]> git.proxmox.com Git - mirror_qemu.git/blame - hw/riscv/boot.c
hw/riscv: split fdt address calculation from fdt load
[mirror_qemu.git] / hw / riscv / boot.c
CommitLineData
0ac24d56
AF
1/*
2 * QEMU RISC-V Boot Helper
3 *
4 * Copyright (c) 2017 SiFive, Inc.
5 * Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com>
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "qemu/osdep.h"
2c65db5e 21#include "qemu/datadir.h"
0ac24d56
AF
22#include "qemu/units.h"
23#include "qemu/error-report.h"
24#include "exec/cpu-defs.h"
12e9493d 25#include "hw/boards.h"
0ac24d56
AF
26#include "hw/loader.h"
27#include "hw/riscv/boot.h"
dc144fe1 28#include "hw/riscv/boot_opensbi.h"
0ac24d56 29#include "elf.h"
43cf723a 30#include "sysemu/device_tree.h"
75ea2529 31#include "sysemu/qtest.h"
ad40be27 32#include "sysemu/kvm.h"
64c75db3 33#include "sysemu/reset.h"
0ac24d56 34
43cf723a
AP
35#include <libfdt.h>
36
a8259b53 37bool riscv_is_32bit(RISCVHartArrayState *harts)
c4077842 38{
db23e5d9 39 return harts->harts[0].env.misa_mxl_max == MXL_RV32;
c4077842
AF
40}
41
bf357e1d
AF
42/*
43 * Return the per-socket PLIC hart topology configuration string
44 * (caller must free with g_free())
45 */
46char *riscv_plic_hart_config_string(int hart_count)
47{
48 g_autofree const char **vals = g_new(const char *, hart_count + 1);
49 int i;
50
51 for (i = 0; i < hart_count; i++) {
52 CPUState *cs = qemu_get_cpu(i);
53 CPURISCVState *env = &RISCV_CPU(cs)->env;
54
ad40be27
YJ
55 if (kvm_enabled()) {
56 vals[i] = "S";
57 } else if (riscv_has_ext(env, RVS)) {
bf357e1d
AF
58 vals[i] = "MS";
59 } else {
60 vals[i] = "M";
61 }
62 }
63 vals[i] = NULL;
64
65 /* g_strjoinv() obliges us to cast away const here */
66 return g_strjoinv(",", (char **)vals);
67}
68
a8259b53 69target_ulong riscv_calc_kernel_start_addr(RISCVHartArrayState *harts,
38bc4e34 70 target_ulong firmware_end_addr) {
3ed2b8ac 71 if (riscv_is_32bit(harts)) {
38bc4e34
AF
72 return QEMU_ALIGN_UP(firmware_end_addr, 4 * MiB);
73 } else {
74 return QEMU_ALIGN_UP(firmware_end_addr, 2 * MiB);
75 }
76}
77
9d3f7108
DHB
78const char *riscv_default_firmware_name(RISCVHartArrayState *harts)
79{
80 if (riscv_is_32bit(harts)) {
81 return RISCV32_BIOS_BIN;
82 }
83
84 return RISCV64_BIOS_BIN;
85}
86
8f619626 87static char *riscv_find_bios(const char *bios_filename)
808faef7
DHB
88{
89 char *filename;
90
8f619626 91 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_filename);
808faef7
DHB
92 if (filename == NULL) {
93 if (!qtest_enabled()) {
94 /*
95 * We only ship OpenSBI binary bios images in the QEMU source.
96 * For machines that use images other than the default bios,
97 * running QEMU test will complain hence let's suppress the error
98 * report for QEMU testing.
99 */
8f619626
BM
100 error_report("Unable to find the RISC-V BIOS \"%s\"",
101 bios_filename);
808faef7
DHB
102 exit(1);
103 }
104 }
105
106 return filename;
107}
108
8f619626
BM
109char *riscv_find_firmware(const char *firmware_filename,
110 const char *default_machine_firmware)
fdd1bda4 111{
8f619626 112 char *filename = NULL;
fdd1bda4 113
8f619626 114 if ((!firmware_filename) || (!strcmp(firmware_filename, "default"))) {
fdd1bda4 115 /*
087a4246
BM
116 * The user didn't specify -bios, or has specified "-bios default".
