]> git.proxmox.com Git - mirror_qemu.git/blame - hw/riscv/microchip_pfsoc.c
hw/intc: Upgrade the SiFive CLINT implementation to RISC-V ACLINT
[mirror_qemu.git] / hw / riscv / microchip_pfsoc.c
CommitLineData
56f6e31e
BM
1/*
2 * QEMU RISC-V Board Compatible with Microchip PolarFire SoC Icicle Kit
3 *
4 * Copyright (c) 2020 Wind River Systems, Inc.
5 *
6 * Author:
7 * Bin Meng <bin.meng@windriver.com>
8 *
9 * Provides a board compatible with the Microchip PolarFire SoC Icicle Kit
10 *
11 * 0) CLINT (Core Level Interruptor)
12 * 1) PLIC (Platform Level Interrupt Controller)
13 * 2) eNVM (Embedded Non-Volatile Memory)
8f2ac39d 14 * 3) MMUARTs (Multi-Mode UART)
898dc008 15 * 4) Cadence eMMC/SDHC controller and an SD card connected to it
7124e27b 16 * 5) SiFive Platform DMA (Direct Memory Access Controller)
47374b07 17 * 6) GEM (Gigabit Ethernet MAC Controller)
933f73f1 18 * 7) DMC (DDR Memory Controller)
e35d6179 19 * 8) IOSCB modules
56f6e31e
BM
20 *
21 * This board currently generates devicetree dynamically that indicates at least
22 * two harts and up to five harts.
23 *
24 * This program is free software; you can redistribute it and/or modify it
25 * under the terms and conditions of the GNU General Public License,
26 * version 2 or later, as published by the Free Software Foundation.
27 *
28 * This program is distributed in the hope it will be useful, but WITHOUT
29 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
30 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
31 * more details.
32 *
33 * You should have received a copy of the GNU General Public License along with
34 * this program. If not, see <http://www.gnu.org/licenses/>.
35 */
36
37#include "qemu/osdep.h"
38#include "qemu/error-report.h"
56f6e31e
BM
39#include "qemu/units.h"
40#include "qemu/cutils.h"
41#include "qapi/error.h"
42#include "hw/boards.h"
56f6e31e
BM
43#include "hw/loader.h"
44#include "hw/sysbus.h"
8f2ac39d 45#include "chardev/char.h"
56f6e31e
BM
46#include "hw/cpu/cluster.h"
47#include "target/riscv/cpu.h"
48#include "hw/misc/unimp.h"
49#include "hw/riscv/boot.h"
50#include "hw/riscv/riscv_hart.h"
56f6e31e 51#include "hw/riscv/microchip_pfsoc.h"
cc63a182 52#include "hw/intc/riscv_aclint.h"
84fcf3c1 53#include "hw/intc/sifive_plic.h"
143897b5 54#include "sysemu/device_tree.h"
8f2ac39d 55#include "sysemu/sysemu.h"
56f6e31e
BM
56
57/*
58 * The BIOS image used by this machine is called Hart Software Services (HSS).
59 * See https://github.com/polarfire-soc/hart-software-services
60 */
61#define BIOS_FILENAME "hss.bin"
62#define RESET_VECTOR 0x20220000
63
a47ef6e9
BM
64/* CLINT timebase frequency */
65#define CLINT_TIMEBASE_FREQ 1000000
66
47374b07
BM
67/* GEM version */
68#define GEM_REVISION 0x0107010c
69
08b86e3b
BM
70/*
71 * The complete description of the whole PolarFire SoC memory map is scattered
72 * in different documents. There are several places to look at for memory maps:
73 *
74 * 1 Chapter 11 "MSS Memory Map", in the doc "UG0880: PolarFire SoC FPGA
75 * Microprocessor Subsystem (MSS) User Guide", which can be downloaded from
76 * https://www.microsemi.com/document-portal/doc_download/
77 * 1244570-ug0880-polarfire-soc-fpga-microprocessor-subsystem-mss-user-guide,
78 * describes the whole picture of the PolarFire SoC memory map.
