]> git.proxmox.com Git - mirror_qemu.git/blame - hw/ssi/aspeed_smc.c
hw/arm: Add EHCI/OHCI controllers to Allwinner R40 and Bananapi board
[mirror_qemu.git] / hw / ssi / aspeed_smc.c
CommitLineData
7c1c69bc
CLG
1/*
2 * ASPEED AST2400 SMC Controller (SPI Flash Only)
3 *
4 * Copyright (C) 2016 IBM Corp.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24
25#include "qemu/osdep.h"
26#include "hw/sysbus.h"
d6454270 27#include "migration/vmstate.h"
7c1c69bc 28#include "qemu/log.h"
0b8fa32f 29#include "qemu/module.h"
d6e3f50a 30#include "qemu/error-report.h"
c4e1f0b4 31#include "qapi/error.h"
bcaa8ddd 32#include "qemu/units.h"
bd6ce9a6 33#include "trace.h"
7c1c69bc 34
64552b6b 35#include "hw/irq.h"
a27bd6c7 36#include "hw/qdev-properties.h"
7c1c69bc
CLG
37#include "hw/ssi/aspeed_smc.h"
38
39/* CE Type Setting Register */
40#define R_CONF (0x00 / 4)
41#define CONF_LEGACY_DISABLE (1 << 31)
42#define CONF_ENABLE_W4 20
43#define CONF_ENABLE_W3 19
44#define CONF_ENABLE_W2 18
45#define CONF_ENABLE_W1 17
46#define CONF_ENABLE_W0 16
0707b34d
CLG
47#define CONF_FLASH_TYPE4 8
48#define CONF_FLASH_TYPE3 6
49#define CONF_FLASH_TYPE2 4
50#define CONF_FLASH_TYPE1 2
51#define CONF_FLASH_TYPE0 0
52#define CONF_FLASH_TYPE_NOR 0x0
53#define CONF_FLASH_TYPE_NAND 0x1
bcaa8ddd 54#define CONF_FLASH_TYPE_SPI 0x2 /* AST2600 is SPI only */
7c1c69bc
CLG
55
56/* CE Control Register */
57#define R_CE_CTRL (0x04 / 4)
58#define CTRL_EXTENDED4 4 /* 32 bit addressing for SPI */
59#define CTRL_EXTENDED3 3 /* 32 bit addressing for SPI */
60#define CTRL_EXTENDED2 2 /* 32 bit addressing for SPI */
61#define CTRL_EXTENDED1 1 /* 32 bit addressing for SPI */
62#define CTRL_EXTENDED0 0 /* 32 bit addressing for SPI */
63
64/* Interrupt Control and Status Register */
65#define R_INTR_CTRL (0x08 / 4)
66#define INTR_CTRL_DMA_STATUS (1 << 11)
67#define INTR_CTRL_CMD_ABORT_STATUS (1 << 10)
68#define INTR_CTRL_WRITE_PROTECT_STATUS (1 << 9)
69#define INTR_CTRL_DMA_EN (1 << 3)
70#define INTR_CTRL_CMD_ABORT_EN (1 << 2)
71#define INTR_CTRL_WRITE_PROTECT_EN (1 << 1)
72
af453a5e
CLG
73/* Command Control Register */
74#define R_CE_CMD_CTRL (0x0C / 4)
75#define CTRL_ADDR_BYTE0_DISABLE_SHIFT 4
76#define CTRL_DATA_BYTE0_DISABLE_SHIFT 0
77
78#define aspeed_smc_addr_byte_enabled(s, i) \
79 (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_ADDR_BYTE0_DISABLE_SHIFT + (i)))))
80#define aspeed_smc_data_byte_enabled(s, i) \
81 (!((s)->regs[R_CE_CMD_CTRL] & (1 << (CTRL_DATA_BYTE0_DISABLE_SHIFT + (i)))))
82
7c1c69bc
CLG
83/* CEx Control Register */
84#define R_CTRL0 (0x10 / 4)
bcaa8ddd
CLG
85#define CTRL_IO_QPI (1 << 31)
86#define CTRL_IO_QUAD_DATA (1 << 30)
0721309e
CLG
87#define CTRL_IO_DUAL_DATA (1 << 29)
88#define CTRL_IO_DUAL_ADDR_DATA (1 << 28) /* Includes dummies */
bcaa8ddd 89#define CTRL_IO_QUAD_ADDR_DATA (1 << 28) /* Includes dummies */
7c1c69bc
CLG
90#define CTRL_CMD_SHIFT 16
91#define CTRL_CMD_MASK 0xff
ac2810de 92#define CTRL_DUMMY_HIGH_SHIFT 14
fcdf2c59 93#define CTRL_AST2400_SPI_4BYTE (1 << 13)
