]> git.proxmox.com Git - mirror_qemu.git/blame - hw/pxa2xx.c
Fix tap device counting.
[mirror_qemu.git] / hw / pxa2xx.c
CommitLineData
c1713132
AZ
1/*
2 * Intel XScale PXA255/270 processor support.
3 *
4 * Copyright (c) 2006 Openedhand Ltd.
5 * Written by Andrzej Zaborowski <balrog@zabor.org>
6 *
7 * This code is licenced under the GPL.
8 */
9
10# include "vl.h"
11
12static struct {
13 target_phys_addr_t io_base;
14 int irqn;
15} pxa255_serial[] = {
16 { 0x40100000, PXA2XX_PIC_FFUART },
17 { 0x40200000, PXA2XX_PIC_BTUART },
18 { 0x40700000, PXA2XX_PIC_STUART },
19 { 0x41600000, PXA25X_PIC_HWUART },
20 { 0, 0 }
21}, pxa270_serial[] = {
22 { 0x40100000, PXA2XX_PIC_FFUART },
23 { 0x40200000, PXA2XX_PIC_BTUART },
24 { 0x40700000, PXA2XX_PIC_STUART },
25 { 0, 0 }
26};
27
28static struct {
29 target_phys_addr_t io_base;
30 int irqn;
31} pxa250_ssp[] = {
32 { 0x41000000, PXA2XX_PIC_SSP },
33 { 0, 0 }
34}, pxa255_ssp[] = {
35 { 0x41000000, PXA2XX_PIC_SSP },
36 { 0x41400000, PXA25X_PIC_NSSP },
37 { 0, 0 }
38}, pxa26x_ssp[] = {
39 { 0x41000000, PXA2XX_PIC_SSP },
40 { 0x41400000, PXA25X_PIC_NSSP },
41 { 0x41500000, PXA26X_PIC_ASSP },
42 { 0, 0 }
43}, pxa27x_ssp[] = {
44 { 0x41000000, PXA2XX_PIC_SSP },
45 { 0x41700000, PXA27X_PIC_SSP2 },
46 { 0x41900000, PXA2XX_PIC_SSP3 },
47 { 0, 0 }
48};
49
50#define PMCR 0x00 /* Power Manager Control register */
51#define PSSR 0x04 /* Power Manager Sleep Status register */
52#define PSPR 0x08 /* Power Manager Scratch-Pad register */
53#define PWER 0x0c /* Power Manager Wake-Up Enable register */
54#define PRER 0x10 /* Power Manager Rising-Edge Detect Enable register */
55#define PFER 0x14 /* Power Manager Falling-Edge Detect Enable register */
56#define PEDR 0x18 /* Power Manager Edge-Detect Status register */
57#define PCFR 0x1c /* Power Manager General Configuration register */
58#define PGSR0 0x20 /* Power Manager GPIO Sleep-State register 0 */
59#define PGSR1 0x24 /* Power Manager GPIO Sleep-State register 1 */
60#define PGSR2 0x28 /* Power Manager GPIO Sleep-State register 2 */
61#define PGSR3 0x2c /* Power Manager GPIO Sleep-State register 3 */
62#define RCSR 0x30 /* Reset Controller Status register */
63#define PSLR 0x34 /* Power Manager Sleep Configuration register */
64#define PTSR 0x38 /* Power Manager Standby Configuration register */
65#define PVCR 0x40 /* Power Manager Voltage Change Control register */
66#define PUCR 0x4c /* Power Manager USIM Card Control/Status register */
67#define PKWR 0x50 /* Power Manager Keyboard Wake-Up Enable register */
68#define PKSR 0x54 /* Power Manager Keyboard Level-Detect Status */
69#define PCMD0 0x80 /* Power Manager I2C Command register File 0 */
70#define PCMD31 0xfc /* Power Manager I2C Command register File 31 */
71
3f582262
AZ
72static uint32_t pxa2xx_i2c_read(void *, target_phys_addr_t);
73static void pxa2xx_i2c_write(void *, target_phys_addr_t, uint32_t);
74
c1713132
AZ
75static uint32_t pxa2xx_pm_read(void *opaque, target_phys_addr_t addr)
76{
77 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
3f582262
AZ
78 if (addr > s->pm_base + PCMD31) {
79 /* Special case: PWRI2C registers appear in the same range. */
80 return pxa2xx_i2c_read(s->i2c[1], addr);
81 }
c1713132
AZ
82 addr -= s->pm_base;
83
84 switch (addr) {
85 case PMCR ... PCMD31:
86 if (addr & 3)
87 goto fail;
88
89 return s->pm_regs[addr >> 2];
90 default:
91 fail:
92 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
93 break;
94 }
95 return 0;
96}
97
98static void pxa2xx_pm_write(void *opaque, target_phys_addr_t addr,
99 uint32_t value)
100{
101 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
3f582262
AZ
102 if (addr > s->pm_base + PCMD31) {
103 /* Special case: PWRI2C registers appear in the same range. */
104 pxa2xx_i2c_write(s->i2c[1], addr, value);
105 return;
106 }
c1713132
AZ
107 addr -= s->pm_base;
108
109 switch (addr) {
110 case PMCR:
111 s->pm_regs[addr >> 2] &= 0x15 & ~(value & 0x2a);
112 s->pm_regs[addr >> 2] |= value & 0x15;
113 break;
114
115 case PSSR: /* Read-clean registers */
116 case RCSR:
117 case PKSR:
118 s->pm_regs[addr >> 2] &= ~value;
119 break;
120
121 default: /* Read-write registers */
122 if (addr >= PMCR && addr <= PCMD31 && !(addr & 3)) {
123 s->pm_regs[addr >> 2] = value;
124 break;
125 }
126
127 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
128 break;
129 }
130}
131
132static CPUReadMemoryFunc *pxa2xx_pm_readfn[] = {
133 pxa2xx_pm_read,
134 pxa2xx_pm_read,
135 pxa2xx_pm_read,
136};
137
138static CPUWriteMemoryFunc *pxa2xx_pm_writefn[] = {
139 pxa2xx_pm_write,
140 pxa2xx_pm_write,
141 pxa2xx_pm_write,
142};
143
aa941b94
AZ
144static void pxa2xx_pm_save(QEMUFile *f, void *opaque)
145{
146 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
147 int i;
148
149 for (i = 0; i < 0x40; i ++)
150 qemu_put_be32s(f, &s->pm_regs[i]);
151}
152
153static int pxa2xx_pm_load(QEMUFile *f, void *opaque, int version_id)
154{
155 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
156 int i;
157
158 for (i = 0; i < 0x40; i ++)
159 qemu_get_be32s(f, &s->pm_regs[i]);
160
161 return 0;
162}
163
c1713132
AZ
164#define CCCR 0x00 /* Core Clock Configuration register */
165#define CKEN 0x04 /* Clock Enable register */
166#define OSCC 0x08 /* Oscillator Configuration register */
167#define CCSR 0x0c /* Core Clock Status register */
168
169static uint32_t pxa2xx_cm_read(void *opaque, target_phys_addr_t addr)
170{
171 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
172 addr -= s->cm_base;
173
174 switch (addr) {
175 case CCCR:
176 case CKEN:
177 case OSCC:
178 return s->cm_regs[addr >> 2];
179
180 case CCSR:
181 return s->cm_regs[CCCR >> 2] | (3 << 28);
182
183 default:
184 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
185 break;
186 }
187 return 0;
188}
189
190static void pxa2xx_cm_write(void *opaque, target_phys_addr_t addr,
191 uint32_t value)
192{
193 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
194 addr -= s->cm_base;
195
196 switch (addr) {
197 case CCCR:
198 case CKEN:
199 s->cm_regs[addr >> 2] = value;
200 break;
201
202 case OSCC:
565d2895 203 s->cm_regs[addr >> 2] &= ~0x6c;
c1713132 204 s->cm_regs[addr >> 2] |= value & 0x6e;
565d2895
AZ
205 if ((value >> 1) & 1) /* OON */
206 s->cm_regs[addr >> 2] |= 1 << 0; /* Oscillator is now stable */
c1713132
AZ
207 break;
208
209 default:
210 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
211 break;
212 }
213}
214
215static CPUReadMemoryFunc *pxa2xx_cm_readfn[] = {
216 pxa2xx_cm_read,
217 pxa2xx_cm_read,
218 pxa2xx_cm_read,
219};
220
221static CPUWriteMemoryFunc *pxa2xx_cm_writefn[] = {
222 pxa2xx_cm_write,
223 pxa2xx_cm_write,
224 pxa2xx_cm_write,
225};
226
aa941b94
AZ
227static void pxa2xx_cm_save(QEMUFile *f, void *opaque)
228{
229 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
230 int i;
231
232 for (i = 0; i < 4; i ++)
233 qemu_put_be32s(f, &s->cm_regs[i]);
234 qemu_put_be32s(f, &s->clkcfg);
235 qemu_put_be32s(f, &s->pmnc);
236}
237
238static int pxa2xx_cm_load(QEMUFile *f, void *opaque, int version_id)
239{
240 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
241 int i;
242
243 for (i = 0; i < 4; i ++)
244 qemu_get_be32s(f, &s->cm_regs[i]);
245 qemu_get_be32s(f, &s->clkcfg);
246 qemu_get_be32s(f, &s->pmnc);
247
248 return 0;
249}
250
c1713132
AZ
251static uint32_t pxa2xx_clkpwr_read(void *opaque, int op2, int reg, int crm)
252{
253 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
254
255 switch (reg) {
256 case 6: /* Clock Configuration register */
257 return s->clkcfg;
258
259 case 7: /* Power Mode register */
260 return 0;
261
262 default:
263 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
264 break;
265 }
266 return 0;
267}
268
269static void pxa2xx_clkpwr_write(void *opaque, int op2, int reg, int crm,
270 uint32_t value)
271{
272 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
273 static const char *pwrmode[8] = {
274 "Normal", "Idle", "Deep-idle", "Standby",
275 "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
276 };
277
278 switch (reg) {
279 case 6: /* Clock Configuration register */
280 s->clkcfg = value & 0xf;
281 if (value & 2)
282 printf("%s: CPU frequency change attempt\n", __FUNCTION__);
283 break;
284
285 case 7: /* Power Mode register */
286 if (value & 8)
287 printf("%s: CPU voltage change attempt\n", __FUNCTION__);
288 switch (value & 7) {
289 case 0:
290 /* Do nothing */
291 break;
292
293 case 1:
294 /* Idle */
295 if (!(s->cm_regs[CCCR] & (1 << 31))) { /* CPDIS */
296 cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
297 break;
298 }
299 /* Fall through. */
300
301 case 2:
302 /* Deep-Idle */
303 cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
304 s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
305 goto message;
306
307 case 3:
a90b7318
AZ
308 s->env->uncached_cpsr =
309 ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
c1713132
AZ
310 s->env->cp15.c1_sys = 0;
311 s->env->cp15.c1_coproc = 0;
ce819861 312 s->env->cp15.c2_base = 0;
c1713132
AZ
313 s->env->cp15.c3 = 0;
314 s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */
315 s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
316
317 /*
318 * The scratch-pad register is almost universally used
319 * for storing the return address on suspend. For the
320 * lack of a resuming bootloader, perform a jump
321 * directly to that address.
