82677ed2
AK
342 CPU_FOREACH(cs) {
343 PowerPCCPU *cpu = POWERPC_CPU(cs);
344 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2e886fb3 345 int index = spapr_vcpu_id(cpu);
12dbeb16 346 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
6e806cc3 347
0f20ba62 348 if ((index % smt) != 0) {
6e806cc3
BR
349 continue;
350 }
351
82677ed2 352 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
6e806cc3 353
82677ed2
AK
354 cpus_offset = fdt_path_offset(fdt, "/cpus");
355 if (cpus_offset < 0) {
a4f3885c 356 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
82677ed2
AK
357 if (cpus_offset < 0) {
358 return cpus_offset;
359 }
360 }
361 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
6e806cc3 362 if (offset < 0) {
82677ed2
AK
363 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
364 if (offset < 0) {
365 return offset;
366 }
6e806cc3
BR
367 }
368
7f763a5d
DG
369 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
370 pft_size_prop, sizeof(pft_size_prop));
6e806cc3
BR
371 if (ret < 0) {
372 return ret;
373 }
833d4668 374
99861ecb
IM
375 if (nb_numa_nodes > 1) {
376 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
377 if (ret < 0) {
378 return ret;
379 }
0da6f3fe
BR
380 }
381
12dbeb16 382 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
833d4668
AK
383 if (ret < 0) {
384 return ret;
385 }
e957f6a9 386
7abd43ba 387 spapr_populate_pa_features(cpu, fdt, offset,
e957f6a9 388 spapr->cas_legacy_guest_workaround);
6e806cc3
BR
389 }
390 return ret;
391}
392
c86c1aff 393static hwaddr spapr_node0_size(MachineState *machine)
b082d65a
AK
394{
395 if (nb_numa_nodes) {
396 int i;
397 for (i = 0; i < nb_numa_nodes; ++i) {
398 if (numa_info[i].node_mem) {
fb164994
DG
399 return MIN(pow2floor(numa_info[i].node_mem),
400 machine->ram_size);
b082d65a
AK
401 }
402 }
403 }
fb164994 404 return machine->ram_size;
b082d65a
AK
405}
406
a1d59c0f
AK
407static void add_str(GString *s, const gchar *s1)
408{
409 g_string_append_len(s, s1, strlen(s1) + 1);
410}
7f763a5d 411
03d196b7 412static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
26a8c353
AK
413 hwaddr size)
414{
415 uint32_t associativity[] = {
416 cpu_to_be32(0x4), /* length */
417 cpu_to_be32(0x0), cpu_to_be32(0x0),
c3b4f589 418 cpu_to_be32(0x0), cpu_to_be32(nodeid)
26a8c353
AK
419 };
420 char mem_name[32];
421 uint64_t mem_reg_property[2];
422 int off;
423
424 mem_reg_property[0] = cpu_to_be64(start);
425 mem_reg_property[1] = cpu_to_be64(size);
426
427 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
428 off = fdt_add_subnode(fdt, 0, mem_name);
429 _FDT(off);
430 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
431 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
432 sizeof(mem_reg_property))));
433 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
434 sizeof(associativity))));
03d196b7 435 return off;
26a8c353
AK
436}
437
28e02042 438static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
7f763a5d 439{
fb164994 440 MachineState *machine = MACHINE(spapr);
7db8a127
AK
441 hwaddr mem_start, node_size;
442 int i, nb_nodes = nb_numa_nodes;
443 NodeInfo *nodes = numa_info;
444 NodeInfo ramnode;
445
446 /* No NUMA nodes, assume there is just one node with whole RAM */
447 if (!nb_numa_nodes) {
448 nb_nodes = 1;
fb164994 449 ramnode.node_mem = machine->ram_size;
7db8a127 450 nodes = &ramnode;
5fe269b1 451 }
7f763a5d 452
7db8a127
AK
453 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
454 if (!nodes[i].node_mem) {
455 continue;
456 }
fb164994 457 if (mem_start >= machine->ram_size) {
5fe269b1
PM
458 node_size = 0;
459 } else {
7db8a127 460 node_size = nodes[i].node_mem;
fb164994
DG
461 if (node_size > machine->ram_size - mem_start) {
462 node_size = machine->ram_size - mem_start;
5fe269b1
PM
463 }
464 }
7db8a127
AK
465 if (!mem_start) {
466 /* ppc_spapr_init() checks for rma_size <= node0_size already */
e8f986fc 467 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
7db8a127
AK
468 mem_start += spapr->rma_size;
469 node_size -= spapr->rma_size;
470 }
6010818c
AK
471 for ( ; node_size; ) {
472 hwaddr sizetmp = pow2floor(node_size);
473
474 /* mem_start != 0 here */
475 if (ctzl(mem_start) < ctzl(sizetmp)) {
476 sizetmp = 1ULL << ctzl(mem_start);
477 }
478
479 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
480 node_size -= sizetmp;
481 mem_start += sizetmp;
482 }
7f763a5d
DG
483 }
484
485 return 0;
486}
487
0da6f3fe
BR
488static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
489 sPAPRMachineState *spapr)
490{
491 PowerPCCPU *cpu = POWERPC_CPU(cs);
492 CPUPPCState *env = &cpu->env;
493 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
2e886fb3 494 int index = spapr_vcpu_id(cpu);
0da6f3fe
BR
495 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
496 0xffffffff, 0xffffffff};
afd10a0f
BR
497 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
498 : SPAPR_TIMEBASE_FREQ;
0da6f3fe
BR
499 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
500 uint32_t page_sizes_prop[64];
501 size_t page_sizes_prop_size;
22419c2a 502 uint32_t vcpus_per_socket = smp_threads * smp_cores;
0da6f3fe 503 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
12dbeb16 504 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
af81cf32 505 sPAPRDRConnector *drc;
af81cf32 506 int drc_index;
c64abd1f
SB
507 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
508 int i;
af81cf32 509
fbf55397 510 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
af81cf32 511 if (drc) {
0b55aa91 512 drc_index = spapr_drc_index(drc);
af81cf32
BR
513 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
514 }
0da6f3fe
BR
515
516 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
517 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
518
519 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
520 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
521 env->dcache_line_size)));
522 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
523 env->dcache_line_size)));
524 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
525 env->icache_line_size)));
526 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
527 env->icache_line_size)));
528
529 if (pcc->l1_dcache_size) {
530 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
531 pcc->l1_dcache_size)));
532 } else {
3dc6f869 533 warn_report("Unknown L1 dcache size for cpu");
0da6f3fe
BR
534 }
535 if (pcc->l1_icache_size) {
536 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
537 pcc->l1_icache_size)));
538 } else {
3dc6f869 539 warn_report("Unknown L1 icache size for cpu");
0da6f3fe
BR
540 }
541
542 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
543 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
fd5da5c4 544 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
0da6f3fe
BR
545 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
546 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
547 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
548
549 if (env->spr_cb[SPR_PURR].oea_read) {
550 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
551 }
552
553 if (env->mmu_model & POWERPC_MMU_1TSEG) {
554 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
555 segs, sizeof(segs))));
556 }
557
558 /* Advertise VMX/VSX (vector extensions) if available
559 * 0 / no property == no vector extensions
560 * 1 == VMX / Altivec available
561 * 2 == VSX available */
562 if (env->insns_flags & PPC_ALTIVEC) {
563 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
564
565 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
566 }
567
568 /* Advertise DFP (Decimal Floating Point) if available
569 * 0 / no property == no DFP
570 * 1 == DFP available */
571 if (env->insns_flags2 & PPC2_DFP) {
572 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
573 }
574
3654fa95 575 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
0da6f3fe
BR
576 sizeof(page_sizes_prop));
577 if (page_sizes_prop_size) {
578 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
579 page_sizes_prop, page_sizes_prop_size)));
580 }
581
7abd43ba 582 spapr_populate_pa_features(cpu, fdt, offset, false);
90da0d5a 583
0da6f3fe 584 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
22419c2a 585 cs->cpu_index / vcpus_per_socket)));
0da6f3fe
BR
586
587 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
588 pft_size_prop, sizeof(pft_size_prop))));
589
99861ecb
IM
590 if (nb_numa_nodes > 1) {
591 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
592 }
0da6f3fe 593
12dbeb16 594 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
c64abd1f
SB
595
596 if (pcc->radix_page_info) {
597 for (i = 0; i < pcc->radix_page_info->count; i++) {
598 radix_AP_encodings[i] =
599 cpu_to_be32(pcc->radix_page_info->entries[i]);
600 }
601 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
602 radix_AP_encodings,
603 pcc->radix_page_info->count *
604 sizeof(radix_AP_encodings[0]))));
605 }
0da6f3fe
BR
606}
607
608static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
609{
610 CPUState *cs;
611 int cpus_offset;
612 char *nodename;
613 int smt = kvmppc_smt_threads();
614
615 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
616 _FDT(cpus_offset);
617 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
618 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
619
620 /*
621 * We walk the CPUs in reverse order to ensure that CPU DT nodes
622 * created by fdt_add_subnode() end up in the right order in FDT
623 * for the guest kernel the enumerate the CPUs correctly.
624 */
625 CPU_FOREACH_REVERSE(cs) {
626 PowerPCCPU *cpu = POWERPC_CPU(cs);
2e886fb3 627 int index = spapr_vcpu_id(cpu);
0da6f3fe
BR
628 DeviceClass *dc = DEVICE_GET_CLASS(cs);
629 int offset;
630
631 if ((index % smt) != 0) {
632 continue;
633 }
634
635 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
636 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
637 g_free(nodename);
638 _FDT(offset);
639 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
640 }
641
642}
643
f47bd1c8
IM
644static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
645{
646 MemoryDeviceInfoList *info;
647
648 for (info = list; info; info = info->next) {
649 MemoryDeviceInfo *value = info->value;
650
651 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
652 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
653
654 if (pcdimm_info->addr >= addr &&
655 addr < (pcdimm_info->addr + pcdimm_info->size)) {
656 return pcdimm_info->node;
657 }
658 }
659 }
660
661 return -1;
662}
663
03d196b7
BR
664/*
665 * Adds ibm,dynamic-reconfiguration-memory node.
666 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
667 * of this device tree node.
668 */
669static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
670{
671 MachineState *machine = MACHINE(spapr);
672 int ret, i, offset;
673 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
674 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
d0e5a8f2
BR
675 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
676 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
677 memory_region_size(&spapr->hotplug_memory.mr)) /
678 lmb_size;
03d196b7 679 uint32_t *int_buf, *cur_index, buf_len;
6663864e 680 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
f47bd1c8 681 MemoryDeviceInfoList *dimms = NULL;
03d196b7 682
16c25aef 683 /*
d0e5a8f2 684 * Don't create the node if there is no hotpluggable memory
16c25aef 685 */
d0e5a8f2 686 if (machine->ram_size == machine->maxram_size) {
16c25aef
BR
687 return 0;
688 }
689
ef001f06
TH
690 /*
691 * Allocate enough buffer size to fit in ibm,dynamic-memory
692 * or ibm,associativity-lookup-arrays
693 */
694 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
695 * sizeof(uint32_t);
03d196b7
BR
696 cur_index = int_buf = g_malloc0(buf_len);
697
698 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
699
700 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
701 sizeof(prop_lmb_size));
702 if (ret < 0) {
703 goto out;
704 }
705
706 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
707 if (ret < 0) {
708 goto out;
709 }
710
711 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
712 if (ret < 0) {
713 goto out;
714 }
715
f47bd1c8
IM
716 if (hotplug_lmb_start) {
717 MemoryDeviceInfoList **prev = &dimms;
718 qmp_pc_dimm_device_list(qdev_get_machine(), &prev);
719 }
720
03d196b7
BR
721 /* ibm,dynamic-memory */
722 int_buf[0] = cpu_to_be32(nr_lmbs);
723 cur_index++;
724 for (i = 0; i < nr_lmbs; i++) {
d0e5a8f2 725 uint64_t addr = i * lmb_size;
03d196b7
BR
726 uint32_t *dynamic_memory = cur_index;
727
d0e5a8f2
BR
728 if (i >= hotplug_lmb_start) {
729 sPAPRDRConnector *drc;
d0e5a8f2 730
fbf55397 731 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
d0e5a8f2 732 g_assert(drc);
d0e5a8f2
BR
733
734 dynamic_memory[0] = cpu_to_be32(addr >> 32);
735 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
0b55aa91 736 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
d0e5a8f2 737 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
f47bd1c8 738 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
d0e5a8f2
BR
739 if (memory_region_present(get_system_memory(), addr)) {
740 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
741 } else {
742 dynamic_memory[5] = cpu_to_be32(0);
743 }
03d196b7 744 } else {
d0e5a8f2
BR
745 /*
746 * LMB information for RMA, boot time RAM and gap b/n RAM and
747 * hotplug memory region -- all these are marked as reserved
748 * and as having no valid DRC.
749 */
750 dynamic_memory[0] = cpu_to_be32(addr >> 32);
751 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
752 dynamic_memory[2] = cpu_to_be32(0);
753 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
754 dynamic_memory[4] = cpu_to_be32(-1);
755 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
756 SPAPR_LMB_FLAGS_DRC_INVALID);
03d196b7
BR
757 }
758
759 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
760 }
f47bd1c8 761 qapi_free_MemoryDeviceInfoList(dimms);
03d196b7
BR
762 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
763 if (ret < 0) {
764 goto out;
765 }
766
767 /* ibm,associativity-lookup-arrays */
768 cur_index = int_buf;
6663864e 769 int_buf[0] = cpu_to_be32(nr_nodes);
03d196b7
BR
770 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
771 cur_index += 2;
6663864e 772 for (i = 0; i < nr_nodes; i++) {
03d196b7
BR
773 uint32_t associativity[] = {
774 cpu_to_be32(0x0),
775 cpu_to_be32(0x0),
776 cpu_to_be32(0x0),
777 cpu_to_be32(i)
778 };
779 memcpy(cur_index, associativity, sizeof(associativity));
780 cur_index += 4;
781 }
782 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
783 (cur_index - int_buf) * sizeof(uint32_t));
784out:
785 g_free(int_buf);
786 return ret;
787}
788
6787d27b
MR
789static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
790 sPAPROptionVector *ov5_updates)
791{
792 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
417ece33 793 int ret = 0, offset;
6787d27b
MR
794
795 /* Generate ibm,dynamic-reconfiguration-memory node if required */
796 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
797 g_assert(smc->dr_lmb_enabled);
798 ret = spapr_populate_drconf_memory(spapr, fdt);
417ece33
MR
799 if (ret) {
800 goto out;
801 }
6787d27b
MR
802 }
803
417ece33
MR
804 offset = fdt_path_offset(fdt, "/chosen");
805 if (offset < 0) {
806 offset = fdt_add_subnode(fdt, 0, "chosen");
807 if (offset < 0) {
808 return offset;
809 }
810 }
811 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
812 "ibm,architecture-vec-5");
813
814out:
6787d27b
MR
815 return ret;
816}
817
10f12e64
DHB
818static bool spapr_hotplugged_dev_before_cas(void)
819{
820 Object *drc_container, *obj;
821 ObjectProperty *prop;
822 ObjectPropertyIterator iter;
823
824 drc_container = container_get(object_get_root(), "/dr-connector");
825 object_property_iter_init(&iter, drc_container);
826 while ((prop = object_property_iter_next(&iter))) {
827 if (!strstart(prop->type, "link<", NULL)) {
828 continue;
829 }
830 obj = object_property_get_link(drc_container, prop->name, NULL);
831 if (spapr_drc_needed(obj)) {
832 return true;
833 }
834 }
835 return false;
836}
837
03d196b7
BR
838int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
839 target_ulong addr, target_ulong size,
6787d27b 840 sPAPROptionVector *ov5_updates)
03d196b7
BR
841{
842 void *fdt, *fdt_skel;
843 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
03d196b7 844
10f12e64
DHB
845 if (spapr_hotplugged_dev_before_cas()) {
846 return 1;
847 }
848
827b17c4
GK
849 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
850 error_report("SLOF provided an unexpected CAS buffer size "
851 TARGET_FMT_lu " (min: %zu, max: %u)",
852 size, sizeof(hdr), FW_MAX_SIZE);
853 exit(EXIT_FAILURE);
854 }
855
03d196b7
BR
856 size -= sizeof(hdr);
857
10f12e64 858 /* Create skeleton */
03d196b7
BR
859 fdt_skel = g_malloc0(size);
860 _FDT((fdt_create(fdt_skel, size)));
861 _FDT((fdt_begin_node(fdt_skel, "")));
862 _FDT((fdt_end_node(fdt_skel)));
863 _FDT((fdt_finish(fdt_skel)));
864 fdt = g_malloc0(size);
865 _FDT((fdt_open_into(fdt_skel, fdt, size)));
866 g_free(fdt_skel);
867
868 /* Fixup cpu nodes */
5b120785 869 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
03d196b7 870
6787d27b
MR
871 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
872 return -1;
03d196b7
BR
873 }
874
875 /* Pack resulting tree */
876 _FDT((fdt_pack(fdt)));
877
878 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
879 trace_spapr_cas_failed(size);
880 return -1;
881 }
882
883 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
884 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
885 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
886 g_free(fdt);
887
888 return 0;
889}
890
3f5dabce
DG
891static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
892{
893 int rtas;
894 GString *hypertas = g_string_sized_new(256);
895 GString *qemu_hypertas = g_string_sized_new(256);
896 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
897 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
898 memory_region_size(&spapr->hotplug_memory.mr);
899 uint32_t lrdr_capacity[] = {
900 cpu_to_be32(max_hotplug_addr >> 32),
901 cpu_to_be32(max_hotplug_addr & 0xffffffff),
902 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
903 cpu_to_be32(max_cpus / smp_threads),
904 };
905
906 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
907
908 /* hypertas */
909 add_str(hypertas, "hcall-pft");
910 add_str(hypertas, "hcall-term");
911 add_str(hypertas, "hcall-dabr");
912 add_str(hypertas, "hcall-interrupt");
913 add_str(hypertas, "hcall-tce");
914 add_str(hypertas, "hcall-vio");
915 add_str(hypertas, "hcall-splpar");
916 add_str(hypertas, "hcall-bulk");
917 add_str(hypertas, "hcall-set-mode");
918 add_str(hypertas, "hcall-sprg0");
919 add_str(hypertas, "hcall-copy");
920 add_str(hypertas, "hcall-debug");
921 add_str(qemu_hypertas, "hcall-memop1");
922
923 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
924 add_str(hypertas, "hcall-multi-tce");
925 }
30f4b05b
DG
926
927 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
928 add_str(hypertas, "hcall-hpt-resize");
929 }
930
3f5dabce
DG
931 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
932 hypertas->str, hypertas->len));
933 g_string_free(hypertas, TRUE);
934 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
935 qemu_hypertas->str, qemu_hypertas->len));
936 g_string_free(qemu_hypertas, TRUE);
937
938 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
939 refpoints, sizeof(refpoints)));
940
941 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
942 RTAS_ERROR_LOG_MAX));
943 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
944 RTAS_EVENT_SCAN_RATE));
945
946 if (msi_nonbroken) {
947 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
948 }
949
950 /*
951 * According to PAPR, rtas ibm,os-term does not guarantee a return
952 * back to the guest cpu.