0d72c717
CLG
94#define CE_CTRL_CLOCK_FREQ_SHIFT 8
95#define CE_CTRL_CLOCK_FREQ_MASK 0xf
96#define CE_CTRL_CLOCK_FREQ(div) \
97 (((div) & CE_CTRL_CLOCK_FREQ_MASK) << CE_CTRL_CLOCK_FREQ_SHIFT)
ac2810de 98#define CTRL_DUMMY_LOW_SHIFT 6 /* 2 bits [7:6] */
7c1c69bc
CLG
99#define CTRL_CE_STOP_ACTIVE (1 << 2)
100#define CTRL_CMD_MODE_MASK 0x3
101#define CTRL_READMODE 0x0
102#define CTRL_FREADMODE 0x1
103#define CTRL_WRITEMODE 0x2
104#define CTRL_USERMODE 0x3
105#define R_CTRL1 (0x14 / 4)
106#define R_CTRL2 (0x18 / 4)
107#define R_CTRL3 (0x1C / 4)
108#define R_CTRL4 (0x20 / 4)
109
110/* CEx Segment Address Register */
111#define R_SEG_ADDR0 (0x30 / 4)
a03cb1da
CLG
112#define SEG_END_SHIFT 24 /* 8MB units */
113#define SEG_END_MASK 0xff
7c1c69bc 114#define SEG_START_SHIFT 16 /* address bit [A29-A23] */
a03cb1da 115#define SEG_START_MASK 0xff
7c1c69bc
CLG
116#define R_SEG_ADDR1 (0x34 / 4)
117#define R_SEG_ADDR2 (0x38 / 4)
118#define R_SEG_ADDR3 (0x3C / 4)
119#define R_SEG_ADDR4 (0x40 / 4)
120
121/* Misc Control Register #1 */
122#define R_MISC_CTRL1 (0x50 / 4)
123
9149af2a
CLG
124/* SPI dummy cycle data */
125#define R_DUMMY_DATA (0x54 / 4)
7c1c69bc 126
45a904af
CLG
127/* FMC_WDT2 Control/Status Register for Alternate Boot (AST2600) */
128#define R_FMC_WDT2_CTRL (0x64 / 4)
129#define FMC_WDT2_CTRL_ALT_BOOT_MODE BIT(6) /* O: 2 chips 1: 1 chip */
130#define FMC_WDT2_CTRL_SINGLE_BOOT_MODE BIT(5)
131#define FMC_WDT2_CTRL_BOOT_SOURCE BIT(4) /* O: primary 1: alternate */
132#define FMC_WDT2_CTRL_EN BIT(0)
133
7c1c69bc
CLG
134/* DMA Control/Status Register */
135#define R_DMA_CTRL (0x80 / 4)
1769a70e
CLG
136#define DMA_CTRL_REQUEST (1 << 31)
137#define DMA_CTRL_GRANT (1 << 30)
7c1c69bc
CLG
138#define DMA_CTRL_DELAY_MASK 0xf
139#define DMA_CTRL_DELAY_SHIFT 8
140#define DMA_CTRL_FREQ_MASK 0xf
141#define DMA_CTRL_FREQ_SHIFT 4
0d72c717 142#define DMA_CTRL_CALIB (1 << 3)
7c1c69bc 143#define DMA_CTRL_CKSUM (1 << 2)
c4e1f0b4
CLG
144#define DMA_CTRL_WRITE (1 << 1)
145#define DMA_CTRL_ENABLE (1 << 0)
7c1c69bc
CLG
146
147/* DMA Flash Side Address */
148#define R_DMA_FLASH_ADDR (0x84 / 4)
149
150/* DMA DRAM Side Address */
151#define R_DMA_DRAM_ADDR (0x88 / 4)
152
153/* DMA Length Register */
154#define R_DMA_LEN (0x8C / 4)
155
156/* Checksum Calculation Result */
157#define R_DMA_CHECKSUM (0x90 / 4)
158
f286f04c 159/* Read Timing Compensation Register */
7c1c69bc
CLG
160#define R_TIMINGS (0x94 / 4)
161
bcaa8ddd 162/* SPI controller registers and bits (AST2400) */
7c1c69bc
CLG
163#define R_SPI_CONF (0x00 / 4)
164#define SPI_CONF_ENABLE_W0 0
165#define R_SPI_CTRL0 (0x4 / 4)
166#define R_SPI_MISC_CTRL (0x10 / 4)
167#define R_SPI_TIMINGS (0x14 / 4)
168
087b57c9
CLG
169#define ASPEED_SMC_R_SPI_MAX (0x20 / 4)
170#define ASPEED_SMC_R_SMC_MAX (0x20 / 4)
171
c4e1f0b4
CLG
172/*
173 * DMA DRAM addresses should be 4 bytes aligned and the valid address
174 * range is 0x40000000 - 0x5FFFFFFF (AST2400)
175 * 0x80000000 - 0xBFFFFFFF (AST2500)
176 *