322 */
323 memset(s->env->regs, 0, 4 * 15);
324 s->env->regs[15] = s->pm_regs[PSPR >> 2];
325
326#if 0
327 buffer = 0xe59ff000; /* ldr pc, [pc, #0] */
328 cpu_physical_memory_write(0, &buffer, 4);
329 buffer = s->pm_regs[PSPR >> 2];
330 cpu_physical_memory_write(8, &buffer, 4);
331#endif
332
333 /* Suspend */
334 cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT);
335
336 goto message;
337
338 default:
339 message:
340 printf("%s: machine entered %s mode\n", __FUNCTION__,
341 pwrmode[value & 7]);
342 }
343 break;
344
345 default:
346 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
347 break;
348 }
349}
350
351/* Performace Monitoring Registers */
352#define CPPMNC 0 /* Performance Monitor Control register */
353#define CPCCNT 1 /* Clock Counter register */
354#define CPINTEN 4 /* Interrupt Enable register */
355#define CPFLAG 5 /* Overflow Flag register */
356#define CPEVTSEL 8 /* Event Selection register */
357
358#define CPPMN0 0 /* Performance Count register 0 */
359#define CPPMN1 1 /* Performance Count register 1 */
360#define CPPMN2 2 /* Performance Count register 2 */
361#define CPPMN3 3 /* Performance Count register 3 */
362
363static uint32_t pxa2xx_perf_read(void *opaque, int op2, int reg, int crm)
364{
365 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
366
367 switch (reg) {
368 case CPPMNC:
369 return s->pmnc;
370 case CPCCNT:
371 if (s->pmnc & 1)
372 return qemu_get_clock(vm_clock);
373 else
374 return 0;
375 case CPINTEN:
376 case CPFLAG:
377 case CPEVTSEL:
378 return 0;
379
380 default:
381 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
382 break;
383 }
384 return 0;
385}
386
387static void pxa2xx_perf_write(void *opaque, int op2, int reg, int crm,
388 uint32_t value)
389{
390 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
391
392 switch (reg) {
393 case CPPMNC:
394 s->pmnc = value;
395 break;
396
397 case CPCCNT:
398 case CPINTEN:
399 case CPFLAG:
400 case CPEVTSEL:
401 break;
402
403 default:
404 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
405 break;
406 }
407}
408
409static uint32_t pxa2xx_cp14_read(void *opaque, int op2, int reg, int crm)
410{
411 switch (crm) {
412 case 0:
413 return pxa2xx_clkpwr_read(opaque, op2, reg, crm);
414 case 1:
415 return pxa2xx_perf_read(opaque, op2, reg, crm);
416 case 2:
417 switch (reg) {
418 case CPPMN0:
419 case CPPMN1:
420 case CPPMN2:
421 case CPPMN3:
422 return 0;
423 }
424 /* Fall through */
425 default:
426 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
427 break;
428 }
429 return 0;
430}
431
432static void pxa2xx_cp14_write(void *opaque, int op2, int reg, int crm,
433 uint32_t value)
434{
435 switch (crm) {
436 case 0:
437 pxa2xx_clkpwr_write(opaque, op2, reg, crm, value);
438 break;
439 case 1:
440 pxa2xx_perf_write(opaque, op2, reg, crm, value);
441 break;
442 case 2:
443 switch (reg) {
444 case CPPMN0:
445 case CPPMN1:
446 case CPPMN2:
447 case CPPMN3:
448 return;
449 }
450 /* Fall through */
451 default:
452 printf("%s: Bad register 0x%x\n", __FUNCTION__, reg);
453 break;
454 }
455}
456
457#define MDCNFG 0x00 /* SDRAM Configuration register */
458#define MDREFR 0x04 /* SDRAM Refresh Control register */
459#define MSC0 0x08 /* Static Memory Control register 0 */
460#define MSC1 0x0c /* Static Memory Control register 1 */
461#define MSC2 0x10 /* Static Memory Control register 2 */
462#define MECR 0x14 /* Expansion Memory Bus Config register */
463#define SXCNFG 0x1c /* Synchronous Static Memory Config register */
464#define MCMEM0 0x28 /* PC Card Memory Socket 0 Timing register */
465#define MCMEM1 0x2c /* PC Card Memory Socket 1 Timing register */
466#define MCATT0 0x30 /* PC Card Attribute Socket 0 register */
467#define MCATT1 0x34 /* PC Card Attribute Socket 1 register */
468#define MCIO0 0x38 /* PC Card I/O Socket 0 Timing register */
469#define MCIO1 0x3c /* PC Card I/O Socket 1 Timing register */
470#define MDMRS 0x40 /* SDRAM Mode Register Set Config register */
471#define BOOT_DEF 0x44 /* Boot-time Default Configuration register */
472#define ARB_CNTL 0x48 /* Arbiter Control register */
473#define BSCNTR0 0x4c /* Memory Buffer Strength Control register 0 */
474#define BSCNTR1 0x50 /* Memory Buffer Strength Control register 1 */
475#define LCDBSCNTR 0x54 /* LCD Buffer Strength Control register */
476#define MDMRSLP 0x58 /* Low Power SDRAM Mode Set Config register */
477#define BSCNTR2 0x5c /* Memory Buffer Strength Control register 2 */
478#define BSCNTR3 0x60 /* Memory Buffer Strength Control register 3 */
479#define SA1110 0x64 /* SA-1110 Memory Compatibility register */
480
481static uint32_t pxa2xx_mm_read(void *opaque, target_phys_addr_t addr)
482{
483 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
484 addr -= s->mm_base;
485
486 switch (addr) {
487 case MDCNFG ... SA1110:
488 if ((addr & 3) == 0)
489 return s->mm_regs[addr >> 2];
490
491 default:
492 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
493 break;
494 }
495 return 0;
496}
497
498static void pxa2xx_mm_write(void *opaque, target_phys_addr_t addr,
499 uint32_t value)
500{
501 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
502 addr -= s->mm_base;
503
504 switch (addr) {
505 case MDCNFG ... SA1110:
506 if ((addr & 3) == 0) {
507 s->mm_regs[addr >> 2] = value;
508 break;
509 }
510
511 default:
512 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
513 break;
514 }
515}
516
517static CPUReadMemoryFunc *pxa2xx_mm_readfn[] = {
518 pxa2xx_mm_read,
519 pxa2xx_mm_read,
520 pxa2xx_mm_read,
521};
522
523static CPUWriteMemoryFunc *pxa2xx_mm_writefn[] = {
524 pxa2xx_mm_write,
525 pxa2xx_mm_write,
526 pxa2xx_mm_write,
527};
528
aa941b94
AZ
529static void pxa2xx_mm_save(QEMUFile *f, void *opaque)
530{
531 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
532 int i;
533
534 for (i = 0; i < 0x1a; i ++)
535 qemu_put_be32s(f, &s->mm_regs[i]);
536}
537
538static int pxa2xx_mm_load(QEMUFile *f, void *opaque, int version_id)
539{
540 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
541 int i;
542
543 for (i = 0; i < 0x1a; i ++)
544 qemu_get_be32s(f, &s->mm_regs[i]);
545
546 return 0;
547}
548
c1713132
AZ
549/* Synchronous Serial Ports */
550struct pxa2xx_ssp_s {
551 target_phys_addr_t base;
552 qemu_irq irq;
553 int enable;
554
555 uint32_t sscr[2];
556 uint32_t sspsp;
557 uint32_t ssto;
558 uint32_t ssitr;
559 uint32_t sssr;
560 uint8_t sstsa;
561 uint8_t ssrsa;
562 uint8_t ssacd;
563
564 uint32_t rx_fifo[16];
565 int rx_level;
566 int rx_start;
567
568 uint32_t (*readfn)(void *opaque);
569 void (*writefn)(void *opaque, uint32_t value);
570 void *opaque;
571};
572
573#define SSCR0 0x00 /* SSP Control register 0 */
574#define SSCR1 0x04 /* SSP Control register 1 */
575#define SSSR 0x08 /* SSP Status register */
576#define SSITR 0x0c /* SSP Interrupt Test register */
577#define SSDR 0x10 /* SSP Data register */
578#define SSTO 0x28 /* SSP Time-Out register */
579#define SSPSP 0x2c /* SSP Programmable Serial Protocol register */
580#define SSTSA 0x30 /* SSP TX Time Slot Active register */
581#define SSRSA 0x34 /* SSP RX Time Slot Active register */
582#define SSTSS 0x38 /* SSP Time Slot Status register */
583#define SSACD 0x3c /* SSP Audio Clock Divider register */
584
585/* Bitfields for above registers */
586#define SSCR0_SPI(x) (((x) & 0x30) == 0x00)
587#define SSCR0_SSP(x) (((x) & 0x30) == 0x10)
588#define SSCR0_UWIRE(x) (((x) & 0x30) == 0x20)
589#define SSCR0_PSP(x) (((x) & 0x30) == 0x30)
590#define SSCR0_SSE (1 << 7)
591#define SSCR0_RIM (1 << 22)
592#define SSCR0_TIM (1 << 23)
593#define SSCR0_MOD (1 << 31)
594#define SSCR0_DSS(x) (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
595#define SSCR1_RIE (1 << 0)
596#define SSCR1_TIE (1 << 1)
597#define SSCR1_LBM (1 << 2)
598#define SSCR1_MWDS (1 << 5)
599#define SSCR1_TFT(x) ((((x) >> 6) & 0xf) + 1)
600#define SSCR1_RFT(x) ((((x) >> 10) & 0xf) + 1)
601#define SSCR1_EFWR (1 << 14)
602#define SSCR1_PINTE (1 << 18)
603#define SSCR1_TINTE (1 << 19)
604#define SSCR1_RSRE (1 << 20)
605#define SSCR1_TSRE (1 << 21)
606#define SSCR1_EBCEI (1 << 29)
607#define SSITR_INT (7 << 5)
608#define SSSR_TNF (1 << 2)
609#define SSSR_RNE (1 << 3)
610#define SSSR_TFS (1 << 5)
611#define SSSR_RFS (1 << 6)
612#define SSSR_ROR (1 << 7)
613#define SSSR_PINT (1 << 18)
614#define SSSR_TINT (1 << 19)
615#define SSSR_EOC (1 << 20)
616#define SSSR_TUR (1 << 21)
617#define SSSR_BCE (1 << 23)
618#define SSSR_RW 0x00bc0080
619
620static void pxa2xx_ssp_int_update(struct pxa2xx_ssp_s *s)
621{
622 int level = 0;
623
624 level |= s->ssitr & SSITR_INT;
625 level |= (s->sssr & SSSR_BCE) && (s->sscr[1] & SSCR1_EBCEI);