953 *
954 * While an additional ibm,extended-os-term property indicates
955 * that rtas call return will always occur. Set this property.
956 */
957 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
958
959 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
960 lrdr_capacity, sizeof(lrdr_capacity)));
961
962 spapr_dt_rtas_tokens(fdt, rtas);
963}
964
9fb4541f
SB
965/* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
966 * that the guest may request and thus the valid values for bytes 24..26 of
967 * option vector 5: */
968static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
969{
545d6e2b
SJS
970 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
971
f2b14e3a 972 char val[2 * 4] = {
21f3f8db 973 23, 0x00, /* Xive mode, filled in below. */
9fb4541f
SB
974 24, 0x00, /* Hash/Radix, filled in below. */
975 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
976 26, 0x40, /* Radix options: GTSE == yes. */
977 };
978
7abd43ba
SJS
979 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
980 first_ppc_cpu->compat_pvr)) {
981 /* If we're in a pre POWER9 compat mode then the guest should do hash */
982 val[3] = 0x00; /* Hash */
983 } else if (kvm_enabled()) {
9fb4541f 984 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
f2b14e3a 985 val[3] = 0x80; /* OV5_MMU_BOTH */
9fb4541f 986 } else if (kvmppc_has_cap_mmu_radix()) {
f2b14e3a 987 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
9fb4541f 988 } else {
f2b14e3a 989 val[3] = 0x00; /* Hash */
9fb4541f
SB
990 }
991 } else {
7abd43ba
SJS
992 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
993 val[3] = 0xC0;
9fb4541f
SB
994 }
995 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
996 val, sizeof(val)));
997}
998
7c866c6a
DG
999static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1000{
1001 MachineState *machine = MACHINE(spapr);
1002 int chosen;
1003 const char *boot_device = machine->boot_order;
1004 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1005 size_t cb = 0;
1006 char *bootlist = get_boot_devices_list(&cb, true);
7c866c6a
DG
1007
1008 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1009
7c866c6a
DG
1010 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1011 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1012 spapr->initrd_base));
1013 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1014 spapr->initrd_base + spapr->initrd_size));
1015
1016 if (spapr->kernel_size) {
1017 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1018 cpu_to_be64(spapr->kernel_size) };
1019
1020 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1021 &kprop, sizeof(kprop)));
1022 if (spapr->kernel_le) {
1023 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1024 }
1025 }
1026 if (boot_menu) {
1027 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1028 }
1029 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1030 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1031 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1032
1033 if (cb && bootlist) {
1034 int i;
1035
1036 for (i = 0; i < cb; i++) {
1037 if (bootlist[i] == '\n') {
1038 bootlist[i] = ' ';
1039 }
1040 }
1041 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1042 }
1043
1044 if (boot_device && strlen(boot_device)) {
1045 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1046 }
1047
1048 if (!spapr->has_graphics && stdout_path) {
1049 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1050 }
1051
9fb4541f
SB
1052 spapr_dt_ov5_platform_support(fdt, chosen);
1053
7c866c6a
DG
1054 g_free(stdout_path);
1055 g_free(bootlist);
1056}
1057
fca5f2dc
DG
1058static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1059{
1060 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1061 * KVM to work under pHyp with some guest co-operation */
1062 int hypervisor;
1063 uint8_t hypercall[16];
1064
1065 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1066 /* indicate KVM hypercall interface */
1067 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1068 if (kvmppc_has_cap_fixup_hcalls()) {
1069 /*
1070 * Older KVM versions with older guest kernels were broken
1071 * with the magic page, don't allow the guest to map it.
1072 */
1073 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1074 sizeof(hypercall))) {
1075 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1076 hypercall, sizeof(hypercall)));
1077 }
1078 }
1079}
1080
997b6cfc
DG
1081static void *spapr_build_fdt(sPAPRMachineState *spapr,
1082 hwaddr rtas_addr,
1083 hwaddr rtas_size)
a3467baa 1084{
c86c1aff 1085 MachineState *machine = MACHINE(spapr);
3c0c47e3 1086 MachineClass *mc = MACHINE_GET_CLASS(machine);
c20d332a 1087 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
7c866c6a 1088 int ret;
a3467baa 1089 void *fdt;
3384f95c 1090 sPAPRPHBState *phb;
398a0bd5 1091 char *buf;
a3467baa 1092
398a0bd5
DG
1093 fdt = g_malloc0(FDT_MAX_SIZE);
1094 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
a3467baa 1095
398a0bd5
DG
1096 /* Root node */
1097 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1098 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1099 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1100
1101 /*
1102 * Add info to guest to indentify which host is it being run on
1103 * and what is the uuid of the guest
1104 */
1105 if (kvmppc_get_host_model(&buf)) {
1106 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1107 g_free(buf);
1108 }
1109 if (kvmppc_get_host_serial(&buf)) {
1110 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1111 g_free(buf);
1112 }
1113
1114 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1115
1116 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1117 if (qemu_uuid_set) {
1118 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1119 }
1120 g_free(buf);
1121
1122 if (qemu_get_vm_name()) {
1123 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1124 qemu_get_vm_name()));
1125 }
1126
1127 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1128 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
4040ab72 1129
fc7e0765
DG
1130 /* /interrupt controller */
1131 spapr_dt_xics(xics_max_server_number(), fdt, PHANDLE_XICP);
1132
e8f986fc
BR
1133 ret = spapr_populate_memory(spapr, fdt);
1134 if (ret < 0) {
ce9863b7 1135 error_report("couldn't setup memory nodes in fdt");
e8f986fc 1136 exit(1);
7f763a5d
DG
1137 }
1138
bf5a6696
DG
1139 /* /vdevice */
1140 spapr_dt_vdevice(spapr->vio_bus, fdt);
4040ab72 1141
4d9392be
TH
1142 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1143 ret = spapr_rng_populate_dt(fdt);
1144 if (ret < 0) {
ce9863b7 1145 error_report("could not set up rng device in the fdt");
4d9392be
TH
1146 exit(1);
1147 }
1148 }
1149
3384f95c 1150 QLIST_FOREACH(phb, &spapr->phbs, list) {
e0fdbd7c 1151 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
da34fed7
TH
1152 if (ret < 0) {
1153 error_report("couldn't setup PCI devices in fdt");
1154 exit(1);
1155 }
3384f95c
DG
1156 }
1157
0da6f3fe
BR
1158 /* cpus */
1159 spapr_populate_cpus_dt_node(fdt, spapr);
6e806cc3 1160
c20d332a
BR
1161 if (smc->dr_lmb_enabled) {
1162 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1163 }
1164
c5514d0e 1165 if (mc->has_hotpluggable_cpus) {
af81cf32
BR
1166 int offset = fdt_path_offset(fdt, "/cpus");
1167 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1168 SPAPR_DR_CONNECTOR_TYPE_CPU);
1169 if (ret < 0) {
1170 error_report("Couldn't set up CPU DR device tree properties");
1171 exit(1);
1172 }
1173 }
1174
ffb1e275 1175 /* /event-sources */
ffbb1705 1176 spapr_dt_events(spapr, fdt);
ffb1e275 1177
3f5dabce
DG
1178 /* /rtas */
1179 spapr_dt_rtas(spapr, fdt);
1180
7c866c6a
DG
1181 /* /chosen */
1182 spapr_dt_chosen(spapr, fdt);
cf6e5223 1183
fca5f2dc
DG
1184 /* /hypervisor */
1185 if (kvm_enabled()) {
1186 spapr_dt_hypervisor(spapr, fdt);
1187 }
1188
cf6e5223
DG
1189 /* Build memory reserve map */
1190 if (spapr->kernel_size) {
1191 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1192 }
1193 if (spapr->initrd_size) {
1194 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1195 }
1196
6787d27b
MR
1197 /* ibm,client-architecture-support updates */
1198 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1199 if (ret < 0) {
1200 error_report("couldn't setup CAS properties fdt");
1201 exit(1);
1202 }
1203
997b6cfc 1204 return fdt;
9fdf0c29
DG
1205}
1206
1207static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1208{
1209 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1210}
1211
1d1be34d
DG
1212static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1213 PowerPCCPU *cpu)
9fdf0c29 1214{
1b14670a
AF
1215 CPUPPCState *env = &cpu->env;
1216
8d04fb55
JK
1217 /* The TCG path should also be holding the BQL at this point */
1218 g_assert(qemu_mutex_iothread_locked());
1219
efcb9383
DG
1220 if (msr_pr) {
1221 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1222 env->gpr[3] = H_PRIVILEGE;
1223 } else {
aa100fa4 1224 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
efcb9383 1225 }
9fdf0c29
DG
1226}
1227
9861bb3e
SJS
1228static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1229{
1230 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1231
1232 return spapr->patb_entry;
1233}
1234
e6b8fd24
SMJ
1235#define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1236#define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1237#define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1238#define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1239#define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1240
715c5407
DG
1241/*
1242 * Get the fd to access the kernel htab, re-opening it if necessary
1243 */
1244static int get_htab_fd(sPAPRMachineState *spapr)
1245{
14b0d748
GK
1246 Error *local_err = NULL;
1247
715c5407
DG
1248 if (spapr->htab_fd >= 0) {
1249 return spapr->htab_fd;
1250 }
1251
14b0d748 1252 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
715c5407 1253 if (spapr->htab_fd < 0) {
14b0d748 1254 error_report_err(local_err);
715c5407
DG
1255 }
1256
1257 return spapr->htab_fd;
1258}
1259
b4db5413 1260void close_htab_fd(sPAPRMachineState *spapr)
715c5407
DG
1261{
1262 if (spapr->htab_fd >= 0) {
1263 close(spapr->htab_fd);
1264 }
1265 spapr->htab_fd = -1;
1266}
1267
e57ca75c
DG
1268static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1269{
1270 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1271
1272 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1273}
1274
1ec26c75
GK
1275static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1276{
1277 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1278
1279 assert(kvm_enabled());
1280
1281 if (!spapr->htab) {
1282 return 0;
1283 }
1284
1285 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1286}
1287
e57ca75c
DG
1288static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1289 hwaddr ptex, int n)
1290{
1291 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1292 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1293
1294 if (!spapr->htab) {
1295 /*
1296 * HTAB is controlled by KVM. Fetch into temporary buffer
1297 */
1298 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1299 kvmppc_read_hptes(hptes, ptex, n);
1300 return hptes;
1301 }
1302
1303 /*
1304 * HTAB is controlled by QEMU. Just point to the internally
1305 * accessible PTEG.
1306 */
1307 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1308}
1309
1310static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1311 const ppc_hash_pte64_t *hptes,
1312 hwaddr ptex, int n)
1313{
1314 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1315
1316 if (!spapr->htab) {
1317 g_free((void *)hptes);
1318 }
1319
1320 /* Nothing to do for qemu managed HPT */
1321}
1322
1323static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1324 uint64_t pte0, uint64_t pte1)
1325{
1326 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1327 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1328
1329 if (!spapr->htab) {
1330 kvmppc_write_hpte(ptex, pte0, pte1);
1331 } else {
1332 stq_p(spapr->htab + offset, pte0);
1333 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1334 }
1335}
1336
0b0b8310 1337int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
8dfe8e7f
DG
1338{
1339 int shift;
1340
1341 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1342 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1343 * that's much more than is needed for Linux guests */
1344 shift = ctz64(pow2ceil(ramsize)) - 7;
1345 shift = MAX(shift, 18); /* Minimum architected size */
1346 shift = MIN(shift, 46); /* Maximum architected size */
1347 return shift;
1348}
1349
06ec79e8
BR
1350void spapr_free_hpt(sPAPRMachineState *spapr)
1351{
1352 g_free(spapr->htab);
1353 spapr->htab = NULL;
1354 spapr->htab_shift = 0;
1355 close_htab_fd(spapr);
1356}
1357
2772cf6b
DG
1358void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1359 Error **errp)
7f763a5d 1360{
c5f54f3e
DG
1361 long rc;
1362
1363 /* Clean up any HPT info from a previous boot */
06ec79e8 1364 spapr_free_hpt(spapr);
c5f54f3e
DG
1365
1366 rc = kvmppc_reset_htab(shift);
1367 if (rc < 0) {
1368 /* kernel-side HPT needed, but couldn't allocate one */
1369 error_setg_errno(errp, errno,
1370 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1371 shift);
1372 /* This is almost certainly fatal, but if the caller really
1373 * wants to carry on with shift == 0, it's welcome to try */
1374 } else if (rc > 0) {
1375 /* kernel-side HPT allocated */
1376 if (rc != shift) {
1377 error_setg(errp,
1378 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1379 shift, rc);
7735feda
BR
1380 }
1381
7f763a5d 1382 spapr->htab_shift = shift;
c18ad9a5 1383 spapr->htab = NULL;
b817772a 1384 } else {
c5f54f3e
DG
1385 /* kernel-side HPT not needed, allocate in userspace instead */
1386 size_t size = 1ULL << shift;
1387 int i;
b817772a 1388
c5f54f3e
DG
1389 spapr->htab = qemu_memalign(size, size);
1390 if (!spapr->htab) {
1391 error_setg_errno(errp, errno,
1392 "Could not allocate HPT of order %d", shift);
1393 return;
7735feda
BR
1394 }
1395
c5f54f3e
DG
1396 memset(spapr->htab, 0, size);
1397 spapr->htab_shift = shift;
e6b8fd24 1398
c5f54f3e
DG
1399 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1400 DIRTY_HPTE(HPTE(spapr->htab, i));
e6b8fd24 1401 }
7f763a5d 1402 }
ee4d9ecc
SJS
1403 /* We're setting up a hash table, so that means we're not radix */
1404 spapr->patb_entry = 0;
9fdf0c29
DG
1405}
1406
b4db5413
SJS
1407void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1408{
2772cf6b
DG
1409 int hpt_shift;
1410
1411 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1412 || (spapr->cas_reboot
1413 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1414 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1415 } else {
768a20f3
DG
1416 uint64_t current_ram_size;
1417
1418 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1419 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
2772cf6b
DG
1420 }
1421 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1422
b4db5413 1423 if (spapr->vrma_adjust) {
c86c1aff 1424 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
b4db5413
SJS
1425 spapr->htab_shift);
1426 }
b4db5413
SJS
1427}
1428
4f01a637 1429static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
9e3f9733
AG
1430{
1431 bool matched = false;
1432
1433 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1434 matched = true;
1435 }
1436
1437 if (!matched) {
1438 error_report("Device %s is not supported by this machine yet.",
1439 qdev_fw_name(DEVICE(sbdev)));
1440 exit(1);
1441 }
9e3f9733
AG
1442}
1443
82512483
GK
1444static int spapr_reset_drcs(Object *child, void *opaque)
1445{
1446 sPAPRDRConnector *drc =
1447 (sPAPRDRConnector *) object_dynamic_cast(child,
1448 TYPE_SPAPR_DR_CONNECTOR);
1449
1450 if (drc) {
1451 spapr_drc_reset(drc);
1452 }
1453
1454 return 0;
1455}
1456
bcb5ce08 1457static void spapr_machine_reset(void)
a3467baa 1458{
c5f54f3e
DG
1459 MachineState *machine = MACHINE(qdev_get_machine());
1460 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
182735ef 1461 PowerPCCPU *first_ppc_cpu;
b7d1f77a 1462 uint32_t rtas_limit;
cae172ab 1463 hwaddr rtas_addr, fdt_addr;
997b6cfc
DG
1464 void *fdt;
1465 int rc;
259186a7 1466
9e3f9733
AG
1467 /* Check for unknown sysbus devices */
1468 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1469
b4db5413
SJS
1470 if (kvm_enabled() && kvmppc_has_cap_mmu_radix()) {
1471 /* If using KVM with radix mode available, VCPUs can be started
1472 * without a HPT because KVM will start them in radix mode.
