]> git.proxmox.com Git - mirror_qemu.git/blame - hw/ppc/spapr.c
target/ppc: Add new H-CALL shells for in memory table translation
[mirror_qemu.git] / hw / ppc / spapr.c
CommitLineData
9fdf0c29
DG
1/*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3 *
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
14 *
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
25 *
26 */
0d75590d 27#include "qemu/osdep.h"
da34e65c 28#include "qapi/error.h"
9c17d615 29#include "sysemu/sysemu.h"
e35704ba 30#include "sysemu/numa.h"
83c9f4ca 31#include "hw/hw.h"
03dd024f 32#include "qemu/log.h"
71461b0f 33#include "hw/fw-path-provider.h"
9fdf0c29 34#include "elf.h"
1422e32d 35#include "net/net.h"
ad440b4a 36#include "sysemu/device_tree.h"
fa1d36df 37#include "sysemu/block-backend.h"
9c17d615 38#include "sysemu/cpus.h"
b3946626 39#include "sysemu/hw_accel.h"
e97c3636 40#include "kvm_ppc.h"
ff14e817 41#include "migration/migration.h"
4be21d56 42#include "mmu-hash64.h"
3794d548 43#include "qom/cpu.h"
9fdf0c29
DG
44
45#include "hw/boards.h"
0d09e41a 46#include "hw/ppc/ppc.h"
9fdf0c29
DG
47#include "hw/loader.h"
48
7804c353 49#include "hw/ppc/fdt.h"
0d09e41a
PB
50#include "hw/ppc/spapr.h"
51#include "hw/ppc/spapr_vio.h"
52#include "hw/pci-host/spapr.h"
53#include "hw/ppc/xics.h"
a2cb15b0 54#include "hw/pci/msi.h"
9fdf0c29 55
83c9f4ca 56#include "hw/pci/pci.h"
71461b0f
AK
57#include "hw/scsi/scsi.h"
58#include "hw/virtio/virtio-scsi.h"
f61b4bed 59
022c62cb 60#include "exec/address-spaces.h"
35139a59 61#include "hw/usb.h"
1de7afc9 62#include "qemu/config-file.h"
135a129a 63#include "qemu/error-report.h"
2a6593cb 64#include "trace.h"
34316482 65#include "hw/nmi.h"
6449da45 66#include "hw/intc/intc.h"
890c2b77 67
68a27b20 68#include "hw/compat.h"
f348b6d1 69#include "qemu/cutils.h"
94a94e4c 70#include "hw/ppc/spapr_cpu_core.h"
2474bfd4 71#include "qmp-commands.h"
68a27b20 72
9fdf0c29
DG
73#include <libfdt.h>
74
4d8d5467
BH
75/* SLOF memory layout:
76 *
77 * SLOF raw image loaded at 0, copies its romfs right below the flat
78 * device-tree, then position SLOF itself 31M below that
79 *
80 * So we set FW_OVERHEAD to 40MB which should account for all of that
81 * and more
82 *
83 * We load our kernel at 4M, leaving space for SLOF initial image
84 */
38b02bd8 85#define FDT_MAX_SIZE 0x100000
39ac8455 86#define RTAS_MAX_SIZE 0x10000
b7d1f77a 87#define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
a9f8ad8f
DG
88#define FW_MAX_SIZE 0x400000
89#define FW_FILE_NAME "slof.bin"
4d8d5467
BH
90#define FW_OVERHEAD 0x2800000
91#define KERNEL_LOAD_ADDR FW_MAX_SIZE
a9f8ad8f 92
4d8d5467 93#define MIN_RMA_SLOF 128UL
9fdf0c29 94
0c103f8e
DG
95#define PHANDLE_XICP 0x00001111
96
7f763a5d
DG
97#define HTAB_SIZE(spapr) (1ULL << ((spapr)->htab_shift))
98
e6f7e110
CLG
99static int try_create_xics(sPAPRMachineState *spapr, const char *type_ics,
100 const char *type_icp, int nr_servers,
101 int nr_irqs, Error **errp)
c04d6cfa 102{
2cd908d0 103 XICSFabric *xi = XICS_FABRIC(spapr);
4e4169f7 104 Error *err = NULL, *local_err = NULL;
4e4169f7 105 ICSState *ics = NULL;
817bb6a4 106 int i;
4e4169f7 107
4e4169f7 108 ics = ICS_SIMPLE(object_new(type_ics));
681bfade 109 object_property_add_child(OBJECT(spapr), "ics", OBJECT(ics), NULL);
4e4169f7 110 object_property_set_int(OBJECT(ics), nr_irqs, "nr-irqs", &err);
b4f27d71 111 object_property_add_const_link(OBJECT(ics), "xics", OBJECT(xi), NULL);
4e4169f7
CLG
112 object_property_set_bool(OBJECT(ics), true, "realized", &local_err);
113 error_propagate(&err, local_err);
114 if (err) {
115 goto error;
116 }
4e4169f7 117
852ad27e
CLG
118 spapr->icps = g_malloc0(nr_servers * sizeof(ICPState));
119 spapr->nr_servers = nr_servers;
817bb6a4
CLG
120
121 for (i = 0; i < nr_servers; i++) {
852ad27e 122 ICPState *icp = &spapr->icps[i];
817bb6a4
CLG
123
124 object_initialize(icp, sizeof(*icp), type_icp);
852ad27e 125 object_property_add_child(OBJECT(spapr), "icp[*]", OBJECT(icp), NULL);
2cd908d0 126 object_property_add_const_link(OBJECT(icp), "xics", OBJECT(xi), NULL);
817bb6a4
CLG
127 object_property_set_bool(OBJECT(icp), true, "realized", &err);
128 if (err) {
129 goto error;
130 }
131 object_unref(OBJECT(icp));
132 }
133
681bfade 134 spapr->ics = ics;
e6f7e110 135 return 0;
4e4169f7
CLG
136
137error:
138 error_propagate(errp, err);
139 if (ics) {
140 object_unparent(OBJECT(ics));
141 }
e6f7e110 142 return -1;
c04d6cfa
AL
143}
144
e6f7e110
CLG
145static int xics_system_init(MachineState *machine,
146 int nr_servers, int nr_irqs, Error **errp)
c04d6cfa 147{
e6f7e110 148 int rc = -1;
c04d6cfa 149
11ad93f6 150 if (kvm_enabled()) {
34f2af3d
MA
151 Error *err = NULL;
152
2192a930
CLG
153 if (machine_kernel_irqchip_allowed(machine) &&
154 !xics_kvm_init(SPAPR_MACHINE(machine), errp)) {
e6f7e110
CLG
155 rc = try_create_xics(SPAPR_MACHINE(machine), TYPE_ICS_KVM,
156 TYPE_KVM_ICP, nr_servers, nr_irqs, &err);
11ad93f6 157 }
e6f7e110 158 if (machine_kernel_irqchip_required(machine) && rc < 0) {
b83baa60
MA
159 error_reportf_err(err,
160 "kernel_irqchip requested but unavailable: ");
161 } else {
162 error_free(err);
11ad93f6
DG
163 }
164 }
165
e6f7e110 166 if (rc < 0) {
2192a930 167 xics_spapr_init(SPAPR_MACHINE(machine), errp);
e6f7e110 168 rc = try_create_xics(SPAPR_MACHINE(machine), TYPE_ICS_SIMPLE,
681bfade 169 TYPE_ICP, nr_servers, nr_irqs, errp);
c04d6cfa
AL
170 }
171
e6f7e110 172 return rc;
c04d6cfa
AL
173}
174
833d4668
AK
175static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
176 int smt_threads)
177{
178 int i, ret = 0;
179 uint32_t servers_prop[smt_threads];
180 uint32_t gservers_prop[smt_threads * 2];
181 int index = ppc_get_vcpu_dt_id(cpu);
182
d6e166c0
DG
183 if (cpu->compat_pvr) {
184 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
6d9412ea
AK
185 if (ret < 0) {
186 return ret;
187 }
188 }
189
833d4668
AK
190 /* Build interrupt servers and gservers properties */
191 for (i = 0; i < smt_threads; i++) {
192 servers_prop[i] = cpu_to_be32(index + i);
193 /* Hack, direct the group queues back to cpu 0 */
194 gservers_prop[i*2] = cpu_to_be32(index + i);
195 gservers_prop[i*2 + 1] = 0;
196 }
197 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
198 servers_prop, sizeof(servers_prop));
199 if (ret < 0) {
200 return ret;
201 }
202 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
203 gservers_prop, sizeof(gservers_prop));
204
205 return ret;
206}
207
0da6f3fe
BR
208static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, CPUState *cs)
209{
210 int ret = 0;
211 PowerPCCPU *cpu = POWERPC_CPU(cs);
212 int index = ppc_get_vcpu_dt_id(cpu);
213 uint32_t associativity[] = {cpu_to_be32(0x5),
214 cpu_to_be32(0x0),
215 cpu_to_be32(0x0),
216 cpu_to_be32(0x0),
217 cpu_to_be32(cs->numa_node),
218 cpu_to_be32(index)};
219
220 /* Advertise NUMA via ibm,associativity */
221 if (nb_numa_nodes > 1) {
222 ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
223 sizeof(associativity));
224 }
225
226 return ret;
227}
228
28e02042 229static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
6e806cc3 230{
82677ed2
AK
231 int ret = 0, offset, cpus_offset;
232 CPUState *cs;
6e806cc3
BR
233 char cpu_model[32];
234 int smt = kvmppc_smt_threads();
7f763a5d 235 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
6e806cc3 236
82677ed2
AK
237 CPU_FOREACH(cs) {
238 PowerPCCPU *cpu = POWERPC_CPU(cs);
239 DeviceClass *dc = DEVICE_GET_CLASS(cs);
240 int index = ppc_get_vcpu_dt_id(cpu);
12dbeb16 241 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
6e806cc3 242
0f20ba62 243 if ((index % smt) != 0) {
6e806cc3
BR
244 continue;
245 }
246
82677ed2 247 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
6e806cc3 248
82677ed2
AK
249 cpus_offset = fdt_path_offset(fdt, "/cpus");
250 if (cpus_offset < 0) {
251 cpus_offset = fdt_add_subnode(fdt, fdt_path_offset(fdt, "/"),
252 "cpus");
253 if (cpus_offset < 0) {
254 return cpus_offset;
255 }
256 }
257 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
6e806cc3 258 if (offset < 0) {
82677ed2
AK
259 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
260 if (offset < 0) {
261 return offset;
262 }
6e806cc3
BR
263 }
264
7f763a5d
DG
265 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
266 pft_size_prop, sizeof(pft_size_prop));
6e806cc3
BR
267 if (ret < 0) {
268 return ret;
269 }
833d4668 270
0da6f3fe
BR
271 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cs);
272 if (ret < 0) {
273 return ret;
274 }
275
12dbeb16 276 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
833d4668
AK
277 if (ret < 0) {
278 return ret;
279 }
6e806cc3
BR
280 }
281 return ret;
282}
283
b082d65a
AK
284static hwaddr spapr_node0_size(void)
285{
fb164994
DG
286 MachineState *machine = MACHINE(qdev_get_machine());
287
b082d65a
AK
288 if (nb_numa_nodes) {
289 int i;
290 for (i = 0; i < nb_numa_nodes; ++i) {
291 if (numa_info[i].node_mem) {
fb164994
DG
292 return MIN(pow2floor(numa_info[i].node_mem),
293 machine->ram_size);
b082d65a
AK
294 }
295 }
296 }
fb164994 297 return machine->ram_size;
b082d65a
AK
298}
299
a1d59c0f
AK
300static void add_str(GString *s, const gchar *s1)
301{
302 g_string_append_len(s, s1, strlen(s1) + 1);
303}
7f763a5d 304
03d196b7 305static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
26a8c353
AK
306 hwaddr size)
307{
308 uint32_t associativity[] = {
309 cpu_to_be32(0x4), /* length */
310 cpu_to_be32(0x0), cpu_to_be32(0x0),
c3b4f589 311 cpu_to_be32(0x0), cpu_to_be32(nodeid)
26a8c353
AK
312 };
313 char mem_name[32];
314 uint64_t mem_reg_property[2];
315 int off;
316
317 mem_reg_property[0] = cpu_to_be64(start);
318 mem_reg_property[1] = cpu_to_be64(size);
319
320 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
321 off = fdt_add_subnode(fdt, 0, mem_name);
322 _FDT(off);
323 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
324 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
325 sizeof(mem_reg_property))));
326 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
327 sizeof(associativity))));
03d196b7 328 return off;
26a8c353
AK
329}
330
28e02042 331static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
7f763a5d 332{
fb164994 333 MachineState *machine = MACHINE(spapr);
7db8a127
AK
334 hwaddr mem_start, node_size;
335 int i, nb_nodes = nb_numa_nodes;
336 NodeInfo *nodes = numa_info;
337 NodeInfo ramnode;
338
339 /* No NUMA nodes, assume there is just one node with whole RAM */
340 if (!nb_numa_nodes) {
341 nb_nodes = 1;
fb164994 342 ramnode.node_mem = machine->ram_size;
7db8a127 343 nodes = &ramnode;
5fe269b1 344 }
7f763a5d 345
7db8a127
AK
346 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
347 if (!nodes[i].node_mem) {
348 continue;
349 }
fb164994 350 if (mem_start >= machine->ram_size) {
5fe269b1
PM
351 node_size = 0;
352 } else {
7db8a127 353 node_size = nodes[i].node_mem;
fb164994
DG
354 if (node_size > machine->ram_size - mem_start) {
355 node_size = machine->ram_size - mem_start;
5fe269b1
PM
356 }
357 }
7db8a127
AK
358 if (!mem_start) {
359 /* ppc_spapr_init() checks for rma_size <= node0_size already */
e8f986fc 360 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
7db8a127
AK
361 mem_start += spapr->rma_size;
362 node_size -= spapr->rma_size;
363 }
6010818c
AK
364 for ( ; node_size; ) {
365 hwaddr sizetmp = pow2floor(node_size);
366
367 /* mem_start != 0 here */
368 if (ctzl(mem_start) < ctzl(sizetmp)) {
369 sizetmp = 1ULL << ctzl(mem_start);
370 }
371
372 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
373 node_size -= sizetmp;
374 mem_start += sizetmp;
375 }
7f763a5d
DG
376 }
377
378 return 0;
379}
380
230bf719
TH
381/* Populate the "ibm,pa-features" property */
382static void spapr_populate_pa_features(CPUPPCState *env, void *fdt, int offset)
383{
384 uint8_t pa_features_206[] = { 6, 0,
385 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
386 uint8_t pa_features_207[] = { 24, 0,
387 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
388 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
389 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
bac3bf28 390 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
4975c098
SJS
391 /* Currently we don't advertise any of the "new" ISAv3.00 functionality */
392 uint8_t pa_features_300[] = { 64, 0,
393 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
394 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
395 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
396 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
397 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 24 - 29 */
398 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 30 - 35 */
399 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 36 - 41 */
400 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 42 - 47 */
401 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 48 - 53 */
402 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 54 - 59 */
403 0x00, 0x00, 0x00, 0x00 }; /* 60 - 63 */
404
230bf719
TH
405 uint8_t *pa_features;
406 size_t pa_size;
407
ec975e83
SB
408 switch (POWERPC_MMU_VER(env->mmu_model)) {
409 case POWERPC_MMU_VER_2_06:
230bf719
TH
410 pa_features = pa_features_206;
411 pa_size = sizeof(pa_features_206);
4cbec30d 412 break;
ec975e83 413 case POWERPC_MMU_VER_2_07:
230bf719
TH
414 pa_features = pa_features_207;
415 pa_size = sizeof(pa_features_207);
4cbec30d 416 break;
ec975e83 417 case POWERPC_MMU_VER_3_00:
4975c098
SJS
418 pa_features = pa_features_300;
419 pa_size = sizeof(pa_features_300);
420 break;
4cbec30d
TH
421 default:
422 return;
230bf719
TH
423 }
424
425 if (env->ci_large_pages) {
426 /*
427 * Note: we keep CI large pages off by default because a 64K capable
428 * guest provisioned with large pages might otherwise try to map a qemu
429 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
430 * even if that qemu runs on a 4k host.