626 level |= (s->sssr & SSSR_TUR) && !(s->sscr[0] & SSCR0_TIM);
627 level |= (s->sssr & SSSR_EOC) && (s->sssr & (SSSR_TINT | SSSR_PINT));
628 level |= (s->sssr & SSSR_TINT) && (s->sscr[1] & SSCR1_TINTE);
629 level |= (s->sssr & SSSR_PINT) && (s->sscr[1] & SSCR1_PINTE);
630 level |= (s->sssr & SSSR_ROR) && !(s->sscr[0] & SSCR0_RIM);
631 level |= (s->sssr & SSSR_RFS) && (s->sscr[1] & SSCR1_RIE);
632 level |= (s->sssr & SSSR_TFS) && (s->sscr[1] & SSCR1_TIE);
633 qemu_set_irq(s->irq, !!level);
634}
635
636static void pxa2xx_ssp_fifo_update(struct pxa2xx_ssp_s *s)
637{
638 s->sssr &= ~(0xf << 12); /* Clear RFL */
639 s->sssr &= ~(0xf << 8); /* Clear TFL */
640 s->sssr &= ~SSSR_TNF;
641 if (s->enable) {
642 s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
643 if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
644 s->sssr |= SSSR_RFS;
645 else
646 s->sssr &= ~SSSR_RFS;
647 if (0 <= SSCR1_TFT(s->sscr[1]))
648 s->sssr |= SSSR_TFS;
649 else
650 s->sssr &= ~SSSR_TFS;
651 if (s->rx_level)
652 s->sssr |= SSSR_RNE;
653 else
654 s->sssr &= ~SSSR_RNE;
655 s->sssr |= SSSR_TNF;
656 }
657
658 pxa2xx_ssp_int_update(s);
659}
660
661static uint32_t pxa2xx_ssp_read(void *opaque, target_phys_addr_t addr)
662{
663 struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
664 uint32_t retval;
665 addr -= s->base;
666
667 switch (addr) {
668 case SSCR0:
669 return s->sscr[0];
670 case SSCR1:
671 return s->sscr[1];
672 case SSPSP:
673 return s->sspsp;
674 case SSTO:
675 return s->ssto;
676 case SSITR:
677 return s->ssitr;
678 case SSSR:
679 return s->sssr | s->ssitr;
680 case SSDR:
681 if (!s->enable)
682 return 0xffffffff;
683 if (s->rx_level < 1) {
684 printf("%s: SSP Rx Underrun\n", __FUNCTION__);
685 return 0xffffffff;
686 }
687 s->rx_level --;
688 retval = s->rx_fifo[s->rx_start ++];
689 s->rx_start &= 0xf;
690 pxa2xx_ssp_fifo_update(s);
691 return retval;
692 case SSTSA:
693 return s->sstsa;
694 case SSRSA:
695 return s->ssrsa;
696 case SSTSS:
697 return 0;
698 case SSACD:
699 return s->ssacd;
700 default:
701 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
702 break;
703 }
704 return 0;
705}
706
707static void pxa2xx_ssp_write(void *opaque, target_phys_addr_t addr,
708 uint32_t value)
709{
710 struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
711 addr -= s->base;
712
713 switch (addr) {
714 case SSCR0:
715 s->sscr[0] = value & 0xc7ffffff;
716 s->enable = value & SSCR0_SSE;
717 if (value & SSCR0_MOD)
718 printf("%s: Attempt to use network mode\n", __FUNCTION__);
719 if (s->enable && SSCR0_DSS(value) < 4)
720 printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
721 SSCR0_DSS(value));
722 if (!(value & SSCR0_SSE)) {
723 s->sssr = 0;
724 s->ssitr = 0;
725 s->rx_level = 0;
726 }
727 pxa2xx_ssp_fifo_update(s);
728 break;
729
730 case SSCR1:
731 s->sscr[1] = value;
732 if (value & (SSCR1_LBM | SSCR1_EFWR))
733 printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
734 pxa2xx_ssp_fifo_update(s);
735 break;
736
737 case SSPSP:
738 s->sspsp = value;
739 break;
740
741 case SSTO:
742 s->ssto = value;
743 break;
744
745 case SSITR:
746 s->ssitr = value & SSITR_INT;
747 pxa2xx_ssp_int_update(s);
748 break;
749
750 case SSSR:
751 s->sssr &= ~(value & SSSR_RW);
752 pxa2xx_ssp_int_update(s);
753 break;
754
755 case SSDR:
756 if (SSCR0_UWIRE(s->sscr[0])) {
757 if (s->sscr[1] & SSCR1_MWDS)
758 value &= 0xffff;
759 else
760 value &= 0xff;
761 } else
762 /* Note how 32bits overflow does no harm here */
763 value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
764
765 /* Data goes from here to the Tx FIFO and is shifted out from
766 * there directly to the slave, no need to buffer it.
767 */
768 if (s->enable) {
769 if (s->writefn)
770 s->writefn(s->opaque, value);
771
772 if (s->rx_level < 0x10) {
773 if (s->readfn)
774 s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] =
775 s->readfn(s->opaque);
776 else
777 s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = 0x0;
778 } else
779 s->sssr |= SSSR_ROR;
780 }
781 pxa2xx_ssp_fifo_update(s);
782 break;
783
784 case SSTSA:
785 s->sstsa = value;
786 break;
787
788 case SSRSA:
789 s->ssrsa = value;
790 break;
791
792 case SSACD:
793 s->ssacd = value;
794 break;
795
796 default:
797 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
798 break;
799 }
800}
801
802void pxa2xx_ssp_attach(struct pxa2xx_ssp_s *port,
803 uint32_t (*readfn)(void *opaque),
804 void (*writefn)(void *opaque, uint32_t value), void *opaque)
805{
806 if (!port) {
807 printf("%s: no such SSP\n", __FUNCTION__);
808 exit(-1);
809 }
810
811 port->opaque = opaque;
812 port->readfn = readfn;
813 port->writefn = writefn;
814}
815
816static CPUReadMemoryFunc *pxa2xx_ssp_readfn[] = {
817 pxa2xx_ssp_read,
818 pxa2xx_ssp_read,
819 pxa2xx_ssp_read,
820};
821
822static CPUWriteMemoryFunc *pxa2xx_ssp_writefn[] = {
823 pxa2xx_ssp_write,
824 pxa2xx_ssp_write,
825 pxa2xx_ssp_write,
826};
827
aa941b94
AZ
828static void pxa2xx_ssp_save(QEMUFile *f, void *opaque)
829{
830 struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
831 int i;
832
833 qemu_put_be32(f, s->enable);
834
835 qemu_put_be32s(f, &s->sscr[0]);
836 qemu_put_be32s(f, &s->sscr[1]);
837 qemu_put_be32s(f, &s->sspsp);
838 qemu_put_be32s(f, &s->ssto);
839 qemu_put_be32s(f, &s->ssitr);
840 qemu_put_be32s(f, &s->sssr);
841 qemu_put_8s(f, &s->sstsa);
842 qemu_put_8s(f, &s->ssrsa);
843 qemu_put_8s(f, &s->ssacd);
844
845 qemu_put_byte(f, s->rx_level);
846 for (i = 0; i < s->rx_level; i ++)
847 qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 0xf]);
848}
849
850static int pxa2xx_ssp_load(QEMUFile *f, void *opaque, int version_id)
851{
852 struct pxa2xx_ssp_s *s = (struct pxa2xx_ssp_s *) opaque;
853 int i;
854
855 s->enable = qemu_get_be32(f);
856
857 qemu_get_be32s(f, &s->sscr[0]);
858 qemu_get_be32s(f, &s->sscr[1]);
859 qemu_get_be32s(f, &s->sspsp);
860 qemu_get_be32s(f, &s->ssto);
861 qemu_get_be32s(f, &s->ssitr);
862 qemu_get_be32s(f, &s->sssr);
863 qemu_get_8s(f, &s->sstsa);
864 qemu_get_8s(f, &s->ssrsa);
865 qemu_get_8s(f, &s->ssacd);
866
867 s->rx_level = qemu_get_byte(f);
868 s->rx_start = 0;
869 for (i = 0; i < s->rx_level; i ++)
870 s->rx_fifo[i] = qemu_get_byte(f);
871
872 return 0;
873}
874
c1713132
AZ
875/* Real-Time Clock */
876#define RCNR 0x00 /* RTC Counter register */
877#define RTAR 0x04 /* RTC Alarm register */
878#define RTSR 0x08 /* RTC Status register */
879#define RTTR 0x0c /* RTC Timer Trim register */
880#define RDCR 0x10 /* RTC Day Counter register */
881#define RYCR 0x14 /* RTC Year Counter register */
882#define RDAR1 0x18 /* RTC Wristwatch Day Alarm register 1 */
883#define RYAR1 0x1c /* RTC Wristwatch Year Alarm register 1 */
884#define RDAR2 0x20 /* RTC Wristwatch Day Alarm register 2 */
885#define RYAR2 0x24 /* RTC Wristwatch Year Alarm register 2 */
886#define SWCR 0x28 /* RTC Stopwatch Counter register */
887#define SWAR1 0x2c /* RTC Stopwatch Alarm register 1 */
888#define SWAR2 0x30 /* RTC Stopwatch Alarm register 2 */
889#define RTCPICR 0x34 /* RTC Periodic Interrupt Counter register */
890#define PIAR 0x38 /* RTC Periodic Interrupt Alarm register */
891
892static inline void pxa2xx_rtc_int_update(struct pxa2xx_state_s *s)
893{
894 qemu_set_irq(s->pic[PXA2XX_PIC_RTCALARM], !!(s->rtsr & 0x2553));
895}
896
897static void pxa2xx_rtc_hzupdate(struct pxa2xx_state_s *s)
898{
899 int64_t rt = qemu_get_clock(rt_clock);
900 s->last_rcnr += ((rt - s->last_hz) << 15) /
901 (1000 * ((s->rttr & 0xffff) + 1));
902 s->last_rdcr += ((rt - s->last_hz) << 15) /
903 (1000 * ((s->rttr & 0xffff) + 1));
904 s->last_hz = rt;
905}
906
907static void pxa2xx_rtc_swupdate(struct pxa2xx_state_s *s)
908{
909 int64_t rt = qemu_get_clock(rt_clock);
910 if (s->rtsr & (1 << 12))
911 s->last_swcr += (rt - s->last_sw) / 10;
912 s->last_sw = rt;
913}
914
915static void pxa2xx_rtc_piupdate(struct pxa2xx_state_s *s)
916{
917 int64_t rt = qemu_get_clock(rt_clock);
918 if (s->rtsr & (1 << 15))
919 s->last_swcr += rt - s->last_pi;
920 s->last_pi = rt;
921}
922
923static inline void pxa2xx_rtc_alarm_update(struct pxa2xx_state_s *s,
924 uint32_t rtsr)
925{
926 if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
927 qemu_mod_timer(s->rtc_hz, s->last_hz +
928 (((s->rtar - s->last_rcnr) * 1000 *
929 ((s->rttr & 0xffff) + 1)) >> 15));
930 else
931 qemu_del_timer(s->rtc_hz);
932
933 if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
934 qemu_mod_timer(s->rtc_rdal1, s->last_hz +
935 (((s->rdar1 - s->last_rdcr) * 1000 *
936 ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
937 else
938 qemu_del_timer(s->rtc_rdal1);
939
940 if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