79 *
80 * 2 A zip file for PolarFire soC memory map, which can be downloaded from
81 * https://www.microsemi.com/document-portal/doc_download/
82 * 1244581-polarfire-soc-register-map, contains the following 2 major parts:
83 * - Register Map/PF_SoC_RegMap_V1_1/pfsoc_regmap.htm
84 * describes the complete integrated peripherals memory map
85 * - Register Map/PF_SoC_RegMap_V1_1/MPFS250T/mpfs250t_ioscb_memmap_dri.htm
86 * describes the complete IOSCB modules memory maps
87 */
73261285 88static const MemMapEntry microchip_pfsoc_memmap[] = {
27c22b2d
BM
89 [MICROCHIP_PFSOC_RSVD0] = { 0x0, 0x100 },
90 [MICROCHIP_PFSOC_DEBUG] = { 0x100, 0xf00 },
56f6e31e
BM
91 [MICROCHIP_PFSOC_E51_DTIM] = { 0x1000000, 0x2000 },
92 [MICROCHIP_PFSOC_BUSERR_UNIT0] = { 0x1700000, 0x1000 },
93 [MICROCHIP_PFSOC_BUSERR_UNIT1] = { 0x1701000, 0x1000 },
94 [MICROCHIP_PFSOC_BUSERR_UNIT2] = { 0x1702000, 0x1000 },
95 [MICROCHIP_PFSOC_BUSERR_UNIT3] = { 0x1703000, 0x1000 },
96 [MICROCHIP_PFSOC_BUSERR_UNIT4] = { 0x1704000, 0x1000 },
97 [MICROCHIP_PFSOC_CLINT] = { 0x2000000, 0x10000 },
98 [MICROCHIP_PFSOC_L2CC] = { 0x2010000, 0x1000 },
7124e27b 99 [MICROCHIP_PFSOC_DMA] = { 0x3000000, 0x100000 },
56f6e31e
BM
100 [MICROCHIP_PFSOC_L2LIM] = { 0x8000000, 0x2000000 },
101 [MICROCHIP_PFSOC_PLIC] = { 0xc000000, 0x4000000 },
8f2ac39d 102 [MICROCHIP_PFSOC_MMUART0] = { 0x20000000, 0x1000 },
56f6e31e
BM
103 [MICROCHIP_PFSOC_SYSREG] = { 0x20002000, 0x2000 },
104 [MICROCHIP_PFSOC_MPUCFG] = { 0x20005000, 0x1000 },
933f73f1 105 [MICROCHIP_PFSOC_DDR_SGMII_PHY] = { 0x20007000, 0x1000 },
898dc008 106 [MICROCHIP_PFSOC_EMMC_SD] = { 0x20008000, 0x1000 },
933f73f1 107 [MICROCHIP_PFSOC_DDR_CFG] = { 0x20080000, 0x40000 },
8f2ac39d
BM
108 [MICROCHIP_PFSOC_MMUART1] = { 0x20100000, 0x1000 },
109 [MICROCHIP_PFSOC_MMUART2] = { 0x20102000, 0x1000 },
110 [MICROCHIP_PFSOC_MMUART3] = { 0x20104000, 0x1000 },
111 [MICROCHIP_PFSOC_MMUART4] = { 0x20106000, 0x1000 },
dfc973ec
VW
112 [MICROCHIP_PFSOC_SPI0] = { 0x20108000, 0x1000 },
113 [MICROCHIP_PFSOC_SPI1] = { 0x20109000, 0x1000 },
90742c54 114 [MICROCHIP_PFSOC_I2C1] = { 0x2010b000, 0x1000 },
47374b07
BM
115 [MICROCHIP_PFSOC_GEM0] = { 0x20110000, 0x2000 },
116 [MICROCHIP_PFSOC_GEM1] = { 0x20112000, 0x2000 },
ce908a2f
BM
117 [MICROCHIP_PFSOC_GPIO0] = { 0x20120000, 0x1000 },
118 [MICROCHIP_PFSOC_GPIO1] = { 0x20121000, 0x1000 },
119 [MICROCHIP_PFSOC_GPIO2] = { 0x20122000, 0x1000 },
56f6e31e
BM
120 [MICROCHIP_PFSOC_ENVM_CFG] = { 0x20200000, 0x1000 },
121 [MICROCHIP_PFSOC_ENVM_DATA] = { 0x20220000, 0x20000 },
dfc973ec 122 [MICROCHIP_PFSOC_QSPI_XIP] = { 0x21000000, 0x1000000 },
e35d6179 123 [MICROCHIP_PFSOC_IOSCB] = { 0x30000000, 0x10000000 },
d6150ace 124 [MICROCHIP_PFSOC_EMMC_SD_MUX] = { 0x4f000000, 0x4 },
f03100d7
BM
125 [MICROCHIP_PFSOC_DRAM_LO] = { 0x80000000, 0x40000000 },
126 [MICROCHIP_PFSOC_DRAM_LO_ALIAS] = { 0xc0000000, 0x40000000 },
127 [MICROCHIP_PFSOC_DRAM_HI] = { 0x1000000000, 0x0 },
128 [MICROCHIP_PFSOC_DRAM_HI_ALIAS] = { 0x1400000000, 0x0 },
56f6e31e
BM
129};
130
131static void microchip_pfsoc_soc_instance_init(Object *obj)
132{