431 * We dd this bit back here if we are confident this is not an issue
432 */
433 pa_features[3] |= 0x20;
434 }
bac3bf28
TH
435 if (kvmppc_has_cap_htm() && pa_size > 24) {
436 pa_features[24] |= 0x80; /* Transactional memory support */
437 }
230bf719
TH
438
439 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
440}
441
0da6f3fe
BR
442static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
443 sPAPRMachineState *spapr)
444{
445 PowerPCCPU *cpu = POWERPC_CPU(cs);
446 CPUPPCState *env = &cpu->env;
447 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
448 int index = ppc_get_vcpu_dt_id(cpu);
449 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
450 0xffffffff, 0xffffffff};
afd10a0f
BR
451 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
452 : SPAPR_TIMEBASE_FREQ;
0da6f3fe
BR
453 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
454 uint32_t page_sizes_prop[64];
455 size_t page_sizes_prop_size;
22419c2a 456 uint32_t vcpus_per_socket = smp_threads * smp_cores;
0da6f3fe 457 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
12dbeb16 458 int compat_smt = MIN(smp_threads, ppc_compat_max_threads(cpu));
af81cf32
BR
459 sPAPRDRConnector *drc;
460 sPAPRDRConnectorClass *drck;
461 int drc_index;
c64abd1f
SB
462 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
463 int i;
af81cf32
BR
464
465 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index);
466 if (drc) {
467 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
468 drc_index = drck->get_index(drc);
469 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
470 }
0da6f3fe
BR
471
472 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
473 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
474
475 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
476 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
477 env->dcache_line_size)));
478 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
479 env->dcache_line_size)));
480 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
481 env->icache_line_size)));
482 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
483 env->icache_line_size)));
484
485 if (pcc->l1_dcache_size) {
486 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
487 pcc->l1_dcache_size)));
488 } else {
ce9863b7 489 error_report("Warning: Unknown L1 dcache size for cpu");
0da6f3fe
BR
490 }
491 if (pcc->l1_icache_size) {
492 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
493 pcc->l1_icache_size)));
494 } else {
ce9863b7 495 error_report("Warning: Unknown L1 icache size for cpu");
0da6f3fe
BR
496 }
497
498 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
499 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
fd5da5c4 500 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
0da6f3fe
BR
501 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
502 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
503 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
504
505 if (env->spr_cb[SPR_PURR].oea_read) {
506 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
507 }
508
509 if (env->mmu_model & POWERPC_MMU_1TSEG) {
510 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
511 segs, sizeof(segs))));
512 }
513
514 /* Advertise VMX/VSX (vector extensions) if available
515 * 0 / no property == no vector extensions
516 * 1 == VMX / Altivec available
517 * 2 == VSX available */
518 if (env->insns_flags & PPC_ALTIVEC) {
519 uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
520
521 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
522 }
523
524 /* Advertise DFP (Decimal Floating Point) if available
525 * 0 / no property == no DFP
526 * 1 == DFP available */
527 if (env->insns_flags2 & PPC2_DFP) {
528 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
529 }
530
3654fa95 531 page_sizes_prop_size = ppc_create_page_sizes_prop(env, page_sizes_prop,
0da6f3fe
BR
532 sizeof(page_sizes_prop));
533 if (page_sizes_prop_size) {
534 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
535 page_sizes_prop, page_sizes_prop_size)));
536 }
537
230bf719 538 spapr_populate_pa_features(env, fdt, offset);
90da0d5a 539
0da6f3fe 540 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
22419c2a 541 cs->cpu_index / vcpus_per_socket)));
0da6f3fe
BR
542
543 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
544 pft_size_prop, sizeof(pft_size_prop))));
545
546 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cs));
547
12dbeb16 548 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
c64abd1f
SB
549
550 if (pcc->radix_page_info) {
551 for (i = 0; i < pcc->radix_page_info->count; i++) {
552 radix_AP_encodings[i] =
553 cpu_to_be32(pcc->radix_page_info->entries[i]);
554 }
555 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
556 radix_AP_encodings,
557 pcc->radix_page_info->count *
558 sizeof(radix_AP_encodings[0]))));
559 }
0da6f3fe
BR
560}
561
562static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
563{
564 CPUState *cs;
565 int cpus_offset;
566 char *nodename;
567 int smt = kvmppc_smt_threads();
568
569 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
570 _FDT(cpus_offset);
571 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
572 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
573
574 /*
575 * We walk the CPUs in reverse order to ensure that CPU DT nodes
576 * created by fdt_add_subnode() end up in the right order in FDT
577 * for the guest kernel the enumerate the CPUs correctly.
578 */
579 CPU_FOREACH_REVERSE(cs) {
580 PowerPCCPU *cpu = POWERPC_CPU(cs);
581 int index = ppc_get_vcpu_dt_id(cpu);
582 DeviceClass *dc = DEVICE_GET_CLASS(cs);
583 int offset;
584
585 if ((index % smt) != 0) {
586 continue;
587 }
588
589 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
590 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
591 g_free(nodename);
592 _FDT(offset);
593 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
594 }
595
596}
597
03d196b7
BR
598/*
599 * Adds ibm,dynamic-reconfiguration-memory node.
600 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
601 * of this device tree node.
602 */
603static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
604{
605 MachineState *machine = MACHINE(spapr);
606 int ret, i, offset;
607 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
608 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
d0e5a8f2
BR
609 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
610 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
611 memory_region_size(&spapr->hotplug_memory.mr)) /
612 lmb_size;
03d196b7 613 uint32_t *int_buf, *cur_index, buf_len;
6663864e 614 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
03d196b7 615
16c25aef 616 /*
d0e5a8f2 617 * Don't create the node if there is no hotpluggable memory
16c25aef 618 */
d0e5a8f2 619 if (machine->ram_size == machine->maxram_size) {
16c25aef
BR
620 return 0;
621 }
622
ef001f06
TH
623 /*
624 * Allocate enough buffer size to fit in ibm,dynamic-memory
625 * or ibm,associativity-lookup-arrays
626 */
627 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
628 * sizeof(uint32_t);
03d196b7
BR
629 cur_index = int_buf = g_malloc0(buf_len);
630
631 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
632
633 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
634 sizeof(prop_lmb_size));
635 if (ret < 0) {
636 goto out;
637 }
638
639 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
640 if (ret < 0) {
641 goto out;
642 }
643
644 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
645 if (ret < 0) {
646 goto out;
647 }
648
649 /* ibm,dynamic-memory */
650 int_buf[0] = cpu_to_be32(nr_lmbs);
651 cur_index++;
652 for (i = 0; i < nr_lmbs; i++) {
d0e5a8f2 653 uint64_t addr = i * lmb_size;
03d196b7
BR
654 uint32_t *dynamic_memory = cur_index;
655
d0e5a8f2
BR
656 if (i >= hotplug_lmb_start) {
657 sPAPRDRConnector *drc;
658 sPAPRDRConnectorClass *drck;
659
660 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB, i);
661 g_assert(drc);
662 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
663
664 dynamic_memory[0] = cpu_to_be32(addr >> 32);
665 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
666 dynamic_memory[2] = cpu_to_be32(drck->get_index(drc));
667 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
668 dynamic_memory[4] = cpu_to_be32(numa_get_node(addr, NULL));
669 if (memory_region_present(get_system_memory(), addr)) {
670 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
671 } else {
672 dynamic_memory[5] = cpu_to_be32(0);
673 }
03d196b7 674 } else {
d0e5a8f2
BR
675 /*
676 * LMB information for RMA, boot time RAM and gap b/n RAM and
677 * hotplug memory region -- all these are marked as reserved
678 * and as having no valid DRC.
679 */
680 dynamic_memory[0] = cpu_to_be32(addr >> 32);
681 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
682 dynamic_memory[2] = cpu_to_be32(0);
683 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
684 dynamic_memory[4] = cpu_to_be32(-1);
685 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
686 SPAPR_LMB_FLAGS_DRC_INVALID);
03d196b7
BR
687 }
688
689 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
690 }
691 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
692 if (ret < 0) {
693 goto out;
694 }
695
696 /* ibm,associativity-lookup-arrays */
697 cur_index = int_buf;
6663864e 698 int_buf[0] = cpu_to_be32(nr_nodes);
03d196b7
BR
699 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
700 cur_index += 2;
6663864e 701 for (i = 0; i < nr_nodes; i++) {
03d196b7
BR
702 uint32_t associativity[] = {
703 cpu_to_be32(0x0),
704 cpu_to_be32(0x0),
705 cpu_to_be32(0x0),
706 cpu_to_be32(i)
707 };
708 memcpy(cur_index, associativity, sizeof(associativity));
709 cur_index += 4;
710 }
711 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
712 (cur_index - int_buf) * sizeof(uint32_t));
713out:
714 g_free(int_buf);
715 return ret;
716}
717
6787d27b
MR
718static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
719 sPAPROptionVector *ov5_updates)
720{
721 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
417ece33 722 int ret = 0, offset;
6787d27b
MR
723
724 /* Generate ibm,dynamic-reconfiguration-memory node if required */
725 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
726 g_assert(smc->dr_lmb_enabled);
727 ret = spapr_populate_drconf_memory(spapr, fdt);
417ece33
MR
728 if (ret) {
729 goto out;
730 }
6787d27b
MR
731 }
732
417ece33
MR
733 offset = fdt_path_offset(fdt, "/chosen");
734 if (offset < 0) {
735 offset = fdt_add_subnode(fdt, 0, "chosen");
736 if (offset < 0) {
737 return offset;
738 }
739 }
740 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
741 "ibm,architecture-vec-5");
742
743out:
6787d27b
MR
744 return ret;
745}
746
03d196b7
BR
747int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
748 target_ulong addr, target_ulong size,
6787d27b 749 sPAPROptionVector *ov5_updates)
03d196b7
BR
750{
751 void *fdt, *fdt_skel;
752 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
03d196b7
BR
753
754 size -= sizeof(hdr);
755
756 /* Create sceleton */
757 fdt_skel = g_malloc0(size);
758 _FDT((fdt_create(fdt_skel, size)));
759 _FDT((fdt_begin_node(fdt_skel, "")));
760 _FDT((fdt_end_node(fdt_skel)));
761 _FDT((fdt_finish(fdt_skel)));
762 fdt = g_malloc0(size);
763 _FDT((fdt_open_into(fdt_skel, fdt, size)));
764 g_free(fdt_skel);
765
766 /* Fixup cpu nodes */
5b120785 767 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
03d196b7 768
6787d27b
MR
769 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
770 return -1;
03d196b7
BR
771 }
772
773 /* Pack resulting tree */
774 _FDT((fdt_pack(fdt)));
775
776 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
777 trace_spapr_cas_failed(size);
778 return -1;
779 }
780
781 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
782 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
783 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
784 g_free(fdt);
785
786 return 0;
787}
788
3f5dabce
DG
789static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
790{
791 int rtas;
792 GString *hypertas = g_string_sized_new(256);
793 GString *qemu_hypertas = g_string_sized_new(256);
794 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
795 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
796 memory_region_size(&spapr->hotplug_memory.mr);
797 uint32_t lrdr_capacity[] = {
798 cpu_to_be32(max_hotplug_addr >> 32),
799 cpu_to_be32(max_hotplug_addr & 0xffffffff),
800 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
801 cpu_to_be32(max_cpus / smp_threads),
802 };
803
804 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
805
806 /* hypertas */
807 add_str(hypertas, "hcall-pft");
808 add_str(hypertas, "hcall-term");
809 add_str(hypertas, "hcall-dabr");
810 add_str(hypertas, "hcall-interrupt");
811 add_str(hypertas, "hcall-tce");
812 add_str(hypertas, "hcall-vio");
813 add_str(hypertas, "hcall-splpar");
814 add_str(hypertas, "hcall-bulk");
815 add_str(hypertas, "hcall-set-mode");
816 add_str(hypertas, "hcall-sprg0");
817 add_str(hypertas, "hcall-copy");
818 add_str(hypertas, "hcall-debug");
819 add_str(qemu_hypertas, "hcall-memop1");
820
821 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
822 add_str(hypertas, "hcall-multi-tce");
823 }
824 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
825 hypertas->str, hypertas->len));
826 g_string_free(hypertas, TRUE);
827 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
828 qemu_hypertas->str, qemu_hypertas->len));
829 g_string_free(qemu_hypertas, TRUE);
830
831 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
832 refpoints, sizeof(refpoints)));
833
834 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
835 RTAS_ERROR_LOG_MAX));
836 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
837 RTAS_EVENT_SCAN_RATE));
838
839 if (msi_nonbroken) {
840 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
841 }
842
843 /*
844 * According to PAPR, rtas ibm,os-term does not guarantee a return
845 * back to the guest cpu.
846 *
847 * While an additional ibm,extended-os-term property indicates
848 * that rtas call return will always occur. Set this property.