941 qemu_mod_timer(s->rtc_rdal2, s->last_hz +
942 (((s->rdar2 - s->last_rdcr) * 1000 *
943 ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
944 else
945 qemu_del_timer(s->rtc_rdal2);
946
947 if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
948 qemu_mod_timer(s->rtc_swal1, s->last_sw +
949 (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
950 else
951 qemu_del_timer(s->rtc_swal1);
952
953 if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
954 qemu_mod_timer(s->rtc_swal2, s->last_sw +
955 (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
956 else
957 qemu_del_timer(s->rtc_swal2);
958
959 if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
960 qemu_mod_timer(s->rtc_pi, s->last_pi +
961 (s->piar & 0xffff) - s->last_rtcpicr);
962 else
963 qemu_del_timer(s->rtc_pi);
964}
965
966static inline void pxa2xx_rtc_hz_tick(void *opaque)
967{
968 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
969 s->rtsr |= (1 << 0);
970 pxa2xx_rtc_alarm_update(s, s->rtsr);
971 pxa2xx_rtc_int_update(s);
972}
973
974static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
975{
976 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
977 s->rtsr |= (1 << 4);
978 pxa2xx_rtc_alarm_update(s, s->rtsr);
979 pxa2xx_rtc_int_update(s);
980}
981
982static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
983{
984 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
985 s->rtsr |= (1 << 6);
986 pxa2xx_rtc_alarm_update(s, s->rtsr);
987 pxa2xx_rtc_int_update(s);
988}
989
990static inline void pxa2xx_rtc_swal1_tick(void *opaque)
991{
992 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
993 s->rtsr |= (1 << 8);
994 pxa2xx_rtc_alarm_update(s, s->rtsr);
995 pxa2xx_rtc_int_update(s);
996}
997
998static inline void pxa2xx_rtc_swal2_tick(void *opaque)
999{
1000 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
1001 s->rtsr |= (1 << 10);
1002 pxa2xx_rtc_alarm_update(s, s->rtsr);
1003 pxa2xx_rtc_int_update(s);
1004}
1005
1006static inline void pxa2xx_rtc_pi_tick(void *opaque)
1007{
1008 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
1009 s->rtsr |= (1 << 13);
1010 pxa2xx_rtc_piupdate(s);
1011 s->last_rtcpicr = 0;
1012 pxa2xx_rtc_alarm_update(s, s->rtsr);
1013 pxa2xx_rtc_int_update(s);
1014}
1015
1016static uint32_t pxa2xx_rtc_read(void *opaque, target_phys_addr_t addr)
1017{
1018 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
1019 addr -= s->rtc_base;
1020
1021 switch (addr) {
1022 case RTTR:
1023 return s->rttr;
1024 case RTSR:
1025 return s->rtsr;
1026 case RTAR:
1027 return s->rtar;
1028 case RDAR1:
1029 return s->rdar1;
1030 case RDAR2:
1031 return s->rdar2;
1032 case RYAR1:
1033 return s->ryar1;
1034 case RYAR2:
1035 return s->ryar2;
1036 case SWAR1:
1037 return s->swar1;
1038 case SWAR2:
1039 return s->swar2;
1040 case PIAR:
1041 return s->piar;
1042 case RCNR:
1043 return s->last_rcnr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) /
1044 (1000 * ((s->rttr & 0xffff) + 1));
1045 case RDCR:
1046 return s->last_rdcr + ((qemu_get_clock(rt_clock) - s->last_hz) << 15) /
1047 (1000 * ((s->rttr & 0xffff) + 1));
1048 case RYCR:
1049 return s->last_rycr;
1050 case SWCR:
1051 if (s->rtsr & (1 << 12))
1052 return s->last_swcr + (qemu_get_clock(rt_clock) - s->last_sw) / 10;
1053 else
1054 return s->last_swcr;
1055 default:
1056 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1057 break;
1058 }
1059 return 0;
1060}
1061
1062static void pxa2xx_rtc_write(void *opaque, target_phys_addr_t addr,
1063 uint32_t value)
1064{
1065 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
1066 addr -= s->rtc_base;
1067
1068 switch (addr) {
1069 case RTTR:
1070 if (!(s->rttr & (1 << 31))) {
1071 pxa2xx_rtc_hzupdate(s);
1072 s->rttr = value;
1073 pxa2xx_rtc_alarm_update(s, s->rtsr);
1074 }
1075 break;
1076
1077 case RTSR:
1078 if ((s->rtsr ^ value) & (1 << 15))
1079 pxa2xx_rtc_piupdate(s);
1080
1081 if ((s->rtsr ^ value) & (1 << 12))
1082 pxa2xx_rtc_swupdate(s);
1083
1084 if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
1085 pxa2xx_rtc_alarm_update(s, value);
1086
1087 s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
1088 pxa2xx_rtc_int_update(s);
1089 break;
1090
1091 case RTAR:
1092 s->rtar = value;
1093 pxa2xx_rtc_alarm_update(s, s->rtsr);
1094 break;
1095
1096 case RDAR1:
1097 s->rdar1 = value;
1098 pxa2xx_rtc_alarm_update(s, s->rtsr);
1099 break;
1100
1101 case RDAR2:
1102 s->rdar2 = value;
1103 pxa2xx_rtc_alarm_update(s, s->rtsr);
1104 break;
1105
1106 case RYAR1:
1107 s->ryar1 = value;
1108 pxa2xx_rtc_alarm_update(s, s->rtsr);
1109 break;
1110
1111 case RYAR2:
1112 s->ryar2 = value;
1113 pxa2xx_rtc_alarm_update(s, s->rtsr);
1114 break;
1115
1116 case SWAR1:
1117 pxa2xx_rtc_swupdate(s);
1118 s->swar1 = value;
1119 s->last_swcr = 0;
1120 pxa2xx_rtc_alarm_update(s, s->rtsr);
1121 break;
1122
1123 case SWAR2:
1124 s->swar2 = value;
1125 pxa2xx_rtc_alarm_update(s, s->rtsr);
1126 break;
1127
1128 case PIAR:
1129 s->piar = value;
1130 pxa2xx_rtc_alarm_update(s, s->rtsr);
1131 break;
1132
1133 case RCNR:
1134 pxa2xx_rtc_hzupdate(s);
1135 s->last_rcnr = value;
1136 pxa2xx_rtc_alarm_update(s, s->rtsr);
1137 break;
1138
1139 case RDCR:
1140 pxa2xx_rtc_hzupdate(s);
1141 s->last_rdcr = value;
1142 pxa2xx_rtc_alarm_update(s, s->rtsr);
1143 break;
1144
1145 case RYCR:
1146 s->last_rycr = value;
1147 break;
1148
1149 case SWCR:
1150 pxa2xx_rtc_swupdate(s);
1151 s->last_swcr = value;
1152 pxa2xx_rtc_alarm_update(s, s->rtsr);
1153 break;
1154
1155 case RTCPICR:
1156 pxa2xx_rtc_piupdate(s);
1157 s->last_rtcpicr = value & 0xffff;
1158 pxa2xx_rtc_alarm_update(s, s->rtsr);
1159 break;
1160
1161 default:
1162 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1163 }
1164}
1165
aa941b94
AZ
1166static CPUReadMemoryFunc *pxa2xx_rtc_readfn[] = {
1167 pxa2xx_rtc_read,
1168 pxa2xx_rtc_read,
1169 pxa2xx_rtc_read,
1170};
1171
1172static CPUWriteMemoryFunc *pxa2xx_rtc_writefn[] = {
1173 pxa2xx_rtc_write,
1174 pxa2xx_rtc_write,
1175 pxa2xx_rtc_write,
1176};
1177
1178static void pxa2xx_rtc_init(struct pxa2xx_state_s *s)
c1713132
AZ
1179{
1180 struct tm *tm;
1181 time_t ti;
1182 int wom;
1183
1184 s->rttr = 0x7fff;
1185 s->rtsr = 0;
1186
1187 time(&ti);
1188 if (rtc_utc)
1189 tm = gmtime(&ti);
1190 else
1191 tm = localtime(&ti);
1192 wom = ((tm->tm_mday - 1) / 7) + 1;
1193
1194 s->last_rcnr = (uint32_t) ti;
1195 s->last_rdcr = (wom << 20) | ((tm->tm_wday + 1) << 17) |
1196 (tm->tm_hour << 12) | (tm->tm_min << 6) | tm->tm_sec;
1197 s->last_rycr = ((tm->tm_year + 1900) << 9) |
1198 ((tm->tm_mon + 1) << 5) | tm->tm_mday;
1199 s->last_swcr = (tm->tm_hour << 19) |
1200 (tm->tm_min << 13) | (tm->tm_sec << 7);
1201 s->last_rtcpicr = 0;
1202 s->last_hz = s->last_sw = s->last_pi = qemu_get_clock(rt_clock);
1203
1204 s->rtc_hz = qemu_new_timer(rt_clock, pxa2xx_rtc_hz_tick, s);
1205 s->rtc_rdal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal1_tick, s);
1206 s->rtc_rdal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_rdal2_tick, s);
1207 s->rtc_swal1 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal1_tick, s);
1208 s->rtc_swal2 = qemu_new_timer(rt_clock, pxa2xx_rtc_swal2_tick, s);
1209 s->rtc_pi = qemu_new_timer(rt_clock, pxa2xx_rtc_pi_tick, s);
1210}
1211
aa941b94
AZ
1212static void pxa2xx_rtc_save(QEMUFile *f, void *opaque)
1213{
1214 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
c1713132 1215
aa941b94
AZ
1216 pxa2xx_rtc_hzupdate(s);
1217 pxa2xx_rtc_piupdate(s);
1218 pxa2xx_rtc_swupdate(s);
1219
1220 qemu_put_be32s(f, &s->rttr);
1221 qemu_put_be32s(f, &s->rtsr);
1222 qemu_put_be32s(f, &s->rtar);
1223 qemu_put_be32s(f, &s->rdar1);
1224 qemu_put_be32s(f, &s->rdar2);
1225 qemu_put_be32s(f, &s->ryar1);
1226 qemu_put_be32s(f, &s->ryar2);
1227 qemu_put_be32s(f, &s->swar1);
1228 qemu_put_be32s(f, &s->swar2);
1229 qemu_put_be32s(f, &s->piar);
1230 qemu_put_be32s(f, &s->last_rcnr);
1231 qemu_put_be32s(f, &s->last_rdcr);
1232 qemu_put_be32s(f, &s->last_rycr);
1233 qemu_put_be32s(f, &s->last_swcr);
1234 qemu_put_be32s(f, &s->last_rtcpicr);
1235 qemu_put_be64s(f, &s->last_hz);
1236 qemu_put_be64s(f, &s->last_sw);
1237 qemu_put_be64s(f, &s->last_pi);
1238}
1239
1240static int pxa2xx_rtc_load(QEMUFile *f, void *opaque, int version_id)
1241{
1242 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
1243
1244 qemu_get_be32s(f, &s->rttr);
1245 qemu_get_be32s(f, &s->rtsr);
1246 qemu_get_be32s(f, &s->rtar);
1247 qemu_get_be32s(f, &s->rdar1);
1248 qemu_get_be32s(f, &s->rdar2);
1249 qemu_get_be32s(f, &s->ryar1);
1250 qemu_get_be32s(f, &s->ryar2);
1251 qemu_get_be32s(f, &s->swar1);
1252 qemu_get_be32s(f, &s->swar2);
1253 qemu_get_be32s(f, &s->piar);