177 * DMA flash addresses should be 4 bytes aligned and the valid address
178 * range is 0x20000000 - 0x2FFFFFFF.
179 *
180 * DMA length is from 4 bytes to 32MB
181 * 0: 4 bytes
182 * 0x7FFFFF: 32M bytes
183 */
30b6852c
CLG
184#define DMA_DRAM_ADDR(asc, val) ((val) & (asc)->dma_dram_mask)
185#define DMA_FLASH_ADDR(asc, val) ((val) & (asc)->dma_flash_mask)
c4e1f0b4
CLG
186#define DMA_LENGTH(val) ((val) & 0x01FFFFFC)
187
fcdf2c59
CLG
188/* Flash opcodes. */
189#define SPI_OP_READ 0x03 /* Read data bytes (low frequency) */
190
f95c4bff
CLG
191#define SNOOP_OFF 0xFF
192#define SNOOP_START 0x0
193
924ed163 194/*
5ade579b 195 * Default segments mapping addresses and size for each peripheral per
924ed163 196 * controller. These can be changed when board is initialized with the
a03cb1da 197 * Segment Address Registers.
924ed163 198 */
30b6852c
CLG
199static const AspeedSegments aspeed_2500_spi1_segments[];
200static const AspeedSegments aspeed_2500_spi2_segments[];
1769a70e 201
1c5ee69d 202#define ASPEED_SMC_FEATURE_DMA 0x1
1769a70e 203#define ASPEED_SMC_FEATURE_DMA_GRANT 0x2
45a904af 204#define ASPEED_SMC_FEATURE_WDT_CONTROL 0x4
1c5ee69d 205
30b6852c 206static inline bool aspeed_smc_has_dma(const AspeedSMCClass *asc)
bcaa8ddd 207{
30b6852c 208 return !!(asc->features & ASPEED_SMC_FEATURE_DMA);
bcaa8ddd
CLG
209}
210
30b6852c 211static inline bool aspeed_smc_has_wdt_control(const AspeedSMCClass *asc)
bcaa8ddd 212{
30b6852c 213 return !!(asc->features & ASPEED_SMC_FEATURE_WDT_CONTROL);
bcaa8ddd
CLG
214}
215
32c54bd0
CLG
216#define aspeed_smc_error(fmt, ...) \
217 qemu_log_mask(LOG_GUEST_ERROR, "%s: " fmt "\n", __func__, ## __VA_ARGS__)
218
a03cb1da
CLG
219static bool aspeed_smc_flash_overlap(const AspeedSMCState *s,
220 const AspeedSegments *new,
221 int cs)
222{
30b6852c 223 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
a03cb1da
CLG
224 AspeedSegments seg;
225 int i;
226
ae945a00 227 for (i = 0; i < asc->cs_num_max; i++) {
a03cb1da
CLG
228 if (i == cs) {
229 continue;
230 }
231
30b6852c 232 asc->reg_to_segment(s, s->regs[R_SEG_ADDR0 + i], &seg);
a03cb1da
CLG
233
234 if (new->addr + new->size > seg.addr &&
235 new->addr < seg.addr + seg.size) {
32c54bd0
CLG
236 aspeed_smc_error("new segment CS%d [ 0x%"
237 HWADDR_PRIx" - 0x%"HWADDR_PRIx" ] overlaps with "
238 "CS%d [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
239 cs, new->addr, new->addr + new->size,
240 i, seg.addr, seg.addr + seg.size);
a03cb1da
CLG
241 return true;
242 }
243 }
244 return false;
245}
246
673b1f86
CLG
247static void aspeed_smc_flash_set_segment_region(AspeedSMCState *s, int cs,
248 uint64_t regval)
249{
30b6852c 250 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
673b1f86
CLG
251 AspeedSMCFlash *fl = &s->flashes[cs];
252 AspeedSegments seg;
253
30b6852c 254 asc->reg_to_segment(s, regval, &seg);
673b1f86
CLG
255
256 memory_region_transaction_begin();
257 memory_region_set_size(&fl->mmio, seg.size);
30b6852c 258 memory_region_set_address(&fl->mmio, seg.addr - asc->flash_window_base);