849 */
850 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
851
852 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
853 lrdr_capacity, sizeof(lrdr_capacity)));
854
855 spapr_dt_rtas_tokens(fdt, rtas);
856}
857
7c866c6a
DG
858static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
859{
860 MachineState *machine = MACHINE(spapr);
861 int chosen;
862 const char *boot_device = machine->boot_order;
863 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
864 size_t cb = 0;
865 char *bootlist = get_boot_devices_list(&cb, true);
7c866c6a
DG
866
867 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
868
7c866c6a
DG
869 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
870 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
871 spapr->initrd_base));
872 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
873 spapr->initrd_base + spapr->initrd_size));
874
875 if (spapr->kernel_size) {
876 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
877 cpu_to_be64(spapr->kernel_size) };
878
879 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
880 &kprop, sizeof(kprop)));
881 if (spapr->kernel_le) {
882 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
883 }
884 }
885 if (boot_menu) {
886 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
887 }
888 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
889 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
890 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
891
892 if (cb && bootlist) {
893 int i;
894
895 for (i = 0; i < cb; i++) {
896 if (bootlist[i] == '\n') {
897 bootlist[i] = ' ';
898 }
899 }
900 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
901 }
902
903 if (boot_device && strlen(boot_device)) {
904 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
905 }
906
907 if (!spapr->has_graphics && stdout_path) {
908 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
909 }
910
911 g_free(stdout_path);
912 g_free(bootlist);
913}
914
fca5f2dc
DG
915static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
916{
917 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
918 * KVM to work under pHyp with some guest co-operation */
919 int hypervisor;
920 uint8_t hypercall[16];
921
922 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
923 /* indicate KVM hypercall interface */
924 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
925 if (kvmppc_has_cap_fixup_hcalls()) {
926 /*
927 * Older KVM versions with older guest kernels were broken
928 * with the magic page, don't allow the guest to map it.
929 */
930 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
931 sizeof(hypercall))) {
932 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
933 hypercall, sizeof(hypercall)));
934 }
935 }
936}
937
997b6cfc
DG
938static void *spapr_build_fdt(sPAPRMachineState *spapr,
939 hwaddr rtas_addr,
940 hwaddr rtas_size)
a3467baa 941{
5b2128d2 942 MachineState *machine = MACHINE(qdev_get_machine());
3c0c47e3 943 MachineClass *mc = MACHINE_GET_CLASS(machine);
c20d332a 944 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
7c866c6a 945 int ret;
a3467baa 946 void *fdt;
3384f95c 947 sPAPRPHBState *phb;
398a0bd5 948 char *buf;
a3467baa 949
398a0bd5
DG
950 fdt = g_malloc0(FDT_MAX_SIZE);
951 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
a3467baa 952
398a0bd5
DG
953 /* Root node */
954 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
955 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
956 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
957
958 /*
959 * Add info to guest to indentify which host is it being run on
960 * and what is the uuid of the guest
961 */
962 if (kvmppc_get_host_model(&buf)) {
963 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
964 g_free(buf);
965 }
966 if (kvmppc_get_host_serial(&buf)) {
967 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
968 g_free(buf);
969 }
970
971 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
972
973 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
974 if (qemu_uuid_set) {
975 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
976 }
977 g_free(buf);
978
979 if (qemu_get_vm_name()) {
980 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
981 qemu_get_vm_name()));
982 }
983
984 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
985 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
4040ab72 986
9b9a1908 987 /* /interrupt controller */
852ad27e 988 spapr_dt_xics(spapr->nr_servers, fdt, PHANDLE_XICP);
9b9a1908 989
e8f986fc
BR
990 ret = spapr_populate_memory(spapr, fdt);
991 if (ret < 0) {
ce9863b7 992 error_report("couldn't setup memory nodes in fdt");
e8f986fc 993 exit(1);
7f763a5d
DG
994 }
995
bf5a6696
DG
996 /* /vdevice */
997 spapr_dt_vdevice(spapr->vio_bus, fdt);
4040ab72 998
4d9392be
TH
999 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1000 ret = spapr_rng_populate_dt(fdt);
1001 if (ret < 0) {
ce9863b7 1002 error_report("could not set up rng device in the fdt");
4d9392be
TH
1003 exit(1);
1004 }
1005 }
1006
3384f95c 1007 QLIST_FOREACH(phb, &spapr->phbs, list) {
e0fdbd7c 1008 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
da34fed7
TH
1009 if (ret < 0) {
1010 error_report("couldn't setup PCI devices in fdt");
1011 exit(1);
1012 }
3384f95c
DG
1013 }
1014
0da6f3fe
BR
1015 /* cpus */
1016 spapr_populate_cpus_dt_node(fdt, spapr);
6e806cc3 1017
c20d332a
BR
1018 if (smc->dr_lmb_enabled) {
1019 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1020 }
1021
c5514d0e 1022 if (mc->has_hotpluggable_cpus) {
af81cf32
BR
1023 int offset = fdt_path_offset(fdt, "/cpus");
1024 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1025 SPAPR_DR_CONNECTOR_TYPE_CPU);
1026 if (ret < 0) {
1027 error_report("Couldn't set up CPU DR device tree properties");
1028 exit(1);
1029 }
1030 }
1031
ffb1e275 1032 /* /event-sources */
ffbb1705 1033 spapr_dt_events(spapr, fdt);
ffb1e275 1034
3f5dabce
DG
1035 /* /rtas */
1036 spapr_dt_rtas(spapr, fdt);
1037
7c866c6a
DG
1038 /* /chosen */
1039 spapr_dt_chosen(spapr, fdt);
cf6e5223 1040
fca5f2dc
DG
1041 /* /hypervisor */
1042 if (kvm_enabled()) {
1043 spapr_dt_hypervisor(spapr, fdt);
1044 }
1045
cf6e5223
DG
1046 /* Build memory reserve map */
1047 if (spapr->kernel_size) {
1048 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1049 }
1050 if (spapr->initrd_size) {
1051 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1052 }
1053
6787d27b
MR
1054 /* ibm,client-architecture-support updates */
1055 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1056 if (ret < 0) {
1057 error_report("couldn't setup CAS properties fdt");
1058 exit(1);
1059 }
1060
997b6cfc 1061 return fdt;
9fdf0c29
DG
1062}
1063
1064static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1065{
1066 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1067}
1068
1d1be34d
DG
1069static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1070 PowerPCCPU *cpu)
9fdf0c29 1071{
1b14670a
AF
1072 CPUPPCState *env = &cpu->env;
1073
8d04fb55
JK
1074 /* The TCG path should also be holding the BQL at this point */
1075 g_assert(qemu_mutex_iothread_locked());
1076
efcb9383
DG
1077 if (msr_pr) {
1078 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1079 env->gpr[3] = H_PRIVILEGE;
1080 } else {
aa100fa4 1081 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
efcb9383 1082 }
9fdf0c29
DG
1083}
1084
9861bb3e
SJS
1085static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1086{
1087 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1088
1089 return spapr->patb_entry;
1090}
1091
e6b8fd24
SMJ
1092#define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1093#define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1094#define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1095#define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1096#define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1097
715c5407
DG
1098/*
1099 * Get the fd to access the kernel htab, re-opening it if necessary
1100 */
1101static int get_htab_fd(sPAPRMachineState *spapr)
1102{
1103 if (spapr->htab_fd >= 0) {
1104 return spapr->htab_fd;
1105 }
1106
1107 spapr->htab_fd = kvmppc_get_htab_fd(false);
1108 if (spapr->htab_fd < 0) {
1109 error_report("Unable to open fd for reading hash table from KVM: %s",
1110 strerror(errno));
1111 }
1112
1113 return spapr->htab_fd;
1114}
1115
1116static void close_htab_fd(sPAPRMachineState *spapr)
1117{
1118 if (spapr->htab_fd >= 0) {
1119 close(spapr->htab_fd);
1120 }
1121 spapr->htab_fd = -1;
1122}
1123
e57ca75c
DG
1124static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1125{
1126 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1127
1128 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1129}
1130
1131static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1132 hwaddr ptex, int n)
1133{
1134 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1135 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1136
1137 if (!spapr->htab) {
1138 /*
1139 * HTAB is controlled by KVM. Fetch into temporary buffer
1140 */
1141 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1142 kvmppc_read_hptes(hptes, ptex, n);
1143 return hptes;
1144 }
1145
1146 /*
1147 * HTAB is controlled by QEMU. Just point to the internally
1148 * accessible PTEG.
1149 */
1150 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1151}
1152
1153static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1154 const ppc_hash_pte64_t *hptes,
1155 hwaddr ptex, int n)
1156{
1157 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1158
1159 if (!spapr->htab) {
1160 g_free((void *)hptes);
1161 }
1162
1163 /* Nothing to do for qemu managed HPT */
1164}
1165
1166static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1167 uint64_t pte0, uint64_t pte1)
1168{
1169 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1170 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1171
1172 if (!spapr->htab) {
1173 kvmppc_write_hpte(ptex, pte0, pte1);
1174 } else {
1175 stq_p(spapr->htab + offset, pte0);
1176 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1177 }
1178}
1179
8dfe8e7f
DG
1180static int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1181{
1182 int shift;
1183
1184 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1185 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1186 * that's much more than is needed for Linux guests */
1187 shift = ctz64(pow2ceil(ramsize)) - 7;
1188 shift = MAX(shift, 18); /* Minimum architected size */
1189 shift = MIN(shift, 46); /* Maximum architected size */
1190 return shift;
1191}
1192
c5f54f3e
DG
1193static void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1194 Error **errp)
7f763a5d 1195{
c5f54f3e
DG
1196 long rc;
1197
1198 /* Clean up any HPT info from a previous boot */
1199 g_free(spapr->htab);
1200 spapr->htab = NULL;
1201 spapr->htab_shift = 0;
1202 close_htab_fd(spapr);
1203
1204 rc = kvmppc_reset_htab(shift);
1205 if (rc < 0) {
1206 /* kernel-side HPT needed, but couldn't allocate one */
1207 error_setg_errno(errp, errno,
1208 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1209 shift);
1210 /* This is almost certainly fatal, but if the caller really
1211 * wants to carry on with shift == 0, it's welcome to try */
1212 } else if (rc > 0) {
1213 /* kernel-side HPT allocated */
1214 if (rc != shift) {
1215 error_setg(errp,
1216 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1217 shift, rc);
7735feda
BR
1218 }
1219
7f763a5d 1220 spapr->htab_shift = shift;
c18ad9a5 1221 spapr->htab = NULL;
b817772a 1222 } else {
c5f54f3e
DG
1223 /* kernel-side HPT not needed, allocate in userspace instead */
1224 size_t size = 1ULL << shift;
1225 int i;
b817772a 1226
c5f54f3e
DG
1227 spapr->htab = qemu_memalign(size, size);
1228 if (!spapr->htab) {
1229 error_setg_errno(errp, errno,
1230 "Could not allocate HPT of order %d", shift);
1231 return;
7735feda
BR
1232 }
1233
c5f54f3e
DG
1234 memset(spapr->htab, 0, size);
1235 spapr->htab_shift = shift;
e6b8fd24 1236
c5f54f3e
DG
1237 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1238 DIRTY_HPTE(HPTE(spapr->htab, i));
e6b8fd24 1239 }
7f763a5d 1240 }
9fdf0c29
DG
1241}
1242
4f01a637 1243static void find_unknown_sysbus_device(SysBusDevice *sbdev, void *opaque)
9e3f9733
AG
1244{
1245 bool matched = false;
1246
1247 if (object_dynamic_cast(OBJECT(sbdev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
1248 matched = true;
1249 }
1250
1251 if (!matched) {
1252 error_report("Device %s is not supported by this machine yet.",
1253 qdev_fw_name(DEVICE(sbdev)));
1254 exit(1);
1255 }
9e3f9733
AG
1256}
1257
c8787ad4 1258static void ppc_spapr_reset(void)
a3467baa 1259{
c5f54f3e
DG
1260 MachineState *machine = MACHINE(qdev_get_machine());
1261 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
182735ef 1262 PowerPCCPU *first_ppc_cpu;
b7d1f77a 1263 uint32_t rtas_limit;
cae172ab 1264 hwaddr rtas_addr, fdt_addr;
997b6cfc
DG
1265 void *fdt;
1266 int rc;
259186a7 1267
9e3f9733
AG
1268 /* Check for unknown sysbus devices */
1269 foreach_dynamic_sysbus_device(find_unknown_sysbus_device, NULL);
1270
9861bb3e
SJS
1271 spapr->patb_entry = 0;
1272
c5f54f3e
DG
1273 /* Allocate and/or reset the hash page table */
1274 spapr_reallocate_hpt(spapr,
1275 spapr_hpt_shift_for_ramsize(machine->maxram_size),
1276 &error_fatal);
1277
1278 /* Update the RMA size if necessary */
1279 if (spapr->vrma_adjust) {
1280 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(),
1281 spapr->htab_shift);
1282 }
a3467baa 1283
c8787ad4 1284 qemu_devices_reset();
a3467baa 1285
b7d1f77a
BH
1286 /*
1287 * We place the device tree and RTAS just below either the top of the RMA,
1288 * or just below 2GB, whichever is lowere, so that it can be
1289 * processed with 32-bit real mode code if necessary
1290 */
1291 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
cae172ab
DG
1292 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1293 fdt_addr = rtas_addr - FDT_MAX_SIZE;
b7d1f77a 1294
6787d27b
MR
1295 /* if this reset wasn't generated by CAS, we should reset our
1296 * negotiated options and start from scratch */
1297 if (!spapr->cas_reboot) {
1298 spapr_ovec_cleanup(spapr->ov5_cas);
1299 spapr->ov5_cas = spapr_ovec_new();
1300 }
1301
cae172ab 1302 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
a3467baa 1303
2cac78c1 1304 spapr_load_rtas(spapr, fdt, rtas_addr);
b7d1f77a 1305
997b6cfc
DG
1306 rc = fdt_pack(fdt);
1307
1308 /* Should only fail if we've built a corrupted tree */
1309 assert(rc == 0);
1310
1311 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1312 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1313 fdt_totalsize(fdt), FDT_MAX_SIZE);
1314 exit(1);
1315 }
1316
1317 /* Load the fdt */
1318 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
cae172ab 1319 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
997b6cfc
DG
1320 g_free(fdt);
1321
a3467baa 1322 /* Set up the entry state */
182735ef 1323 first_ppc_cpu = POWERPC_CPU(first_cpu);
cae172ab 1324 first_ppc_cpu->env.gpr[3] = fdt_addr;
182735ef
AF
1325 first_ppc_cpu->env.gpr[5] = 0;
1326 first_cpu->halted = 0;
1b718907 1327 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
a3467baa 1328
6787d27b 1329 spapr->cas_reboot = false;
a3467baa
DG
1330}
1331
28e02042 1332static void spapr_create_nvram(sPAPRMachineState *spapr)
639e8102 1333{
2ff3de68 1334 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
3978b863 1335 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
639e8102 1336
3978b863 1337 if (dinfo) {
6231a6da
MA
1338 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1339 &error_fatal);
639e8102
DG
1340 }
1341
1342 qdev_init_nofail(dev);
1343
1344 spapr->nvram = (struct sPAPRNVRAM *)dev;
1345}
1346
28e02042 1347static void spapr_rtc_create(sPAPRMachineState *spapr)
28df36a1 1348{
147ff807
CLG
1349 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1350 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1351 &error_fatal);
1352 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1353 &error_fatal);
1354 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1355 "date", &error_fatal);
28df36a1
DG
1356}
1357
8c57b867 1358/* Returns whether we want to use VGA or not */
14c6a894 1359static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
f28359d8 1360{
8c57b867 1361 switch (vga_interface_type) {
8c57b867 1362 case VGA_NONE:
7effdaa3
MW
1363 return false;
1364 case VGA_DEVICE:
1365 return true;
1ddcae82 1366 case VGA_STD:
b798c190 1367 case VGA_VIRTIO:
1ddcae82 1368 return pci_vga_init(pci_bus) != NULL;
8c57b867 1369 default:
14c6a894
DG
1370 error_setg(errp,
1371 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1372 return false;
f28359d8 1373 }
f28359d8
LZ
1374}
1375
880ae7de
DG
1376static int spapr_post_load(void *opaque, int version_id)
1377{
28e02042 1378 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
880ae7de
DG
1379 int err = 0;
1380
a7ff1212
CLG
1381 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1382 int i;
1383 for (i = 0; i < spapr->nr_servers; i++) {
1384 icp_resend(&spapr->icps[i]);
1385 }
1386 }
1387
631b22ea 1388 /* In earlier versions, there was no separate qdev for the PAPR
880ae7de
DG
1389 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1390 * So when migrating from those versions, poke the incoming offset
1391 * value into the RTC device */
1392 if (version_id < 3) {
147ff807 1393 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
880ae7de
DG
1394 }
1395
1396 return err;
1397}
1398
1399static bool version_before_3(void *opaque, int version_id)
1400{
1401 return version_id < 3;
1402}
1403
62ef3760
MR
1404static bool spapr_ov5_cas_needed(void *opaque)
1405{
1406 sPAPRMachineState *spapr = opaque;
1407 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1408 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1409 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1410 bool cas_needed;
1411
1412 /* Prior to the introduction of sPAPROptionVector, we had two option
1413 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1414 * Both of these options encode machine topology into the device-tree
1415 * in such a way that the now-booted OS should still be able to interact
1416 * appropriately with QEMU regardless of what options were actually
1417 * negotiatied on the source side.