1254 qemu_get_be32s(f, &s->last_rcnr);
1255 qemu_get_be32s(f, &s->last_rdcr);
1256 qemu_get_be32s(f, &s->last_rycr);
1257 qemu_get_be32s(f, &s->last_swcr);
1258 qemu_get_be32s(f, &s->last_rtcpicr);
1259 qemu_get_be64s(f, &s->last_hz);
1260 qemu_get_be64s(f, &s->last_sw);
1261 qemu_get_be64s(f, &s->last_pi);
1262
1263 pxa2xx_rtc_alarm_update(s, s->rtsr);
1264
1265 return 0;
1266}
c1713132 1267
3f582262
AZ
1268/* I2C Interface */
1269struct pxa2xx_i2c_s {
1270 i2c_slave slave;
1271 i2c_bus *bus;
1272 target_phys_addr_t base;
1273 qemu_irq irq;
1274
1275 uint16_t control;
1276 uint16_t status;
1277 uint8_t ibmr;
1278 uint8_t data;
1279};
1280
1281#define IBMR 0x80 /* I2C Bus Monitor register */
1282#define IDBR 0x88 /* I2C Data Buffer register */
1283#define ICR 0x90 /* I2C Control register */
1284#define ISR 0x98 /* I2C Status register */
1285#define ISAR 0xa0 /* I2C Slave Address register */
1286
1287static void pxa2xx_i2c_update(struct pxa2xx_i2c_s *s)
1288{
1289 uint16_t level = 0;
1290 level |= s->status & s->control & (1 << 10); /* BED */
1291 level |= (s->status & (1 << 7)) && (s->control & (1 << 9)); /* IRF */
1292 level |= (s->status & (1 << 6)) && (s->control & (1 << 8)); /* ITE */
1293 level |= s->status & (1 << 9); /* SAD */
1294 qemu_set_irq(s->irq, !!level);
1295}
1296
1297/* These are only stubs now. */
1298static void pxa2xx_i2c_event(i2c_slave *i2c, enum i2c_event event)
1299{
1300 struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) i2c;
1301
1302 switch (event) {
1303 case I2C_START_SEND:
1304 s->status |= (1 << 9); /* set SAD */
1305 s->status &= ~(1 << 0); /* clear RWM */
1306 break;
1307 case I2C_START_RECV:
1308 s->status |= (1 << 9); /* set SAD */
1309 s->status |= 1 << 0; /* set RWM */
1310 break;
1311 case I2C_FINISH:
1312 s->status |= (1 << 4); /* set SSD */
1313 break;
1314 case I2C_NACK:
1315 s->status |= 1 << 1; /* set ACKNAK */
1316 break;
1317 }
1318 pxa2xx_i2c_update(s);
1319}
1320
1321static int pxa2xx_i2c_rx(i2c_slave *i2c)
1322{
1323 struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) i2c;
1324 if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1325 return 0;
1326
1327 if (s->status & (1 << 0)) { /* RWM */
1328 s->status |= 1 << 6; /* set ITE */
1329 }
1330 pxa2xx_i2c_update(s);
1331
1332 return s->data;
1333}
1334
1335static int pxa2xx_i2c_tx(i2c_slave *i2c, uint8_t data)
1336{
1337 struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) i2c;
1338 if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1339 return 1;
1340
1341 if (!(s->status & (1 << 0))) { /* RWM */
1342 s->status |= 1 << 7; /* set IRF */
1343 s->data = data;
1344 }
1345 pxa2xx_i2c_update(s);
1346
1347 return 1;
1348}
1349
1350static uint32_t pxa2xx_i2c_read(void *opaque, target_phys_addr_t addr)
1351{
1352 struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
1353 addr -= s->base;
1354
1355 switch (addr) {
1356 case ICR:
1357 return s->control;
1358 case ISR:
1359 return s->status | (i2c_bus_busy(s->bus) << 2);
1360 case ISAR:
1361 return s->slave.address;
1362 case IDBR:
1363 return s->data;
1364 case IBMR:
1365 if (s->status & (1 << 2))
1366 s->ibmr ^= 3; /* Fake SCL and SDA pin changes */
1367 else
1368 s->ibmr = 0;
1369 return s->ibmr;
1370 default:
1371 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1372 break;
1373 }
1374 return 0;
1375}
1376
1377static void pxa2xx_i2c_write(void *opaque, target_phys_addr_t addr,
1378 uint32_t value)
1379{
1380 struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
1381 int ack;
1382 addr -= s->base;
1383
1384 switch (addr) {
1385 case ICR:
1386 s->control = value & 0xfff7;
1387 if ((value & (1 << 3)) && (value & (1 << 6))) { /* TB and IUE */
1388 /* TODO: slave mode */
1389 if (value & (1 << 0)) { /* START condition */
1390 if (s->data & 1)
1391 s->status |= 1 << 0; /* set RWM */
1392 else
1393 s->status &= ~(1 << 0); /* clear RWM */
1394 ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1);
1395 } else {
1396 if (s->status & (1 << 0)) { /* RWM */
1397 s->data = i2c_recv(s->bus);
1398 if (value & (1 << 2)) /* ACKNAK */
1399 i2c_nack(s->bus);
1400 ack = 1;
1401 } else
1402 ack = !i2c_send(s->bus, s->data);
1403 }
1404
1405 if (value & (1 << 1)) /* STOP condition */
1406 i2c_end_transfer(s->bus);
1407
1408 if (ack) {
1409 if (value & (1 << 0)) /* START condition */
1410 s->status |= 1 << 6; /* set ITE */
1411 else
1412 if (s->status & (1 << 0)) /* RWM */
1413 s->status |= 1 << 7; /* set IRF */
1414 else
1415 s->status |= 1 << 6; /* set ITE */
1416 s->status &= ~(1 << 1); /* clear ACKNAK */
1417 } else {
1418 s->status |= 1 << 6; /* set ITE */
1419 s->status |= 1 << 10; /* set BED */
1420 s->status |= 1 << 1; /* set ACKNAK */
1421 }
1422 }
1423 if (!(value & (1 << 3)) && (value & (1 << 6))) /* !TB and IUE */
1424 if (value & (1 << 4)) /* MA */
1425 i2c_end_transfer(s->bus);
1426 pxa2xx_i2c_update(s);
1427 break;
1428
1429 case ISR:
1430 s->status &= ~(value & 0x07f0);
1431 pxa2xx_i2c_update(s);
1432 break;
1433
1434 case ISAR:
1435 i2c_set_slave_address(&s->slave, value & 0x7f);
1436 break;
1437
1438 case IDBR:
1439 s->data = value & 0xff;
1440 break;
1441
1442 default:
1443 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1444 }
1445}
1446
1447static CPUReadMemoryFunc *pxa2xx_i2c_readfn[] = {
1448 pxa2xx_i2c_read,
1449 pxa2xx_i2c_read,
1450 pxa2xx_i2c_read,
1451};
1452
1453static CPUWriteMemoryFunc *pxa2xx_i2c_writefn[] = {
1454 pxa2xx_i2c_write,
1455 pxa2xx_i2c_write,
1456 pxa2xx_i2c_write,
1457};
1458
aa941b94
AZ
1459static void pxa2xx_i2c_save(QEMUFile *f, void *opaque)
1460{
1461 struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
1462
1463 qemu_put_be16s(f, &s->control);
1464 qemu_put_be16s(f, &s->status);
1465 qemu_put_8s(f, &s->ibmr);
1466 qemu_put_8s(f, &s->data);
1467
1468 i2c_bus_save(f, s->bus);
1469 i2c_slave_save(f, &s->slave);
1470}
1471
1472static int pxa2xx_i2c_load(QEMUFile *f, void *opaque, int version_id)
1473{
1474 struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *) opaque;
1475
1476 qemu_get_be16s(f, &s->control);
1477 qemu_get_be16s(f, &s->status);
1478 qemu_get_8s(f, &s->ibmr);
1479 qemu_get_8s(f, &s->data);
1480
1481 i2c_bus_load(f, s->bus);
1482 i2c_slave_load(f, &s->slave);
1483 return 0;
1484}
1485
3f582262
AZ
1486struct pxa2xx_i2c_s *pxa2xx_i2c_init(target_phys_addr_t base,
1487 qemu_irq irq, int ioregister)
1488{
1489 int iomemtype;
1490 struct pxa2xx_i2c_s *s = (struct pxa2xx_i2c_s *)
3f6c925f 1491 i2c_slave_init(i2c_init_bus(), 0, sizeof(struct pxa2xx_i2c_s));
3f582262
AZ
1492
1493 s->base = base;
1494 s->irq = irq;
1495 s->slave.event = pxa2xx_i2c_event;
1496 s->slave.recv = pxa2xx_i2c_rx;
1497 s->slave.send = pxa2xx_i2c_tx;
1498 s->bus = i2c_init_bus();
1499
1500 if (ioregister) {
1501 iomemtype = cpu_register_io_memory(0, pxa2xx_i2c_readfn,
1502 pxa2xx_i2c_writefn, s);
1503 cpu_register_physical_memory(s->base & 0xfffff000, 0xfff, iomemtype);
1504 }
1505
aa941b94
AZ
1506 register_savevm("pxa2xx_i2c", base, 0,
1507 pxa2xx_i2c_save, pxa2xx_i2c_load, s);
1508
3f582262
AZ
1509 return s;
1510}
1511
1512i2c_bus *pxa2xx_i2c_bus(struct pxa2xx_i2c_s *s)
1513{
1514 return s->bus;
1515}
1516
c1713132
AZ
1517/* PXA Inter-IC Sound Controller */
1518static void pxa2xx_i2s_reset(struct pxa2xx_i2s_s *i2s)
1519{
1520 i2s->rx_len = 0;
1521 i2s->tx_len = 0;
1522 i2s->fifo_len = 0;
1523 i2s->clk = 0x1a;
1524 i2s->control[0] = 0x00;
1525 i2s->control[1] = 0x00;
1526 i2s->status = 0x00;
1527 i2s->mask = 0x00;
1528}
1529
1530#define SACR_TFTH(val) ((val >> 8) & 0xf)
1531#define SACR_RFTH(val) ((val >> 12) & 0xf)
1532#define SACR_DREC(val) (val & (1 << 3))
1533#define SACR_DPRL(val) (val & (1 << 4))
1534
1535static inline void pxa2xx_i2s_update(struct pxa2xx_i2s_s *i2s)
1536{
1537 int rfs, tfs;
1538 rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
1539 !SACR_DREC(i2s->control[1]);
1540 tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
1541 i2s->enable && !SACR_DPRL(i2s->control[1]);
1542
1543 pxa2xx_dma_request(i2s->dma, PXA2XX_RX_RQ_I2S, rfs);
1544 pxa2xx_dma_request(i2s->dma, PXA2XX_TX_RQ_I2S, tfs);
1545
1546 i2s->status &= 0xe0;
1547 if (i2s->rx_len)
1548 i2s->status |= 1 << 1; /* RNE */
1549 if (i2s->enable)
1550 i2s->status |= 1 << 2; /* BSY */
1551 if (tfs)
1552 i2s->status |= 1 << 3; /* TFS */
1553 if (rfs)
1554 i2s->status |= 1 << 4; /* RFS */
1555 if (!(i2s->tx_len && i2s->enable))
1556 i2s->status |= i2s->fifo_len << 8; /* TFL */
1557 i2s->status |= MAX(i2s->rx_len, 0xf) << 12; /* RFL */
1558
1559 qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
1560}
1561
1562#define SACR0 0x00 /* Serial Audio Global Control register */