2175eacf 259 memory_region_set_enabled(&fl->mmio, !!seg.size);
673b1f86
CLG
260 memory_region_transaction_commit();
261
7c8d2fc4
CLG
262 if (asc->segment_addr_mask) {
263 regval &= asc->segment_addr_mask;
264 }
265
673b1f86
CLG
266 s->regs[R_SEG_ADDR0 + cs] = regval;
267}
268
a03cb1da
CLG
269static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs,
270 uint64_t new)
271{
30b6852c 272 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
a03cb1da
CLG
273 AspeedSegments seg;
274
30b6852c 275 asc->reg_to_segment(s, new, &seg);
a03cb1da 276
bd6ce9a6
CLG
277 trace_aspeed_smc_flash_set_segment(cs, new, seg.addr, seg.addr + seg.size);
278
a03cb1da 279 /* The start address of CS0 is read-only */
30b6852c 280 if (cs == 0 && seg.addr != asc->flash_window_base) {
32c54bd0
CLG
281 aspeed_smc_error("Tried to change CS0 start address to 0x%"
282 HWADDR_PRIx, seg.addr);
30b6852c
CLG
283 seg.addr = asc->flash_window_base;
284 new = asc->segment_to_reg(s, &seg);
a03cb1da
CLG
285 }
286
287 /*
288 * The end address of the AST2500 spi controllers is also
289 * read-only.
290 */
30b6852c
CLG
291 if ((asc->segments == aspeed_2500_spi1_segments ||
292 asc->segments == aspeed_2500_spi2_segments) &&
ae945a00 293 cs == asc->cs_num_max &&
30b6852c
CLG
294 seg.addr + seg.size != asc->segments[cs].addr +
295 asc->segments[cs].size) {
32c54bd0
CLG
296 aspeed_smc_error("Tried to change CS%d end address to 0x%"
297 HWADDR_PRIx, cs, seg.addr + seg.size);
30b6852c 298 seg.size = asc->segments[cs].addr + asc->segments[cs].size -
0584d3c3 299 seg.addr;
30b6852c 300 new = asc->segment_to_reg(s, &seg);
a03cb1da
CLG
301 }
302
303 /* Keep the segment in the overall flash window */
2175eacf 304 if (seg.size &&
30b6852c
CLG
305 (seg.addr + seg.size <= asc->flash_window_base ||
306 seg.addr > asc->flash_window_base + asc->flash_window_size)) {
32c54bd0
CLG
307 aspeed_smc_error("new segment for CS%d is invalid : "
308 "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
309 cs, seg.addr, seg.addr + seg.size);
a03cb1da
CLG
310 return;
311 }
312
313 /* Check start address vs. alignment */
0584d3c3 314 if (seg.size && !QEMU_IS_ALIGNED(seg.addr, seg.size)) {
32c54bd0
CLG
315 aspeed_smc_error("new segment for CS%d is not "
316 "aligned : [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
317 cs, seg.addr, seg.addr + seg.size);
a03cb1da
CLG
318 }
319
0584d3c3
CLG
320 /* And segments should not overlap (in the specs) */
321 aspeed_smc_flash_overlap(s, &seg, cs);
a03cb1da
CLG
322
323 /* All should be fine now to move the region */
673b1f86 324 aspeed_smc_flash_set_segment_region(s, cs, new);
a03cb1da
CLG
325}
326
924ed163
CLG
327static uint64_t aspeed_smc_flash_default_read(void *opaque, hwaddr addr,
328 unsigned size)
329{
c1402ea1 330 aspeed_smc_error("To 0x%" HWADDR_PRIx " of size %u", addr, size);
924ed163
CLG
331 return 0;
332}
333
334static void aspeed_smc_flash_default_write(void *opaque, hwaddr addr,
335 uint64_t data, unsigned size)
336{
32c54bd0
CLG