1418 *
1419 * As such, we can avoid migrating the CAS-negotiated options if these
1420 * are the only options available on the current machine/platform.
1421 * Since these are the only options available for pseries-2.7 and
1422 * earlier, this allows us to maintain old->new/new->old migration
1423 * compatibility.
1424 *
1425 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1426 * via default pseries-2.8 machines and explicit command-line parameters.
1427 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1428 * of the actual CAS-negotiated values to continue working properly. For
1429 * example, availability of memory unplug depends on knowing whether
1430 * OV5_HP_EVT was negotiated via CAS.
1431 *
1432 * Thus, for any cases where the set of available CAS-negotiatable
1433 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1434 * include the CAS-negotiated options in the migration stream.
1435 */
1436 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1437 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1438
1439 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1440 * the mask itself since in the future it's possible "legacy" bits may be
1441 * removed via machine options, which could generate a false positive
1442 * that breaks migration.
1443 */
1444 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1445 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1446
1447 spapr_ovec_cleanup(ov5_mask);
1448 spapr_ovec_cleanup(ov5_legacy);
1449 spapr_ovec_cleanup(ov5_removed);
1450
1451 return cas_needed;
1452}
1453
1454static const VMStateDescription vmstate_spapr_ov5_cas = {
1455 .name = "spapr_option_vector_ov5_cas",
1456 .version_id = 1,
1457 .minimum_version_id = 1,
1458 .needed = spapr_ov5_cas_needed,
1459 .fields = (VMStateField[]) {
1460 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1461 vmstate_spapr_ovec, sPAPROptionVector),
1462 VMSTATE_END_OF_LIST()
1463 },
1464};
1465
9861bb3e
SJS
1466static bool spapr_patb_entry_needed(void *opaque)
1467{
1468 sPAPRMachineState *spapr = opaque;
1469
1470 return !!spapr->patb_entry;
1471}
1472
1473static const VMStateDescription vmstate_spapr_patb_entry = {
1474 .name = "spapr_patb_entry",
1475 .version_id = 1,
1476 .minimum_version_id = 1,
1477 .needed = spapr_patb_entry_needed,
1478 .fields = (VMStateField[]) {
1479 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1480 VMSTATE_END_OF_LIST()
1481 },
1482};
1483
4be21d56
DG
1484static const VMStateDescription vmstate_spapr = {
1485 .name = "spapr",
880ae7de 1486 .version_id = 3,
4be21d56 1487 .minimum_version_id = 1,
880ae7de 1488 .post_load = spapr_post_load,
3aff6c2f 1489 .fields = (VMStateField[]) {
880ae7de
DG
1490 /* used to be @next_irq */
1491 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
4be21d56
DG
1492
1493 /* RTC offset */
28e02042 1494 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
880ae7de 1495
28e02042 1496 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
4be21d56
DG
1497 VMSTATE_END_OF_LIST()
1498 },
62ef3760
MR
1499 .subsections = (const VMStateDescription*[]) {
1500 &vmstate_spapr_ov5_cas,
9861bb3e 1501 &vmstate_spapr_patb_entry,
62ef3760
MR
1502 NULL
1503 }
4be21d56
DG
1504};
1505
4be21d56
DG
1506static int htab_save_setup(QEMUFile *f, void *opaque)
1507{
28e02042 1508 sPAPRMachineState *spapr = opaque;
4be21d56 1509
4be21d56
DG
1510 /* "Iteration" header */
1511 qemu_put_be32(f, spapr->htab_shift);
1512
e68cb8b4
AK
1513 if (spapr->htab) {
1514 spapr->htab_save_index = 0;
1515 spapr->htab_first_pass = true;
1516 } else {
1517 assert(kvm_enabled());
e68cb8b4
AK
1518 }
1519
1520
4be21d56
DG
1521 return 0;
1522}
1523
28e02042 1524static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
4be21d56
DG
1525 int64_t max_ns)
1526{
378bc217 1527 bool has_timeout = max_ns != -1;
4be21d56
DG
1528 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1529 int index = spapr->htab_save_index;
bc72ad67 1530 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1531
1532 assert(spapr->htab_first_pass);
1533
1534 do {
1535 int chunkstart;
1536
1537 /* Consume invalid HPTEs */
1538 while ((index < htabslots)
1539 && !HPTE_VALID(HPTE(spapr->htab, index))) {
4be21d56 1540 CLEAN_HPTE(HPTE(spapr->htab, index));
24ec2863 1541 index++;
4be21d56
DG
1542 }
1543
1544 /* Consume valid HPTEs */
1545 chunkstart = index;
338c25b6 1546 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56 1547 && HPTE_VALID(HPTE(spapr->htab, index))) {
4be21d56 1548 CLEAN_HPTE(HPTE(spapr->htab, index));
24ec2863 1549 index++;
4be21d56
DG
1550 }
1551
1552 if (index > chunkstart) {
1553 int n_valid = index - chunkstart;
1554
1555 qemu_put_be32(f, chunkstart);
1556 qemu_put_be16(f, n_valid);
1557 qemu_put_be16(f, 0);
1558 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1559 HASH_PTE_SIZE_64 * n_valid);
1560
378bc217
DG
1561 if (has_timeout &&
1562 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1563 break;
1564 }
1565 }
1566 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1567
1568 if (index >= htabslots) {
1569 assert(index == htabslots);
1570 index = 0;
1571 spapr->htab_first_pass = false;
1572 }
1573 spapr->htab_save_index = index;
1574}
1575
28e02042 1576static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
e68cb8b4 1577 int64_t max_ns)
4be21d56
DG
1578{
1579 bool final = max_ns < 0;
1580 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1581 int examined = 0, sent = 0;
1582 int index = spapr->htab_save_index;
bc72ad67 1583 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
4be21d56
DG
1584
1585 assert(!spapr->htab_first_pass);
1586
1587 do {
1588 int chunkstart, invalidstart;
1589
1590 /* Consume non-dirty HPTEs */
1591 while ((index < htabslots)
1592 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1593 index++;
1594 examined++;
1595 }
1596
1597 chunkstart = index;
1598 /* Consume valid dirty HPTEs */
338c25b6 1599 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
4be21d56
DG
1600 && HPTE_DIRTY(HPTE(spapr->htab, index))
1601 && HPTE_VALID(HPTE(spapr->htab, index))) {
1602 CLEAN_HPTE(HPTE(spapr->htab, index));
1603 index++;
1604 examined++;
1605 }
1606
1607 invalidstart = index;
1608 /* Consume invalid dirty HPTEs */
338c25b6 1609 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
4be21d56
DG
1610 && HPTE_DIRTY(HPTE(spapr->htab, index))
1611 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1612 CLEAN_HPTE(HPTE(spapr->htab, index));
1613 index++;
1614 examined++;
1615 }
1616
1617 if (index > chunkstart) {
1618 int n_valid = invalidstart - chunkstart;
1619 int n_invalid = index - invalidstart;
1620
1621 qemu_put_be32(f, chunkstart);
1622 qemu_put_be16(f, n_valid);
1623 qemu_put_be16(f, n_invalid);
1624 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1625 HASH_PTE_SIZE_64 * n_valid);
1626 sent += index - chunkstart;
1627
bc72ad67 1628 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
4be21d56
DG
1629 break;
1630 }
1631 }
1632
1633 if (examined >= htabslots) {
1634 break;
1635 }
1636
1637 if (index >= htabslots) {
1638 assert(index == htabslots);
1639 index = 0;
1640 }
1641 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1642
1643 if (index >= htabslots) {
1644 assert(index == htabslots);
1645 index = 0;
1646 }
1647
1648 spapr->htab_save_index = index;
1649
e68cb8b4 1650 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
4be21d56
DG
1651}
1652
e68cb8b4
AK
1653#define MAX_ITERATION_NS 5000000 /* 5 ms */
1654#define MAX_KVM_BUF_SIZE 2048
1655
4be21d56
DG
1656static int htab_save_iterate(QEMUFile *f, void *opaque)
1657{
28e02042 1658 sPAPRMachineState *spapr = opaque;
715c5407 1659 int fd;
e68cb8b4 1660 int rc = 0;
4be21d56
DG
1661
1662 /* Iteration header */
1663 qemu_put_be32(f, 0);
1664
e68cb8b4
AK
1665 if (!spapr->htab) {
1666 assert(kvm_enabled());
1667
715c5407
DG
1668 fd = get_htab_fd(spapr);
1669 if (fd < 0) {
1670 return fd;
01a57972
SMJ
1671 }
1672
715c5407 1673 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
e68cb8b4
AK
1674 if (rc < 0) {
1675 return rc;
1676 }
1677 } else if (spapr->htab_first_pass) {
4be21d56
DG
1678 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1679 } else {
e68cb8b4 1680 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
4be21d56
DG
1681 }
1682
1683 /* End marker */
1684 qemu_put_be32(f, 0);
1685 qemu_put_be16(f, 0);
1686 qemu_put_be16(f, 0);
1687
e68cb8b4 1688 return rc;
4be21d56
DG
1689}
1690
1691static int htab_save_complete(QEMUFile *f, void *opaque)
1692{
28e02042 1693 sPAPRMachineState *spapr = opaque;
715c5407 1694 int fd;
4be21d56
DG
1695
1696 /* Iteration header */
1697 qemu_put_be32(f, 0);
1698
e68cb8b4
AK
1699 if (!spapr->htab) {
1700 int rc;
1701
1702 assert(kvm_enabled());
1703
715c5407
DG
1704 fd = get_htab_fd(spapr);
1705 if (fd < 0) {
1706 return fd;
01a57972
SMJ
1707 }
1708
715c5407 1709 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
e68cb8b4
AK
1710 if (rc < 0) {
1711 return rc;
1712 }
e68cb8b4 1713 } else {
378bc217
DG
1714 if (spapr->htab_first_pass) {
1715 htab_save_first_pass(f, spapr, -1);
1716 }
e68cb8b4
AK
1717 htab_save_later_pass(f, spapr, -1);
1718 }
4be21d56
DG
1719
1720 /* End marker */
1721 qemu_put_be32(f, 0);
1722 qemu_put_be16(f, 0);
1723 qemu_put_be16(f, 0);
1724
1725 return 0;
1726}
1727
1728static int htab_load(QEMUFile *f, void *opaque, int version_id)
1729{
28e02042 1730 sPAPRMachineState *spapr = opaque;
4be21d56 1731 uint32_t section_hdr;
e68cb8b4 1732 int fd = -1;
4be21d56
DG
1733
1734 if (version_id < 1 || version_id > 1) {
98a5d100 1735 error_report("htab_load() bad version");
4be21d56
DG
1736 return -EINVAL;
1737 }
1738
1739 section_hdr = qemu_get_be32(f);
1740
1741 if (section_hdr) {
9897e462 1742 Error *local_err = NULL;
c5f54f3e
DG
1743
1744 /* First section gives the htab size */
1745 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
1746 if (local_err) {
1747 error_report_err(local_err);
4be21d56
DG
1748 return -EINVAL;
1749 }
1750 return 0;
1751 }
1752
e68cb8b4
AK
1753 if (!spapr->htab) {
1754 assert(kvm_enabled());
1755
1756 fd = kvmppc_get_htab_fd(true);
1757 if (fd < 0) {
98a5d100
DG
1758 error_report("Unable to open fd to restore KVM hash table: %s",
1759 strerror(errno));
e68cb8b4
AK
1760 }
1761 }
1762
4be21d56
DG
1763 while (true) {
1764 uint32_t index;
1765 uint16_t n_valid, n_invalid;
1766
1767 index = qemu_get_be32(f);
1768 n_valid = qemu_get_be16(f);
1769 n_invalid = qemu_get_be16(f);
1770
1771 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
1772 /* End of Stream */
1773 break;
1774 }
1775
e68cb8b4 1776 if ((index + n_valid + n_invalid) >
4be21d56
DG
1777 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
1778 /* Bad index in stream */
98a5d100
DG
1779 error_report(
1780 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
1781 index, n_valid, n_invalid, spapr->htab_shift);
4be21d56
DG
1782 return -EINVAL;
1783 }
1784
e68cb8b4
AK
1785 if (spapr->htab) {
1786 if (n_valid) {
1787 qemu_get_buffer(f, HPTE(spapr->htab, index),
1788 HASH_PTE_SIZE_64 * n_valid);
1789 }
1790 if (n_invalid) {
1791 memset(HPTE(spapr->htab, index + n_valid), 0,
1792 HASH_PTE_SIZE_64 * n_invalid);
1793 }
1794 } else {
1795 int rc;
1796
1797 assert(fd >= 0);
1798
1799 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
1800 if (rc < 0) {
1801 return rc;
1802 }
4be21d56
DG
1803 }
1804 }
1805
e68cb8b4
AK
1806 if (!spapr->htab) {
1807 assert(fd >= 0);
1808 close(fd);
1809 }
1810
4be21d56
DG
1811 return 0;
1812}
1813
c573fc03
TH
1814static void htab_cleanup(void *opaque)
1815{
1816 sPAPRMachineState *spapr = opaque;
1817
1818 close_htab_fd(spapr);
1819}
1820
4be21d56
DG
1821static SaveVMHandlers savevm_htab_handlers = {
1822 .save_live_setup = htab_save_setup,
1823 .save_live_iterate = htab_save_iterate,
a3e06c3d 1824 .save_live_complete_precopy = htab_save_complete,
c573fc03 1825 .cleanup = htab_cleanup,
4be21d56
DG
1826 .load_state = htab_load,
1827};
1828
5b2128d2
AG
1829static void spapr_boot_set(void *opaque, const char *boot_device,
1830 Error **errp)
1831{
1832 MachineState *machine = MACHINE(qdev_get_machine());
1833 machine->boot_order = g_strdup(boot_device);
1834}
1835
224245bf
DG
1836/*
1837 * Reset routine for LMB DR devices.