1473 * Set the GR bit in PATB so that we know there is no HPT. */
1474 spapr->patb_entry = PATBE1_GR;
1475 } else {
b4db5413 1476 spapr_setup_hpt_and_vrma(spapr);
c5f54f3e 1477 }
a3467baa 1478
c8787ad4 1479 qemu_devices_reset();
82512483
GK
1480
1481 /* DRC reset may cause a device to be unplugged. This will cause troubles
1482 * if this device is used by another device (eg, a running vhost backend
1483 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1484 * situations, we reset DRCs after all devices have been reset.
1485 */
1486 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1487
56258174 1488 spapr_clear_pending_events(spapr);
a3467baa 1489
b7d1f77a
BH
1490 /*
1491 * We place the device tree and RTAS just below either the top of the RMA,
1492 * or just below 2GB, whichever is lowere, so that it can be
1493 * processed with 32-bit real mode code if necessary
1494 */
1495 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
cae172ab
DG
1496 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1497 fdt_addr = rtas_addr - FDT_MAX_SIZE;
b7d1f77a 1498
6787d27b
MR
1499 /* if this reset wasn't generated by CAS, we should reset our
1500 * negotiated options and start from scratch */
1501 if (!spapr->cas_reboot) {
1502 spapr_ovec_cleanup(spapr->ov5_cas);
1503 spapr->ov5_cas = spapr_ovec_new();
66d5c492
DG
1504
1505 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
6787d27b
MR
1506 }
1507
cae172ab 1508 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
a3467baa 1509
2cac78c1 1510 spapr_load_rtas(spapr, fdt, rtas_addr);
b7d1f77a 1511
997b6cfc
DG
1512 rc = fdt_pack(fdt);
1513
1514 /* Should only fail if we've built a corrupted tree */
1515 assert(rc == 0);
1516
1517 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1518 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1519 fdt_totalsize(fdt), FDT_MAX_SIZE);
1520 exit(1);
1521 }
1522
1523 /* Load the fdt */
1524 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
cae172ab 1525 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
997b6cfc
DG
1526 g_free(fdt);
1527
a3467baa 1528 /* Set up the entry state */
182735ef 1529 first_ppc_cpu = POWERPC_CPU(first_cpu);
cae172ab 1530 first_ppc_cpu->env.gpr[3] = fdt_addr;
182735ef
AF
1531 first_ppc_cpu->env.gpr[5] = 0;
1532 first_cpu->halted = 0;
1b718907 1533 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
a3467baa 1534
6787d27b 1535 spapr->cas_reboot = false;
a3467baa
DG
1536}
1537
28e02042 1538static void spapr_create_nvram(sPAPRMachineState *spapr)
639e8102 1539{
2ff3de68 1540 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
3978b863 1541 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
639e8102 1542
3978b863 1543 if (dinfo) {
6231a6da
MA
1544 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1545 &error_fatal);
639e8102
DG
1546 }
1547
1548 qdev_init_nofail(dev);
1549
1550 spapr->nvram = (struct sPAPRNVRAM *)dev;
1551}
1552
28e02042 1553static void spapr_rtc_create(sPAPRMachineState *spapr)
28df36a1 1554{
147ff807
CLG
1555 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1556 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1557 &error_fatal);
1558 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1559 &error_fatal);
1560 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1561 "date", &error_fatal);
28df36a1
DG
1562}
1563
8c57b867 1564/* Returns whether we want to use VGA or not */
14c6a894 1565static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
f28359d8 1566{
8c57b867 1567 switch (vga_interface_type) {
8c57b867 1568 case VGA_NONE:
7effdaa3
MW
1569 return false;
1570 case VGA_DEVICE:
1571 return true;
1ddcae82 1572 case VGA_STD:
b798c190 1573 case VGA_VIRTIO:
1ddcae82 1574 return pci_vga_init(pci_bus) != NULL;
8c57b867 1575 default:
14c6a894
DG
1576 error_setg(errp,
1577 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1578 return false;
f28359d8 1579 }
f28359d8
LZ
1580}
1581
880ae7de
DG
1582static int spapr_post_load(void *opaque, int version_id)
1583{
28e02042 1584 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
880ae7de
DG
1585 int err = 0;
1586
a7ff1212 1587 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
5bc8d26d
CLG
1588 CPUState *cs;
1589 CPU_FOREACH(cs) {
1590 PowerPCCPU *cpu = POWERPC_CPU(cs);
1591 icp_resend(ICP(cpu->intc));
a7ff1212
CLG
1592 }
1593 }
1594
631b22ea 1595 /* In earlier versions, there was no separate qdev for the PAPR
880ae7de
DG
1596 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1597 * So when migrating from those versions, poke the incoming offset
1598 * value into the RTC device */
1599 if (version_id < 3) {
147ff807 1600 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
880ae7de
DG
1601 }
1602
0c86b2df 1603 if (kvm_enabled() && spapr->patb_entry) {
d39c90f5
BR
1604 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1605 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1606 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1607
1608 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1609 if (err) {
1610 error_report("Process table config unsupported by the host");
1611 return -EINVAL;
1612 }
1613 }
1614
880ae7de
DG
1615 return err;
1616}
1617
1618static bool version_before_3(void *opaque, int version_id)
1619{
1620 return version_id < 3;
1621}
1622
fd38804b
DHB
1623static bool spapr_pending_events_needed(void *opaque)
1624{
1625 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1626 return !QTAILQ_EMPTY(&spapr->pending_events);
1627}
1628
1629static const VMStateDescription vmstate_spapr_event_entry = {
1630 .name = "spapr_event_log_entry",
1631 .version_id = 1,
1632 .minimum_version_id = 1,
1633 .fields = (VMStateField[]) {
5341258e
DG
1634 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1635 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
fd38804b 1636 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
5341258e 1637 NULL, extended_length),
fd38804b
DHB
1638 VMSTATE_END_OF_LIST()
1639 },
1640};
1641
1642static const VMStateDescription vmstate_spapr_pending_events = {
1643 .name = "spapr_pending_events",
1644 .version_id = 1,
1645 .minimum_version_id = 1,
1646 .needed = spapr_pending_events_needed,
1647 .fields = (VMStateField[]) {
1648 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1649 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1650 VMSTATE_END_OF_LIST()
1651 },
1652};
1653
62ef3760
MR
1654static bool spapr_ov5_cas_needed(void *opaque)
1655{
1656 sPAPRMachineState *spapr = opaque;
1657 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1658 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1659 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1660 bool cas_needed;
1661
1662 /* Prior to the introduction of sPAPROptionVector, we had two option
1663 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1664 * Both of these options encode machine topology into the device-tree
1665 * in such a way that the now-booted OS should still be able to interact
1666 * appropriately with QEMU regardless of what options were actually
1667 * negotiatied on the source side.
1668 *
1669 * As such, we can avoid migrating the CAS-negotiated options if these
1670 * are the only options available on the current machine/platform.
1671 * Since these are the only options available for pseries-2.7 and
1672 * earlier, this allows us to maintain old->new/new->old migration
1673 * compatibility.
1674 *
1675 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1676 * via default pseries-2.8 machines and explicit command-line parameters.
1677 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1678 * of the actual CAS-negotiated values to continue working properly. For
1679 * example, availability of memory unplug depends on knowing whether
1680 * OV5_HP_EVT was negotiated via CAS.
1681 *
1682 * Thus, for any cases where the set of available CAS-negotiatable
1683 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1684 * include the CAS-negotiated options in the migration stream.
1685 */
1686 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1687 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1688
1689 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1690 * the mask itself since in the future it's possible "legacy" bits may be
1691 * removed via machine options, which could generate a false positive
1692 * that breaks migration.
1693 */
1694 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1695 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1696
1697 spapr_ovec_cleanup(ov5_mask);
1698 spapr_ovec_cleanup(ov5_legacy);
1699 spapr_ovec_cleanup(ov5_removed);
1700
1701 return cas_needed;
1702}
1703
1704static const VMStateDescription vmstate_spapr_ov5_cas = {
1705 .name = "spapr_option_vector_ov5_cas",
1706 .version_id = 1,
1707 .minimum_version_id = 1,
1708 .needed = spapr_ov5_cas_needed,
1709 .fields = (VMStateField[]) {
1710 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1711 vmstate_spapr_ovec, sPAPROptionVector),
1712 VMSTATE_END_OF_LIST()
1713 },
1714};
1715
9861bb3e
SJS
1716static bool spapr_patb_entry_needed(void *opaque)
1717{
1718 sPAPRMachineState *spapr = opaque;
1719
1720 return !!spapr->patb_entry;
1721}
1722
1723static const VMStateDescription vmstate_spapr_patb_entry = {
1724 .name = "spapr_patb_entry",
1725 .version_id = 1,
1726 .minimum_version_id = 1,
1727 .needed = spapr_patb_entry_needed,
1728 .fields = (VMStateField[]) {
1729 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1730 VMSTATE_END_OF_LIST()
1731 },
1732};
1733
4be21d56
DG
1734static const VMStateDescription vmstate_spapr = {
1735 .name = "spapr",
880ae7de 1736 .version_id = 3,
4be21d56 1737 .minimum_version_id = 1,
880ae7de 1738 .post_load = spapr_post_load,
3aff6c2f 1739 .fields = (VMStateField[]) {
880ae7de
DG
1740 /* used to be @next_irq */
1741 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
4be21d56
DG
1742
1743 /* RTC offset */
28e02042 1744 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
880ae7de 1745
28e02042 1746 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
4be21d56
DG
1747 VMSTATE_END_OF_LIST()
1748 },
62ef3760
MR
1749 .subsections = (const VMStateDescription*[]) {
1750 &vmstate_spapr_ov5_cas,
9861bb3e 1751 &vmstate_spapr_patb_entry,
fd38804b 1752 &vmstate_spapr_pending_events,
62ef3760
MR
1753 NULL
1754 }
4be21d56
DG
1755};
1756
4be21d56
DG
1757static int htab_save_setup(QEMUFile *f, void *opaque)
1758{
28e02042 1759 sPAPRMachineState *spapr = opaque;
4be21d56 1760
4be21d56 1761 /* "Iteration" header */
3a384297
BR
1762 if (!spapr->htab_shift) {
1763 qemu_put_be32(f, -1);
1764 } else {
1765 qemu_put_be32(f, spapr->htab_shift);
1766 }
4be21d56 1767
e68cb8b4
AK
1768 if (spapr->htab) {
1769 spapr->htab_save_index = 0;
1770 spapr->htab_first_pass = true;
1771 } else {
3a384297
BR
1772 if (spapr->htab_shift) {
1773 assert(kvm_enabled());
1774 }
e68cb8b4
AK
1775 }
1776
1777
4be21d56
DG
1778 return 0;
1779}
1780
332f7721
GK
1781static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1782 int chunkstart, int n_valid, int n_invalid)
1783{
1784 qemu_put_be32(f, chunkstart);
1785 qemu_put_be16(f, n_valid);
1786 qemu_put_be16(f, n_invalid);
1787 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1788 HASH_PTE_SIZE_64 * n_valid);
1789}
1790
1791static void htab_save_end_marker(QEMUFile *f)
1792{
1793 qemu_put_be32(f, 0);
1794 qemu_put_be16(f, 0);
1795 qemu_put_be16(f, 0);
1796}
1797
28e02042 1798static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
4be21d56
DG
1799 int64_t max_ns)
1800{
378bc217 1801 bool has_timeout = max_ns != -1;
4be21d56
DG
1802 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1803 int index = spapr->htab_save_index;
bc72ad67 1804 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1805
1806 assert(spapr->htab_first_pass);
1807
1808 do {
1809 int chunkstart;
1810
1811 /* Consume invalid HPTEs */
1812 while ((index < htabslots)
1813 && !HPTE_VALID(HPTE(spapr->htab, index))) {
4be21d56 1814 CLEAN_HPTE(HPTE(spapr->htab, index));
24ec2863 1815 index++;
4be21d56
DG
1816 }
1817
1818 /* Consume valid HPTEs */
1819 chunkstart = index;
338c25b6 1820 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56 1821 && HPTE_VALID(HPTE(spapr->htab, index))) {
4be21d56 1822 CLEAN_HPTE(HPTE(spapr->htab, index));
24ec2863 1823 index++;
4be21d56
DG
1824 }
1825
1826 if (index > chunkstart) {
1827 int n_valid = index - chunkstart;
1828
332f7721 1829 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
4be21d56 1830
378bc217
DG
1831 if (has_timeout &&
1832 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1833 break;
1834 }
1835 }
1836 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1837
1838 if (index >= htabslots) {
1839 assert(index == htabslots);
1840 index = 0;
1841 spapr->htab_first_pass = false;
1842 }
1843 spapr->htab_save_index = index;
1844}
1845
28e02042 1846static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
e68cb8b4 1847 int64_t max_ns)
4be21d56
DG
1848{
1849 bool final = max_ns < 0;
1850 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1851 int examined = 0, sent = 0;
1852 int index = spapr->htab_save_index;
bc72ad67 1853 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1854
1855 assert(!spapr->htab_first_pass);
1856
1857 do {
1858 int chunkstart, invalidstart;
1859
1860 /* Consume non-dirty HPTEs */
1861 while ((index < htabslots)
1862 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1863 index++;
1864 examined++;
1865 }
1866
1867 chunkstart = index;
1868 /* Consume valid dirty HPTEs */
338c25b6 1869 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56
DG
1870 && HPTE_DIRTY(HPTE(spapr->htab, index))
1871 && HPTE_VALID(HPTE(spapr->htab, index))) {
1872 CLEAN_HPTE(HPTE(spapr->htab, index));
1873 index++;
1874 examined++;
1875 }
1876
1877 invalidstart = index;
1878 /* Consume invalid dirty HPTEs */
338c25b6 1879 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
4be21d56
DG
1880 && HPTE_DIRTY(HPTE(spapr->htab, index))
1881 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1882 CLEAN_HPTE(HPTE(spapr->htab, index));
1883 index++;
1884 examined++;
1885 }
1886
1887 if (index > chunkstart) {
1888 int n_valid = invalidstart - chunkstart;
1889 int n_invalid = index - invalidstart;
1890
332f7721 1891 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
4be21d56
DG
1892 sent += index - chunkstart;
1893