117 * That means we are going to load the OpenSBI binary included in
118 * the QEMU source.
fdd1bda4 119 */
8f619626
BM
120 filename = riscv_find_bios(default_machine_firmware);
121 } else if (strcmp(firmware_filename, "none")) {
122 filename = riscv_find_bios(firmware_filename);
fdd1bda4
AF
123 }
124
8f619626
BM
125 return filename;
126}
127
128target_ulong riscv_find_and_load_firmware(MachineState *machine,
129 const char *default_machine_firmware,
130 hwaddr firmware_load_addr,
131 symbol_fn_t sym_cb)
132{
133 char *firmware_filename;
134 target_ulong firmware_end_addr = firmware_load_addr;
135
136 firmware_filename = riscv_find_firmware(machine->firmware,
137 default_machine_firmware);
138
3aa9004f 139 if (firmware_filename) {
fdd1bda4 140 /* If not "none" load the firmware */
e66c531e
AF
141 firmware_end_addr = riscv_load_firmware(firmware_filename,
142 firmware_load_addr, sym_cb);
fdd1bda4
AF
143 g_free(firmware_filename);
144 }
e66c531e
AF
145
146 return firmware_end_addr;
fdd1bda4
AF
147}
148
b3042223 149target_ulong riscv_load_firmware(const char *firmware_filename,
02777ac3
AP
150 hwaddr firmware_load_addr,
151 symbol_fn_t sym_cb)
b3042223 152{
af975131
JI
153 uint64_t firmware_entry, firmware_end;
154 ssize_t firmware_size;
b3042223 155
1db0c57a
DHB
156 g_assert(firmware_filename != NULL);
157
02777ac3 158 if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL,
e66c531e 159 &firmware_entry, NULL, &firmware_end, NULL,
02777ac3 160 0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
e66c531e 161 return firmware_end;
b3042223
AF
162 }
163
e66c531e 164 firmware_size = load_image_targphys_as(firmware_filename,
82e69054
PB
165 firmware_load_addr,
166 current_machine->ram_size, NULL);
e66c531e
AF
167
168 if (firmware_size > 0) {
169 return firmware_load_addr + firmware_size;
b3042223
AF
170 }
171
172 error_report("could not load firmware '%s'", firmware_filename);
173 exit(1);
174}
175
60c1f05e 176target_ulong riscv_load_kernel(MachineState *machine,
38bc4e34
AF
177 target_ulong kernel_start_addr,
178 symbol_fn_t sym_cb)
0ac24d56 179{
60c1f05e 180 const char *kernel_filename = machine->kernel_filename;
7e322a7f 181 uint64_t kernel_load_base, kernel_entry;
0ac24d56 182
1db0c57a
DHB
183 g_assert(kernel_filename != NULL);
184
7e322a7f
JC
185 /*
186 * NB: Use low address not ELF entry point to ensure that the fw_dynamic
187 * behaviour when loading an ELF matches the fw_payload, fw_jump and BBL
188 * behaviour, as well as fw_dynamic with a raw binary, all of which jump to
189 * the (expected) load address load address. This allows kernels to have
190 * separate SBI and ELF entry points (used by FreeBSD, for example).
191 */
6478dd74 192 if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL,
7e322a7f 193 NULL, &kernel_load_base, NULL, NULL, 0,
6478dd74 194 EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
7e322a7f 195 return kernel_load_base;
0ac24d56
AF
196 }
197
395fd695
AF
198 if (load_uimage_as(kernel_filename, &kernel_entry, NULL, NULL,
199 NULL, NULL, NULL) > 0) {
200 return kernel_entry;
201 }
202
38bc4e34 203 if (load_image_targphys_as(kernel_filename, kernel_start_addr,
82e69054 204 current_machine->ram_size, NULL) > 0) {
38bc4e34 205 return kernel_start_addr;
395fd695
AF
206 }
207
208 error_report("could not load kernel '%s'", kernel_filename);
209 exit(1);
0ac24d56
AF
210}
211
1f991461 212void riscv_load_initrd(MachineState *machine, uint64_t kernel_entry)
0ac24d56 213{
1f991461
DHB
214 const char *filename = machine->initrd_filename;
215 uint64_t mem_size = machine->ram_size;
216 void *fdt = machine->fdt;
b9a65476 217 hwaddr start, end;
af975131 218 ssize_t size;
0ac24d56 219
1db0c57a
DHB
220 g_assert(filename != NULL);
221
0ac24d56
AF
222 /*
223 * We want to put the initrd far enough into RAM that when the
224 * kernel is uncompressed it will not clobber the initrd. However
225 * on boards without much RAM we must ensure that we still leave
226 * enough room for a decent sized initrd, and on boards with large
227 * amounts of RAM we must avoid the initrd being so far up in RAM
228 * that it is outside lowmem and inaccessible to the kernel.
229 * So for boards with less than 256MB of RAM we put the initrd
230 * halfway into RAM, and for boards with 256MB of RAM or more we put
231 * the initrd at 128MB.