1838 *
1839 * Unlike PCI DR devices, LMB DR devices explicitly register this reset
1840 * routine. Reset for PCI DR devices will be handled by PHB reset routine
1841 * when it walks all its children devices. LMB devices reset occurs
1842 * as part of spapr_ppc_reset().
1843 */
1844static void spapr_drc_reset(void *opaque)
1845{
1846 sPAPRDRConnector *drc = opaque;
1847 DeviceState *d = DEVICE(drc);
1848
1849 if (d) {
1850 device_reset(d);
1851 }
1852}
1853
1854static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
1855{
1856 MachineState *machine = MACHINE(spapr);
1857 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
e8f986fc 1858 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
224245bf
DG
1859 int i;
1860
1861 for (i = 0; i < nr_lmbs; i++) {
1862 sPAPRDRConnector *drc;
1863 uint64_t addr;
1864
e8f986fc 1865 addr = i * lmb_size + spapr->hotplug_memory.base;
224245bf
DG
1866 drc = spapr_dr_connector_new(OBJECT(spapr), SPAPR_DR_CONNECTOR_TYPE_LMB,
1867 addr/lmb_size);
1868 qemu_register_reset(spapr_drc_reset, drc);
1869 }
1870}
1871
1872/*
1873 * If RAM size, maxmem size and individual node mem sizes aren't aligned
1874 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
1875 * since we can't support such unaligned sizes with DRCONF_MEMORY.
1876 */
7c150d6f 1877static void spapr_validate_node_memory(MachineState *machine, Error **errp)
224245bf
DG
1878{
1879 int i;
1880
7c150d6f
DG
1881 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1882 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
1883 " is not aligned to %llu MiB",
1884 machine->ram_size,
1885 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1886 return;
1887 }
1888
1889 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
1890 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
1891 " is not aligned to %llu MiB",
1892 machine->ram_size,
1893 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1894 return;
224245bf
DG
1895 }
1896
1897 for (i = 0; i < nb_numa_nodes; i++) {
1898 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
7c150d6f
DG
1899 error_setg(errp,
1900 "Node %d memory size 0x%" PRIx64
1901 " is not aligned to %llu MiB",
1902 i, numa_info[i].node_mem,
1903 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
1904 return;
224245bf
DG
1905 }
1906 }
1907}
1908
535455fd
IM
1909/* find cpu slot in machine->possible_cpus by core_id */
1910static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
1911{
1912 int index = id / smp_threads;
1913
1914 if (index >= ms->possible_cpus->len) {
1915 return NULL;
1916 }
1917 if (idx) {
1918 *idx = index;
1919 }
1920 return &ms->possible_cpus->cpus[index];
1921}
1922
0c86d0fd
DG
1923static void spapr_init_cpus(sPAPRMachineState *spapr)
1924{
1925 MachineState *machine = MACHINE(spapr);
1926 MachineClass *mc = MACHINE_GET_CLASS(machine);
1927 char *type = spapr_get_cpu_core_type(machine->cpu_model);
1928 int smt = kvmppc_smt_threads();
535455fd
IM
1929 const CPUArchIdList *possible_cpus;
1930 int boot_cores_nr = smp_cpus / smp_threads;
0c86d0fd
DG
1931 int i;
1932
1933 if (!type) {
1934 error_report("Unable to find sPAPR CPU Core definition");
1935 exit(1);
1936 }
1937
535455fd 1938 possible_cpus = mc->possible_cpu_arch_ids(machine);
c5514d0e 1939 if (mc->has_hotpluggable_cpus) {
0c86d0fd
DG
1940 if (smp_cpus % smp_threads) {
1941 error_report("smp_cpus (%u) must be multiple of threads (%u)",
1942 smp_cpus, smp_threads);
1943 exit(1);
1944 }
1945 if (max_cpus % smp_threads) {
1946 error_report("max_cpus (%u) must be multiple of threads (%u)",
1947 max_cpus, smp_threads);
1948 exit(1);
1949 }
0c86d0fd
DG
1950 } else {
1951 if (max_cpus != smp_cpus) {
1952 error_report("This machine version does not support CPU hotplug");
1953 exit(1);
1954 }
535455fd 1955 boot_cores_nr = possible_cpus->len;
0c86d0fd
DG
1956 }
1957
535455fd 1958 for (i = 0; i < possible_cpus->len; i++) {
0c86d0fd
DG
1959 int core_id = i * smp_threads;
1960
c5514d0e 1961 if (mc->has_hotpluggable_cpus) {
0c86d0fd
DG
1962 sPAPRDRConnector *drc =
1963 spapr_dr_connector_new(OBJECT(spapr),
1964 SPAPR_DR_CONNECTOR_TYPE_CPU,
1965 (core_id / smp_threads) * smt);
1966
1967 qemu_register_reset(spapr_drc_reset, drc);
1968 }
1969
535455fd 1970 if (i < boot_cores_nr) {
0c86d0fd
DG
1971 Object *core = object_new(type);
1972 int nr_threads = smp_threads;
1973
1974 /* Handle the partially filled core for older machine types */
1975 if ((i + 1) * smp_threads >= smp_cpus) {
1976 nr_threads = smp_cpus - i * smp_threads;
1977 }
1978
1979 object_property_set_int(core, nr_threads, "nr-threads",
1980 &error_fatal);
1981 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
1982 &error_fatal);
1983 object_property_set_bool(core, true, "realized", &error_fatal);
1984 }
1985 }
1986 g_free(type);
1987}
1988
9fdf0c29 1989/* pSeries LPAR / sPAPR hardware init */
3ef96221 1990static void ppc_spapr_init(MachineState *machine)
9fdf0c29 1991{
28e02042 1992 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
224245bf 1993 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
3ef96221 1994 const char *kernel_filename = machine->kernel_filename;
3ef96221 1995 const char *initrd_filename = machine->initrd_filename;
8c9f64df 1996 PCIHostState *phb;
9fdf0c29 1997 int i;
890c2b77
AK
1998 MemoryRegion *sysmem = get_system_memory();
1999 MemoryRegion *ram = g_new(MemoryRegion, 1);
658fa66b
AK
2000 MemoryRegion *rma_region;
2001 void *rma = NULL;
a8170e5e 2002 hwaddr rma_alloc_size;
b082d65a 2003 hwaddr node0_size = spapr_node0_size();
b7d1f77a 2004 long load_limit, fw_size;
39ac8455 2005 char *filename;
94a94e4c 2006 int smt = kvmppc_smt_threads();
9fdf0c29 2007
226419d6 2008 msi_nonbroken = true;
0ee2c058 2009
d43b45e2
DG
2010 QLIST_INIT(&spapr->phbs);
2011
354ac20a 2012 /* Allocate RMA if necessary */
658fa66b 2013 rma_alloc_size = kvmppc_alloc_rma(&rma);
354ac20a
DG
2014
2015 if (rma_alloc_size == -1) {
730fce59 2016 error_report("Unable to create RMA");
354ac20a
DG
2017 exit(1);
2018 }
7f763a5d 2019
c4177479 2020 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
7f763a5d 2021 spapr->rma_size = rma_alloc_size;
354ac20a 2022 } else {
c4177479 2023 spapr->rma_size = node0_size;
7f763a5d
DG
2024
2025 /* With KVM, we don't actually know whether KVM supports an
2026 * unbounded RMA (PR KVM) or is limited by the hash table size
2027 * (HV KVM using VRMA), so we always assume the latter
2028 *
2029 * In that case, we also limit the initial allocations for RTAS
2030 * etc... to 256M since we have no way to know what the VRMA size
2031 * is going to be as it depends on the size of the hash table
2032 * isn't determined yet.
2033 */
2034 if (kvm_enabled()) {
2035 spapr->vrma_adjust = 1;
2036 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2037 }
912acdf4
BH
2038
2039 /* Actually we don't support unbounded RMA anymore since we
2040 * added proper emulation of HV mode. The max we can get is
2041 * 16G which also happens to be what we configure for PAPR
2042 * mode so make sure we don't do anything bigger than that
2043 */
2044 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
354ac20a
DG
2045 }
2046
c4177479 2047 if (spapr->rma_size > node0_size) {
d54e4d76
DG
2048 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2049 spapr->rma_size);
c4177479
AK
2050 exit(1);
2051 }
2052
b7d1f77a
BH
2053 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2054 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
9fdf0c29 2055
7b565160 2056 /* Set up Interrupt Controller before we create the VCPUs */
e6f7e110
CLG
2057 xics_system_init(machine, DIV_ROUND_UP(max_cpus * smt, smp_threads),
2058 XICS_IRQS_SPAPR, &error_fatal);
7b565160 2059
facdb8b6
MR
2060 /* Set up containers for ibm,client-set-architecture negotiated options */
2061 spapr->ov5 = spapr_ovec_new();
2062 spapr->ov5_cas = spapr_ovec_new();
2063
224245bf 2064 if (smc->dr_lmb_enabled) {
facdb8b6 2065 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
7c150d6f 2066 spapr_validate_node_memory(machine, &error_fatal);
224245bf
DG
2067 }
2068
417ece33
MR
2069 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2070
ffbb1705
MR
2071 /* advertise support for dedicated HP event source to guests */
2072 if (spapr->use_hotplug_event_source) {
2073 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2074 }
2075
9fdf0c29 2076 /* init CPUs */
19fb2c36 2077 if (machine->cpu_model == NULL) {
3daa4a9f 2078 machine->cpu_model = kvm_enabled() ? "host" : smc->tcg_default_cpu;
9fdf0c29 2079 }
94a94e4c 2080
e703d2f7
GK
2081 ppc_cpu_parse_features(machine->cpu_model);
2082
0c86d0fd 2083 spapr_init_cpus(spapr);
9fdf0c29 2084
026bfd89
DG
2085 if (kvm_enabled()) {
2086 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2087 kvmppc_enable_logical_ci_hcalls();
ef9971dd 2088 kvmppc_enable_set_mode_hcall();
5145ad4f
NW
2089
2090 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2091 kvmppc_enable_clear_ref_mod_hcalls();
026bfd89
DG
2092 }
2093
9fdf0c29 2094 /* allocate RAM */
f92f5da1 2095 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
fb164994 2096 machine->ram_size);
f92f5da1 2097 memory_region_add_subregion(sysmem, 0, ram);
9fdf0c29 2098
658fa66b
AK
2099 if (rma_alloc_size && rma) {
2100 rma_region = g_new(MemoryRegion, 1);
2101 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2102 rma_alloc_size, rma);
2103 vmstate_register_ram_global(rma_region);
2104 memory_region_add_subregion(sysmem, 0, rma_region);
2105 }
2106
4a1c9cf0
BR
2107 /* initialize hotplug memory address space */
2108 if (machine->ram_size < machine->maxram_size) {
2109 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
71c9a3dd
BR
2110 /*
2111 * Limit the number of hotpluggable memory slots to half the number
2112 * slots that KVM supports, leaving the other half for PCI and other
2113 * devices. However ensure that number of slots doesn't drop below 32.