133 MachineState *ms = MACHINE(qdev_get_machine());
134 MicrochipPFSoCState *s = MICROCHIP_PFSOC(obj);
135
136 object_initialize_child(obj, "e-cluster", &s->e_cluster, TYPE_CPU_CLUSTER);
137 qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0);
138
139 object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", &s->e_cpus,
140 TYPE_RISCV_HART_ARRAY);
141 qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1);
142 qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0);
143 qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type",
144 TYPE_RISCV_CPU_SIFIVE_E51);
145 qdev_prop_set_uint64(DEVICE(&s->e_cpus), "resetvec", RESET_VECTOR);
146
147 object_initialize_child(obj, "u-cluster", &s->u_cluster, TYPE_CPU_CLUSTER);
148 qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1);
149
150 object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", &s->u_cpus,
151 TYPE_RISCV_HART_ARRAY);
152 qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1);
153 qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1);
154 qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type",
155 TYPE_RISCV_CPU_SIFIVE_U54);
156 qdev_prop_set_uint64(DEVICE(&s->u_cpus), "resetvec", RESET_VECTOR);
898dc008 157
7124e27b
BM
158 object_initialize_child(obj, "dma-controller", &s->dma,
159 TYPE_SIFIVE_PDMA);
160
cdd58c70
BM
161 object_initialize_child(obj, "sysreg", &s->sysreg,
162 TYPE_MCHP_PFSOC_SYSREG);
163
933f73f1
BM
164 object_initialize_child(obj, "ddr-sgmii-phy", &s->ddr_sgmii_phy,
165 TYPE_MCHP_PFSOC_DDR_SGMII_PHY);
166 object_initialize_child(obj, "ddr-cfg", &s->ddr_cfg,
167 TYPE_MCHP_PFSOC_DDR_CFG);
168
47374b07
BM
169 object_initialize_child(obj, "gem0", &s->gem0, TYPE_CADENCE_GEM);
170 object_initialize_child(obj, "gem1", &s->gem1, TYPE_CADENCE_GEM);
171
898dc008
BM
172 object_initialize_child(obj, "sd-controller", &s->sdhci,
173 TYPE_CADENCE_SDHCI);
e35d6179
BM
174
175 object_initialize_child(obj, "ioscb", &s->ioscb, TYPE_MCHP_PFSOC_IOSCB);
56f6e31e
BM
176}
177
178static void microchip_pfsoc_soc_realize(DeviceState *dev, Error **errp)
179{
180 MachineState *ms = MACHINE(qdev_get_machine());
181 MicrochipPFSoCState *s = MICROCHIP_PFSOC(dev);
73261285 182 const MemMapEntry *memmap = microchip_pfsoc_memmap;
56f6e31e 183 MemoryRegion *system_memory = get_system_memory();
27c22b2d 184 MemoryRegion *rsvd0_mem = g_new(MemoryRegion, 1);
56f6e31e
BM
185 MemoryRegion *e51_dtim_mem = g_new(MemoryRegion, 1);
186 MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1);
187 MemoryRegion *envm_data = g_new(MemoryRegion, 1);
dfc973ec 188 MemoryRegion *qspi_xip_mem = g_new(MemoryRegion, 1);
56f6e31e
BM
189 char *plic_hart_config;
190 size_t plic_hart_config_len;
47374b07 191 NICInfo *nd;
56f6e31e
BM
192 int i;
193
194 sysbus_realize(SYS_BUS_DEVICE(&s->e_cpus), &error_abort);
195 sysbus_realize(SYS_BUS_DEVICE(&s->u_cpus), &error_abort);
196 /*
197 * The cluster must be realized after the RISC-V hart array container,
198 * as the container's CPU object is only created on realize, and the
199 * CPU must exist and have been parented into the cluster before the
200 * cluster is realized.