337 aspeed_smc_error("To 0x%" HWADDR_PRIx " of size %u: 0x%" PRIx64,
338 addr, size, data);
924ed163
CLG
339}
340
341static const MemoryRegionOps aspeed_smc_flash_default_ops = {
342 .read = aspeed_smc_flash_default_read,
343 .write = aspeed_smc_flash_default_write,
344 .endianness = DEVICE_LITTLE_ENDIAN,
345 .valid = {
346 .min_access_size = 1,
347 .max_access_size = 4,
348 },
349};
350
f248a9db 351static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl)
924ed163 352{
f248a9db
CLG
353 const AspeedSMCState *s = fl->controller;
354
10f915e4 355 return s->regs[s->r_ctrl0 + fl->cs] & CTRL_CMD_MODE_MASK;
924ed163
CLG
356}
357
fcdf2c59 358static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl)
924ed163 359{
fcdf2c59
CLG
360 const AspeedSMCState *s = fl->controller;
361
10f915e4 362 return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->cs));
924ed163
CLG
363}
364
fcdf2c59 365static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl)
924ed163 366{
f248a9db 367 const AspeedSMCState *s = fl->controller;
10f915e4 368 int cmd = (s->regs[s->r_ctrl0 + fl->cs] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK;
f248a9db 369
bcaa8ddd
CLG
370 /*
371 * In read mode, the default SPI command is READ (0x3). In other
372 * modes, the command should necessarily be defined
373 *
374 * TODO: add support for READ4 (0x13) on AST2600
375 */
fcdf2c59
CLG
376 if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) {
377 cmd = SPI_OP_READ;
378 }
379
380 if (!cmd) {
32c54bd0
CLG
381 aspeed_smc_error("no command defined for mode %d",
382 aspeed_smc_flash_mode(fl));
fcdf2c59
CLG
383 }
384
385 return cmd;
386}
387
a779e37c 388static inline int aspeed_smc_flash_addr_width(const AspeedSMCFlash *fl)
fcdf2c59
CLG
389{
390 const AspeedSMCState *s = fl->controller;
b84a9482 391 AspeedSMCClass *asc = fl->asc;
fcdf2c59 392
a779e37c
CLG
393 if (asc->addr_width) {
394 return asc->addr_width(s);
fcdf2c59 395 } else {
a779e37c 396 return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->cs)) ? 4 : 3;
fcdf2c59
CLG
397 }
398}
399
e7e741ca 400static void aspeed_smc_flash_do_select(AspeedSMCFlash *fl, bool unselect)
fcdf2c59 401{
e7e741ca
CLG
402 AspeedSMCState *s = fl->controller;
403
10f915e4 404 trace_aspeed_smc_flash_select(fl->cs, unselect ? "un" : "");
fcdf2c59 405
10f915e4 406 qemu_set_irq(s->cs_lines[fl->cs], unselect);
fcdf2c59
CLG
407}
408
409static void aspeed_smc_flash_select(AspeedSMCFlash *fl)
410{
e7e741ca 411 aspeed_smc_flash_do_select(fl, false);
fcdf2c59
CLG
412}
413
414static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl)
415{
e7e741ca 416 aspeed_smc_flash_do_select(fl, true);
fcdf2c59
CLG
417}
418
419static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl,
420 uint32_t addr)
421{
422 const AspeedSMCState *s = fl->controller;
b84a9482 423 AspeedSMCClass *asc = fl->asc;
fcdf2c59
CLG
424 AspeedSegments seg;
425
10f915e4 426 asc->reg_to_segment(s, s->regs[R_SEG_ADDR0 + fl->cs], &seg);
b4cc583f 427 if ((addr % seg.size) != addr) {
32c54bd0
CLG