2114 */
2115 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2116 SPAPR_MAX_RAM_SLOTS;
4a1c9cf0 2117
71c9a3dd
BR
2118 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2119 max_memslots = SPAPR_MAX_RAM_SLOTS;
2120 }
2121 if (machine->ram_slots > max_memslots) {
d54e4d76
DG
2122 error_report("Specified number of memory slots %"
2123 PRIu64" exceeds max supported %d",
71c9a3dd 2124 machine->ram_slots, max_memslots);
d54e4d76 2125 exit(1);
4a1c9cf0
BR
2126 }
2127
2128 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2129 SPAPR_HOTPLUG_MEM_ALIGN);
2130 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2131 "hotplug-memory", hotplug_mem_size);
2132 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2133 &spapr->hotplug_memory.mr);
2134 }
2135
224245bf
DG
2136 if (smc->dr_lmb_enabled) {
2137 spapr_create_lmb_dr_connectors(spapr);
2138 }
2139
39ac8455 2140 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
4c56440d 2141 if (!filename) {
730fce59 2142 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
4c56440d
SW
2143 exit(1);
2144 }
b7d1f77a 2145 spapr->rtas_size = get_image_size(filename);
8afc22a2
ZJ
2146 if (spapr->rtas_size < 0) {
2147 error_report("Could not get size of LPAR rtas '%s'", filename);
2148 exit(1);
2149 }
b7d1f77a
BH
2150 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2151 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
730fce59 2152 error_report("Could not load LPAR rtas '%s'", filename);
39ac8455
DG
2153 exit(1);
2154 }
4d8d5467 2155 if (spapr->rtas_size > RTAS_MAX_SIZE) {
730fce59
TH
2156 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2157 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
4d8d5467
BH
2158 exit(1);
2159 }
7267c094 2160 g_free(filename);
39ac8455 2161
ffbb1705 2162 /* Set up RTAS event infrastructure */
74d042e5
DG
2163 spapr_events_init(spapr);
2164
12f42174 2165 /* Set up the RTC RTAS interfaces */
28df36a1 2166 spapr_rtc_create(spapr);
12f42174 2167
b5cec4c5 2168 /* Set up VIO bus */
4040ab72
DG
2169 spapr->vio_bus = spapr_vio_bus_init();
2170
277f9acf 2171 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
4040ab72 2172 if (serial_hds[i]) {
d601fac4 2173 spapr_vty_create(spapr->vio_bus, serial_hds[i]);
4040ab72
DG
2174 }
2175 }
9fdf0c29 2176
639e8102
DG
2177 /* We always have at least the nvram device on VIO */
2178 spapr_create_nvram(spapr);
2179
3384f95c 2180 /* Set up PCI */
fa28f71b
AK
2181 spapr_pci_rtas_init();
2182
89dfd6e1 2183 phb = spapr_create_phb(spapr, 0);
3384f95c 2184
277f9acf 2185 for (i = 0; i < nb_nics; i++) {
8d90ad90
DG
2186 NICInfo *nd = &nd_table[i];
2187
2188 if (!nd->model) {
7267c094 2189 nd->model = g_strdup("ibmveth");
8d90ad90
DG
2190 }
2191
2192 if (strcmp(nd->model, "ibmveth") == 0) {
d601fac4 2193 spapr_vlan_create(spapr->vio_bus, nd);
8d90ad90 2194 } else {
29b358f9 2195 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
8d90ad90
DG
2196 }
2197 }
2198
6e270446 2199 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
d601fac4 2200 spapr_vscsi_create(spapr->vio_bus);
6e270446
BH
2201 }
2202
f28359d8 2203 /* Graphics */
14c6a894 2204 if (spapr_vga_init(phb->bus, &error_fatal)) {
3fc5acde 2205 spapr->has_graphics = true;
c6e76503 2206 machine->usb |= defaults_enabled() && !machine->usb_disabled;
f28359d8
LZ
2207 }
2208
4ee9ced9 2209 if (machine->usb) {
57040d45
TH
2210 if (smc->use_ohci_by_default) {
2211 pci_create_simple(phb->bus, -1, "pci-ohci");
2212 } else {
2213 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2214 }
c86580b8 2215
35139a59 2216 if (spapr->has_graphics) {
c86580b8
MA
2217 USBBus *usb_bus = usb_bus_find(-1);
2218
2219 usb_create_simple(usb_bus, "usb-kbd");
2220 usb_create_simple(usb_bus, "usb-mouse");
35139a59
DG
2221 }
2222 }
2223
7f763a5d 2224 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
d54e4d76
DG
2225 error_report(
2226 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2227 MIN_RMA_SLOF);
4d8d5467
BH
2228 exit(1);
2229 }
2230
9fdf0c29
DG
2231 if (kernel_filename) {
2232 uint64_t lowaddr = 0;
2233
a19f7fb0
DG
2234 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2235 NULL, NULL, &lowaddr, NULL, 1,
2236 PPC_ELF_MACHINE, 0, 0);
2237 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2238 spapr->kernel_size = load_elf(kernel_filename,
2239 translate_kernel_address, NULL, NULL,
2240 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2241 0, 0);
2242 spapr->kernel_le = spapr->kernel_size > 0;
16457e7f 2243 }
a19f7fb0
DG
2244 if (spapr->kernel_size < 0) {
2245 error_report("error loading %s: %s", kernel_filename,
2246 load_elf_strerror(spapr->kernel_size));
9fdf0c29
DG
2247 exit(1);
2248 }
2249
2250 /* load initrd */
2251 if (initrd_filename) {
4d8d5467
BH
2252 /* Try to locate the initrd in the gap between the kernel
2253 * and the firmware. Add a bit of space just in case
2254 */
a19f7fb0
DG
2255 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2256 + 0x1ffff) & ~0xffff;
2257 spapr->initrd_size = load_image_targphys(initrd_filename,
2258 spapr->initrd_base,
2259 load_limit
2260 - spapr->initrd_base);
2261 if (spapr->initrd_size < 0) {
d54e4d76
DG
2262 error_report("could not load initial ram disk '%s'",
2263 initrd_filename);
9fdf0c29
DG
2264 exit(1);
2265 }
9fdf0c29 2266 }
4d8d5467 2267 }
a3467baa 2268
8e7ea787
AF
2269 if (bios_name == NULL) {
2270 bios_name = FW_FILE_NAME;
2271 }
2272 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
4c56440d 2273 if (!filename) {
68fea5a0 2274 error_report("Could not find LPAR firmware '%s'", bios_name);
4c56440d
SW
2275 exit(1);
2276 }
4d8d5467 2277 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
68fea5a0
TH
2278 if (fw_size <= 0) {
2279 error_report("Could not load LPAR firmware '%s'", filename);
4d8d5467
BH
2280 exit(1);
2281 }
2282 g_free(filename);
4d8d5467 2283
28e02042
DG
2284 /* FIXME: Should register things through the MachineState's qdev
2285 * interface, this is a legacy from the sPAPREnvironment structure
2286 * which predated MachineState but had a similar function */
4be21d56
DG
2287 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2288 register_savevm_live(NULL, "spapr/htab", -1, 1,
2289 &savevm_htab_handlers, spapr);
2290
46503c2b
MR
2291 /* used by RTAS */
2292 QTAILQ_INIT(&spapr->ccs_list);
2293 qemu_register_reset(spapr_ccs_reset_hook, spapr);
2294
5b2128d2 2295 qemu_register_boot_set(spapr_boot_set, spapr);
42043e4f
LV
2296
2297 /* to stop and start vmclock */
2298 if (kvm_enabled()) {
2299 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2300 &spapr->tb);
2301 }
9fdf0c29
DG
2302}
2303
135a129a
AK
2304static int spapr_kvm_type(const char *vm_type)
2305{
2306 if (!vm_type) {
2307 return 0;
2308 }
2309
2310 if (!strcmp(vm_type, "HV")) {
2311 return 1;
2312 }
2313
2314 if (!strcmp(vm_type, "PR")) {
2315 return 2;
2316 }
2317
2318 error_report("Unknown kvm-type specified '%s'", vm_type);
2319 exit(1);
2320}
2321
71461b0f 2322/*
627b84f4 2323 * Implementation of an interface to adjust firmware path
71461b0f
AK
2324 * for the bootindex property handling.
2325 */
2326static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2327 DeviceState *dev)
2328{
2329#define CAST(type, obj, name) \
2330 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2331 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2332 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2333
2334 if (d) {
2335 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2336 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2337 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2338
2339 if (spapr) {
2340 /*
2341 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2342 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2343 * in the top 16 bits of the 64-bit LUN
2344 */
2345 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2346 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2347 (uint64_t)id << 48);
2348 } else if (virtio) {
2349 /*
2350 * We use SRP luns of the form 01000000 | (target << 8) | lun
2351 * in the top 32 bits of the 64-bit LUN
2352 * Note: the quote above is from SLOF and it is wrong,
2353 * the actual binding is:
2354 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2355 */
2356 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2357 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2358 (uint64_t)id << 32);
2359 } else if (usb) {
2360 /*
2361 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2362 * in the top 32 bits of the 64-bit LUN
2363 */
2364 unsigned usb_port = atoi(usb->port->path);
2365 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2366 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2367 (uint64_t)id << 32);
2368 }
2369 }
2370
b99260eb
TH
2371 /*
2372 * SLOF probes the USB devices, and if it recognizes that the device is a
2373 * storage device, it changes its name to "storage" instead of "usb-host",
2374 * and additionally adds a child node for the SCSI LUN, so the correct
2375 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2376 */
2377 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2378 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2379 if (usb_host_dev_is_scsi_storage(usbdev)) {
2380 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2381 }
2382 }
2383
71461b0f
AK
2384 if (phb) {
2385 /* Replace "pci" with "pci@800000020000000" */
2386 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2387 }
2388
2389 return NULL;
2390}
2391
23825581
EH
2392static char *spapr_get_kvm_type(Object *obj, Error **errp)
2393{
28e02042 2394 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2395
28e02042 2396 return g_strdup(spapr->kvm_type);
23825581
EH
2397}
2398
2399static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2400{
28e02042 2401 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
23825581 2402
28e02042
DG
2403 g_free(spapr->kvm_type);
2404 spapr->kvm_type = g_strdup(value);
23825581
EH
2405}
2406
f6229214
MR
2407static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2408{
2409 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2410
2411 return spapr->use_hotplug_event_source;
2412}
2413
2414static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2415 Error **errp)
2416{
2417 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2418
2419 spapr->use_hotplug_event_source = value;
2420}
2421
23825581
EH
2422static void spapr_machine_initfn(Object *obj)
2423{
715c5407
DG
2424 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2425
2426 spapr->htab_fd = -1;
f6229214 2427 spapr->use_hotplug_event_source = true;
23825581
EH
2428 object_property_add_str(obj, "kvm-type",
2429 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
49d2e648
MA
2430 object_property_set_description(obj, "kvm-type",
2431 "Specifies the KVM virtualization mode (HV, PR)",
2432 NULL);
f6229214
MR
2433 object_property_add_bool(obj, "modern-hotplug-events",
2434 spapr_get_modern_hotplug_events,
2435 spapr_set_modern_hotplug_events,
2436 NULL);
2437 object_property_set_description(obj, "modern-hotplug-events",
2438 "Use dedicated hotplug event mechanism in"
2439 " place of standard EPOW events when possible"
2440 " (required for memory hot-unplug support)",
2441 NULL);
23825581
EH
2442}
2443
87bbdd9c
DG
2444static void spapr_machine_finalizefn(Object *obj)
2445{
2446 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2447
2448 g_free(spapr->kvm_type);
2449}
2450
1c7ad77e 2451void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
34316482 2452{
34316482
AK
2453 cpu_synchronize_state(cs);
2454 ppc_cpu_do_system_reset(cs);
2455}
2456
2457static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2458{
2459 CPUState *cs;
2460
2461 CPU_FOREACH(cs) {
1c7ad77e 2462 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
34316482
AK
2463 }
2464}
2465
79b78a6b
MR
2466static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2467 uint32_t node, bool dedicated_hp_event_source,
2468 Error **errp)
c20d332a
BR
2469{
2470 sPAPRDRConnector *drc;
2471 sPAPRDRConnectorClass *drck;
2472 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2473 int i, fdt_offset, fdt_size;
2474 void *fdt;
79b78a6b 2475 uint64_t addr = addr_start;
c20d332a 2476
c20d332a
BR
2477 for (i = 0; i < nr_lmbs; i++) {
2478 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2479 addr/SPAPR_MEMORY_BLOCK_SIZE);
2480 g_assert(drc);
2481
2482 fdt = create_device_tree(&fdt_size);
2483 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2484 SPAPR_MEMORY_BLOCK_SIZE);
2485
2486 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2487 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, errp);
c20d332a 2488 addr += SPAPR_MEMORY_BLOCK_SIZE;
5c0139a8
MR
2489 if (!dev->hotplugged) {
2490 /* guests expect coldplugged LMBs to be pre-allocated */
2491 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2492 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2493 }
c20d332a 2494 }
5dd5238c
JD
2495 /* send hotplug notification to the
2496 * guest only in case of hotplugged memory
2497 */
2498 if (dev->hotplugged) {
79b78a6b
MR
2499 if (dedicated_hp_event_source) {
2500 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2501 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2502 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2503 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2504 nr_lmbs,
2505 drck->get_index(drc));
2506 } else {
2507 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
2508 nr_lmbs);
2509 }
5dd5238c 2510 }
c20d332a
BR
2511}
2512
2513static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2514 uint32_t node, Error **errp)
2515{
2516 Error *local_err = NULL;
2517 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2518 PCDIMMDevice *dimm = PC_DIMM(dev);
2519 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2520 MemoryRegion *mr = ddc->get_memory_region(dimm);
2521 uint64_t align = memory_region_get_alignment(mr);
2522 uint64_t size = memory_region_size(mr);
2523 uint64_t addr;
df587133 2524 char *mem_dev;
c20d332a
BR
2525
2526 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
2527 error_setg(&local_err, "Hotplugged memory size must be a multiple of "
2528 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE/M_BYTE);
2529 goto out;
2530 }
2531
df587133
TH
2532 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
2533 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
2534 error_setg(&local_err, "Memory backend has bad page size. "
2535 "Use 'memory-backend-file' with correct mem-path.");
2536 goto out;
2537 }
2538
d6a9b0b8 2539 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
c20d332a
BR
2540 if (local_err) {
2541 goto out;
2542 }
2543
2544 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2545 if (local_err) {
2546 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2547 goto out;
2548 }
2549
79b78a6b
MR
2550 spapr_add_lmbs(dev, addr, size, node,
2551 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
2552 &error_abort);
c20d332a
BR
2553
2554out:
2555 error_propagate(errp, local_err);
2556}
2557
cf632463
BR
2558typedef struct sPAPRDIMMState {
2559 uint32_t nr_lmbs;
2560} sPAPRDIMMState;
2561
2562static void spapr_lmb_release(DeviceState *dev, void *opaque)
2563{
2564 sPAPRDIMMState *ds = (sPAPRDIMMState *)opaque;
2565 HotplugHandler *hotplug_ctrl;
2566
2567 if (--ds->nr_lmbs) {
2568 return;
2569 }
2570
2571 g_free(ds);
2572
2573 /*
2574 * Now that all the LMBs have been removed by the guest, call the
2575 * pc-dimm unplug handler to cleanup up the pc-dimm device.
2576 */
2577 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2578 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2579}
2580
2581static void spapr_del_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2582 Error **errp)
2583{
2584 sPAPRDRConnector *drc;
2585 sPAPRDRConnectorClass *drck;
2586 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
2587 int i;
2588 sPAPRDIMMState *ds = g_malloc0(sizeof(sPAPRDIMMState));
2589 uint64_t addr = addr_start;
2590
2591 ds->nr_lmbs = nr_lmbs;
2592 for (i = 0; i < nr_lmbs; i++) {
2593 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2594 addr / SPAPR_MEMORY_BLOCK_SIZE);
2595 g_assert(drc);
2596
2597 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2598 drck->detach(drc, dev, spapr_lmb_release, ds, errp);
2599 addr += SPAPR_MEMORY_BLOCK_SIZE;
2600 }
2601
2602 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_LMB,
2603 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2604 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2605 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2606 nr_lmbs,
2607 drck->get_index(drc));
2608}
2609
2610static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2611 Error **errp)
2612{
2613 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
2614 PCDIMMDevice *dimm = PC_DIMM(dev);
2615 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2616 MemoryRegion *mr = ddc->get_memory_region(dimm);
2617
2618 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
2619 object_unparent(OBJECT(dev));
2620}
2621
2622static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
2623 DeviceState *dev, Error **errp)
2624{
2625 Error *local_err = NULL;
2626 PCDIMMDevice *dimm = PC_DIMM(dev);
2627 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
2628 MemoryRegion *mr = ddc->get_memory_region(dimm);
2629 uint64_t size = memory_region_size(mr);
2630 uint64_t addr;
2631
2632 addr = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, &local_err);
2633 if (local_err) {
2634 goto out;
2635 }
2636
2637 spapr_del_lmbs(dev, addr, size, &error_abort);
2638out:
2639 error_propagate(errp, local_err);
2640}
2641
af81cf32
BR
2642void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
2643 sPAPRMachineState *spapr)
2644{
2645 PowerPCCPU *cpu = POWERPC_CPU(cs);
2646 DeviceClass *dc = DEVICE_GET_CLASS(cs);
2647 int id = ppc_get_vcpu_dt_id(cpu);
2648 void *fdt;
2649 int offset, fdt_size;
2650 char *nodename;
2651
2652 fdt = create_device_tree(&fdt_size);
2653 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
2654 offset = fdt_add_subnode(fdt, 0, nodename);
2655
2656 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
2657 g_free(nodename);
2658
2659 *fdt_offset = offset;
2660 return fdt;
2661}
2662
115debf2
IM
2663static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev,
2664 Error **errp)
ff9006dd 2665{
535455fd 2666 MachineState *ms = MACHINE(qdev_get_machine());
ff9006dd 2667 CPUCore *cc = CPU_CORE(dev);
535455fd 2668 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
ff9006dd 2669
535455fd 2670 core_slot->cpu = NULL;
ff9006dd
IM
2671 object_unparent(OBJECT(dev));
2672}
2673
115debf2
IM
2674static void spapr_core_release(DeviceState *dev, void *opaque)
2675{
2676 HotplugHandler *hotplug_ctrl;
2677
2678 hotplug_ctrl = qdev_get_hotplug_handler(dev);
2679 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
2680}
2681
2682static
2683void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
2684 Error **errp)
ff9006dd 2685{
535455fd
IM
2686 int index;
2687 sPAPRDRConnector *drc;
ff9006dd
IM
2688 sPAPRDRConnectorClass *drck;
2689 Error *local_err = NULL;
535455fd
IM
2690 CPUCore *cc = CPU_CORE(dev);
2691 int smt = kvmppc_smt_threads();
ff9006dd 2692
535455fd
IM
2693 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
2694 error_setg(errp, "Unable to find CPU core with core-id: %d",
2695 cc->core_id);
2696 return;
2697 }
ff9006dd
IM
2698 if (index == 0) {
2699 error_setg(errp, "Boot CPU core may not be unplugged");
2700 return;
2701 }
2702
535455fd 2703 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
ff9006dd
IM
2704 g_assert(drc);
2705
2706 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2707 drck->detach(drc, dev, spapr_core_release, NULL, &local_err);
2708 if (local_err) {
2709 error_propagate(errp, local_err);
2710 return;
2711 }
2712
2713 spapr_hotplug_req_remove_by_index(drc);
2714}
2715
2716static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2717 Error **errp)
2718{
2719 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
2720 MachineClass *mc = MACHINE_GET_CLASS(spapr);
2721 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
2722 CPUCore *cc = CPU_CORE(dev);
2723 CPUState *cs = CPU(core->threads);
2724 sPAPRDRConnector *drc;
2725 Error *local_err = NULL;
2726 void *fdt = NULL;
2727 int fdt_offset = 0;
ff9006dd 2728 int smt = kvmppc_smt_threads();
535455fd
IM
2729 CPUArchId *core_slot;
2730 int index;
ff9006dd 2731
535455fd
IM
2732 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2733 if (!core_slot) {
2734 error_setg(errp, "Unable to find CPU core with core-id: %d",
2735 cc->core_id);
2736 return;
2737 }
ff9006dd 2738 drc = spapr_dr_connector_by_id(SPAPR_DR_CONNECTOR_TYPE_CPU, index * smt);
ff9006dd 2739
c5514d0e 2740 g_assert(drc || !mc->has_hotpluggable_cpus);
ff9006dd
IM
2741
2742 /*
2743 * Setup CPU DT entries only for hotplugged CPUs. For boot time or
2744 * coldplugged CPUs DT entries are setup in spapr_build_fdt().