201 */
202 qdev_realize(DEVICE(&s->e_cluster), NULL, &error_abort);
203 qdev_realize(DEVICE(&s->u_cluster), NULL, &error_abort);
204
27c22b2d
BM
205 /* Reserved Memory at address 0 */
206 memory_region_init_ram(rsvd0_mem, NULL, "microchip.pfsoc.rsvd0_mem",
207 memmap[MICROCHIP_PFSOC_RSVD0].size, &error_fatal);
208 memory_region_add_subregion(system_memory,
209 memmap[MICROCHIP_PFSOC_RSVD0].base,
210 rsvd0_mem);
211
56f6e31e
BM
212 /* E51 DTIM */
213 memory_region_init_ram(e51_dtim_mem, NULL, "microchip.pfsoc.e51_dtim_mem",
214 memmap[MICROCHIP_PFSOC_E51_DTIM].size, &error_fatal);
215 memory_region_add_subregion(system_memory,
216 memmap[MICROCHIP_PFSOC_E51_DTIM].base,
217 e51_dtim_mem);
218
219 /* Bus Error Units */
220 create_unimplemented_device("microchip.pfsoc.buserr_unit0_mem",
221 memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].base,
222 memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].size);
223 create_unimplemented_device("microchip.pfsoc.buserr_unit1_mem",
224 memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].base,
225 memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].size);
226 create_unimplemented_device("microchip.pfsoc.buserr_unit2_mem",
227 memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].base,
228 memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].size);
229 create_unimplemented_device("microchip.pfsoc.buserr_unit3_mem",
230 memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].base,
231 memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].size);
232 create_unimplemented_device("microchip.pfsoc.buserr_unit4_mem",
233 memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].base,
234 memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].size);
235
236 /* CLINT */
b8fb878a
AP
237 riscv_aclint_swi_create(memmap[MICROCHIP_PFSOC_CLINT].base,
238 0, ms->smp.cpus, false);
239 riscv_aclint_mtimer_create(
240 memmap[MICROCHIP_PFSOC_CLINT].base + RISCV_ACLINT_SWI_SIZE,
241 RISCV_ACLINT_DEFAULT_MTIMER_SIZE, 0, ms->smp.cpus,
242 RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
a47ef6e9 243 CLINT_TIMEBASE_FREQ, false);
56f6e31e
BM
244
245 /* L2 cache controller */
246 create_unimplemented_device("microchip.pfsoc.l2cc",
247 memmap[MICROCHIP_PFSOC_L2CC].base, memmap[MICROCHIP_PFSOC_L2CC].size);
248
249 /*
250 * Add L2-LIM at reset size.
251 * This should be reduced in size as the L2 Cache Controller WayEnable
252 * register is incremented. Unfortunately I don't see a nice (or any) way
253 * to handle reducing or blocking out the L2 LIM while still allowing it
254 * be re returned to all enabled after a reset. For the time being, just
255 * leave it enabled all the time. This won't break anything, but will be
256 * too generous to misbehaving guests.