bc72ad67 1894 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1895 break;
1896 }
1897 }
1898
1899 if (examined >= htabslots) {
1900 break;
1901 }
1902
1903 if (index >= htabslots) {
1904 assert(index == htabslots);
1905 index = 0;
1906 }
1907 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1908
1909 if (index >= htabslots) {
1910 assert(index == htabslots);
1911 index = 0;
1912 }
1913
1914 spapr->htab_save_index = index;
1915
e68cb8b4 1916 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
4be21d56
DG
1917}
1918
e68cb8b4
AK
1919#define MAX_ITERATION_NS 5000000 /* 5 ms */
1920#define MAX_KVM_BUF_SIZE 2048
1921
4be21d56
DG
1922static int htab_save_iterate(QEMUFile *f, void *opaque)
1923{
28e02042 1924 sPAPRMachineState *spapr = opaque;
715c5407 1925 int fd;
e68cb8b4 1926 int rc = 0;
4be21d56
DG
1927
1928 /* Iteration header */
3a384297
BR
1929 if (!spapr->htab_shift) {
1930 qemu_put_be32(f, -1);
e8cd4247 1931 return 1;
3a384297
BR
1932 } else {
1933 qemu_put_be32(f, 0);
1934 }
4be21d56 1935
e68cb8b4
AK
1936 if (!spapr->htab) {
1937 assert(kvm_enabled());
1938
715c5407
DG
1939 fd = get_htab_fd(spapr);
1940 if (fd < 0) {
1941 return fd;
01a57972
SMJ
1942 }
1943
715c5407 1944 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
e68cb8b4
AK
1945 if (rc < 0) {
1946 return rc;
1947 }
1948 } else if (spapr->htab_first_pass) {
4be21d56
DG
1949 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1950 } else {
e68cb8b4 1951 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
4be21d56
DG
1952 }
1953
332f7721 1954 htab_save_end_marker(f);
4be21d56 1955
e68cb8b4 1956 return rc;
4be21d56
DG
1957}
1958
1959static int htab_save_complete(QEMUFile *f, void *opaque)
1960{
28e02042 1961 sPAPRMachineState *spapr = opaque;
715c5407 1962 int fd;
4be21d56
DG
1963
1964 /* Iteration header */
3a384297
BR
1965 if (!spapr->htab_shift) {
1966 qemu_put_be32(f, -1);
1967 return 0;
1968 } else {
1969 qemu_put_be32(f, 0);
1970 }
4be21d56 1971
e68cb8b4
AK
1972 if (!spapr->htab) {
1973 int rc;
1974
1975 assert(kvm_enabled());
1976
715c5407
DG
1977 fd = get_htab_fd(spapr);
1978 if (fd < 0) {
1979 return fd;
01a57972
SMJ
1980 }
1981
715c5407 1982 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
e68cb8b4
AK
1983 if (rc < 0) {
1984 return rc;
1985 }
e68cb8b4 1986 } else {
378bc217
DG
1987 if (spapr->htab_first_pass) {
1988 htab_save_first_pass(f, spapr, -1);
1989 }
e68cb8b4
AK
1990 htab_save_later_pass(f, spapr, -1);
1991 }
4be21d56
DG
1992
1993 /* End marker */
332f7721 1994 htab_save_end_marker(f);
4be21d56
DG
1995
1996 return 0;
1997}
1998
1999static int htab_load(QEMUFile *f, void *opaque, int version_id)
2000{
28e02042 2001 sPAPRMachineState *spapr = opaque;
4be21d56 2002 uint32_t section_hdr;
e68cb8b4 2003 int fd = -1;
14b0d748 2004 Error *local_err = NULL;
4be21d56
DG
2005
2006 if (version_id < 1 || version_id > 1) {
98a5d100 2007 error_report("htab_load() bad version");
4be21d56
DG
2008 return -EINVAL;
2009 }
2010
2011 section_hdr = qemu_get_be32(f);
2012
3a384297
BR
2013 if (section_hdr == -1) {
2014 spapr_free_hpt(spapr);
2015 return 0;
2016 }
2017
4be21d56 2018 if (section_hdr) {
c5f54f3e
DG
2019 /* First section gives the htab size */
2020 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2021 if (local_err) {
2022 error_report_err(local_err);
4be21d56
DG
2023 return -EINVAL;
2024 }
2025 return 0;
2026 }
2027
e68cb8b4
AK
2028 if (!spapr->htab) {
2029 assert(kvm_enabled());
2030
14b0d748 2031 fd = kvmppc_get_htab_fd(true, 0, &local_err);
e68cb8b4 2032 if (fd < 0) {
14b0d748 2033 error_report_err(local_err);
82be8e73 2034 return fd;
e68cb8b4
AK
2035 }
2036 }
2037
4be21d56
DG
2038 while (true) {
2039 uint32_t index;
2040 uint16_t n_valid, n_invalid;
2041
2042 index = qemu_get_be32(f);
2043 n_valid = qemu_get_be16(f);
2044 n_invalid = qemu_get_be16(f);
2045
2046 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2047 /* End of Stream */
2048 break;
2049 }
2050
e68cb8b4 2051 if ((index + n_valid + n_invalid) >
4be21d56
DG
2052 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2053 /* Bad index in stream */
98a5d100
DG
2054 error_report(
2055 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2056 index, n_valid, n_invalid, spapr->htab_shift);
4be21d56
DG
2057 return -EINVAL;
2058 }
2059
e68cb8b4
AK
2060 if (spapr->htab) {
2061 if (n_valid) {
2062 qemu_get_buffer(f, HPTE(spapr->htab, index),
2063 HASH_PTE_SIZE_64 * n_valid);
2064 }
2065 if (n_invalid) {
2066 memset(HPTE(spapr->htab, index + n_valid), 0,
2067 HASH_PTE_SIZE_64 * n_invalid);
2068 }
2069 } else {
2070 int rc;
2071
2072 assert(fd >= 0);
2073
2074 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2075 if (rc < 0) {
2076 return rc;
2077 }
4be21d56
DG
2078 }
2079 }
2080
e68cb8b4
AK
2081 if (!spapr->htab) {
2082 assert(fd >= 0);
2083 close(fd);
2084 }
2085
4be21d56
DG
2086 return 0;
2087}
2088
70f794fc 2089static void htab_save_cleanup(void *opaque)
c573fc03
TH
2090{
2091 sPAPRMachineState *spapr = opaque;
2092
2093 close_htab_fd(spapr);
2094}
2095
4be21d56 2096static SaveVMHandlers savevm_htab_handlers = {
9907e842 2097 .save_setup = htab_save_setup,
4be21d56 2098 .save_live_iterate = htab_save_iterate,
a3e06c3d 2099 .save_live_complete_precopy = htab_save_complete,
70f794fc 2100 .save_cleanup = htab_save_cleanup,
4be21d56
DG
2101 .load_state = htab_load,
2102};
2103
5b2128d2
AG
2104static void spapr_boot_set(void *opaque, const char *boot_device,
2105 Error **errp)
2106{
c86c1aff 2107 MachineState *machine = MACHINE(opaque);
5b2128d2
AG
2108 machine->boot_order = g_strdup(boot_device);
2109}
2110
224245bf
DG
2111static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2112{
2113 MachineState *machine = MACHINE(spapr);
2114 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
e8f986fc 2115 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
224245bf
DG
2116 int i;
2117
2118 for (i = 0; i < nr_lmbs; i++) {
224245bf
DG
2119 uint64_t addr;
2120
e8f986fc 2121 addr = i * lmb_size + spapr->hotplug_memory.base;
6caf3ac6
DG
2122 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2123 addr / lmb_size);
224245bf
DG
2124 }
2125}
2126
2127/*
2128 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2129 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2130 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2131 */
7c150d6f 2132static void spapr_validate_node_memory(MachineState *machine, Error **errp)
224245bf
DG
2133{
2134 int i;
2135
7c150d6f
DG
2136 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2137 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2138 " is not aligned to %llu MiB",
2139 machine->ram_size,
2140 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2141 return;
2142 }
2143
2144 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2145 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2146 " is not aligned to %llu MiB",
2147 machine->ram_size,
2148 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2149 return;
224245bf
DG
2150 }
2151
2152 for (i = 0; i < nb_numa_nodes; i++) {
2153 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
7c150d6f
DG
2154 error_setg(errp,
2155 "Node %d memory size 0x%" PRIx64
2156 " is not aligned to %llu MiB",
2157 i, numa_info[i].node_mem,
2158 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2159 return;
224245bf
DG
2160 }
2161 }
2162}
2163
535455fd
IM
2164/* find cpu slot in machine->possible_cpus by core_id */
2165static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2166{
2167 int index = id / smp_threads;
2168
2169 if (index >= ms->possible_cpus->len) {
2170 return NULL;
2171 }
2172 if (idx) {
2173 *idx = index;
2174 }
2175 return &ms->possible_cpus->cpus[index];
2176}
2177
0c86d0fd
DG
2178static void spapr_init_cpus(sPAPRMachineState *spapr)
2179{
2180 MachineState *machine = MACHINE(spapr);
2181 MachineClass *mc = MACHINE_GET_CLASS(machine);
2e9c10eb 2182 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
0c86d0fd 2183 int smt = kvmppc_smt_threads();
535455fd
IM
2184 const CPUArchIdList *possible_cpus;
2185 int boot_cores_nr = smp_cpus / smp_threads;
0c86d0fd
DG
2186 int i;
2187
2188 if (!type) {
2189 error_report("Unable to find sPAPR CPU Core definition");
2190 exit(1);
2191 }
2192
535455fd 2193 possible_cpus = mc->possible_cpu_arch_ids(machine);
c5514d0e 2194 if (mc->has_hotpluggable_cpus) {
0c86d0fd
DG
2195 if (smp_cpus % smp_threads) {
2196 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2197 smp_cpus, smp_threads);
2198 exit(1);
2199 }
2200 if (max_cpus % smp_threads) {
2201 error_report("max_cpus (%u) must be multiple of threads (%u)",
2202 max_cpus, smp_threads);
2203 exit(1);
2204 }
0c86d0fd
DG
2205 } else {
2206 if (max_cpus != smp_cpus) {
2207 error_report("This machine version does not support CPU hotplug");
2208 exit(1);
2209 }
535455fd 2210 boot_cores_nr = possible_cpus->len;
0c86d0fd
DG
2211 }
2212
535455fd 2213 for (i = 0; i < possible_cpus->len; i++) {
0c86d0fd
DG
2214 int core_id = i * smp_threads;
2215
c5514d0e 2216 if (mc->has_hotpluggable_cpus) {
6caf3ac6
DG
2217 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2218 (core_id / smp_threads) * smt);
0c86d0fd
DG
2219 }
2220
535455fd 2221 if (i < boot_cores_nr) {
0c86d0fd
DG
2222 Object *core = object_new(type);
2223 int nr_threads = smp_threads;
2224
2225 /* Handle the partially filled core for older machine types */
2226 if ((i + 1) * smp_threads >= smp_cpus) {
2227 nr_threads = smp_cpus - i * smp_threads;
2228 }
2229
2230 object_property_set_int(core, nr_threads, "nr-threads",
2231 &error_fatal);
2232 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2233 &error_fatal);
2234 object_property_set_bool(core, true, "realized", &error_fatal);
2235 }
2236 }
0c86d0fd
DG
2237}
2238
fa98fbfc
SB
2239static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2240{
2241 Error *local_err = NULL;
2242 bool vsmt_user = !!spapr->vsmt;
2243 int kvm_smt = kvmppc_smt_threads();
2244 int ret;
2245
2246 if (!kvm_enabled() && (smp_threads > 1)) {
2247 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2248 "on a pseries machine");
2249 goto out;
2250 }
2251 if (!is_power_of_2(smp_threads)) {
2252 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2253 "machine because it must be a power of 2", smp_threads);
2254 goto out;
2255 }
2256
2257 /* Detemine the VSMT mode to use: */
2258 if (vsmt_user) {
2259 if (spapr->vsmt < smp_threads) {
2260 error_setg(&local_err, "Cannot support VSMT mode %d"
2261 " because it must be >= threads/core (%d)",
2262 spapr->vsmt, smp_threads);
2263 goto out;
2264 }
2265 /* In this case, spapr->vsmt has been set by the command line */
2266 } else {
2267 /* Choose a VSMT mode that may be higher than necessary but is
2268 * likely to be compatible with hosts that don't have VSMT. */
2269 spapr->vsmt = MAX(kvm_smt, smp_threads);
2270 }
2271
2272 /* KVM: If necessary, set the SMT mode: */
2273 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2274 ret = kvmppc_set_smt_threads(spapr->vsmt);
2275 if (ret) {
2276 error_setg(&local_err,
2277 "Failed to set KVM's VSMT mode to %d (errno %d)",
2278 spapr->vsmt, ret);
2279 if (!vsmt_user) {
2280 error_append_hint(&local_err, "On PPC, a VM with %d threads/"
2281 "core on a host with %d threads/core requires "
2282 " the use of VSMT mode %d.\n",
2283 smp_threads, kvm_smt, spapr->vsmt);
2284 }
2285 kvmppc_hint_smt_possible(&local_err);
2286 goto out;
2287 }
2288 }
2289 /* else TCG: nothing to do currently */
2290out:
2291 error_propagate(errp, local_err);
2292}
2293
9fdf0c29 2294/* pSeries LPAR / sPAPR hardware init */
bcb5ce08 2295static void spapr_machine_init(MachineState *machine)
9fdf0c29 2296{
28e02042 2297 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
224245bf 2298 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
3ef96221 2299 const char *kernel_filename = machine->kernel_filename;
3ef96221 2300 const char *initrd_filename = machine->initrd_filename;
8c9f64df 2301 PCIHostState *phb;
9fdf0c29 2302 int i;
890c2b77
AK
2303 MemoryRegion *sysmem = get_system_memory();
2304 MemoryRegion *ram = g_new(MemoryRegion, 1);
658fa66b
AK
2305 MemoryRegion *rma_region;
2306 void *rma = NULL;
a8170e5e 2307 hwaddr rma_alloc_size;
c86c1aff 2308 hwaddr node0_size = spapr_node0_size(machine);
b7d1f77a 2309 long load_limit, fw_size;
39ac8455 2310 char *filename;
30f4b05b 2311 Error *resize_hpt_err = NULL;
9fdf0c29 2312
226419d6 2313 msi_nonbroken = true;
0ee2c058 2314
d43b45e2 2315 QLIST_INIT(&spapr->phbs);
0cffce56 2316 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
d43b45e2 2317
30f4b05b
DG
2318 /* Check HPT resizing availability */
2319 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2320 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2321 /*
2322 * If the user explicitly requested a mode we should either
2323 * supply it, or fail completely (which we do below). But if
2324 * it's not set explicitly, we reset our mode to something
2325 * that works
2326 */
2327 if (resize_hpt_err) {
2328 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2329 error_free(resize_hpt_err);
2330 resize_hpt_err = NULL;
2331 } else {
2332 spapr->resize_hpt = smc->resize_hpt_default;
2333 }
2334 }
2335
2336 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2337
2338 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2339 /*
2340 * User requested HPT resize, but this host can't supply it. Bail out
2341 */
2342 error_report_err(resize_hpt_err);
2343 exit(1);
2344 }
2345
354ac20a 2346 /* Allocate RMA if necessary */
658fa66b 2347 rma_alloc_size = kvmppc_alloc_rma(&rma);
354ac20a
DG
2348
2349 if (rma_alloc_size == -1) {
730fce59 2350 error_report("Unable to create RMA");
354ac20a
DG
2351 exit(1);
2352 }
7f763a5d 2353
c4177479 2354 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
7f763a5d 2355 spapr->rma_size = rma_alloc_size;
354ac20a 2356 } else {
c4177479 2357 spapr->rma_size = node0_size;
7f763a5d
DG
2358
2359 /* With KVM, we don't actually know whether KVM supports an
2360 * unbounded RMA (PR KVM) or is limited by the hash table size
2361 * (HV KVM using VRMA), so we always assume the latter
2362 *
2363 * In that case, we also limit the initial allocations for RTAS
2364 * etc... to 256M since we have no way to know what the VRMA size
2365 * is going to be as it depends on the size of the hash table
2366 * isn't determined yet.