428 aspeed_smc_error("invalid address 0x%08x for CS%d segment : "
429 "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]",
10f915e4 430 addr, fl->cs, seg.addr, seg.addr + seg.size);
b4cc583f 431 addr %= seg.size;
fcdf2c59
CLG
432 }
433
fcdf2c59
CLG
434 return addr;
435}
436
ac2810de
CLG
437static int aspeed_smc_flash_dummies(const AspeedSMCFlash *fl)
438{
439 const AspeedSMCState *s = fl->controller;
10f915e4 440 uint32_t r_ctrl0 = s->regs[s->r_ctrl0 + fl->cs];
ac2810de
CLG
441 uint32_t dummy_high = (r_ctrl0 >> CTRL_DUMMY_HIGH_SHIFT) & 0x1;
442 uint32_t dummy_low = (r_ctrl0 >> CTRL_DUMMY_LOW_SHIFT) & 0x3;
0721309e 443 uint32_t dummies = ((dummy_high << 2) | dummy_low) * 8;
ac2810de 444
0721309e
CLG
445 if (r_ctrl0 & CTRL_IO_DUAL_ADDR_DATA) {
446 dummies /= 2;
447 }
448
449 return dummies;
ac2810de
CLG
450}
451
96c4be95 452static void aspeed_smc_flash_setup(AspeedSMCFlash *fl, uint32_t addr)
fcdf2c59
CLG
453{
454 const AspeedSMCState *s = fl->controller;
455 uint8_t cmd = aspeed_smc_flash_cmd(fl);
a779e37c 456 int i = aspeed_smc_flash_addr_width(fl);
fcdf2c59
CLG
457
458 /* Flash access can not exceed CS segment */
459 addr = aspeed_smc_check_segment_addr(fl, addr);
460
461 ssi_transfer(s->spi, cmd);
af453a5e
CLG
462 while (i--) {
463 if (aspeed_smc_addr_byte_enabled(s, i)) {
464 ssi_transfer(s->spi, (addr >> (i * 8)) & 0xff);
465 }
fcdf2c59 466 }
96c4be95
CLG
467
468 /*
469 * Use fake transfers to model dummy bytes. The value should
470 * be configured to some non-zero value in fast read mode and
471 * zero in read mode. But, as the HW allows inconsistent
472 * settings, let's check for fast read mode.
473 */
474 if (aspeed_smc_flash_mode(fl) == CTRL_FREADMODE) {
475 for (i = 0; i < aspeed_smc_flash_dummies(fl); i++) {
9149af2a 476 ssi_transfer(fl->controller->spi, s->regs[R_DUMMY_DATA] & 0xff);
96c4be95
CLG
477 }
478 }
924ed163
CLG
479}
480
481static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size)
482{
483 AspeedSMCFlash *fl = opaque;
fcdf2c59 484 AspeedSMCState *s = fl->controller;
924ed163
CLG
485 uint64_t ret = 0;
486 int i;
487
fcdf2c59
CLG
488 switch (aspeed_smc_flash_mode(fl)) {
489 case CTRL_USERMODE:
924ed163 490 for (i = 0; i < size; i++) {
75dbf30b 491 ret |= (uint64_t) ssi_transfer(s->spi, 0x0) << (8 * i);
924ed163 492 }
fcdf2c59
CLG
493 break;
494 case CTRL_READMODE:
495 case CTRL_FREADMODE:
496 aspeed_smc_flash_select(fl);
96c4be95 497 aspeed_smc_flash_setup(fl, addr);
ac2810de 498
fcdf2c59 499 for (i = 0; i < size; i++) {
75dbf30b 500 ret |= (uint64_t) ssi_transfer(s->spi, 0x0) << (8 * i);
fcdf2c59
CLG
501 }
502
503 aspeed_smc_flash_unselect(fl);
504 break;
505 default:
32c54bd0 506 aspeed_smc_error("invalid flash mode %d", aspeed_smc_flash_mode(fl));
924ed163
CLG
507 }
508
10f915e4 509 trace_aspeed_smc_flash_read(fl->cs, addr, size, ret,
bd6ce9a6 510 aspeed_smc_flash_mode(fl));
924ed163
CLG
511 return ret;
512}
513
f95c4bff
CLG
514/*
515 * TODO (clg@kaod.org): stolen from xilinx_spips.c. Should move to a
516 * common include header.