257 */
258 memory_region_init_ram(l2lim_mem, NULL, "microchip.pfsoc.l2lim",
259 memmap[MICROCHIP_PFSOC_L2LIM].size, &error_fatal);
260 memory_region_add_subregion(system_memory,
261 memmap[MICROCHIP_PFSOC_L2LIM].base,
262 l2lim_mem);
263
264 /* create PLIC hart topology configuration string */
265 plic_hart_config_len = (strlen(MICROCHIP_PFSOC_PLIC_HART_CONFIG) + 1) *
266 ms->smp.cpus;
267 plic_hart_config = g_malloc0(plic_hart_config_len);
268 for (i = 0; i < ms->smp.cpus; i++) {
269 if (i != 0) {
270 strncat(plic_hart_config, "," MICROCHIP_PFSOC_PLIC_HART_CONFIG,
271 plic_hart_config_len);
272 } else {
273 strncat(plic_hart_config, "M", plic_hart_config_len);
274 }
275 plic_hart_config_len -= (strlen(MICROCHIP_PFSOC_PLIC_HART_CONFIG) + 1);
276 }
277
278 /* PLIC */
279 s->plic = sifive_plic_create(memmap[MICROCHIP_PFSOC_PLIC].base,
f436ecc3 280 plic_hart_config, ms->smp.cpus, 0,
56f6e31e
BM
281 MICROCHIP_PFSOC_PLIC_NUM_SOURCES,
282 MICROCHIP_PFSOC_PLIC_NUM_PRIORITIES,
283 MICROCHIP_PFSOC_PLIC_PRIORITY_BASE,
284 MICROCHIP_PFSOC_PLIC_PENDING_BASE,
285 MICROCHIP_PFSOC_PLIC_ENABLE_BASE,
286 MICROCHIP_PFSOC_PLIC_ENABLE_STRIDE,
287 MICROCHIP_PFSOC_PLIC_CONTEXT_BASE,
288 MICROCHIP_PFSOC_PLIC_CONTEXT_STRIDE,
289 memmap[MICROCHIP_PFSOC_PLIC].size);
290 g_free(plic_hart_config);
291
7124e27b
BM
292 /* DMA */
293 sysbus_realize(SYS_BUS_DEVICE(&s->dma), errp);
294 sysbus_mmio_map(SYS_BUS_DEVICE(&s->dma), 0,
295 memmap[MICROCHIP_PFSOC_DMA].base);
296 for (i = 0; i < SIFIVE_PDMA_IRQS; i++) {
297 sysbus_connect_irq(SYS_BUS_DEVICE(&s->dma), i,
298 qdev_get_gpio_in(DEVICE(s->plic),
299 MICROCHIP_PFSOC_DMA_IRQ0 + i));
300 }
301
56f6e31e 302 /* SYSREG */
cdd58c70
BM
303 sysbus_realize(SYS_BUS_DEVICE(&s->sysreg), errp);
304 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sysreg), 0,
305 memmap[MICROCHIP_PFSOC_SYSREG].base);
56f6e31e
BM
306
307 /* MPUCFG */
308 create_unimplemented_device("microchip.pfsoc.mpucfg",
309 memmap[MICROCHIP_PFSOC_MPUCFG].base,
310 memmap[MICROCHIP_PFSOC_MPUCFG].size);
311
933f73f1
BM
312 /* DDR SGMII PHY */
313 sysbus_realize(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), errp);
314 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_sgmii_phy), 0,
315 memmap[MICROCHIP_PFSOC_DDR_SGMII_PHY].base);
316
317 /* DDR CFG */
318 sysbus_realize(SYS_BUS_DEVICE(&s->ddr_cfg), errp);
319 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ddr_cfg), 0,
320 memmap[MICROCHIP_PFSOC_DDR_CFG].base);
321
898dc008
BM
322 /* SDHCI */
323 sysbus_realize(SYS_BUS_DEVICE(&s->sdhci), errp);
324 sysbus_mmio_map(SYS_BUS_DEVICE(&s->sdhci), 0,
325 memmap[MICROCHIP_PFSOC_EMMC_SD].base);
326 sysbus_connect_irq(SYS_BUS_DEVICE(&s->sdhci), 0,
327 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_EMMC_SD_IRQ));
328
8f2ac39d
BM
329 /* MMUARTs */
330 s->serial0 = mchp_pfsoc_mmuart_create(system_memory,
331 memmap[MICROCHIP_PFSOC_MMUART0].base,
332 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART0_IRQ),
333 serial_hd(0));
334 s->serial1 = mchp_pfsoc_mmuart_create(system_memory,
335 memmap[MICROCHIP_PFSOC_MMUART1].base,
336 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART1_IRQ),
337 serial_hd(1));
338 s->serial2 = mchp_pfsoc_mmuart_create(system_memory,
339 memmap[MICROCHIP_PFSOC_MMUART2].base,
340 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART2_IRQ),
341 serial_hd(2));
342 s->serial3 = mchp_pfsoc_mmuart_create(system_memory,
343 memmap[MICROCHIP_PFSOC_MMUART3].base,
344 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART3_IRQ),