2367 */
2368 if (kvm_enabled()) {
2369 spapr->vrma_adjust = 1;
2370 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2371 }
912acdf4
BH
2372
2373 /* Actually we don't support unbounded RMA anymore since we
2374 * added proper emulation of HV mode. The max we can get is
2375 * 16G which also happens to be what we configure for PAPR
2376 * mode so make sure we don't do anything bigger than that
2377 */
2378 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
354ac20a
DG
2379 }
2380
c4177479 2381 if (spapr->rma_size > node0_size) {
d54e4d76
DG
2382 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2383 spapr->rma_size);
c4177479
AK
2384 exit(1);
2385 }
2386
b7d1f77a
BH
2387 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2388 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
9fdf0c29 2389
7b565160 2390 /* Set up Interrupt Controller before we create the VCPUs */
71cd4dac 2391 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
7b565160 2392
dc1b5eee
GK
2393 /* Set up containers for ibm,client-architecture-support negotiated options
2394 */
facdb8b6
MR
2395 spapr->ov5 = spapr_ovec_new();
2396 spapr->ov5_cas = spapr_ovec_new();
2397
224245bf 2398 if (smc->dr_lmb_enabled) {
facdb8b6 2399 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
7c150d6f 2400 spapr_validate_node_memory(machine, &error_fatal);
224245bf
DG
2401 }
2402
417ece33 2403 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
545d6e2b
SJS
2404 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2405 /* KVM and TCG always allow GTSE with radix... */
9fb4541f
SB
2406 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2407 }
2408 /* ... but not with hash (currently). */
417ece33 2409
ffbb1705
MR
2410 /* advertise support for dedicated HP event source to guests */
2411 if (spapr->use_hotplug_event_source) {
2412 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2413 }
2414
2772cf6b
DG
2415 /* advertise support for HPT resizing */
2416 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2417 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2418 }
2419
9fdf0c29 2420 /* init CPUs */
fa98fbfc
SB
2421 spapr_set_vsmt_mode(spapr, &error_fatal);
2422
0c86d0fd 2423 spapr_init_cpus(spapr);
9fdf0c29 2424
026bfd89
DG
2425 if (kvm_enabled()) {
2426 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2427 kvmppc_enable_logical_ci_hcalls();
ef9971dd 2428 kvmppc_enable_set_mode_hcall();
5145ad4f
NW
2429
2430 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2431 kvmppc_enable_clear_ref_mod_hcalls();
026bfd89
DG
2432 }
2433
9fdf0c29 2434 /* allocate RAM */
f92f5da1 2435 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
fb164994 2436 machine->ram_size);
f92f5da1 2437 memory_region_add_subregion(sysmem, 0, ram);
9fdf0c29 2438
658fa66b
AK
2439 if (rma_alloc_size && rma) {
2440 rma_region = g_new(MemoryRegion, 1);
2441 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2442 rma_alloc_size, rma);
2443 vmstate_register_ram_global(rma_region);
2444 memory_region_add_subregion(sysmem, 0, rma_region);
2445 }
2446
4a1c9cf0
BR
2447 /* initialize hotplug memory address space */
2448 if (machine->ram_size < machine->maxram_size) {
2449 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
71c9a3dd
BR
2450 /*
2451 * Limit the number of hotpluggable memory slots to half the number
2452 * slots that KVM supports, leaving the other half for PCI and other
2453 * devices. However ensure that number of slots doesn't drop below 32.
2454 */
2455 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2456 SPAPR_MAX_RAM_SLOTS;
4a1c9cf0 2457
71c9a3dd
BR
2458 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2459 max_memslots = SPAPR_MAX_RAM_SLOTS;
2460 }
2461 if (machine->ram_slots > max_memslots) {
d54e4d76
DG
2462 error_report("Specified number of memory slots %"
2463 PRIu64" exceeds max supported %d",
71c9a3dd 2464 machine->ram_slots, max_memslots);
d54e4d76 2465 exit(1);
4a1c9cf0
BR
2466 }
2467
2468 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2469 SPAPR_HOTPLUG_MEM_ALIGN);
2470 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2471 "hotplug-memory", hotplug_mem_size);
2472 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2473 &spapr->hotplug_memory.mr);
2474 }
2475
224245bf
DG
2476 if (smc->dr_lmb_enabled) {
2477 spapr_create_lmb_dr_connectors(spapr);
2478 }
2479
39ac8455 2480 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
4c56440d 2481 if (!filename) {
730fce59 2482 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
4c56440d
SW
2483 exit(1);
2484 }
b7d1f77a 2485 spapr->rtas_size = get_image_size(filename);
8afc22a2
ZJ
2486 if (spapr->rtas_size < 0) {
2487 error_report("Could not get size of LPAR rtas '%s'", filename);
2488 exit(1);
2489 }
b7d1f77a
BH
2490 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2491 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
730fce59 2492 error_report("Could not load LPAR rtas '%s'", filename);
39ac8455
DG
2493 exit(1);
2494 }
4d8d5467 2495 if (spapr->rtas_size > RTAS_MAX_SIZE) {
730fce59
TH
2496 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2497 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
4d8d5467
BH
2498 exit(1);
2499 }
7267c094 2500 g_free(filename);
39ac8455 2501
ffbb1705 2502 /* Set up RTAS event infrastructure */
74d042e5
DG
2503 spapr_events_init(spapr);
2504
12f42174 2505 /* Set up the RTC RTAS interfaces */
28df36a1 2506 spapr_rtc_create(spapr);
12f42174 2507
b5cec4c5 2508 /* Set up VIO bus */
4040ab72
DG
2509 spapr->vio_bus = spapr_vio_bus_init();
2510
277f9acf 2511 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
4040ab72 2512 if (serial_hds[i]) {
d601fac4 2513 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
4040ab72
DG
2514 }
2515 }
9fdf0c29 2516
639e8102
DG
2517 /* We always have at least the nvram device on VIO */
2518 spapr_create_nvram(spapr);
2519
3384f95c 2520 /* Set up PCI */
fa28f71b
AK
2521 spapr_pci_rtas_init();
2522
89dfd6e1 2523 phb = spapr_create_phb(spapr, 0);
3384f95c 2524
277f9acf 2525 for (i = 0; i < nb_nics; i++) {
8d90ad90
DG
2526 NICInfo *nd = &nd_table[i];
2527
2528 if (!nd->model) {
7267c094 2529 nd->model = g_strdup("ibmveth");
8d90ad90
DG
2530 }
2531
2532 if (strcmp(nd->model, "ibmveth") == 0) {
d601fac4 2533 spapr_vlan_create(spapr->vio_bus, nd);
8d90ad90 2534 } else {
29b358f9 2535 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
8d90ad90
DG
2536 }
2537 }
2538
6e270446 2539 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
d601fac4 2540 spapr_vscsi_create(spapr->vio_bus);
6e270446
BH
2541 }
2542
f28359d8 2543 /* Graphics */
14c6a894 2544 if (spapr_vga_init(phb->bus, &error_fatal)) {
3fc5acde 2545 spapr->has_graphics = true;
c6e76503 2546 machine->usb |= defaults_enabled() && !machine->usb_disabled;
f28359d8
LZ
2547 }
2548
4ee9ced9 2549 if (machine->usb) {
57040d45
TH
2550 if (smc->use_ohci_by_default) {
2551 pci_create_simple(phb->bus, -1, "pci-ohci");
2552 } else {
2553 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2554 }
c86580b8 2555
35139a59 2556 if (spapr->has_graphics) {
c86580b8
MA
2557 USBBus *usb_bus = usb_bus_find(-1);
2558
2559 usb_create_simple(usb_bus, "usb-kbd");
2560 usb_create_simple(usb_bus, "usb-mouse");
35139a59
DG
2561 }
2562 }
2563
7f763a5d 2564 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
d54e4d76
DG
2565 error_report(
2566 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2567 MIN_RMA_SLOF);
4d8d5467
BH
2568 exit(1);
2569 }
2570
9fdf0c29
DG
2571 if (kernel_filename) {
2572 uint64_t lowaddr = 0;
2573
a19f7fb0
DG
2574 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2575 NULL, NULL, &lowaddr, NULL, 1,
2576 PPC_ELF_MACHINE, 0, 0);
2577 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2578 spapr->kernel_size = load_elf(kernel_filename,
2579 translate_kernel_address, NULL, NULL,
2580 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2581 0, 0);
2582 spapr->kernel_le = spapr->kernel_size > 0;
16457e7f 2583 }
a19f7fb0
DG
2584 if (spapr->kernel_size < 0) {
2585 error_report("error loading %s: %s", kernel_filename,
2586 load_elf_strerror(spapr->kernel_size));
9fdf0c29
DG
2587 exit(1);
2588 }
2589
2590 /* load initrd */
2591 if (initrd_filename) {
4d8d5467
BH
2592 /* Try to locate the initrd in the gap between the kernel
2593 * and the firmware. Add a bit of space just in case
2594 */
a19f7fb0
DG
2595 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2596 + 0x1ffff) & ~0xffff;
2597 spapr->initrd_size = load_image_targphys(initrd_filename,
2598 spapr->initrd_base,
2599 load_limit
2600 - spapr->initrd_base);
2601 if (spapr->initrd_size < 0) {
d54e4d76
DG
2602 error_report("could not load initial ram disk '%s'",
2603 initrd_filename);
9fdf0c29
DG
2604 exit(1);
2605 }
9fdf0c29 2606 }
4d8d5467 2607 }
a3467baa 2608
8e7ea787
AF
2609 if (bios_name == NULL) {
2610 bios_name = FW_FILE_NAME;
2611 }
2612 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
4c56440d 2613 if (!filename) {
68fea5a0 2614 error_report("Could not find LPAR firmware '%s'", bios_name);
4c56440d
SW
2615 exit(1);
2616 }
4d8d5467 2617 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
68fea5a0
TH
2618 if (fw_size <= 0) {
2619 error_report("Could not load LPAR firmware '%s'", filename);
4d8d5467
BH
2620 exit(1);
2621 }
2622 g_free(filename);
4d8d5467 2623
28e02042
DG
2624 /* FIXME: Should register things through the MachineState's qdev
2625 * interface, this is a legacy from the sPAPREnvironment structure
2626 * which predated MachineState but had a similar function */
4be21d56
DG
2627 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2628 register_savevm_live(NULL, "spapr/htab", -1, 1,
2629 &savevm_htab_handlers, spapr);
2630
5b2128d2 2631 qemu_register_boot_set(spapr_boot_set, spapr);
42043e4f 2632
42043e4f 2633 if (kvm_enabled()) {
3dc410ae 2634 /* to stop and start vmclock */
42043e4f
LV
2635 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2636 &spapr->tb);
3dc410ae
AK
2637
2638 kvmppc_spapr_enable_inkernel_multitce();
42043e4f 2639 }
9fdf0c29
DG
2640}
2641
135a129a
AK
2642static int spapr_kvm_type(const char *vm_type)
2643{
2644 if (!vm_type) {
2645 return 0;
2646 }
2647
2648 if (!strcmp(vm_type, "HV")) {
2649 return 1;
2650 }
2651
2652 if (!strcmp(vm_type, "PR")) {
2653 return 2;
2654 }
2655
2656 error_report("Unknown kvm-type specified '%s'", vm_type);
2657 exit(1);
2658}
2659
71461b0f 2660/*
627b84f4 2661 * Implementation of an interface to adjust firmware path
71461b0f
AK
2662 * for the bootindex property handling.