517 */
518typedef enum {
519 READ = 0x3, READ_4 = 0x13,
520 FAST_READ = 0xb, FAST_READ_4 = 0x0c,
521 DOR = 0x3b, DOR_4 = 0x3c,
522 QOR = 0x6b, QOR_4 = 0x6c,
523 DIOR = 0xbb, DIOR_4 = 0xbc,
524 QIOR = 0xeb, QIOR_4 = 0xec,
525
526 PP = 0x2, PP_4 = 0x12,
527 DPP = 0xa2,
528 QPP = 0x32, QPP_4 = 0x34,
529} FlashCMD;
530
531static int aspeed_smc_num_dummies(uint8_t command)
532{
533 switch (command) { /* check for dummies */
534 case READ: /* no dummy bytes/cycles */
535 case PP:
536 case DPP:
537 case QPP:
538 case READ_4:
539 case PP_4:
540 case QPP_4:
541 return 0;
542 case FAST_READ:
543 case DOR:
544 case QOR:
7faf6f17 545 case FAST_READ_4:
f95c4bff
CLG
546 case DOR_4:
547 case QOR_4:
548 return 1;
549 case DIOR:
f95c4bff
CLG
550 case DIOR_4:
551 return 2;
552 case QIOR:
553 case QIOR_4:
554 return 4;
555 default:
556 return -1;
557 }
558}
559
560static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl, uint64_t data,
561 unsigned size)
562{
563 AspeedSMCState *s = fl->controller;
a779e37c 564 uint8_t addr_width = aspeed_smc_flash_addr_width(fl);
f95c4bff 565
10f915e4 566 trace_aspeed_smc_do_snoop(fl->cs, s->snoop_index, s->snoop_dummies,
bd6ce9a6
CLG
567 (uint8_t) data & 0xff);
568
f95c4bff
CLG
569 if (s->snoop_index == SNOOP_OFF) {
570 return false; /* Do nothing */
571
572 } else if (s->snoop_index == SNOOP_START) {
573 uint8_t cmd = data & 0xff;
574 int ndummies = aspeed_smc_num_dummies(cmd);
575
576 /*
577 * No dummy cycles are expected with the current command. Turn
578 * off snooping and let the transfer proceed normally.
579 */
580 if (ndummies <= 0) {
581 s->snoop_index = SNOOP_OFF;
582 return false;
583 }
584
585 s->snoop_dummies = ndummies * 8;
586
587 } else if (s->snoop_index >= addr_width + 1) {
588
589 /* The SPI transfer has reached the dummy cycles sequence */
590 for (; s->snoop_dummies; s->snoop_dummies--) {
591 ssi_transfer(s->spi, s->regs[R_DUMMY_DATA] & 0xff);
592 }
593
594 /* If no more dummy cycles are expected, turn off snooping */
595 if (!s->snoop_dummies) {
596 s->snoop_index = SNOOP_OFF;
597 } else {
598 s->snoop_index += size;
599 }
600
601 /*
602 * Dummy cycles have been faked already. Ignore the current
603 * SPI transfer
604 */
605 return true;
606 }
607
608 s->snoop_index += size;
609 return false;
610}
611
924ed163 612static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data,
b3d6b8f5 613 unsigned size)
924ed163
CLG
614{
615 AspeedSMCFlash *fl = opaque;
fcdf2c59 616 AspeedSMCState *s = fl->controller;
924ed163
CLG
617 int i;
618
10f915e4 619 trace_aspeed_smc_flash_write(fl->cs, addr, size, data,
bd6ce9a6
CLG
620 aspeed_smc_flash_mode(fl));
621
f248a9db 622 if (!aspeed_smc_is_writable(fl)) {
32c54bd0 623 aspeed_smc_error("flash is not writable at 0x%" HWADDR_PRIx, addr);
924ed163
CLG
624 return;
625 }
626
fcdf2c59
CLG
627 switch (aspeed_smc_flash_mode(fl)) {
628 case CTRL_USERMODE:
f95c4bff
CLG
629 if (aspeed_smc_do_snoop(fl, data, size)) {