345 serial_hd(3));
346 s->serial4 = mchp_pfsoc_mmuart_create(system_memory,
347 memmap[MICROCHIP_PFSOC_MMUART4].base,
348 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART4_IRQ),
349 serial_hd(4));
350
dfc973ec
VW
351 /* SPI */
352 create_unimplemented_device("microchip.pfsoc.spi0",
353 memmap[MICROCHIP_PFSOC_SPI0].base,
354 memmap[MICROCHIP_PFSOC_SPI0].size);
355 create_unimplemented_device("microchip.pfsoc.spi1",
356 memmap[MICROCHIP_PFSOC_SPI1].base,
357 memmap[MICROCHIP_PFSOC_SPI1].size);
358
90742c54
BM
359 /* I2C1 */
360 create_unimplemented_device("microchip.pfsoc.i2c1",
361 memmap[MICROCHIP_PFSOC_I2C1].base,
362 memmap[MICROCHIP_PFSOC_I2C1].size);
363
47374b07
BM
364 /* GEMs */
365
366 nd = &nd_table[0];
367 if (nd->used) {
368 qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
369 qdev_set_nic_properties(DEVICE(&s->gem0), nd);
370 }
371 nd = &nd_table[1];
372 if (nd->used) {
373 qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
374 qdev_set_nic_properties(DEVICE(&s->gem1), nd);
375 }
376
377 object_property_set_int(OBJECT(&s->gem0), "revision", GEM_REVISION, errp);
378 object_property_set_int(OBJECT(&s->gem0), "phy-addr", 8, errp);
379 sysbus_realize(SYS_BUS_DEVICE(&s->gem0), errp);
380 sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem0), 0,
381 memmap[MICROCHIP_PFSOC_GEM0].base);
382 sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem0), 0,
383 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM0_IRQ));
384
385 object_property_set_int(OBJECT(&s->gem1), "revision", GEM_REVISION, errp);
386 object_property_set_int(OBJECT(&s->gem1), "phy-addr", 9, errp);
387 sysbus_realize(SYS_BUS_DEVICE(&s->gem1), errp);
388 sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem1), 0,
389 memmap[MICROCHIP_PFSOC_GEM1].base);
390 sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem1), 0,
391 qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM1_IRQ));
392
ce908a2f
BM
393 /* GPIOs */
394 create_unimplemented_device("microchip.pfsoc.gpio0",
395 memmap[MICROCHIP_PFSOC_GPIO0].base,
396 memmap[MICROCHIP_PFSOC_GPIO0].size);
397 create_unimplemented_device("microchip.pfsoc.gpio1",
398 memmap[MICROCHIP_PFSOC_GPIO1].base,
399 memmap[MICROCHIP_PFSOC_GPIO1].size);
400 create_unimplemented_device("microchip.pfsoc.gpio2",
401 memmap[MICROCHIP_PFSOC_GPIO2].base,
402 memmap[MICROCHIP_PFSOC_GPIO2].size);
403
56f6e31e
BM
404 /* eNVM */
405 memory_region_init_rom(envm_data, OBJECT(dev), "microchip.pfsoc.envm.data",
406 memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
407 &error_fatal);
408 memory_region_add_subregion(system_memory,
409 memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
410 envm_data);
411
e35d6179
BM
412 /* IOSCB */
413 sysbus_realize(SYS_BUS_DEVICE(&s->ioscb), errp);
414 sysbus_mmio_map(SYS_BUS_DEVICE(&s->ioscb), 0,
415 memmap[MICROCHIP_PFSOC_IOSCB].base);
dfc973ec 416
d6150ace
BM
417 /* eMMC/SD mux */
418 create_unimplemented_device("microchip.pfsoc.emmc_sd_mux",
419 memmap[MICROCHIP_PFSOC_EMMC_SD_MUX].base,
420 memmap[MICROCHIP_PFSOC_EMMC_SD_MUX].size);
421
dfc973ec
VW
422 /* QSPI Flash */
423 memory_region_init_rom(qspi_xip_mem, OBJECT(dev),
424 "microchip.pfsoc.qspi_xip",
425 memmap[MICROCHIP_PFSOC_QSPI_XIP].size,
426 &error_fatal);
427 memory_region_add_subregion(system_memory,
428 memmap[MICROCHIP_PFSOC_QSPI_XIP].base,
429 qspi_xip_mem);
56f6e31e
BM
430}
431
432static void microchip_pfsoc_soc_class_init(ObjectClass *oc, void *data)
433{