2663 */
2664static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2665 DeviceState *dev)
2666{
2667#define CAST(type, obj, name) \
2668 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2669 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2670 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
c4e13492 2671 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
71461b0f
AK
2672
2673 if (d) {
2674 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2675 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2676 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2677
2678 if (spapr) {
2679 /*
2680 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2681 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2682 * in the top 16 bits of the 64-bit LUN
2683 */
2684 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2685 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2686 (uint64_t)id << 48);
2687 } else if (virtio) {
2688 /*
2689 * We use SRP luns of the form 01000000 | (target << 8) | lun
2690 * in the top 32 bits of the 64-bit LUN
2691 * Note: the quote above is from SLOF and it is wrong,
2692 * the actual binding is:
2693 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2694 */
2695 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
bac658d1
TH
2696 if (d->lun >= 256) {
2697 /* Use the LUN "flat space addressing method" */
2698 id |= 0x4000;
2699 }
71461b0f
AK
2700 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2701 (uint64_t)id << 32);
2702 } else if (usb) {
2703 /*
2704 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2705 * in the top 32 bits of the 64-bit LUN
2706 */
2707 unsigned usb_port = atoi(usb->port->path);
2708 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2709 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2710 (uint64_t)id << 32);
2711 }
2712 }
2713
b99260eb
TH
2714 /*
2715 * SLOF probes the USB devices, and if it recognizes that the device is a
2716 * storage device, it changes its name to "storage" instead of "usb-host",
2717 * and additionally adds a child node for the SCSI LUN, so the correct
2718 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2719 */
2720 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2721 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2722 if (usb_host_dev_is_scsi_storage(usbdev)) {
2723 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2724 }
2725 }
2726
71461b0f
AK
2727 if (phb) {
2728 /* Replace "pci" with "pci@800000020000000" */
2729 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2730 }
2731
c4e13492
FF
2732 if (vsc) {
2733 /* Same logic as virtio above */
2734 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2735 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2736 }
2737
4871dd4c
TH
2738 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2739 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2740 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2741 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2742 }
2743
71461b0f
AK
2744 return NULL;
2745}
2746
23825581
EH
2747static char *spapr_get_kvm_type(Object *obj, Error **errp)
2748{
28e02042 2749 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2750
28e02042 2751 return g_strdup(spapr->kvm_type);
23825581
EH
2752}
2753
2754static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2755{
28e02042 2756 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2757
28e02042
DG
2758 g_free(spapr->kvm_type);
2759 spapr->kvm_type = g_strdup(value);
23825581
EH
2760}
2761
f6229214
MR
2762static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2763{
2764 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2765
2766 return spapr->use_hotplug_event_source;
2767}
2768
2769static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2770 Error **errp)
2771{
2772 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2773
2774 spapr->use_hotplug_event_source = value;
2775}
2776
30f4b05b
DG
2777static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2778{
2779 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2780
2781 switch (spapr->resize_hpt) {
2782 case SPAPR_RESIZE_HPT_DEFAULT:
2783 return g_strdup("default");
2784 case SPAPR_RESIZE_HPT_DISABLED:
2785 return g_strdup("disabled");
2786 case SPAPR_RESIZE_HPT_ENABLED:
2787 return g_strdup("enabled");
2788 case SPAPR_RESIZE_HPT_REQUIRED:
2789 return g_strdup("required");
2790 }
2791 g_assert_not_reached();
2792}
2793
2794static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2795{
2796 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2797
2798 if (strcmp(value, "default") == 0) {
2799 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
2800 } else if (strcmp(value, "disabled") == 0) {
2801 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2802 } else if (strcmp(value, "enabled") == 0) {
2803 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
2804 } else if (strcmp(value, "required") == 0) {
2805 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
2806 } else {
2807 error_setg(errp, "Bad value for \"resize-hpt\" property");
2808 }
2809}
2810
fa98fbfc
SB
2811static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
2812 void *opaque, Error **errp)
2813{
2814 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2815}
2816
2817static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
2818 void *opaque, Error **errp)
2819{
2820 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2821}
2822
bcb5ce08 2823static void spapr_instance_init(Object *obj)
23825581 2824{
715c5407
DG
2825 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2826
2827 spapr->htab_fd = -1;
f6229214 2828 spapr->use_hotplug_event_source = true;
23825581
EH
2829 object_property_add_str(obj, "kvm-type",
2830 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
49d2e648
MA
2831 object_property_set_description(obj, "kvm-type",
2832 "Specifies the KVM virtualization mode (HV, PR)",
2833 NULL);
f6229214
MR
2834 object_property_add_bool(obj, "modern-hotplug-events",
2835 spapr_get_modern_hotplug_events,
2836 spapr_set_modern_hotplug_events,
2837 NULL);
2838 object_property_set_description(obj, "modern-hotplug-events",
2839 "Use dedicated hotplug event mechanism in"
2840 " place of standard EPOW events when possible"
2841 " (required for memory hot-unplug support)",
2842 NULL);
7843c0d6
DG
2843
2844 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
2845 "Maximum permitted CPU compatibility mode",
2846 &error_fatal);
30f4b05b
DG
2847
2848 object_property_add_str(obj, "resize-hpt",
2849 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
2850 object_property_set_description(obj, "resize-hpt",
2851 "Resizing of the Hash Page Table (enabled, disabled, required)",
2852 NULL);
fa98fbfc
SB
2853 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
2854 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
2855 object_property_set_description(obj, "vsmt",
2856 "Virtual SMT: KVM behaves as if this were"
2857 " the host's SMT mode", &error_abort);
23825581
EH
2858}
2859
87bbdd9c
DG
2860static void spapr_machine_finalizefn(Object *obj)
2861{
2862 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2863
2864 g_free(spapr->kvm_type);
2865}
2866
1c7ad77e 2867void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
34316482 2868{
34316482
AK
2869 cpu_synchronize_state(cs);
2870 ppc_cpu_do_system_reset(cs);
2871}
2872
2873static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2874{
2875 CPUState *cs;
2876
2877 CPU_FOREACH(cs) {
1c7ad77e 2878 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
34316482
AK
2879 }
2880}
2881
79b78a6b
MR
2882static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2883 uint32_t node, bool dedicated_hp_event_source,
2884 Error **errp)
c20d332a
BR
2885{
2886 sPAPRDRConnector *drc;
c20d332a
BR
2887 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2888 int i, fdt_offset, fdt_size;
2889 void *fdt;
79b78a6b 2890 uint64_t addr = addr_start;
94fd9cba 2891 bool hotplugged = spapr_drc_hotplugged(dev);
160bb678 2892 Error *local_err = NULL;
c20d332a 2893
c20d332a 2894 for (i = 0; i < nr_lmbs; i++) {
fbf55397
DG
2895 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2896 addr / SPAPR_MEMORY_BLOCK_SIZE);
c20d332a
BR
2897 g_assert(drc);
2898
2899 fdt = create_device_tree(&fdt_size);
2900 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2901 SPAPR_MEMORY_BLOCK_SIZE);
2902
160bb678
GK
2903 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2904 if (local_err) {
2905 while (addr > addr_start) {
2906 addr -= SPAPR_MEMORY_BLOCK_SIZE;
2907 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2908 addr / SPAPR_MEMORY_BLOCK_SIZE);
a8dc47fd 2909 spapr_drc_detach(drc);
160bb678
GK
2910 }
2911 g_free(fdt);
2912 error_propagate(errp, local_err);
2913 return;
2914 }
94fd9cba
LV
2915 if (!hotplugged) {
2916 spapr_drc_reset(drc);
2917 }
c20d332a
BR
2918 addr += SPAPR_MEMORY_BLOCK_SIZE;
2919 }
5dd5238c
JD
2920 /* send hotplug notification to the
2921 * guest only in case of hotplugged memory
2922 */
94fd9cba 2923 if (hotplugged) {
79b78a6b 2924 if (dedicated_hp_event_source) {
fbf55397
DG
2925 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2926 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
79b78a6b
MR
2927 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2928 nr_lmbs,
0b55aa91 2929 spapr_drc_index(drc));
79b78a6b
MR
2930 } else {
2931 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2932 nr_lmbs);
2933 }
5dd5238c 2934 }
c20d332a
BR
2935}
2936
2937static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2938 uint32_t node, Error **errp)
2939{
2940 Error *local_err = NULL;
2941 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2942 PCDIMMDevice *dimm = PC_DIMM(dev);
2943 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
04790978
TH
2944 MemoryRegion *mr;
2945 uint64_t align, size, addr;
2946
2947 mr = ddc->get_memory_region(dimm, &local_err);
2948 if (local_err) {
2949 goto out;
2950 }
2951 align = memory_region_get_alignment(mr);
2952 size = memory_region_size(mr);
df587133 2953
d6a9b0b8 2954 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
c20d332a
BR
2955 if (local_err) {
2956 goto out;
2957 }
2958
9ed442b8
MAL
2959 addr = object_property_get_uint(OBJECT(dimm),
2960 PC_DIMM_ADDR_PROP, &local_err);
c20d332a 2961 if (local_err) {
160bb678 2962 goto out_unplug;
c20d332a
BR
2963 }
2964
79b78a6b
MR
2965 spapr_add_lmbs(dev, addr, size, node,
2966 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
160bb678
GK
2967 &local_err);
2968 if (local_err) {
2969 goto out_unplug;
2970 }
2971
2972 return;
c20d332a 2973
160bb678
GK
2974out_unplug:
2975 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
c20d332a
BR
2976out:
2977 error_propagate(errp, local_err);
2978}
2979
c871bc70
LV
2980static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2981 Error **errp)
2982{
2983 PCDIMMDevice *dimm = PC_DIMM(dev);
2984 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
04790978
TH
2985 MemoryRegion *mr;
2986 uint64_t size;
c871bc70
LV
2987 char *mem_dev;
2988
04790978
TH
2989 mr = ddc->get_memory_region(dimm, errp);
2990 if (!mr) {
2991 return;
2992 }
2993 size = memory_region_size(mr);
2994
c871bc70
LV
2995 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2996 error_setg(errp, "Hotplugged memory size must be a multiple of "
2997 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2998 return;
2999 }
3000
3001 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
3002 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
3003 error_setg(errp, "Memory backend has bad page size. "
3004 "Use 'memory-backend-file' with correct mem-path.");
8a9e0e7b 3005 goto out;
c871bc70 3006 }
8a9e0e7b
GK
3007
3008out:
3009 g_free(mem_dev);
c871bc70
LV
3010}
3011
0cffce56
DG
3012struct sPAPRDIMMState {
3013 PCDIMMDevice *dimm;
cf632463 3014 uint32_t nr_lmbs;
0cffce56
DG
3015 QTAILQ_ENTRY(sPAPRDIMMState) next;
3016};
3017
3018static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3019 PCDIMMDevice *dimm)
3020{
3021 sPAPRDIMMState *dimm_state = NULL;
3022
3023 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3024 if (dimm_state->dimm == dimm) {
3025 break;
3026 }
3027 }
3028 return dimm_state;
3029}
3030
8d5981c4
BR
3031static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3032 uint32_t nr_lmbs,
3033 PCDIMMDevice *dimm)
0cffce56 3034{
8d5981c4
BR
3035 sPAPRDIMMState *ds = NULL;
3036
3037 /*
3038 * If this request is for a DIMM whose removal had failed earlier
3039 * (due to guest's refusal to remove the LMBs), we would have this
3040 * dimm already in the pending_dimm_unplugs list. In that
3041 * case don't add again.
3042 */
3043 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3044 if (!ds) {
3045 ds = g_malloc0(sizeof(sPAPRDIMMState));
3046 ds->nr_lmbs = nr_lmbs;
3047 ds->dimm = dimm;
3048 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3049 }
3050 return ds;
0cffce56
DG
3051}
3052
3053static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3054 sPAPRDIMMState *dimm_state)
3055{
3056 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3057 g_free(dimm_state);
3058}
cf632463 3059
16ee9980
DHB
3060static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3061 PCDIMMDevice *dimm)
3062{
3063 sPAPRDRConnector *drc;
3064 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
04790978 3065 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
16ee9980
DHB
3066 uint64_t size = memory_region_size(mr);
3067 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3068 uint32_t avail_lmbs = 0;
3069 uint64_t addr_start, addr;
3070 int i;
16ee9980
DHB
3071
3072 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3073 &error_abort);
3074
3075 addr = addr_start;
3076 for (i = 0; i < nr_lmbs; i++) {
fbf55397
DG
3077 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3078 addr / SPAPR_MEMORY_BLOCK_SIZE);
16ee9980 3079 g_assert(drc);
454b580a 3080 if (drc->dev) {
16ee9980
DHB
3081 avail_lmbs++;
3082 }
3083 addr += SPAPR_MEMORY_BLOCK_SIZE;
3084 }
3085
8d5981c4 3086 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
16ee9980
DHB
3087}
3088
31834723
DHB
3089/* Callback to be called during DRC release. */
3090void spapr_lmb_release(DeviceState *dev)
cf632463 3091{
765d1bdd
DG
3092 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
3093 PCDIMMDevice *dimm = PC_DIMM(dev);
3094 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
04790978 3095 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
0cffce56 3096 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
cf632463 3097
16ee9980
DHB
3098 /* This information will get lost if a migration occurs
3099 * during the unplug process. In this case recover it. */
3100 if (ds == NULL) {
3101 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
8d5981c4 3102 g_assert(ds);
454b580a
DG
3103 /* The DRC being examined by the caller at least must be counted */
3104 g_assert(ds->nr_lmbs);
3105 }
3106
3107 if (--ds->nr_lmbs) {
cf632463
BR
3108 return;
3109 }
3110
cf632463
BR
3111 /*
3112 * Now that all the LMBs have been removed by the guest, call the
3113 * pc-dimm unplug handler to cleanup up the pc-dimm device.
3114 */
765d1bdd 3115 pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr);
cf632463 3116 object_unparent(OBJECT(dev));
2a129767 3117 spapr_pending_dimm_unplugs_remove(spapr, ds);
cf632463
BR
3118}
3119
3120static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3121 DeviceState *dev, Error **errp)
3122{
0cffce56 3123 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
cf632463
BR
3124 Error *local_err = NULL;
3125 PCDIMMDevice *dimm = PC_DIMM(dev);
3126 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
04790978
TH
3127 MemoryRegion *mr;
3128 uint32_t nr_lmbs;
3129 uint64_t size, addr_start, addr;
0cffce56
DG
3130 int i;
3131 sPAPRDRConnector *drc;
04790978
TH
3132
3133 mr = ddc->get_memory_region(dimm, &local_err);
3134 if (local_err) {
3135 goto out;
3136 }
3137 size = memory_region_size(mr);
3138 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3139
9ed442b8 3140 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
0cffce56 3141 &local_err);
cf632463
BR
3142 if (local_err) {
3143 goto out;
3144 }
3145
2a129767
DHB
3146 /*
3147 * An existing pending dimm state for this DIMM means that there is an
3148 * unplug operation in progress, waiting for the spapr_lmb_release
3149 * callback to complete the job (BQL can't cover that far). In this case,
3150 * bail out to avoid detaching DRCs that were already released.
3151 */
3152 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3153 error_setg(&local_err,
3154 "Memory unplug already in progress for device %s",
3155 dev->id);
3156 goto out;
3157 }
3158
8d5981c4 3159 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
0cffce56
DG
3160
3161 addr = addr_start;
3162 for (i = 0; i < nr_lmbs; i++) {
fbf55397
DG
3163 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3164 addr / SPAPR_MEMORY_BLOCK_SIZE);
0cffce56
DG
3165 g_assert(drc);
3166
a8dc47fd 3167 spapr_drc_detach(drc);
0cffce56
DG
3168 addr += SPAPR_MEMORY_BLOCK_SIZE;
3169 }
3170
fbf55397
DG
3171 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3172 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
0cffce56 3173 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
0b55aa91 3174 nr_lmbs, spapr_drc_index(drc));
cf632463
BR
3175out:
3176 error_propagate(errp, local_err);
3177}
3178
04d0ffbd
GK
3179static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3180 sPAPRMachineState *spapr)
af81cf32
BR
3181{
3182 PowerPCCPU *cpu = POWERPC_CPU(cs);
3183 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2e886fb3 3184 int id = spapr_vcpu_id(cpu);
af81cf32
BR
3185 void *fdt;
3186 int offset, fdt_size;
3187 char *nodename;
3188
3189 fdt = create_device_tree(&fdt_size);
3190 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3191 offset = fdt_add_subnode(fdt, 0, nodename);
3192
3193 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3194 g_free(nodename);
3195
3196 *fdt_offset = offset;
3197 return fdt;
3198}
3199
765d1bdd
DG
3200/* Callback to be called during DRC release. */
3201void spapr_core_release(DeviceState *dev)
ff9006dd 3202{
765d1bdd 3203 MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
46f7afa3 3204 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
ff9006dd 3205 CPUCore *cc = CPU_CORE(dev);
535455fd 3206 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
ff9006dd 3207
46f7afa3
GK
3208 if (smc->pre_2_10_has_unused_icps) {
3209 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
46f7afa3
GK
3210 int i;
3211
3212 for (i = 0; i < cc->nr_threads; i++) {
94ad93bd 3213 CPUState *cs = CPU(sc->threads[i]);
46f7afa3
GK
3214
3215 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3216 }
3217 }
3218
07572c06 3219 assert(core_slot);
535455fd 3220 core_slot->cpu = NULL;
ff9006dd
IM
3221 object_unparent(OBJECT(dev));
3222}
3223
115debf2
IM
3224static
3225void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3226 Error **errp)
ff9006dd 3227{
535455fd
IM
3228 int index;
3229 sPAPRDRConnector *drc;
535455fd
IM
3230 CPUCore *cc = CPU_CORE(dev);
3231 int smt = kvmppc_smt_threads();
ff9006dd 3232
535455fd
IM
3233 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3234 error_setg(errp, "Unable to find CPU core with core-id: %d",
3235 cc->core_id);
3236 return;
3237 }
ff9006dd
IM
3238 if (index == 0) {
3239 error_setg(errp, "Boot CPU core may not be unplugged");
3240 return;
3241 }
3242
fbf55397 3243 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
ff9006dd
IM
3244 g_assert(drc);
3245
a8dc47fd 3246 spapr_drc_detach(drc);
ff9006dd
IM
3247
3248 spapr_hotplug_req_remove_by_index(drc);
3249}
3250
3251static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3252 Error **errp)
3253{
3254 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3255 MachineClass *mc = MACHINE_GET_CLASS(spapr);
46f7afa3 3256 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
ff9006dd
IM
3257 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3258 CPUCore *cc = CPU_CORE(dev);
94ad93bd 3259 CPUState *cs = CPU(core->threads[0]);
ff9006dd
IM
3260 sPAPRDRConnector *drc;
3261 Error *local_err = NULL;
ff9006dd 3262 int smt = kvmppc_smt_threads();
535455fd
IM
3263 CPUArchId *core_slot;
3264 int index;
94fd9cba 3265 bool hotplugged = spapr_drc_hotplugged(dev);
ff9006dd 3266
535455fd
IM
3267 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3268 if (!core_slot) {
3269 error_setg(errp, "Unable to find CPU core with core-id: %d",
3270 cc->core_id);
3271 return;
3272 }
fbf55397 3273 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index * smt);
ff9006dd 3274
c5514d0e 3275 g_assert(drc || !mc->has_hotpluggable_cpus);
ff9006dd 3276
ff9006dd 3277 if (drc) {
e49c63d5
GK
3278 void *fdt;
3279 int fdt_offset;
3280
3281 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3282
5c1da812 3283 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
ff9006dd
IM
3284 if (local_err) {
3285 g_free(fdt);
ff9006dd
IM
3286 error_propagate(errp, local_err);
3287 return;
3288 }
ff9006dd 3289
94fd9cba
LV
3290 if (hotplugged) {
3291 /*
3292 * Send hotplug notification interrupt to the guest only
3293 * in case of hotplugged CPUs.