2745 */
2746 if (dev->hotplugged) {
2747 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
2748 }
2749
2750 if (drc) {
2751 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2752 drck->attach(drc, dev, fdt, fdt_offset, !dev->hotplugged, &local_err);
2753 if (local_err) {
2754 g_free(fdt);
ff9006dd
IM
2755 error_propagate(errp, local_err);
2756 return;
2757 }
2758 }
2759
2760 if (dev->hotplugged) {
2761 /*
2762 * Send hotplug notification interrupt to the guest only in case
2763 * of hotplugged CPUs.
2764 */
2765 spapr_hotplug_req_add_by_index(drc);
2766 } else {
2767 /*
2768 * Set the right DRC states for cold plugged CPU.
2769 */
2770 if (drc) {
2771 sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
2772 drck->set_allocation_state(drc, SPAPR_DR_ALLOCATION_STATE_USABLE);
2773 drck->set_isolation_state(drc, SPAPR_DR_ISOLATION_STATE_UNISOLATED);
2774 }
2775 }
535455fd 2776 core_slot->cpu = OBJECT(dev);
ff9006dd
IM
2777}
2778
2779static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2780 Error **errp)
2781{
2782 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
2783 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
ff9006dd
IM
2784 Error *local_err = NULL;
2785 CPUCore *cc = CPU_CORE(dev);
2786 char *base_core_type = spapr_get_cpu_core_type(machine->cpu_model);
2787 const char *type = object_get_typename(OBJECT(dev));
535455fd
IM
2788 CPUArchId *core_slot;
2789 int index;
ff9006dd 2790
c5514d0e 2791 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
ff9006dd
IM
2792 error_setg(&local_err, "CPU hotplug not supported for this machine");
2793 goto out;
2794 }
2795
2796 if (strcmp(base_core_type, type)) {
2797 error_setg(&local_err, "CPU core type should be %s", base_core_type);
2798 goto out;
2799 }
2800
2801 if (cc->core_id % smp_threads) {
2802 error_setg(&local_err, "invalid core id %d", cc->core_id);
2803 goto out;
2804 }
2805
8149e299
DG
2806 if (cc->nr_threads != smp_threads) {
2807 error_setg(errp, "invalid nr-threads %d, must be %d",
2808 cc->nr_threads, smp_threads);
2809 return;
2810 }
2811
535455fd
IM
2812 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
2813 if (!core_slot) {
ff9006dd
IM
2814 error_setg(&local_err, "core id %d out of range", cc->core_id);
2815 goto out;
2816 }
2817
535455fd 2818 if (core_slot->cpu) {
ff9006dd
IM
2819 error_setg(&local_err, "core %d already populated", cc->core_id);
2820 goto out;
2821 }
2822
2823out:
2824 g_free(base_core_type);
2825 error_propagate(errp, local_err);
2826}
2827
c20d332a
BR
2828static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
2829 DeviceState *dev, Error **errp)
2830{
2831 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(qdev_get_machine());
2832
2833 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
b556854b 2834 int node;
c20d332a
BR
2835
2836 if (!smc->dr_lmb_enabled) {
2837 error_setg(errp, "Memory hotplug not supported for this machine");
2838 return;
2839 }
2840 node = object_property_get_int(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
2841 if (*errp) {
2842 return;
2843 }
1a5512bb
GA
2844 if (node < 0 || node >= MAX_NODES) {
2845 error_setg(errp, "Invaild node %d", node);
2846 return;
2847 }
c20d332a 2848
b556854b
BR
2849 /*
2850 * Currently PowerPC kernel doesn't allow hot-adding memory to
2851 * memory-less node, but instead will silently add the memory
2852 * to the first node that has some memory. This causes two
2853 * unexpected behaviours for the user.
2854 *
2855 * - Memory gets hotplugged to a different node than what the user
2856 * specified.
2857 * - Since pc-dimm subsystem in QEMU still thinks that memory belongs
2858 * to memory-less node, a reboot will set things accordingly
2859 * and the previously hotplugged memory now ends in the right node.
2860 * This appears as if some memory moved from one node to another.
2861 *
2862 * So until kernel starts supporting memory hotplug to memory-less
2863 * nodes, just prevent such attempts upfront in QEMU.
2864 */
2865 if (nb_numa_nodes && !numa_info[node].node_mem) {
2866 error_setg(errp, "Can't hotplug memory to memory-less node %d",
2867 node);
2868 return;
2869 }
2870
c20d332a 2871 spapr_memory_plug(hotplug_dev, dev, node, errp);
af81cf32
BR
2872 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2873 spapr_core_plug(hotplug_dev, dev, errp);
c20d332a
BR
2874 }
2875}
2876
2877static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
2878 DeviceState *dev, Error **errp)
2879{
cf632463 2880 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
3c0c47e3 2881 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
6f4b5c3e 2882
c20d332a 2883 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
cf632463
BR
2884 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2885 spapr_memory_unplug(hotplug_dev, dev, errp);
2886 } else {
2887 error_setg(errp, "Memory hot unplug not supported for this guest");
2888 }
2889 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
c5514d0e 2890 if (!mc->has_hotpluggable_cpus) {
cf632463
BR
2891 error_setg(errp, "CPU hot unplug not supported on this machine");
2892 return;
2893 }
2894 spapr_core_unplug(hotplug_dev, dev, errp);
2895 }
2896}
2897
2898static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
2899 DeviceState *dev, Error **errp)
2900{
2901 sPAPRMachineState *sms = SPAPR_MACHINE(qdev_get_machine());
2902 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine());
2903
2904 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2905 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
2906 spapr_memory_unplug_request(hotplug_dev, dev, errp);
2907 } else {
2908 /* NOTE: this means there is a window after guest reset, prior to
2909 * CAS negotiation, where unplug requests will fail due to the
2910 * capability not being detected yet. This is a bit different than
2911 * the case with PCI unplug, where the events will be queued and
2912 * eventually handled by the guest after boot
2913 */
2914 error_setg(errp, "Memory hot unplug not supported for this guest");
2915 }
6f4b5c3e 2916 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
c5514d0e 2917 if (!mc->has_hotpluggable_cpus) {
6f4b5c3e
BR
2918 error_setg(errp, "CPU hot unplug not supported on this machine");
2919 return;
2920 }
115debf2 2921 spapr_core_unplug_request(hotplug_dev, dev, errp);
c20d332a
BR
2922 }
2923}
2924
94a94e4c
BR
2925static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
2926 DeviceState *dev, Error **errp)
2927{
2928 if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
2929 spapr_core_pre_plug(hotplug_dev, dev, errp);
2930 }
2931}
2932
7ebaf795
BR
2933static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
2934 DeviceState *dev)
c20d332a 2935{
94a94e4c
BR
2936 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2937 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
c20d332a
BR
2938 return HOTPLUG_HANDLER(machine);
2939 }
2940 return NULL;
2941}
2942
20bb648d
DG
2943static unsigned spapr_cpu_index_to_socket_id(unsigned cpu_index)
2944{
2945 /* Allocate to NUMA nodes on a "socket" basis (not that concept of
2946 * socket means much for the paravirtualized PAPR platform) */
2947 return cpu_index / smp_threads / smp_cores;
2948}
2949
535455fd
IM
2950static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
2951{
2952 int i;
2953 int spapr_max_cores = max_cpus / smp_threads;
2954 MachineClass *mc = MACHINE_GET_CLASS(machine);
2955
c5514d0e 2956 if (!mc->has_hotpluggable_cpus) {
535455fd
IM
2957 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
2958 }
2959 if (machine->possible_cpus) {
2960 assert(machine->possible_cpus->len == spapr_max_cores);
2961 return machine->possible_cpus;
2962 }
2963
2964 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2965 sizeof(CPUArchId) * spapr_max_cores);
2966 machine->possible_cpus->len = spapr_max_cores;
2967 for (i = 0; i < machine->possible_cpus->len; i++) {
2968 int core_id = i * smp_threads;
2969
f2d672c2 2970 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
535455fd
IM
2971 machine->possible_cpus->cpus[i].arch_id = core_id;
2972 machine->possible_cpus->cpus[i].props.has_core_id = true;
2973 machine->possible_cpus->cpus[i].props.core_id = core_id;
2974 /* TODO: add 'has_node/node' here to describe
2975 to which node core belongs */
2976 }
2977 return machine->possible_cpus;
2978}
2979
6737d9ad 2980static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
daa23699
DG
2981 uint64_t *buid, hwaddr *pio,
2982 hwaddr *mmio32, hwaddr *mmio64,
6737d9ad
DG
2983 unsigned n_dma, uint32_t *liobns, Error **errp)
2984{
357d1e3b
DG
2985 /*
2986 * New-style PHB window placement.
2987 *
2988 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
2989 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
2990 * windows.
2991 *
2992 * Some guest kernels can't work with MMIO windows above 1<<46
2993 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
2994 *
2995 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
2996 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
2997 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
2998 * 1TiB 64-bit MMIO windows for each PHB.