434 DeviceClass *dc = DEVICE_CLASS(oc);
435
436 dc->realize = microchip_pfsoc_soc_realize;
437 /* Reason: Uses serial_hds in realize function, thus can't be used twice */
438 dc->user_creatable = false;
439}
440
441static const TypeInfo microchip_pfsoc_soc_type_info = {
442 .name = TYPE_MICROCHIP_PFSOC,
443 .parent = TYPE_DEVICE,
444 .instance_size = sizeof(MicrochipPFSoCState),
445 .instance_init = microchip_pfsoc_soc_instance_init,
446 .class_init = microchip_pfsoc_soc_class_init,
447};
448
449static void microchip_pfsoc_soc_register_types(void)
450{
451 type_register_static(&microchip_pfsoc_soc_type_info);
452}
453
454type_init(microchip_pfsoc_soc_register_types)
455
456static void microchip_icicle_kit_machine_init(MachineState *machine)
457{
458 MachineClass *mc = MACHINE_GET_CLASS(machine);
73261285 459 const MemMapEntry *memmap = microchip_pfsoc_memmap;
56f6e31e
BM
460 MicrochipIcicleKitState *s = MICROCHIP_ICICLE_KIT_MACHINE(machine);
461 MemoryRegion *system_memory = get_system_memory();
f03100d7
BM
462 MemoryRegion *mem_low = g_new(MemoryRegion, 1);
463 MemoryRegion *mem_low_alias = g_new(MemoryRegion, 1);
464 MemoryRegion *mem_high = g_new(MemoryRegion, 1);
465 MemoryRegion *mem_high_alias = g_new(MemoryRegion, 1);
466 uint64_t mem_high_size;
143897b5
BM
467 hwaddr firmware_load_addr;
468 const char *firmware_name;
469 bool kernel_as_payload = false;
470 target_ulong firmware_end_addr, kernel_start_addr;
471 uint64_t kernel_entry;
472 uint32_t fdt_load_addr;
898dc008 473 DriveInfo *dinfo = drive_get_next(IF_SD);
56f6e31e
BM
474
475 /* Sanity check on RAM size */
476 if (machine->ram_size < mc->default_ram_size) {
477 char *sz = size_to_str(mc->default_ram_size);
478 error_report("Invalid RAM size, should be bigger than %s", sz);
479 g_free(sz);
480 exit(EXIT_FAILURE);
481 }
482
483 /* Initialize SoC */
484 object_initialize_child(OBJECT(machine), "soc", &s->soc,
485 TYPE_MICROCHIP_PFSOC);
486 qdev_realize(DEVICE(&s->soc), NULL, &error_abort);
487
488 /* Register RAM */
f03100d7
BM
489 memory_region_init_ram(mem_low, NULL, "microchip.icicle.kit.ram_low",
490 memmap[MICROCHIP_PFSOC_DRAM_LO].size,
491 &error_fatal);
492 memory_region_init_alias(mem_low_alias, NULL,
493 "microchip.icicle.kit.ram_low.alias",
494 mem_low, 0,
495 memmap[MICROCHIP_PFSOC_DRAM_LO_ALIAS].size);
496 memory_region_add_subregion(system_memory,
497 memmap[MICROCHIP_PFSOC_DRAM_LO].base,
498 mem_low);
56f6e31e 499 memory_region_add_subregion(system_memory,
f03100d7
BM
500 memmap[MICROCHIP_PFSOC_DRAM_LO_ALIAS].base,
501 mem_low_alias);
502
503 mem_high_size = machine->ram_size - 1 * GiB;
504
505 memory_region_init_ram(mem_high, NULL, "microchip.icicle.kit.ram_high",
506 mem_high_size, &error_fatal);
507 memory_region_init_alias(mem_high_alias, NULL,
508 "microchip.icicle.kit.ram_high.alias",
509 mem_high, 0, mem_high_size);
510 memory_region_add_subregion(system_memory,
511 memmap[MICROCHIP_PFSOC_DRAM_HI].base,
512 mem_high);
513 memory_region_add_subregion(system_memory,
514 memmap[MICROCHIP_PFSOC_DRAM_HI_ALIAS].base,
515 mem_high_alias);
56f6e31e 516
898dc008
BM
517 /* Attach an SD card */
518 if (dinfo) {
519 CadenceSDHCIState *sdhci = &(s->soc.sdhci);
520 DeviceState *card = qdev_new(TYPE_SD_CARD);
521
522 qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo),
523 &error_fatal);
524 qdev_realize_and_unref(card, sdhci->bus, &error_fatal);
525 }
143897b5
BM
526
527 /*
528 * We follow the following table to select which payload we execute.