3294 */
3295 spapr_hotplug_req_add_by_index(drc);
3296 } else {
3297 spapr_drc_reset(drc);
3298 }
ff9006dd 3299 }
94fd9cba 3300
535455fd 3301 core_slot->cpu = OBJECT(dev);
46f7afa3
GK
3302
3303 if (smc->pre_2_10_has_unused_icps) {
46f7afa3
GK
3304 int i;
3305
3306 for (i = 0; i < cc->nr_threads; i++) {
3307 sPAPRCPUCore *sc = SPAPR_CPU_CORE(dev);
46f7afa3 3308
94ad93bd 3309 cs = CPU(sc->threads[i]);
46f7afa3
GK
3310 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3311 }
3312 }
ff9006dd
IM
3313}
3314
3315static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3316 Error **errp)
3317{
3318 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3319 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
ff9006dd
IM
3320 Error *local_err = NULL;
3321 CPUCore *cc = CPU_CORE(dev);
2e9c10eb 3322 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
ff9006dd 3323 const char *type = object_get_typename(OBJECT(dev));
535455fd
IM
3324 CPUArchId *core_slot;
3325 int index;
ff9006dd 3326
c5514d0e 3327 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
ff9006dd
IM
3328 error_setg(&local_err, "CPU hotplug not supported for this machine");
3329 goto out;
3330 }
3331
3332 if (strcmp(base_core_type, type)) {
3333 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3334 goto out;
3335 }
3336
3337 if (cc->core_id % smp_threads) {
3338 error_setg(&local_err, "invalid core id %d", cc->core_id);
3339 goto out;
3340 }
3341
459264ef
DG
3342 /*
3343 * In general we should have homogeneous threads-per-core, but old
3344 * (pre hotplug support) machine types allow the last core to have
3345 * reduced threads as a compatibility hack for when we allowed
3346 * total vcpus not a multiple of threads-per-core.
3347 */
3348 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
df8658de 3349 error_setg(&local_err, "invalid nr-threads %d, must be %d",
8149e299 3350 cc->nr_threads, smp_threads);
df8658de 3351 goto out;
8149e299
DG
3352 }
3353
535455fd
IM
3354 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3355 if (!core_slot) {
ff9006dd
IM
3356 error_setg(&local_err, "core id %d out of range", cc->core_id);
3357 goto out;
3358 }
3359
535455fd 3360 if (core_slot->cpu) {
ff9006dd
IM
3361 error_setg(&local_err, "core %d already populated", cc->core_id);
3362 goto out;
3363 }
3364
a0ceb640 3365 numa_cpu_pre_plug(core_slot, dev, &local_err);
0b8497f0 3366
ff9006dd 3367out:
ff9006dd
IM
3368 error_propagate(errp, local_err);
3369}
3370
c20d332a
BR
3371static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3372 DeviceState *dev, Error **errp)
3373{
c86c1aff
DHB
3374 MachineState *ms = MACHINE(hotplug_dev);
3375 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
c20d332a
BR
3376
3377 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
b556854b 3378 int node;
c20d332a
BR
3379
3380 if (!smc->dr_lmb_enabled) {
3381 error_setg(errp, "Memory hotplug not supported for this machine");
3382 return;
3383 }
9ed442b8 3384 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
c20d332a
BR
3385 if (*errp) {
3386 return;
3387 }
1a5512bb
GA
3388 if (node < 0 || node >= MAX_NODES) {
3389 error_setg(errp, "Invaild node %d", node);
3390 return;
3391 }
c20d332a 3392
b556854b
BR
3393 /*
3394 * Currently PowerPC kernel doesn't allow hot-adding memory to
3395 * memory-less node, but instead will silently add the memory
3396 * to the first node that has some memory. This causes two
3397 * unexpected behaviours for the user.
3398 *
3399 * - Memory gets hotplugged to a different node than what the user
3400 * specified.
3401 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
3402 * to memory-less node, a reboot will set things accordingly
3403 * and the previously hotplugged memory now ends in the right node.
3404 * This appears as if some memory moved from one node to another.
3405 *
3406 * So until kernel starts supporting memory hotplug to memory-less
3407 * nodes, just prevent such attempts upfront in QEMU.
3408 */
3409 if (nb_numa_nodes && !numa_info[node].node_mem) {
3410 error_setg(errp, "Can't hotplug memory to memory-less node %d",
3411 node);
3412 return;
3413 }
3414
c20d332a 3415 spapr_memory_plug(hotplug_dev, dev, node, errp);
af81cf32
BR
3416 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3417 spapr_core_plug(hotplug_dev, dev, errp);
c20d332a
BR
3418 }
3419}
3420
cf632463
BR
3421static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3422 DeviceState *dev, Error **errp)
3423{
c86c1aff
DHB
3424 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3425 MachineClass *mc = MACHINE_GET_CLASS(sms);
cf632463
BR
3426
3427 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3428 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3429 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3430 } else {
3431 /* NOTE: this means there is a window after guest reset, prior to
3432 * CAS negotiation, where unplug requests will fail due to the
3433 * capability not being detected yet. This is a bit different than
3434 * the case with PCI unplug, where the events will be queued and
3435 * eventually handled by the guest after boot
3436 */
3437 error_setg(errp, "Memory hot unplug not supported for this guest");
3438 }
6f4b5c3e 3439 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
c5514d0e 3440 if (!mc->has_hotpluggable_cpus) {
6f4b5c3e
BR
3441 error_setg(errp, "CPU hot unplug not supported on this machine");
3442 return;
3443 }
115debf2 3444 spapr_core_unplug_request(hotplug_dev, dev, errp);
c20d332a
BR
3445 }
3446}
3447
94a94e4c
BR
3448static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3449 DeviceState *dev, Error **errp)
3450{
c871bc70
LV
3451 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3452 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3453 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
94a94e4c
BR
3454 spapr_core_pre_plug(hotplug_dev, dev, errp);
3455 }
3456}
3457
7ebaf795
BR
3458static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3459 DeviceState *dev)
c20d332a 3460{
94a94e4c
BR
3461 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3462 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
c20d332a
BR
3463 return HOTPLUG_HANDLER(machine);
3464 }
3465 return NULL;
3466}
3467
ea089eeb
IM
3468static CpuInstanceProperties
3469spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
20bb648d 3470{
ea089eeb
IM
3471 CPUArchId *core_slot;
3472 MachineClass *mc = MACHINE_GET_CLASS(machine);
3473
3474 /* make sure possible_cpu are intialized */
3475 mc->possible_cpu_arch_ids(machine);
3476 /* get CPU core slot containing thread that matches cpu_index */
3477 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3478 assert(core_slot);
3479 return core_slot->props;
20bb648d
DG
3480}
3481
79e07936
IM
3482static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3483{
3484 return idx / smp_cores % nb_numa_nodes;
3485}
3486
535455fd
IM
3487static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3488{
3489 int i;
3490 int spapr_max_cores = max_cpus / smp_threads;
3491 MachineClass *mc = MACHINE_GET_CLASS(machine);
3492
c5514d0e 3493 if (!mc->has_hotpluggable_cpus) {
535455fd
IM
3494 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3495 }
3496 if (machine->possible_cpus) {
3497 assert(machine->possible_cpus->len == spapr_max_cores);
3498 return machine->possible_cpus;
3499 }
3500
3501 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3502 sizeof(CPUArchId) * spapr_max_cores);
3503 machine->possible_cpus->len = spapr_max_cores;
3504 for (i = 0; i < machine->possible_cpus->len; i++) {
3505 int core_id = i * smp_threads;
3506
f2d672c2 3507 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
535455fd
IM
3508 machine->possible_cpus->cpus[i].arch_id = core_id;
3509 machine->possible_cpus->cpus[i].props.has_core_id = true;
3510 machine->possible_cpus->cpus[i].props.core_id = core_id;
535455fd
IM
3511 }
3512 return machine->possible_cpus;
3513}
3514
6737d9ad 3515static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
daa23699
DG
3516 uint64_t *buid, hwaddr *pio,
3517 hwaddr *mmio32, hwaddr *mmio64,
6737d9ad
DG
3518 unsigned n_dma, uint32_t *liobns, Error **errp)
3519{
357d1e3b
DG
3520 /*
3521 * New-style PHB window placement.
3522 *
3523 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3524 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3525 * windows.
3526 *
3527 * Some guest kernels can't work with MMIO windows above 1<<46
3528 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3529 *
3530 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3531 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3532 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3533 * 1TiB 64-bit MMIO windows for each PHB.
3534 */
6737d9ad 3535 const uint64_t base_buid = 0x800000020000000ULL;
25e6a118
MT
3536#define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3537 SPAPR_PCI_MEM64_WIN_SIZE - 1)
6737d9ad
DG
3538 int i;
3539
357d1e3b
DG
3540 /* Sanity check natural alignments */
3541 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3542 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3543 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3544 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3545 /* Sanity check bounds */
25e6a118
MT
3546 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3547 SPAPR_PCI_MEM32_WIN_SIZE);
3548 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3549 SPAPR_PCI_MEM64_WIN_SIZE);
3550
3551 if (index >= SPAPR_MAX_PHBS) {
3552 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3553 SPAPR_MAX_PHBS - 1);
6737d9ad
DG
3554 return;
3555 }
3556
3557 *buid = base_buid + index;
3558 for (i = 0; i < n_dma; ++i) {
3559 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3560 }
3561
357d1e3b
DG
3562 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3563 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3564 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
6737d9ad
DG
3565}
3566
7844e12b
CLG
3567static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3568{
3569 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3570
3571 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3572}
3573
3574static void spapr_ics_resend(XICSFabric *dev)
3575{
3576 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3577
3578 ics_resend(spapr->ics);
3579}
3580
81210c20 3581static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
b2fc59aa 3582{
2e886fb3 3583 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
b2fc59aa 3584
5bc8d26d 3585 return cpu ? ICP(cpu->intc) : NULL;
b2fc59aa
CLG
3586}
3587
60c6823b
CLG
3588#define ICS_IRQ_FREE(ics, srcno) \
3589 (!((ics)->irqs[(srcno)].flags & (XICS_FLAGS_IRQ_MASK)))
3590
3591static int ics_find_free_block(ICSState *ics, int num, int alignnum)
3592{
3593 int first, i;
3594
3595 for (first = 0; first < ics->nr_irqs; first += alignnum) {
3596 if (num > (ics->nr_irqs - first)) {
3597 return -1;
3598 }
3599 for (i = first; i < first + num; ++i) {
3600 if (!ICS_IRQ_FREE(ics, i)) {
3601 break;
3602 }
3603 }
3604 if (i == (first + num)) {
3605 return first;
3606 }
3607 }
3608
3609 return -1;
3610}
3611
9e7dc5fc
CLG
3612/*
3613 * Allocate the IRQ number and set the IRQ type, LSI or MSI
3614 */
3615static void spapr_irq_set_lsi(sPAPRMachineState *spapr, int irq, bool lsi)
3616{
3617 ics_set_irq_type(spapr->ics, irq - spapr->ics->offset, lsi);
3618}
3619
60c6823b
CLG
3620int spapr_irq_alloc(sPAPRMachineState *spapr, int irq_hint, bool lsi,
3621 Error **errp)
3622{
3623 ICSState *ics = spapr->ics;
3624 int irq;
3625
3626 if (!ics) {
3627 return -1;
3628 }
3629 if (irq_hint) {
3630 if (!ICS_IRQ_FREE(ics, irq_hint - ics->offset)) {
3631 error_setg(errp, "can't allocate IRQ %d: already in use", irq_hint);
3632 return -1;
3633 }
3634 irq = irq_hint;
3635 } else {
3636 irq = ics_find_free_block(ics, 1, 1);
3637 if (irq < 0) {
3638 error_setg(errp, "can't allocate IRQ: no IRQ left");
3639 return -1;
3640 }
3641 irq += ics->offset;
3642 }
3643
9e7dc5fc 3644 spapr_irq_set_lsi(spapr, irq, lsi);
60c6823b
CLG
3645 trace_spapr_irq_alloc(irq);
3646
3647 return irq;
3648}
3649
3650/*
3651 * Allocate block of consecutive IRQs, and return the number of the first IRQ in
3652 * the block. If align==true, aligns the first IRQ number to num.
3653 */
3654int spapr_irq_alloc_block(sPAPRMachineState *spapr, int num, bool lsi,
3655 bool align, Error **errp)
3656{
3657 ICSState *ics = spapr->ics;
3658 int i, first = -1;
3659
3660 if (!ics) {
3661 return -1;
3662 }
3663
3664 /*
3665 * MSIMesage::data is used for storing VIRQ so
3666 * it has to be aligned to num to support multiple
3667 * MSI vectors. MSI-X is not affected by this.
3668 * The hint is used for the first IRQ, the rest should
3669 * be allocated continuously.