1563#define SACR1 0x04 /* Serial Audio I2S/MSB-Justified Control register */
1564#define SASR0 0x0c /* Serial Audio Interface and FIFO Status register */
1565#define SAIMR 0x14 /* Serial Audio Interrupt Mask register */
1566#define SAICR 0x18 /* Serial Audio Interrupt Clear register */
1567#define SADIV 0x60 /* Serial Audio Clock Divider register */
1568#define SADR 0x80 /* Serial Audio Data register */
1569
1570static uint32_t pxa2xx_i2s_read(void *opaque, target_phys_addr_t addr)
1571{
1572 struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
1573 addr -= s->base;
1574
1575 switch (addr) {
1576 case SACR0:
1577 return s->control[0];
1578 case SACR1:
1579 return s->control[1];
1580 case SASR0:
1581 return s->status;
1582 case SAIMR:
1583 return s->mask;
1584 case SAICR:
1585 return 0;
1586 case SADIV:
1587 return s->clk;
1588 case SADR:
1589 if (s->rx_len > 0) {
1590 s->rx_len --;
1591 pxa2xx_i2s_update(s);
1592 return s->codec_in(s->opaque);
1593 }
1594 return 0;
1595 default:
1596 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1597 break;
1598 }
1599 return 0;
1600}
1601
1602static void pxa2xx_i2s_write(void *opaque, target_phys_addr_t addr,
1603 uint32_t value)
1604{
1605 struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
1606 uint32_t *sample;
1607 addr -= s->base;
1608
1609 switch (addr) {
1610 case SACR0:
1611 if (value & (1 << 3)) /* RST */
1612 pxa2xx_i2s_reset(s);
1613 s->control[0] = value & 0xff3d;
1614 if (!s->enable && (value & 1) && s->tx_len) { /* ENB */
1615 for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
1616 s->codec_out(s->opaque, *sample);
1617 s->status &= ~(1 << 7); /* I2SOFF */
1618 }
1619 if (value & (1 << 4)) /* EFWR */
1620 printf("%s: Attempt to use special function\n", __FUNCTION__);
1621 s->enable = ((value ^ 4) & 5) == 5; /* ENB && !RST*/
1622 pxa2xx_i2s_update(s);
1623 break;
1624 case SACR1:
1625 s->control[1] = value & 0x0039;
1626 if (value & (1 << 5)) /* ENLBF */
1627 printf("%s: Attempt to use loopback function\n", __FUNCTION__);
1628 if (value & (1 << 4)) /* DPRL */
1629 s->fifo_len = 0;
1630 pxa2xx_i2s_update(s);
1631 break;
1632 case SAIMR:
1633 s->mask = value & 0x0078;
1634 pxa2xx_i2s_update(s);
1635 break;
1636 case SAICR:
1637 s->status &= ~(value & (3 << 5));
1638 pxa2xx_i2s_update(s);
1639 break;
1640 case SADIV:
1641 s->clk = value & 0x007f;
1642 break;
1643 case SADR:
1644 if (s->tx_len && s->enable) {
1645 s->tx_len --;
1646 pxa2xx_i2s_update(s);
1647 s->codec_out(s->opaque, value);
1648 } else if (s->fifo_len < 16) {
1649 s->fifo[s->fifo_len ++] = value;
1650 pxa2xx_i2s_update(s);
1651 }
1652 break;
1653 default:
1654 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1655 }
1656}
1657
1658static CPUReadMemoryFunc *pxa2xx_i2s_readfn[] = {
1659 pxa2xx_i2s_read,
1660 pxa2xx_i2s_read,
1661 pxa2xx_i2s_read,
1662};
1663
1664static CPUWriteMemoryFunc *pxa2xx_i2s_writefn[] = {
1665 pxa2xx_i2s_write,
1666 pxa2xx_i2s_write,
1667 pxa2xx_i2s_write,
1668};
1669
aa941b94
AZ
1670static void pxa2xx_i2s_save(QEMUFile *f, void *opaque)
1671{
1672 struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
1673
1674 qemu_put_be32s(f, &s->control[0]);
1675 qemu_put_be32s(f, &s->control[1]);
1676 qemu_put_be32s(f, &s->status);
1677 qemu_put_be32s(f, &s->mask);
1678 qemu_put_be32s(f, &s->clk);
1679
1680 qemu_put_be32(f, s->enable);
1681 qemu_put_be32(f, s->rx_len);
1682 qemu_put_be32(f, s->tx_len);
1683 qemu_put_be32(f, s->fifo_len);
1684}
1685
1686static int pxa2xx_i2s_load(QEMUFile *f, void *opaque, int version_id)
1687{
1688 struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
1689
1690 qemu_get_be32s(f, &s->control[0]);
1691 qemu_get_be32s(f, &s->control[1]);
1692 qemu_get_be32s(f, &s->status);
1693 qemu_get_be32s(f, &s->mask);
1694 qemu_get_be32s(f, &s->clk);
1695
1696 s->enable = qemu_get_be32(f);
1697 s->rx_len = qemu_get_be32(f);
1698 s->tx_len = qemu_get_be32(f);
1699 s->fifo_len = qemu_get_be32(f);
1700
1701 return 0;
1702}
1703
c1713132
AZ
1704static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
1705{
1706 struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *) opaque;
1707 uint32_t *sample;
1708
1709 /* Signal FIFO errors */
1710 if (s->enable && s->tx_len)
1711 s->status |= 1 << 5; /* TUR */
1712 if (s->enable && s->rx_len)
1713 s->status |= 1 << 6; /* ROR */
1714
1715 /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
1716 * handle the cases where it makes a difference. */
1717 s->tx_len = tx - s->fifo_len;
1718 s->rx_len = rx;
1719 /* Note that is s->codec_out wasn't set, we wouldn't get called. */
1720 if (s->enable)
1721 for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
1722 s->codec_out(s->opaque, *sample);
1723 pxa2xx_i2s_update(s);
1724}
1725
1726static struct pxa2xx_i2s_s *pxa2xx_i2s_init(target_phys_addr_t base,
1727 qemu_irq irq, struct pxa2xx_dma_state_s *dma)
1728{
1729 int iomemtype;
1730 struct pxa2xx_i2s_s *s = (struct pxa2xx_i2s_s *)
1731 qemu_mallocz(sizeof(struct pxa2xx_i2s_s));
1732
1733 s->base = base;
1734 s->irq = irq;
1735 s->dma = dma;
1736 s->data_req = pxa2xx_i2s_data_req;
1737
1738 pxa2xx_i2s_reset(s);
1739
1740 iomemtype = cpu_register_io_memory(0, pxa2xx_i2s_readfn,
1741 pxa2xx_i2s_writefn, s);
1742 cpu_register_physical_memory(s->base & 0xfff00000, 0xfffff, iomemtype);
1743
aa941b94
AZ
1744 register_savevm("pxa2xx_i2s", base, 0,
1745 pxa2xx_i2s_save, pxa2xx_i2s_load, s);
1746
c1713132
AZ
1747 return s;
1748}
1749
1750/* PXA Fast Infra-red Communications Port */
1751struct pxa2xx_fir_s {
1752 target_phys_addr_t base;
1753 qemu_irq irq;
1754 struct pxa2xx_dma_state_s *dma;
1755 int enable;
1756 CharDriverState *chr;
1757
1758 uint8_t control[3];
1759 uint8_t status[2];
1760
1761 int rx_len;
1762 int rx_start;
1763 uint8_t rx_fifo[64];
1764};
1765
1766static void pxa2xx_fir_reset(struct pxa2xx_fir_s *s)
1767{
1768 s->control[0] = 0x00;
1769 s->control[1] = 0x00;
1770 s->control[2] = 0x00;
1771 s->status[0] = 0x00;
1772 s->status[1] = 0x00;
1773 s->enable = 0;
1774}
1775
1776static inline void pxa2xx_fir_update(struct pxa2xx_fir_s *s)
1777{
1778 static const int tresh[4] = { 8, 16, 32, 0 };
1779 int intr = 0;
1780 if ((s->control[0] & (1 << 4)) && /* RXE */
1781 s->rx_len >= tresh[s->control[2] & 3]) /* TRIG */
1782 s->status[0] |= 1 << 4; /* RFS */
1783 else
1784 s->status[0] &= ~(1 << 4); /* RFS */
1785 if (s->control[0] & (1 << 3)) /* TXE */
1786 s->status[0] |= 1 << 3; /* TFS */
1787 else
1788 s->status[0] &= ~(1 << 3); /* TFS */
1789 if (s->rx_len)
1790 s->status[1] |= 1 << 2; /* RNE */
1791 else
1792 s->status[1] &= ~(1 << 2); /* RNE */
1793 if (s->control[0] & (1 << 4)) /* RXE */
1794 s->status[1] |= 1 << 0; /* RSY */
1795 else
1796 s->status[1] &= ~(1 << 0); /* RSY */
1797
1798 intr |= (s->control[0] & (1 << 5)) && /* RIE */
1799 (s->status[0] & (1 << 4)); /* RFS */
1800 intr |= (s->control[0] & (1 << 6)) && /* TIE */
1801 (s->status[0] & (1 << 3)); /* TFS */
1802 intr |= (s->control[2] & (1 << 4)) && /* TRAIL */
1803 (s->status[0] & (1 << 6)); /* EOC */
1804 intr |= (s->control[0] & (1 << 2)) && /* TUS */
1805 (s->status[0] & (1 << 1)); /* TUR */
1806 intr |= s->status[0] & 0x25; /* FRE, RAB, EIF */
1807
1808 pxa2xx_dma_request(s->dma, PXA2XX_RX_RQ_ICP, (s->status[0] >> 4) & 1);
1809 pxa2xx_dma_request(s->dma, PXA2XX_TX_RQ_ICP, (s->status[0] >> 3) & 1);
1810
1811 qemu_set_irq(s->irq, intr && s->enable);
1812}
1813
1814#define ICCR0 0x00 /* FICP Control register 0 */
1815#define ICCR1 0x04 /* FICP Control register 1 */
1816#define ICCR2 0x08 /* FICP Control register 2 */
1817#define ICDR 0x0c /* FICP Data register */
1818#define ICSR0 0x14 /* FICP Status register 0 */
1819#define ICSR1 0x18 /* FICP Status register 1 */
1820#define ICFOR 0x1c /* FICP FIFO Occupancy Status register */
1821
1822static uint32_t pxa2xx_fir_read(void *opaque, target_phys_addr_t addr)
1823{
1824 struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1825 uint8_t ret;
1826 addr -= s->base;
1827
1828 switch (addr) {
1829 case ICCR0:
1830 return s->control[0];
1831 case ICCR1:
1832 return s->control[1];
1833 case ICCR2:
1834 return s->control[2];
1835 case ICDR:
1836 s->status[0] &= ~0x01;
1837 s->status[1] &= ~0x72;
1838 if (s->rx_len) {
1839 s->rx_len --;
1840 ret = s->rx_fifo[s->rx_start ++];
1841 s->rx_start &= 63;
1842 pxa2xx_fir_update(s);
1843 return ret;
1844 }
1845 printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
1846 break;
1847 case ICSR0:
1848 return s->status[0];
1849 case ICSR1:
1850 return s->status[1] | (1 << 3); /* TNF */
1851 case ICFOR:
1852 return s->rx_len;
1853 default:
1854 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1855 break;