529 *
530 * -bios | -kernel | payload
531 * -------+------------+--------
532 * N | N | HSS
533 * Y | don't care | HSS
534 * N | Y | kernel
535 *
536 * This ensures backwards compatibility with how we used to expose -bios
537 * to users but allows them to run through direct kernel booting as well.
538 *
539 * When -kernel is used for direct boot, -dtb must be present to provide
540 * a valid device tree for the board, as we don't generate device tree.
541 */
542
543 if (machine->kernel_filename && machine->dtb) {
544 int fdt_size;
545 machine->fdt = load_device_tree(machine->dtb, &fdt_size);
546 if (!machine->fdt) {
547 error_report("load_device_tree() failed");
548 exit(1);
549 }
550
551 firmware_name = RISCV64_BIOS_BIN;
552 firmware_load_addr = memmap[MICROCHIP_PFSOC_DRAM_LO].base;
553 kernel_as_payload = true;
554 }
555
556 if (!kernel_as_payload) {
557 firmware_name = BIOS_FILENAME;
558 firmware_load_addr = RESET_VECTOR;
559 }
560
561 /* Load the firmware */
562 firmware_end_addr = riscv_find_and_load_firmware(machine, firmware_name,
563 firmware_load_addr, NULL);
564
565 if (kernel_as_payload) {
566 kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc.u_cpus,
567 firmware_end_addr);
568
569 kernel_entry = riscv_load_kernel(machine->kernel_filename,
570 kernel_start_addr, NULL);
571
572 if (machine->initrd_filename) {
573 hwaddr start;
574 hwaddr end = riscv_load_initrd(machine->initrd_filename,
575 machine->ram_size, kernel_entry,
576 &start);
577 qemu_fdt_setprop_cell(machine->fdt, "/chosen",
578 "linux,initrd-start", start);
579 qemu_fdt_setprop_cell(machine->fdt, "/chosen",
580 "linux,initrd-end", end);
581 }
582
583 if (machine->kernel_cmdline) {
584 qemu_fdt_setprop_string(machine->fdt, "/chosen",
585 "bootargs", machine->kernel_cmdline);
586 }
587
588 /* Compute the fdt load address in dram */
589 fdt_load_addr = riscv_load_fdt(memmap[MICROCHIP_PFSOC_DRAM_LO].base,
590 machine->ram_size, machine->fdt);
591 /* Load the reset vector */
592 riscv_setup_rom_reset_vec(machine, &s->soc.u_cpus, firmware_load_addr,
593 memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
594 memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
595 kernel_entry, fdt_load_addr, machine->fdt);
596 }
56f6e31e
BM
597}
598
599static void microchip_icicle_kit_machine_class_init(ObjectClass *oc, void *data)
600{
601 MachineClass *mc = MACHINE_CLASS(oc);
602
603 mc->desc = "Microchip PolarFire SoC Icicle Kit";
604 mc->init = microchip_icicle_kit_machine_init;
605 mc->max_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT +
606 MICROCHIP_PFSOC_COMPUTE_CPU_COUNT;
607 mc->min_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 1;
608 mc->default_cpus = mc->min_cpus;
f03100d7
BM
609
610 /*
611 * Map 513 MiB high memory, the mimimum required high memory size, because
612 * HSS will do memory test against the high memory address range regardless
613 * of physical memory installed.
614 *
615 * See memory_tests() in mss_ddr.c in the HSS source code.
616 */
617 mc->default_ram_size = 1537 * MiB;
56f6e31e
BM
618}
619
620static const TypeInfo microchip_icicle_kit_machine_typeinfo = {
621 .name = MACHINE_TYPE_NAME("microchip-icicle-kit"),
622 .parent = TYPE_MACHINE,
623 .class_init = microchip_icicle_kit_machine_class_init,
624 .instance_size = sizeof(MicrochipIcicleKitState),
625};
626
627static void microchip_icicle_kit_machine_init_register_types(void)
628{
629 type_register_static(&microchip_icicle_kit_machine_typeinfo);
630}
631
632type_init(microchip_icicle_kit_machine_init_register_types)