3670 */
3671 if (align) {
3672 assert((num == 1) || (num == 2) || (num == 4) ||
3673 (num == 8) || (num == 16) || (num == 32));
3674 first = ics_find_free_block(ics, num, num);
3675 } else {
3676 first = ics_find_free_block(ics, num, 1);
3677 }
3678 if (first < 0) {
3679 error_setg(errp, "can't find a free %d-IRQ block", num);
3680 return -1;
3681 }
3682
9e7dc5fc 3683 first += ics->offset;
60c6823b 3684 for (i = first; i < first + num; ++i) {
9e7dc5fc 3685 spapr_irq_set_lsi(spapr, i, lsi);
60c6823b 3686 }
60c6823b
CLG
3687
3688 trace_spapr_irq_alloc_block(first, num, lsi, align);
3689
3690 return first;
3691}
3692
3693void spapr_irq_free(sPAPRMachineState *spapr, int irq, int num)
3694{
3695 ICSState *ics = spapr->ics;
3696 int srcno = irq - ics->offset;
3697 int i;
3698
3699 if (ics_valid_irq(ics, irq)) {
3700 trace_spapr_irq_free(0, irq, num);
3701 for (i = srcno; i < srcno + num; ++i) {
3702 if (ICS_IRQ_FREE(ics, i)) {
3703 trace_spapr_irq_free_warn(0, i + ics->offset);
3704 }
3705 memset(&ics->irqs[i], 0, sizeof(ICSIRQState));
3706 }
3707 }
3708}
3709
77183755
CLG
3710qemu_irq spapr_qirq(sPAPRMachineState *spapr, int irq)
3711{
3712 ICSState *ics = spapr->ics;
3713
3714 if (ics_valid_irq(ics, irq)) {
3715 return ics->qirqs[irq - ics->offset];
3716 }
3717
3718 return NULL;
3719}
3720
6449da45
CLG
3721static void spapr_pic_print_info(InterruptStatsProvider *obj,
3722 Monitor *mon)
3723{
3724 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
5bc8d26d
CLG
3725 CPUState *cs;
3726
3727 CPU_FOREACH(cs) {
3728 PowerPCCPU *cpu = POWERPC_CPU(cs);
6449da45 3729
5bc8d26d 3730 icp_pic_print_info(ICP(cpu->intc), mon);
6449da45
CLG
3731 }
3732
3733 ics_pic_print_info(spapr->ics, mon);
3734}
3735
2e886fb3
SB
3736int spapr_vcpu_id(PowerPCCPU *cpu)
3737{
3738 CPUState *cs = CPU(cpu);
3739
3740 if (kvm_enabled()) {
3741 return kvm_arch_vcpu_id(cs);
3742 } else {
3743 return cs->cpu_index;
3744 }
3745}
3746
3747PowerPCCPU *spapr_find_cpu(int vcpu_id)
3748{
3749 CPUState *cs;
3750
3751 CPU_FOREACH(cs) {
3752 PowerPCCPU *cpu = POWERPC_CPU(cs);
3753
3754 if (spapr_vcpu_id(cpu) == vcpu_id) {
3755 return cpu;
3756 }
3757 }
3758
3759 return NULL;
3760}
3761
29ee3247
AK
3762static void spapr_machine_class_init(ObjectClass *oc, void *data)
3763{
3764 MachineClass *mc = MACHINE_CLASS(oc);
224245bf 3765 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
71461b0f 3766 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
34316482 3767 NMIClass *nc = NMI_CLASS(oc);
c20d332a 3768 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1d1be34d 3769 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
7844e12b 3770 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
6449da45 3771 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
958db90c 3772
0eb9054c 3773 mc->desc = "pSeries Logical Partition (PAPR compliant)";
fc9f38c3
DG
3774
3775 /*
3776 * We set up the default / latest behaviour here. The class_init
3777 * functions for the specific versioned machine types can override
3778 * these details for backwards compatibility
3779 */
bcb5ce08
DG
3780 mc->init = spapr_machine_init;
3781 mc->reset = spapr_machine_reset;
958db90c 3782 mc->block_default_type = IF_SCSI;
6244bb7e 3783 mc->max_cpus = 1024;
958db90c 3784 mc->no_parallel = 1;
5b2128d2 3785 mc->default_boot_order = "";
a34944fe 3786 mc->default_ram_size = 512 * M_BYTE;
958db90c 3787 mc->kvm_type = spapr_kvm_type;
9e3f9733 3788 mc->has_dynamic_sysbus = true;
e4024630 3789 mc->pci_allow_0_address = true;
7ebaf795 3790 mc->get_hotplug_handler = spapr_get_hotplug_handler;
94a94e4c 3791 hc->pre_plug = spapr_machine_device_pre_plug;
c20d332a 3792 hc->plug = spapr_machine_device_plug;
ea089eeb 3793 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
79e07936 3794 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
535455fd 3795 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
cf632463 3796 hc->unplug_request = spapr_machine_device_unplug_request;
00b4fbe2 3797
fc9f38c3 3798 smc->dr_lmb_enabled = true;
2e9c10eb 3799 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
c5514d0e 3800 mc->has_hotpluggable_cpus = true;
52b81ab5 3801 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
71461b0f 3802 fwc->get_dev_path = spapr_get_fw_dev_path;
34316482 3803 nc->nmi_monitor_handler = spapr_nmi;
6737d9ad 3804 smc->phb_placement = spapr_phb_placement;
1d1be34d 3805 vhc->hypercall = emulate_spapr_hypercall;
e57ca75c
DG
3806 vhc->hpt_mask = spapr_hpt_mask;
3807 vhc->map_hptes = spapr_map_hptes;
3808 vhc->unmap_hptes = spapr_unmap_hptes;
3809 vhc->store_hpte = spapr_store_hpte;
9861bb3e 3810 vhc->get_patbe = spapr_get_patbe;
1ec26c75 3811 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
7844e12b
CLG
3812 xic->ics_get = spapr_ics_get;
3813 xic->ics_resend = spapr_ics_resend;
b2fc59aa 3814 xic->icp_get = spapr_icp_get;
6449da45 3815 ispc->print_info = spapr_pic_print_info;
55641213
LV
3816 /* Force NUMA node memory size to be a multiple of
3817 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3818 * in which LMBs are represented and hot-added
3819 */
3820 mc->numa_mem_align_shift = 28;
29ee3247
AK
3821}
3822
3823static const TypeInfo spapr_machine_info = {
3824 .name = TYPE_SPAPR_MACHINE,
3825 .parent = TYPE_MACHINE,
4aee7362 3826 .abstract = true,
6ca1502e 3827 .instance_size = sizeof(sPAPRMachineState),
bcb5ce08 3828 .instance_init = spapr_instance_init,
87bbdd9c 3829 .instance_finalize = spapr_machine_finalizefn,
183930c0 3830 .class_size = sizeof(sPAPRMachineClass),
29ee3247 3831 .class_init = spapr_machine_class_init,
71461b0f
AK
3832 .interfaces = (InterfaceInfo[]) {
3833 { TYPE_FW_PATH_PROVIDER },
34316482 3834 { TYPE_NMI },
c20d332a 3835 { TYPE_HOTPLUG_HANDLER },
1d1be34d 3836 { TYPE_PPC_VIRTUAL_HYPERVISOR },
7844e12b 3837 { TYPE_XICS_FABRIC },
6449da45 3838 { TYPE_INTERRUPT_STATS_PROVIDER },
71461b0f
AK
3839 { }
3840 },
29ee3247
AK
3841};
3842
fccbc785 3843#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
5013c547
DG
3844 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3845 void *data) \
3846 { \
3847 MachineClass *mc = MACHINE_CLASS(oc); \
3848 spapr_machine_##suffix##_class_options(mc); \
fccbc785
DG
3849 if (latest) { \
3850 mc->alias = "pseries"; \
3851 mc->is_default = 1; \
3852 } \
5013c547
DG
3853 } \
3854 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3855 { \
3856 MachineState *machine = MACHINE(obj); \
3857 spapr_machine_##suffix##_instance_options(machine); \
3858 } \
3859 static const TypeInfo spapr_machine_##suffix##_info = { \
3860 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3861 .parent = TYPE_SPAPR_MACHINE, \
3862 .class_init = spapr_machine_##suffix##_class_init, \
3863 .instance_init = spapr_machine_##suffix##_instance_init, \
3864 }; \
3865 static void spapr_machine_register_##suffix(void) \
3866 { \
3867 type_register(&spapr_machine_##suffix##_info); \
3868 } \
0e6aac87 3869 type_init(spapr_machine_register_##suffix)
5013c547 3870
2b615412
DG
3871/*
3872 * pseries-2.12
3873 */
3874static void spapr_machine_2_12_instance_options(MachineState *machine)
3875{
3876}
3877
3878static void spapr_machine_2_12_class_options(MachineClass *mc)
3879{
3880 /* Defaults for the latest behaviour inherited from the base class */
3881}
3882
3883DEFINE_SPAPR_MACHINE(2_12, "2.12", true);
3884
e2676b16
GK
3885/*
3886 * pseries-2.11
3887 */
2b615412
DG
3888#define SPAPR_COMPAT_2_11 \
3889 HW_COMPAT_2_11
3890
e2676b16
GK
3891static void spapr_machine_2_11_instance_options(MachineState *machine)
3892{
2b615412 3893 spapr_machine_2_12_instance_options(machine);
e2676b16
GK
3894}
3895
3896static void spapr_machine_2_11_class_options(MachineClass *mc)
3897{
2b615412
DG
3898 spapr_machine_2_12_class_options(mc);
3899 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11);
e2676b16
GK
3900}
3901
2b615412 3902DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
e2676b16 3903
3fa14fbe
DG
3904/*
3905 * pseries-2.10
3906 */
e2676b16 3907#define SPAPR_COMPAT_2_10 \
2b615412 3908 HW_COMPAT_2_10
e2676b16 3909
3fa14fbe
DG
3910static void spapr_machine_2_10_instance_options(MachineState *machine)
3911{
2b615412 3912 spapr_machine_2_11_instance_options(machine);
3fa14fbe
DG
3913}
3914
3915static void spapr_machine_2_10_class_options(MachineClass *mc)
3916{
e2676b16
GK
3917 spapr_machine_2_11_class_options(mc);
3918 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
3fa14fbe
DG
3919}
3920
e2676b16 3921DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
3fa14fbe 3922
fa325e6c
DG
3923/*
3924 * pseries-2.9
3925 */
3fa14fbe 3926#define SPAPR_COMPAT_2_9 \
d5fc133e
DG
3927 HW_COMPAT_2_9 \
3928 { \
3929 .driver = TYPE_POWERPC_CPU, \
3930 .property = "pre-2.10-migration", \
3931 .value = "on", \
3932 }, \
3fa14fbe 3933
fa325e6c
DG
3934static void spapr_machine_2_9_instance_options(MachineState *machine)
3935{
3fa14fbe 3936 spapr_machine_2_10_instance_options(machine);
fa325e6c
DG
3937}
3938
3939static void spapr_machine_2_9_class_options(MachineClass *mc)
3940{
46f7afa3
GK
3941 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3942
3fa14fbe
DG
3943 spapr_machine_2_10_class_options(mc);
3944 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
3bfe5716 3945 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
46f7afa3 3946 smc->pre_2_10_has_unused_icps = true;
52b81ab5 3947 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
fa325e6c
DG
3948}
3949
3fa14fbe 3950DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
fa325e6c 3951
db800b21
DG
3952/*
3953 * pseries-2.8
3954 */
82516263
DG
3955#define SPAPR_COMPAT_2_8 \
3956 HW_COMPAT_2_8 \
3957 { \
3958 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3959 .property = "pcie-extended-configuration-space", \
3960 .value = "off", \
3961 },
fa325e6c 3962
db800b21
DG
3963static void spapr_machine_2_8_instance_options(MachineState *machine)
3964{
fa325e6c 3965 spapr_machine_2_9_instance_options(machine);
db800b21
DG
3966}
3967
3968static void spapr_machine_2_8_class_options(MachineClass *mc)
3969{
fa325e6c
DG
3970 spapr_machine_2_9_class_options(mc);
3971 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
55641213 3972 mc->numa_mem_align_shift = 23;
db800b21
DG
3973}
3974
fa325e6c 3975DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
db800b21 3976
1ea1eefc
BR
3977/*
3978 * pseries-2.7
3979 */
357d1e3b
DG
3980#define SPAPR_COMPAT_2_7 \
3981 HW_COMPAT_2_7 \
3982 { \
3983 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3984 .property = "mem_win_size", \
3985 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3986 }, \
3987 { \
3988 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3989 .property = "mem64_win_size", \
3990 .value = "0", \
146c11f1
DG
3991 }, \
3992 { \
3993 .driver = TYPE_POWERPC_CPU, \
3994 .property = "pre-2.8-migration", \
3995 .value = "on", \
5c4537bd
DG
3996 }, \
3997 { \
3998 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3999 .property = "pre-2.8-migration", \
4000 .value = "on", \
357d1e3b
DG
4001 },
4002
4003static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4004 uint64_t *buid, hwaddr *pio,
4005 hwaddr *mmio32, hwaddr *mmio64,
4006 unsigned n_dma, uint32_t *liobns, Error **errp)
4007{
4008 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4009 const uint64_t base_buid = 0x800000020000000ULL;
4010 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4011 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4012 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4013 const uint32_t max_index = 255;
4014 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4015
4016 uint64_t ram_top = MACHINE(spapr)->ram_size;
4017 hwaddr phb0_base, phb_base;
4018 int i;
4019
4020 /* Do we have hotpluggable memory? */
4021 if (MACHINE(spapr)->maxram_size > ram_top) {
4022 /* Can't just use maxram_size, because there may be an
4023 * alignment gap between normal and hotpluggable memory
4024 * regions */
4025 ram_top = spapr->hotplug_memory.base +
4026 memory_region_size(&spapr->hotplug_memory.mr);
4027 }
4028
4029 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4030
4031 if (index > max_index) {
4032 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4033 max_index);
4034 return;
4035 }
4036
4037 *buid = base_buid + index;
4038 for (i = 0; i < n_dma; ++i) {
4039 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4040 }
4041
4042 phb_base = phb0_base + index * phb_spacing;
4043 *pio = phb_base + pio_offset;
4044 *mmio32 = phb_base + mmio_offset;
4045 /*
4046 * We don't set the 64-bit MMIO window, relying on the PHB's
4047 * fallback behaviour of automatically splitting a large "32-bit"
4048 * window into contiguous 32-bit and 64-bit windows
4049 */
4050}
db800b21 4051
1ea1eefc
BR
4052static void spapr_machine_2_7_instance_options(MachineState *machine)
4053{
f6229214
MR
4054 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
4055
672de881 4056 spapr_machine_2_8_instance_options(machine);
f6229214 4057 spapr->use_hotplug_event_source = false;
1ea1eefc
BR
4058}
4059
4060static void spapr_machine_2_7_class_options(MachineClass *mc)
4061{
3daa4a9f
TH
4062 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4063
db800b21 4064 spapr_machine_2_8_class_options(mc);
2e9c10eb 4065 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
db800b21 4066 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
357d1e3b 4067 smc->phb_placement = phb_placement_2_7;
1ea1eefc
BR
4068}
4069
db800b21 4070DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
1ea1eefc 4071
4b23699c
DG
4072/*
4073 * pseries-2.6
4074 */
1ea1eefc 4075#define SPAPR_COMPAT_2_6 \
ae4de14c
AK
4076 HW_COMPAT_2_6 \
4077 { \
4078 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4079 .property = "ddw",\
4080 .value = stringify(off),\
4081 },
1ea1eefc 4082
4b23699c
DG
4083static void spapr_machine_2_6_instance_options(MachineState *machine)
4084{
672de881 4085 spapr_machine_2_7_instance_options(machine);
4b23699c
DG
4086}
4087
4088static void spapr_machine_2_6_class_options(MachineClass *mc)
4089{
1ea1eefc 4090 spapr_machine_2_7_class_options(mc);
c5514d0e 4091 mc->has_hotpluggable_cpus = false;
1ea1eefc 4092 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4b23699c
DG
4093}
4094
1ea1eefc 4095DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4b23699c 4096
1c5f29bb
DG
4097/*
4098 * pseries-2.5
4099 */
4b23699c 4100#define SPAPR_COMPAT_2_5 \
57c522f4
TH
4101 HW_COMPAT_2_5 \
4102 { \
4103 .driver = "spapr-vlan", \
4104 .property = "use-rx-buffer-pools", \
4105 .value = "off", \
4106 },
4b23699c 4107
5013c547 4108static void spapr_machine_2_5_instance_options(MachineState *machine)
1c5f29bb 4109{
672de881 4110 spapr_machine_2_6_instance_options(machine);
5013c547
DG
4111}
4112
4113static void spapr_machine_2_5_class_options(MachineClass *mc)
4114{
57040d45
TH
4115 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4116
4b23699c 4117 spapr_machine_2_6_class_options(mc);
57040d45 4118 smc->use_ohci_by_default = true;
4b23699c 4119 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
1c5f29bb
DG
4120}
4121
4b23699c 4122DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
1c5f29bb
DG
4123
4124/*
4125 * pseries-2.4
4126 */
80fd50f9
CH
4127#define SPAPR_COMPAT_2_4 \
4128 HW_COMPAT_2_4
4129
5013c547 4130static void spapr_machine_2_4_instance_options(MachineState *machine)
1c5f29bb 4131{
5013c547
DG
4132 spapr_machine_2_5_instance_options(machine);
4133}
1c5f29bb 4134
5013c547
DG
4135static void spapr_machine_2_4_class_options(MachineClass *mc)
4136{
fc9f38c3
DG
4137 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4138
4139 spapr_machine_2_5_class_options(mc);
fc9f38c3 4140 smc->dr_lmb_enabled = false;
f949b4e5 4141 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
1c5f29bb
DG
4142}
4143
fccbc785 4144DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
1c5f29bb
DG
4145
4146/*
4147 * pseries-2.3
4148 */
38ff32c6 4149#define SPAPR_COMPAT_2_3 \
7619c7b0
MR
4150 HW_COMPAT_2_3 \
4151 {\
4152 .driver = "spapr-pci-host-bridge",\
4153 .property = "dynamic-reconfiguration",\
4154 .value = "off",\
4155 },
38ff32c6 4156
5013c547 4157static void spapr_machine_2_3_instance_options(MachineState *machine)
d25228e7 4158{
5013c547 4159 spapr_machine_2_4_instance_options(machine);
d25228e7
JW
4160}
4161
5013c547 4162static void spapr_machine_2_3_class_options(MachineClass *mc)
6026db45 4163{
fc9f38c3 4164 spapr_machine_2_4_class_options(mc);
f949b4e5 4165 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
6026db45 4166}
fccbc785 4167DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
6026db45 4168
1c5f29bb
DG
4169/*
4170 * pseries-2.2
4171 */
4172
4173#define SPAPR_COMPAT_2_2 \
1c5f29bb
DG
4174 HW_COMPAT_2_2 \
4175 {\
4176 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4177 .property = "mem_win_size",\
4178 .value = "0x20000000",\
4179 },
4180
5013c547 4181static void spapr_machine_2_2_instance_options(MachineState *machine)
1c5f29bb 4182{
5013c547 4183 spapr_machine_2_3_instance_options(machine);
cba0e779 4184 machine->suppress_vmdesc = true;
1c5f29bb
DG
4185}
4186
5013c547 4187static void spapr_machine_2_2_class_options(MachineClass *mc)
4aee7362 4188{
fc9f38c3 4189 spapr_machine_2_3_class_options(mc);
f949b4e5 4190 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4aee7362 4191}
fccbc785 4192DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4aee7362 4193
1c5f29bb
DG
4194/*
4195 * pseries-2.1
4196 */
4197#define SPAPR_COMPAT_2_1 \
1c5f29bb 4198 HW_COMPAT_2_1
3dab0244 4199
5013c547 4200static void spapr_machine_2_1_instance_options(MachineState *machine)
1c5f29bb 4201{
5013c547 4202 spapr_machine_2_2_instance_options(machine);
1c5f29bb 4203}
d25228e7 4204
5013c547 4205static void spapr_machine_2_1_class_options(MachineClass *mc)
d25228e7 4206{
fc9f38c3 4207 spapr_machine_2_2_class_options(mc);
f949b4e5 4208 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
d25228e7 4209}
fccbc785 4210DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
fb0fc8f6 4211
29ee3247 4212static void spapr_machine_register_types(void)
9fdf0c29 4213{
29ee3247 4214 type_register_static(&spapr_machine_info);
9fdf0c29
DG
4215}
4216
29ee3247 4217type_init(spapr_machine_register_types)