232 */
b9a65476 233 start = kernel_entry + MIN(mem_size / 2, 128 * MiB);
0ac24d56 234
b9a65476 235 size = load_ramdisk(filename, start, mem_size - start);
0ac24d56 236 if (size == -1) {
b9a65476 237 size = load_image_targphys(filename, start, mem_size - start);
0ac24d56
AF
238 if (size == -1) {
239 error_report("could not load ramdisk '%s'", filename);
240 exit(1);
241 }
242 }
243
b9a65476
DHB
244 /* Some RISC-V machines (e.g. opentitan) don't have a fdt. */
245 if (fdt) {
246 end = start + size;
247 qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start", start);
248 qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end", end);
249 }
0ac24d56 250}
43cf723a 251
bc2c0153
DHB
252/*
253 * The FDT should be put at the farthest point possible to
254 * avoid overwriting it with the kernel/initrd.
255 *
256 * This function makes an assumption that the DRAM is
257 * contiguous. It also cares about 32-bit systems and
258 * will limit fdt_addr to be addressable by them even for
259 * 64-bit CPUs.
260 *
261 * The FDT is fdt_packed() during the calculation.
262 */
263uint64_t riscv_compute_fdt_addr(hwaddr dram_base, uint64_t mem_size,
264 void *fdt)
66b1205b 265{
bc2c0153 266 uint64_t temp;
66b1205b 267 hwaddr dram_end = dram_base + mem_size;
909f7da6
DHB
268 int ret = fdt_pack(fdt);
269 int fdtsize;
66b1205b 270
909f7da6
DHB
271 /* Should only fail if we've built a corrupted tree */
272 g_assert(ret == 0);
273
274 fdtsize = fdt_totalsize(fdt);
66b1205b
AP
275 if (fdtsize <= 0) {
276 error_report("invalid device-tree");
277 exit(1);
278 }
279
280 /*
281 * We should put fdt as far as possible to avoid kernel/initrd overwriting
282 * its content. But it should be addressable by 32 bit system as well.
ec2c62da 283 * Thus, put it at an 2MB aligned address that less than fdt size from the
1a475d39 284 * end of dram or 3GB whichever is lesser.
66b1205b 285 */
faee5441 286 temp = (dram_base < 3072 * MiB) ? MIN(dram_end, 3072 * MiB) : dram_end;
bc2c0153
DHB
287
288 return QEMU_ALIGN_DOWN(temp - fdtsize, 2 * MiB);
289}
290
291/*
292 * 'fdt_addr' is received as hwaddr because boards might put
293 * the FDT beyond 32-bit addressing boundary.
294 */
295void riscv_load_fdt(hwaddr fdt_addr, void *fdt)
296{
297 uint32_t fdtsize = fdt_totalsize(fdt);
66b1205b 298
66b1205b
AP
299 /* copy in the device tree */
300 qemu_fdt_dumpdtb(fdt, fdtsize);
301
302 rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr,
303 &address_space_memory);
64c75db3
JD
304 qemu_register_reset_nosnapshotload(qemu_fdt_randomize_seeds,
305 rom_ptr_for_as(&address_space_memory, fdt_addr, fdtsize));
66b1205b
AP
306}
307
78936771
AF
308void riscv_rom_copy_firmware_info(MachineState *machine, hwaddr rom_base,
309 hwaddr rom_size, uint32_t reset_vec_size,
310 uint64_t kernel_entry)
dc144fe1
AP
311{
312 struct fw_dynamic_info dinfo;
313 size_t dinfo_len;
314
78936771
AF
315 if (sizeof(dinfo.magic) == 4) {
316 dinfo.magic = cpu_to_le32(FW_DYNAMIC_INFO_MAGIC_VALUE);
317 dinfo.version = cpu_to_le32(FW_DYNAMIC_INFO_VERSION);
318 dinfo.next_mode = cpu_to_le32(FW_DYNAMIC_INFO_NEXT_MODE_S);
319 dinfo.next_addr = cpu_to_le32(kernel_entry);
320 } else {
321 dinfo.magic = cpu_to_le64(FW_DYNAMIC_INFO_MAGIC_VALUE);
322 dinfo.version = cpu_to_le64(FW_DYNAMIC_INFO_VERSION);
323 dinfo.next_mode = cpu_to_le64(FW_DYNAMIC_INFO_NEXT_MODE_S);
324 dinfo.next_addr = cpu_to_le64(kernel_entry);
325 }
dc144fe1
AP
326 dinfo.options = 0;
327 dinfo.boot_hart = 0;
328 dinfo_len = sizeof(dinfo);
329
330 /**
331 * copy the dynamic firmware info. This information is specific to
332 * OpenSBI but doesn't break any other firmware as long as they don't
333 * expect any certain value in "a2" register.