1856 }
1857 return 0;
1858}
1859
1860static void pxa2xx_fir_write(void *opaque, target_phys_addr_t addr,
1861 uint32_t value)
1862{
1863 struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1864 uint8_t ch;
1865 addr -= s->base;
1866
1867 switch (addr) {
1868 case ICCR0:
1869 s->control[0] = value;
1870 if (!(value & (1 << 4))) /* RXE */
1871 s->rx_len = s->rx_start = 0;
1872 if (!(value & (1 << 3))) /* TXE */
1873 /* Nop */;
1874 s->enable = value & 1; /* ITR */
1875 if (!s->enable)
1876 s->status[0] = 0;
1877 pxa2xx_fir_update(s);
1878 break;
1879 case ICCR1:
1880 s->control[1] = value;
1881 break;
1882 case ICCR2:
1883 s->control[2] = value & 0x3f;
1884 pxa2xx_fir_update(s);
1885 break;
1886 case ICDR:
1887 if (s->control[2] & (1 << 2)) /* TXP */
1888 ch = value;
1889 else
1890 ch = ~value;
1891 if (s->chr && s->enable && (s->control[0] & (1 << 3))) /* TXE */
1892 qemu_chr_write(s->chr, &ch, 1);
1893 break;
1894 case ICSR0:
1895 s->status[0] &= ~(value & 0x66);
1896 pxa2xx_fir_update(s);
1897 break;
1898 case ICFOR:
1899 break;
1900 default:
1901 printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1902 }
1903}
1904
1905static CPUReadMemoryFunc *pxa2xx_fir_readfn[] = {
1906 pxa2xx_fir_read,
1907 pxa2xx_fir_read,
1908 pxa2xx_fir_read,
1909};
1910
1911static CPUWriteMemoryFunc *pxa2xx_fir_writefn[] = {
1912 pxa2xx_fir_write,
1913 pxa2xx_fir_write,
1914 pxa2xx_fir_write,
1915};
1916
1917static int pxa2xx_fir_is_empty(void *opaque)
1918{
1919 struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1920 return (s->rx_len < 64);
1921}
1922
1923static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
1924{
1925 struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1926 if (!(s->control[0] & (1 << 4))) /* RXE */
1927 return;
1928
1929 while (size --) {
1930 s->status[1] |= 1 << 4; /* EOF */
1931 if (s->rx_len >= 64) {
1932 s->status[1] |= 1 << 6; /* ROR */
1933 break;
1934 }
1935
1936 if (s->control[2] & (1 << 3)) /* RXP */
1937 s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
1938 else
1939 s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
1940 }
1941
1942 pxa2xx_fir_update(s);
1943}
1944
1945static void pxa2xx_fir_event(void *opaque, int event)
1946{
1947}
1948
aa941b94
AZ
1949static void pxa2xx_fir_save(QEMUFile *f, void *opaque)
1950{
1951 struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1952 int i;
1953
1954 qemu_put_be32(f, s->enable);
1955
1956 qemu_put_8s(f, &s->control[0]);
1957 qemu_put_8s(f, &s->control[1]);
1958 qemu_put_8s(f, &s->control[2]);
1959 qemu_put_8s(f, &s->status[0]);
1960 qemu_put_8s(f, &s->status[1]);
1961
1962 qemu_put_byte(f, s->rx_len);
1963 for (i = 0; i < s->rx_len; i ++)
1964 qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 63]);
1965}
1966
1967static int pxa2xx_fir_load(QEMUFile *f, void *opaque, int version_id)
1968{
1969 struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *) opaque;
1970 int i;
1971
1972 s->enable = qemu_get_be32(f);
1973
1974 qemu_get_8s(f, &s->control[0]);
1975 qemu_get_8s(f, &s->control[1]);
1976 qemu_get_8s(f, &s->control[2]);
1977 qemu_get_8s(f, &s->status[0]);
1978 qemu_get_8s(f, &s->status[1]);
1979
1980 s->rx_len = qemu_get_byte(f);
1981 s->rx_start = 0;
1982 for (i = 0; i < s->rx_len; i ++)
1983 s->rx_fifo[i] = qemu_get_byte(f);
1984
1985 return 0;
1986}
1987
c1713132
AZ
1988static struct pxa2xx_fir_s *pxa2xx_fir_init(target_phys_addr_t base,
1989 qemu_irq irq, struct pxa2xx_dma_state_s *dma,
1990 CharDriverState *chr)
1991{
1992 int iomemtype;
1993 struct pxa2xx_fir_s *s = (struct pxa2xx_fir_s *)
1994 qemu_mallocz(sizeof(struct pxa2xx_fir_s));
1995
1996 s->base = base;
1997 s->irq = irq;
1998 s->dma = dma;
1999 s->chr = chr;
2000
2001 pxa2xx_fir_reset(s);
2002
2003 iomemtype = cpu_register_io_memory(0, pxa2xx_fir_readfn,
2004 pxa2xx_fir_writefn, s);
2005 cpu_register_physical_memory(s->base, 0xfff, iomemtype);
2006
2007 if (chr)
2008 qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
2009 pxa2xx_fir_rx, pxa2xx_fir_event, s);
2010
aa941b94
AZ
2011 register_savevm("pxa2xx_fir", 0, 0, pxa2xx_fir_save, pxa2xx_fir_load, s);
2012
c1713132
AZ
2013 return s;
2014}
2015
2016void pxa2xx_reset(int line, int level, void *opaque)
2017{
2018 struct pxa2xx_state_s *s = (struct pxa2xx_state_s *) opaque;
2019 if (level && (s->pm_regs[PCFR >> 2] & 0x10)) { /* GPR_EN */
2020 cpu_reset(s->env);
2021 /* TODO: reset peripherals */
2022 }
2023}
2024
2025/* Initialise a PXA270 integrated chip (ARM based core). */
d95b2f8d
AZ
2026struct pxa2xx_state_s *pxa270_init(unsigned int sdram_size,
2027 DisplayState *ds, const char *revision)
c1713132
AZ
2028{
2029 struct pxa2xx_state_s *s;
2030 struct pxa2xx_ssp_s *ssp;
c1713132
AZ
2031 int iomemtype, i;
2032 s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s));
2033
4207117c
AZ
2034 if (revision && strncmp(revision, "pxa27", 5)) {
2035 fprintf(stderr, "Machine requires a PXA27x processor.\n");
2036 exit(1);
2037 }
2038
c1713132 2039 s->env = cpu_init();
4207117c 2040 cpu_arm_set_model(s->env, revision ?: "pxa270");
aa941b94 2041 register_savevm("cpu", 0, 0, cpu_save, cpu_load, s->env);
c1713132 2042
d95b2f8d
AZ
2043 /* SDRAM & Internal Memory Storage */
2044 cpu_register_physical_memory(PXA2XX_SDRAM_BASE,
2045 sdram_size, qemu_ram_alloc(sdram_size) | IO_MEM_RAM);
2046 cpu_register_physical_memory(PXA2XX_INTERNAL_BASE,
2047 0x40000, qemu_ram_alloc(0x40000) | IO_MEM_RAM);
2048
c1713132
AZ
2049 s->pic = pxa2xx_pic_init(0x40d00000, s->env);
2050
2051 s->dma = pxa27x_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]);
2052
a171fe39 2053 pxa27x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0],
3f582262 2054 s->pic[PXA27X_PIC_OST_4_11]);
a171fe39 2055
c1713132
AZ
2056 s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 121);
2057
a171fe39
AZ
2058 s->mmc = pxa2xx_mmci_init(0x41100000, s->pic[PXA2XX_PIC_MMC], s->dma);
2059
c1713132
AZ
2060 for (i = 0; pxa270_serial[i].io_base; i ++)
2061 if (serial_hds[i])
2062 serial_mm_init(pxa270_serial[i].io_base, 2,
2063 s->pic[pxa270_serial[i].irqn], serial_hds[i], 1);
2064 else
2065 break;
2066 if (serial_hds[i])
2067 s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP],
2068 s->dma, serial_hds[i]);
2069
a171fe39
AZ
2070 if (ds)
2071 s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD], ds);
2072
c1713132
AZ
2073 s->cm_base = 0x41300000;
2074 s->cm_regs[CCCR >> 4] = 0x02000210; /* 416.0 MHz */
2075 s->clkcfg = 0x00000009; /* Turbo mode active */
2076 iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn,
2077 pxa2xx_cm_writefn, s);
2078 cpu_register_physical_memory(s->cm_base, 0xfff, iomemtype);
aa941b94 2079 register_savevm("pxa2xx_cm", 0, 0, pxa2xx_cm_save, pxa2xx_cm_load, s);
c1713132
AZ
2080
2081 cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
2082
2083 s->mm_base = 0x48000000;
2084 s->mm_regs[MDMRS >> 2] = 0x00020002;
2085 s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2086 s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
2087 iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn,
2088 pxa2xx_mm_writefn, s);
2089 cpu_register_physical_memory(s->mm_base, 0xfff, iomemtype);
aa941b94 2090 register_savevm("pxa2xx_mm", 0, 0, pxa2xx_mm_save, pxa2xx_mm_load, s);
c1713132
AZ
2091
2092 for (i = 0; pxa27x_ssp[i].io_base; i ++);
2093 s->ssp = (struct pxa2xx_ssp_s **)
2094 qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i);
2095 ssp = (struct pxa2xx_ssp_s *)
2096 qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i);
2097 for (i = 0; pxa27x_ssp[i].io_base; i ++) {
2098 s->ssp[i] = &ssp[i];
2099 ssp[i].base = pxa27x_ssp[i].io_base;
2100 ssp[i].irq = s->pic[pxa27x_ssp[i].irqn];
2101
2102 iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn,
2103 pxa2xx_ssp_writefn, &ssp[i]);
2104 cpu_register_physical_memory(ssp[i].base, 0xfff, iomemtype);
aa941b94
AZ
2105 register_savevm("pxa2xx_ssp", i, 0,
2106 pxa2xx_ssp_save, pxa2xx_ssp_load, s);
c1713132
AZ
2107 }
2108
a171fe39
AZ
2109 if (usb_enabled) {
2110 usb_ohci_init_pxa(0x4c000000, 3, -1, s->pic[PXA2XX_PIC_USBH1]);
2111 }
2112
2113 s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
2114 s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
2115
c1713132
AZ
2116 s->rtc_base = 0x40900000;
2117 iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn,
2118 pxa2xx_rtc_writefn, s);
2119 cpu_register_physical_memory(s->rtc_base, 0xfff, iomemtype);
aa941b94
AZ
2120 pxa2xx_rtc_init(s);
2121 register_savevm("pxa2xx_rtc", 0, 0, pxa2xx_rtc_save, pxa2xx_rtc_load, s);
c1713132 2122
3f582262
AZ
2123 /* Note that PM registers are in the same page with PWRI2C registers.