2999 */
6737d9ad 3000 const uint64_t base_buid = 0x800000020000000ULL;
25e6a118
MT
3001#define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3002 SPAPR_PCI_MEM64_WIN_SIZE - 1)
6737d9ad
DG
3003 int i;
3004
357d1e3b
DG
3005 /* Sanity check natural alignments */
3006 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3007 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3008 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3009 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3010 /* Sanity check bounds */
25e6a118
MT
3011 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3012 SPAPR_PCI_MEM32_WIN_SIZE);
3013 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3014 SPAPR_PCI_MEM64_WIN_SIZE);
3015
3016 if (index >= SPAPR_MAX_PHBS) {
3017 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3018 SPAPR_MAX_PHBS - 1);
6737d9ad
DG
3019 return;
3020 }
3021
3022 *buid = base_buid + index;
3023 for (i = 0; i < n_dma; ++i) {
3024 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3025 }
3026
357d1e3b
DG
3027 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3028 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3029 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
6737d9ad
DG
3030}
3031
7844e12b
CLG
3032static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3033{
3034 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3035
3036 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3037}
3038
3039static void spapr_ics_resend(XICSFabric *dev)
3040{
3041 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3042
3043 ics_resend(spapr->ics);
3044}
3045
b2fc59aa
CLG
3046static ICPState *spapr_icp_get(XICSFabric *xi, int server)
3047{
3048 sPAPRMachineState *spapr = SPAPR_MACHINE(xi);
3049
852ad27e 3050 return (server < spapr->nr_servers) ? &spapr->icps[server] : NULL;
b2fc59aa
CLG
3051}
3052
6449da45
CLG
3053static void spapr_pic_print_info(InterruptStatsProvider *obj,
3054 Monitor *mon)
3055{
3056 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3057 int i;
3058
3059 for (i = 0; i < spapr->nr_servers; i++) {
3060 icp_pic_print_info(&spapr->icps[i], mon);
3061 }
3062
3063 ics_pic_print_info(spapr->ics, mon);
3064}
3065
29ee3247
AK
3066static void spapr_machine_class_init(ObjectClass *oc, void *data)
3067{
3068 MachineClass *mc = MACHINE_CLASS(oc);
224245bf 3069 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
71461b0f 3070 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
34316482 3071 NMIClass *nc = NMI_CLASS(oc);
c20d332a 3072 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
1d1be34d 3073 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
7844e12b 3074 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
6449da45 3075 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
958db90c 3076
0eb9054c 3077 mc->desc = "pSeries Logical Partition (PAPR compliant)";
fc9f38c3
DG
3078
3079 /*
3080 * We set up the default / latest behaviour here. The class_init
3081 * functions for the specific versioned machine types can override
3082 * these details for backwards compatibility
3083 */
958db90c
MA
3084 mc->init = ppc_spapr_init;
3085 mc->reset = ppc_spapr_reset;
3086 mc->block_default_type = IF_SCSI;
6244bb7e 3087 mc->max_cpus = 1024;
958db90c 3088 mc->no_parallel = 1;
5b2128d2 3089 mc->default_boot_order = "";
a34944fe 3090 mc->default_ram_size = 512 * M_BYTE;
958db90c 3091 mc->kvm_type = spapr_kvm_type;
9e3f9733 3092 mc->has_dynamic_sysbus = true;
e4024630 3093 mc->pci_allow_0_address = true;
7ebaf795 3094 mc->get_hotplug_handler = spapr_get_hotplug_handler;
94a94e4c 3095 hc->pre_plug = spapr_machine_device_pre_plug;
c20d332a
BR
3096 hc->plug = spapr_machine_device_plug;
3097 hc->unplug = spapr_machine_device_unplug;
20bb648d 3098 mc->cpu_index_to_socket_id = spapr_cpu_index_to_socket_id;
535455fd 3099 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
cf632463 3100 hc->unplug_request = spapr_machine_device_unplug_request;
00b4fbe2 3101
fc9f38c3 3102 smc->dr_lmb_enabled = true;
3daa4a9f 3103 smc->tcg_default_cpu = "POWER8";
c5514d0e 3104 mc->has_hotpluggable_cpus = true;
71461b0f 3105 fwc->get_dev_path = spapr_get_fw_dev_path;
34316482 3106 nc->nmi_monitor_handler = spapr_nmi;
6737d9ad 3107 smc->phb_placement = spapr_phb_placement;
1d1be34d 3108 vhc->hypercall = emulate_spapr_hypercall;
e57ca75c
DG
3109 vhc->hpt_mask = spapr_hpt_mask;
3110 vhc->map_hptes = spapr_map_hptes;
3111 vhc->unmap_hptes = spapr_unmap_hptes;
3112 vhc->store_hpte = spapr_store_hpte;
9861bb3e 3113 vhc->get_patbe = spapr_get_patbe;
7844e12b
CLG
3114 xic->ics_get = spapr_ics_get;
3115 xic->ics_resend = spapr_ics_resend;
b2fc59aa 3116 xic->icp_get = spapr_icp_get;
6449da45 3117 ispc->print_info = spapr_pic_print_info;
55641213
LV
3118 /* Force NUMA node memory size to be a multiple of
3119 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3120 * in which LMBs are represented and hot-added
3121 */
3122 mc->numa_mem_align_shift = 28;
29ee3247
AK
3123}
3124
3125static const TypeInfo spapr_machine_info = {
3126 .name = TYPE_SPAPR_MACHINE,
3127 .parent = TYPE_MACHINE,
4aee7362 3128 .abstract = true,
6ca1502e 3129 .instance_size = sizeof(sPAPRMachineState),
23825581 3130 .instance_init = spapr_machine_initfn,
87bbdd9c 3131 .instance_finalize = spapr_machine_finalizefn,
183930c0 3132 .class_size = sizeof(sPAPRMachineClass),
29ee3247 3133 .class_init = spapr_machine_class_init,
71461b0f
AK
3134 .interfaces = (InterfaceInfo[]) {
3135 { TYPE_FW_PATH_PROVIDER },
34316482 3136 { TYPE_NMI },
c20d332a 3137 { TYPE_HOTPLUG_HANDLER },
1d1be34d 3138 { TYPE_PPC_VIRTUAL_HYPERVISOR },
7844e12b 3139 { TYPE_XICS_FABRIC },
6449da45 3140 { TYPE_INTERRUPT_STATS_PROVIDER },
71461b0f
AK
3141 { }
3142 },
29ee3247
AK
3143};
3144
fccbc785 3145#define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
5013c547
DG
3146 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3147 void *data) \
3148 { \
3149 MachineClass *mc = MACHINE_CLASS(oc); \
3150 spapr_machine_##suffix##_class_options(mc); \
fccbc785
DG
3151 if (latest) { \
3152 mc->alias = "pseries"; \
3153 mc->is_default = 1; \
3154 } \
5013c547
DG
3155 } \
3156 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3157 { \
3158 MachineState *machine = MACHINE(obj); \
3159 spapr_machine_##suffix##_instance_options(machine); \
3160 } \
3161 static const TypeInfo spapr_machine_##suffix##_info = { \
3162 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3163 .parent = TYPE_SPAPR_MACHINE, \
3164 .class_init = spapr_machine_##suffix##_class_init, \
3165 .instance_init = spapr_machine_##suffix##_instance_init, \
3166 }; \
3167 static void spapr_machine_register_##suffix(void) \
3168 { \
3169 type_register(&spapr_machine_##suffix##_info); \
3170 } \
0e6aac87 3171 type_init(spapr_machine_register_##suffix)
5013c547 3172
3fa14fbe
DG
3173/*
3174 * pseries-2.10
3175 */
3176static void spapr_machine_2_10_instance_options(MachineState *machine)
3177{
3178}
3179
3180static void spapr_machine_2_10_class_options(MachineClass *mc)
3181{
3182 /* Defaults for the latest behaviour inherited from the base class */
3183}
3184
3185DEFINE_SPAPR_MACHINE(2_10, "2.10", true);
3186
fa325e6c
DG
3187/*
3188 * pseries-2.9
3189 */
3fa14fbe
DG
3190#define SPAPR_COMPAT_2_9 \
3191 HW_COMPAT_2_9
3192
fa325e6c
DG
3193static void spapr_machine_2_9_instance_options(MachineState *machine)
3194{
3fa14fbe 3195 spapr_machine_2_10_instance_options(machine);
fa325e6c
DG
3196}
3197
3198static void spapr_machine_2_9_class_options(MachineClass *mc)
3199{
3fa14fbe
DG
3200 spapr_machine_2_10_class_options(mc);
3201 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
fa325e6c
DG
3202}
3203
3fa14fbe 3204DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
fa325e6c 3205
db800b21
DG
3206/*
3207 * pseries-2.8
3208 */
82516263
DG
3209#define SPAPR_COMPAT_2_8 \
3210 HW_COMPAT_2_8 \
3211 { \
3212 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3213 .property = "pcie-extended-configuration-space", \
3214 .value = "off", \
3215 },
fa325e6c 3216
db800b21
DG
3217static void spapr_machine_2_8_instance_options(MachineState *machine)
3218{
fa325e6c 3219 spapr_machine_2_9_instance_options(machine);
db800b21
DG
3220}
3221
3222static void spapr_machine_2_8_class_options(MachineClass *mc)
3223{
fa325e6c
DG
3224 spapr_machine_2_9_class_options(mc);
3225 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
55641213 3226 mc->numa_mem_align_shift = 23;
db800b21
DG
3227}
3228
fa325e6c 3229DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
db800b21 3230
1ea1eefc
BR
3231/*
3232 * pseries-2.7
3233 */
357d1e3b
DG
3234#define SPAPR_COMPAT_2_7 \
3235 HW_COMPAT_2_7 \
3236 { \
3237 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3238 .property = "mem_win_size", \
3239 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
3240 }, \
3241 { \
3242 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3243 .property = "mem64_win_size", \
3244 .value = "0", \
146c11f1
DG
3245 }, \
3246 { \
3247 .driver = TYPE_POWERPC_CPU, \
3248 .property = "pre-2.8-migration", \
3249 .value = "on", \
5c4537bd
DG
3250 }, \
3251 { \
3252 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
3253 .property = "pre-2.8-migration", \
3254 .value = "on", \
357d1e3b
DG
3255 },
3256
3257static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
3258 uint64_t *buid, hwaddr *pio,
3259 hwaddr *mmio32, hwaddr *mmio64,
3260 unsigned n_dma, uint32_t *liobns, Error **errp)
3261{
3262 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
3263 const uint64_t base_buid = 0x800000020000000ULL;
3264 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
3265 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
3266 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
3267 const uint32_t max_index = 255;
3268 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
3269
3270 uint64_t ram_top = MACHINE(spapr)->ram_size;
3271 hwaddr phb0_base, phb_base;
3272 int i;
3273
3274 /* Do we have hotpluggable memory? */
3275 if (MACHINE(spapr)->maxram_size > ram_top) {
3276 /* Can't just use maxram_size, because there may be an
3277 * alignment gap between normal and hotpluggable memory
3278 * regions */
3279 ram_top = spapr->hotplug_memory.base +
3280 memory_region_size(&spapr->hotplug_memory.mr);
3281 }
3282
3283 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
3284
3285 if (index > max_index) {
3286 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
3287 max_index);
3288 return;
3289 }
3290
3291 *buid = base_buid + index;
3292 for (i = 0; i < n_dma; ++i) {
3293 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3294 }
3295
3296 phb_base = phb0_base + index * phb_spacing;
3297 *pio = phb_base + pio_offset;
3298 *mmio32 = phb_base + mmio_offset;
3299 /*
3300 * We don't set the 64-bit MMIO window, relying on the PHB's
3301 * fallback behaviour of automatically splitting a large "32-bit"
3302 * window into contiguous 32-bit and 64-bit windows
3303 */
3304}
db800b21 3305
1ea1eefc
BR
3306static void spapr_machine_2_7_instance_options(MachineState *machine)
3307{
f6229214
MR
3308 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
3309
672de881 3310 spapr_machine_2_8_instance_options(machine);
f6229214 3311 spapr->use_hotplug_event_source = false;
1ea1eefc
BR
3312}
3313
3314static void spapr_machine_2_7_class_options(MachineClass *mc)
3315{
3daa4a9f
TH
3316 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3317
db800b21 3318 spapr_machine_2_8_class_options(mc);
3daa4a9f 3319 smc->tcg_default_cpu = "POWER7";
db800b21 3320 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
357d1e3b 3321 smc->phb_placement = phb_placement_2_7;
1ea1eefc
BR
3322}
3323
db800b21 3324DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
1ea1eefc 3325
4b23699c
DG
3326/*
3327 * pseries-2.6
3328 */
1ea1eefc 3329#define SPAPR_COMPAT_2_6 \
ae4de14c
AK
3330 HW_COMPAT_2_6 \
3331 { \
3332 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3333 .property = "ddw",\
3334 .value = stringify(off),\
3335 },
1ea1eefc 3336
4b23699c
DG
3337static void spapr_machine_2_6_instance_options(MachineState *machine)
3338{
672de881 3339 spapr_machine_2_7_instance_options(machine);
4b23699c
DG
3340}
3341
3342static void spapr_machine_2_6_class_options(MachineClass *mc)
3343{
1ea1eefc 3344 spapr_machine_2_7_class_options(mc);
c5514d0e 3345 mc->has_hotpluggable_cpus = false;
1ea1eefc 3346 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4b23699c
DG
3347}
3348
1ea1eefc 3349DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4b23699c 3350
1c5f29bb
DG
3351/*
3352 * pseries-2.5
3353 */
4b23699c 3354#define SPAPR_COMPAT_2_5 \
57c522f4
TH
3355 HW_COMPAT_2_5 \
3356 { \
3357 .driver = "spapr-vlan", \
3358 .property = "use-rx-buffer-pools", \
3359 .value = "off", \
3360 },
4b23699c 3361
5013c547 3362static void spapr_machine_2_5_instance_options(MachineState *machine)
1c5f29bb 3363{
672de881 3364 spapr_machine_2_6_instance_options(machine);
5013c547
DG
3365}
3366
3367static void spapr_machine_2_5_class_options(MachineClass *mc)
3368{
57040d45
TH
3369 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3370
4b23699c 3371 spapr_machine_2_6_class_options(mc);
57040d45 3372 smc->use_ohci_by_default = true;
4b23699c 3373 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
1c5f29bb
DG
3374}
3375
4b23699c 3376DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
1c5f29bb
DG
3377
3378/*
3379 * pseries-2.4
3380 */
80fd50f9
CH
3381#define SPAPR_COMPAT_2_4 \
3382 HW_COMPAT_2_4
3383
5013c547 3384static void spapr_machine_2_4_instance_options(MachineState *machine)
1c5f29bb 3385{
5013c547
DG
3386 spapr_machine_2_5_instance_options(machine);
3387}
1c5f29bb 3388
5013c547
DG
3389static void spapr_machine_2_4_class_options(MachineClass *mc)
3390{
fc9f38c3
DG
3391 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3392
3393 spapr_machine_2_5_class_options(mc);
fc9f38c3 3394 smc->dr_lmb_enabled = false;
f949b4e5 3395 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
1c5f29bb
DG
3396}
3397
fccbc785 3398DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
1c5f29bb
DG
3399
3400/*
3401 * pseries-2.3
3402 */
38ff32c6 3403#define SPAPR_COMPAT_2_3 \
7619c7b0
MR
3404 HW_COMPAT_2_3 \
3405 {\
3406 .driver = "spapr-pci-host-bridge",\
3407 .property = "dynamic-reconfiguration",\
3408 .value = "off",\
3409 },
38ff32c6 3410
5013c547 3411static void spapr_machine_2_3_instance_options(MachineState *machine)
d25228e7 3412{
5013c547 3413 spapr_machine_2_4_instance_options(machine);
ff14e817 3414 savevm_skip_section_footers();
13d16814 3415 global_state_set_optional();
09b5e30d 3416 savevm_skip_configuration();
d25228e7
JW
3417}
3418
5013c547 3419static void spapr_machine_2_3_class_options(MachineClass *mc)
6026db45 3420{
fc9f38c3 3421 spapr_machine_2_4_class_options(mc);
f949b4e5 3422 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
6026db45 3423}
fccbc785 3424DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
6026db45 3425
1c5f29bb
DG
3426/*
3427 * pseries-2.2
3428 */
3429
3430#define SPAPR_COMPAT_2_2 \
1c5f29bb
DG
3431 HW_COMPAT_2_2 \
3432 {\
3433 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
3434 .property = "mem_win_size",\
3435 .value = "0x20000000",\
3436 },
3437
5013c547 3438static void spapr_machine_2_2_instance_options(MachineState *machine)
1c5f29bb 3439{
5013c547 3440 spapr_machine_2_3_instance_options(machine);
cba0e779 3441 machine->suppress_vmdesc = true;
1c5f29bb
DG
3442}
3443
5013c547 3444static void spapr_machine_2_2_class_options(MachineClass *mc)
4aee7362 3445{
fc9f38c3 3446 spapr_machine_2_3_class_options(mc);
f949b4e5 3447 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4aee7362 3448}
fccbc785 3449DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4aee7362 3450
1c5f29bb
DG
3451/*
3452 * pseries-2.1
3453 */
3454#define SPAPR_COMPAT_2_1 \
1c5f29bb 3455 HW_COMPAT_2_1
3dab0244 3456
5013c547 3457static void spapr_machine_2_1_instance_options(MachineState *machine)
1c5f29bb 3458{
5013c547 3459 spapr_machine_2_2_instance_options(machine);
1c5f29bb 3460}
d25228e7 3461
5013c547 3462static void spapr_machine_2_1_class_options(MachineClass *mc)
d25228e7 3463{
fc9f38c3 3464 spapr_machine_2_2_class_options(mc);
f949b4e5 3465 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
d25228e7 3466}
fccbc785 3467DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
fb0fc8f6 3468
29ee3247 3469static void spapr_machine_register_types(void)
9fdf0c29 3470{
29ee3247 3471 type_register_static(&spapr_machine_info);
9fdf0c29
DG
3472}
3473
29ee3247 3474type_init(spapr_machine_register_types)