334 */
335 if (dinfo_len > (rom_size - reset_vec_size)) {
336 error_report("not enough space to store dynamic firmware info");
337 exit(1);
338 }
339
340 rom_add_blob_fixed_as("mrom.finfo", &dinfo, dinfo_len,
341 rom_base + reset_vec_size,
342 &address_space_memory);
343}
344
a8259b53 345void riscv_setup_rom_reset_vec(MachineState *machine, RISCVHartArrayState *harts,
3ed2b8ac 346 hwaddr start_addr,
78936771
AF
347 hwaddr rom_base, hwaddr rom_size,
348 uint64_t kernel_entry,
6934f15b 349 uint64_t fdt_load_addr)
43cf723a
AP
350{
351 int i;
8590f536 352 uint32_t start_addr_hi32 = 0x00000000;
faee5441 353 uint32_t fdt_load_addr_hi32 = 0x00000000;
43cf723a 354
3ed2b8ac 355 if (!riscv_is_32bit(harts)) {
78936771 356 start_addr_hi32 = start_addr >> 32;
faee5441 357 fdt_load_addr_hi32 = fdt_load_addr >> 32;
78936771 358 }
43cf723a 359 /* reset vector */
66b1205b 360 uint32_t reset_vec[10] = {
dc144fe1
AP
361 0x00000297, /* 1: auipc t0, %pcrel_hi(fw_dyn) */
362 0x02828613, /* addi a2, t0, %pcrel_lo(1b) */
43cf723a 363 0xf1402573, /* csrr a0, mhartid */
78936771
AF
364 0,
365 0,
43cf723a 366 0x00028067, /* jr t0 */
43cf723a 367 start_addr, /* start: .dword */
8590f536 368 start_addr_hi32,
66b1205b 369 fdt_load_addr, /* fdt_laddr: .dword */
faee5441 370 fdt_load_addr_hi32,
dc144fe1 371 /* fw_dyn: */
43cf723a 372 };
3ed2b8ac 373 if (riscv_is_32bit(harts)) {
78936771
AF
374 reset_vec[3] = 0x0202a583; /* lw a1, 32(t0) */
375 reset_vec[4] = 0x0182a283; /* lw t0, 24(t0) */
376 } else {
377 reset_vec[3] = 0x0202b583; /* ld a1, 32(t0) */
378 reset_vec[4] = 0x0182b283; /* ld t0, 24(t0) */
379 }
43cf723a 380
32c435a1
AF
381 if (!harts->harts[0].cfg.ext_icsr) {
382 /*
383 * The Zicsr extension has been disabled, so let's ensure we don't
384 * run the CSR instruction. Let's fill the address with a non
385 * compressed nop.
386 */
387 reset_vec[2] = 0x00000013; /* addi x0, x0, 0 */
388 }
389
43cf723a 390 /* copy in the reset vector in little_endian byte order */
66b1205b 391 for (i = 0; i < ARRAY_SIZE(reset_vec); i++) {
43cf723a
AP
392 reset_vec[i] = cpu_to_le32(reset_vec[i]);
393 }
394 rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
395 rom_base, &address_space_memory);
78936771 396 riscv_rom_copy_firmware_info(machine, rom_base, rom_size, sizeof(reset_vec),
dc144fe1 397 kernel_entry);
43cf723a 398}
ad40be27
YJ
399
400void riscv_setup_direct_kernel(hwaddr kernel_addr, hwaddr fdt_addr)
401{
402 CPUState *cs;
403
404 for (cs = first_cpu; cs; cs = CPU_NEXT(cs)) {
405 RISCVCPU *riscv_cpu = RISCV_CPU(cs);
406 riscv_cpu->env.kernel_addr = kernel_addr;
407 riscv_cpu->env.fdt_addr = fdt_addr;
408 }
409}
a5b0249d
S
410
411void riscv_setup_firmware_boot(MachineState *machine)
412{
413 if (machine->kernel_filename) {
414 FWCfgState *fw_cfg;
415 fw_cfg = fw_cfg_find();
416
417 assert(fw_cfg);
418 /*
419 * Expose the kernel, the command line, and the initrd in fw_cfg.
420 * We don't process them here at all, it's all left to the
421 * firmware.
422 */
423 load_image_to_fw_cfg(fw_cfg,
424 FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
425 machine->kernel_filename,
426 true);
427 load_image_to_fw_cfg(fw_cfg,
428 FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
429 machine->initrd_filename, false);
430
431 if (machine->kernel_cmdline) {
432 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
433 strlen(machine->kernel_cmdline) + 1);
434 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
435 machine->kernel_cmdline);
436 }
437 }
438}