2124 * As a workaround we don't map PWRI2C into memory and we expect
2125 * PM handlers to call PWRI2C handlers when appropriate. */
2126 s->i2c[0] = pxa2xx_i2c_init(0x40301600, s->pic[PXA2XX_PIC_I2C], 1);
2127 s->i2c[1] = pxa2xx_i2c_init(0x40f00100, s->pic[PXA2XX_PIC_PWRI2C], 0);
2128
c1713132
AZ
2129 s->pm_base = 0x40f00000;
2130 iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn,
2131 pxa2xx_pm_writefn, s);
2132 cpu_register_physical_memory(s->pm_base, 0xfff, iomemtype);
aa941b94 2133 register_savevm("pxa2xx_pm", 0, 0, pxa2xx_pm_save, pxa2xx_pm_load, s);
c1713132
AZ
2134
2135 s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma);
2136
2137 /* GPIO1 resets the processor */
2138 /* The handler can be overriden by board-specific code */
2139 pxa2xx_gpio_handler_set(s->gpio, 1, pxa2xx_reset, s);
2140 return s;
2141}
2142
2143/* Initialise a PXA255 integrated chip (ARM based core). */
d95b2f8d
AZ
2144struct pxa2xx_state_s *pxa255_init(unsigned int sdram_size,
2145 DisplayState *ds)
c1713132
AZ
2146{
2147 struct pxa2xx_state_s *s;
2148 struct pxa2xx_ssp_s *ssp;
2149 int iomemtype, i;
2150 s = (struct pxa2xx_state_s *) qemu_mallocz(sizeof(struct pxa2xx_state_s));
2151
2152 s->env = cpu_init();
2153 cpu_arm_set_model(s->env, "pxa255");
aa941b94 2154 register_savevm("cpu", 0, 0, cpu_save, cpu_load, s->env);
c1713132 2155
d95b2f8d 2156 /* SDRAM & Internal Memory Storage */
a07dec22
AZ
2157 cpu_register_physical_memory(PXA2XX_SDRAM_BASE, sdram_size,
2158 qemu_ram_alloc(sdram_size) | IO_MEM_RAM);
2159 cpu_register_physical_memory(PXA2XX_INTERNAL_BASE, PXA2XX_INTERNAL_SIZE,
2160 qemu_ram_alloc(PXA2XX_INTERNAL_SIZE) | IO_MEM_RAM);
d95b2f8d 2161
c1713132
AZ
2162 s->pic = pxa2xx_pic_init(0x40d00000, s->env);
2163
2164 s->dma = pxa255_dma_init(0x40000000, s->pic[PXA2XX_PIC_DMA]);
2165
3f582262 2166 pxa25x_timer_init(0x40a00000, &s->pic[PXA2XX_PIC_OST_0]);
a171fe39 2167
3bdd58a4 2168 s->gpio = pxa2xx_gpio_init(0x40e00000, s->env, s->pic, 85);
c1713132 2169
a171fe39
AZ
2170 s->mmc = pxa2xx_mmci_init(0x41100000, s->pic[PXA2XX_PIC_MMC], s->dma);
2171
c1713132
AZ
2172 for (i = 0; pxa255_serial[i].io_base; i ++)
2173 if (serial_hds[i])
2174 serial_mm_init(pxa255_serial[i].io_base, 2,
2175 s->pic[pxa255_serial[i].irqn], serial_hds[i], 1);
2176 else
2177 break;
2178 if (serial_hds[i])
2179 s->fir = pxa2xx_fir_init(0x40800000, s->pic[PXA2XX_PIC_ICP],
2180 s->dma, serial_hds[i]);
2181
a171fe39
AZ
2182 if (ds)
2183 s->lcd = pxa2xx_lcdc_init(0x44000000, s->pic[PXA2XX_PIC_LCD], ds);
2184
c1713132
AZ
2185 s->cm_base = 0x41300000;
2186 s->cm_regs[CCCR >> 4] = 0x02000210; /* 416.0 MHz */
2187 s->clkcfg = 0x00000009; /* Turbo mode active */
2188 iomemtype = cpu_register_io_memory(0, pxa2xx_cm_readfn,
2189 pxa2xx_cm_writefn, s);
2190 cpu_register_physical_memory(s->cm_base, 0xfff, iomemtype);
aa941b94 2191 register_savevm("pxa2xx_cm", 0, 0, pxa2xx_cm_save, pxa2xx_cm_load, s);
c1713132
AZ
2192
2193 cpu_arm_set_cp_io(s->env, 14, pxa2xx_cp14_read, pxa2xx_cp14_write, s);
2194
2195 s->mm_base = 0x48000000;
2196 s->mm_regs[MDMRS >> 2] = 0x00020002;
2197 s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2198 s->mm_regs[MECR >> 2] = 0x00000001; /* Two PC Card sockets */
2199 iomemtype = cpu_register_io_memory(0, pxa2xx_mm_readfn,
2200 pxa2xx_mm_writefn, s);
2201 cpu_register_physical_memory(s->mm_base, 0xfff, iomemtype);
aa941b94 2202 register_savevm("pxa2xx_mm", 0, 0, pxa2xx_mm_save, pxa2xx_mm_load, s);
c1713132
AZ
2203
2204 for (i = 0; pxa255_ssp[i].io_base; i ++);
2205 s->ssp = (struct pxa2xx_ssp_s **)
2206 qemu_mallocz(sizeof(struct pxa2xx_ssp_s *) * i);
2207 ssp = (struct pxa2xx_ssp_s *)
2208 qemu_mallocz(sizeof(struct pxa2xx_ssp_s) * i);
2209 for (i = 0; pxa255_ssp[i].io_base; i ++) {
2210 s->ssp[i] = &ssp[i];
2211 ssp[i].base = pxa255_ssp[i].io_base;
2212 ssp[i].irq = s->pic[pxa255_ssp[i].irqn];
2213
2214 iomemtype = cpu_register_io_memory(0, pxa2xx_ssp_readfn,
2215 pxa2xx_ssp_writefn, &ssp[i]);
2216 cpu_register_physical_memory(ssp[i].base, 0xfff, iomemtype);
aa941b94
AZ
2217 register_savevm("pxa2xx_ssp", i, 0,
2218 pxa2xx_ssp_save, pxa2xx_ssp_load, s);
c1713132
AZ
2219 }
2220
a171fe39
AZ
2221 if (usb_enabled) {
2222 usb_ohci_init_pxa(0x4c000000, 3, -1, s->pic[PXA2XX_PIC_USBH1]);
2223 }
2224
2225 s->pcmcia[0] = pxa2xx_pcmcia_init(0x20000000);
2226 s->pcmcia[1] = pxa2xx_pcmcia_init(0x30000000);
2227
c1713132
AZ
2228 s->rtc_base = 0x40900000;
2229 iomemtype = cpu_register_io_memory(0, pxa2xx_rtc_readfn,
2230 pxa2xx_rtc_writefn, s);
2231 cpu_register_physical_memory(s->rtc_base, 0xfff, iomemtype);
aa941b94
AZ
2232 pxa2xx_rtc_init(s);
2233 register_savevm("pxa2xx_rtc", 0, 0, pxa2xx_rtc_save, pxa2xx_rtc_load, s);
c1713132 2234
3f582262
AZ
2235 /* Note that PM registers are in the same page with PWRI2C registers.
2236 * As a workaround we don't map PWRI2C into memory and we expect
2237 * PM handlers to call PWRI2C handlers when appropriate. */
2238 s->i2c[0] = pxa2xx_i2c_init(0x40301600, s->pic[PXA2XX_PIC_I2C], 1);
2239 s->i2c[1] = pxa2xx_i2c_init(0x40f00100, s->pic[PXA2XX_PIC_PWRI2C], 0);
2240
c1713132
AZ
2241 s->pm_base = 0x40f00000;
2242 iomemtype = cpu_register_io_memory(0, pxa2xx_pm_readfn,
2243 pxa2xx_pm_writefn, s);
2244 cpu_register_physical_memory(s->pm_base, 0xfff, iomemtype);
aa941b94 2245 register_savevm("pxa2xx_pm", 0, 0, pxa2xx_pm_save, pxa2xx_pm_load, s);
c1713132
AZ
2246
2247 s->i2s = pxa2xx_i2s_init(0x40400000, s->pic[PXA2XX_PIC_I2S], s->dma);
2248
2249 /* GPIO1 resets the processor */
2250 /* The handler can be overriden by board-specific code */
2251 pxa2xx_gpio_handler_set(s->gpio, 1, pxa2xx_reset, s);
2252 return s;
2253}