630 break;
631 }
632
fcdf2c59
CLG
633 for (i = 0; i < size; i++) {
634 ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
635 }
636 break;
637 case CTRL_WRITEMODE:
638 aspeed_smc_flash_select(fl);
96c4be95 639 aspeed_smc_flash_setup(fl, addr);
fcdf2c59
CLG
640
641 for (i = 0; i < size; i++) {
642 ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
643 }
924ed163 644
fcdf2c59
CLG
645 aspeed_smc_flash_unselect(fl);
646 break;
647 default:
32c54bd0 648 aspeed_smc_error("invalid flash mode %d", aspeed_smc_flash_mode(fl));
924ed163
CLG
649 }
650}
651
652static const MemoryRegionOps aspeed_smc_flash_ops = {
653 .read = aspeed_smc_flash_read,
654 .write = aspeed_smc_flash_write,
655 .endianness = DEVICE_LITTLE_ENDIAN,
656 .valid = {
657 .min_access_size = 1,
658 .max_access_size = 4,
659 },
7c1c69bc
CLG
660};
661
e7e741ca 662static void aspeed_smc_flash_update_ctrl(AspeedSMCFlash *fl, uint32_t value)
7c1c69bc 663{
f95c4bff 664 AspeedSMCState *s = fl->controller;
e7e741ca
CLG
665 bool unselect;
666
667 /* User mode selects the CS, other modes unselect */
668 unselect = (value & CTRL_CMD_MODE_MASK) != CTRL_USERMODE;
669
670 /* A change of CTRL_CE_STOP_ACTIVE from 0 to 1, unselects the CS */
10f915e4 671 if (!(s->regs[s->r_ctrl0 + fl->cs] & CTRL_CE_STOP_ACTIVE) &&
e7e741ca
CLG
672 value & CTRL_CE_STOP_ACTIVE) {
673 unselect = true;
674 }
675
10f915e4 676 s->regs[s->r_ctrl0 + fl->cs] = value;
f95c4bff 677
e7e741ca 678 s->snoop_index = unselect ? SNOOP_OFF : SNOOP_START;
7c1c69bc 679
e7e741ca 680 aspeed_smc_flash_do_select(fl, unselect);
7c1c69bc
CLG
681}
682
683static void aspeed_smc_reset(DeviceState *d)
684{
685 AspeedSMCState *s = ASPEED_SMC(d);
30b6852c 686 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
7c1c69bc
CLG
687 int i;
688
71255c48
CLG
689 if (asc->resets) {
690 memcpy(s->regs, asc->resets, sizeof s->regs);
691 } else {
692 memset(s->regs, 0, sizeof s->regs);
693 }
7c1c69bc 694
27a2c66c
CLG
695 for (i = 0; i < asc->cs_num_max; i++) {
696 DeviceState *dev = ssi_get_cs(s->spi, i);
697 if (dev) {
698 qemu_irq cs_line = qdev_get_gpio_in_named(dev, SSI_GPIO_CS, 0);
699 qdev_connect_gpio_out_named(DEVICE(s), "cs", i, cs_line);
700 }
701 }
702
5ade579b 703 /* Unselect all peripherals */
ae945a00 704 for (i = 0; i < asc->cs_num_max; ++i) {
7c1c69bc 705 s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE;
1d247bd0 706 qemu_set_irq(s->cs_lines[i], true);
7c1c69bc
CLG
707 }
708
673b1f86 709 /* setup the default segment register values and regions for all */
ae945a00 710 for (i = 0; i < asc->cs_num_max; ++i) {
673b1f86 711 aspeed_smc_flash_set_segment_region(s, i,
30b6852c 712 asc->segment_to_reg(s, &asc->segments[i]));
a03cb1da 713 }
0707b34d 714
f95c4bff
CLG
715 s->snoop_index = SNOOP_OFF;
716 s->snoop_dummies = 0;
7c1c69bc
CLG
717}
718
7c1c69bc
CLG
719static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size)
720{
721 AspeedSMCState *s = ASPEED_SMC(opaque);
30b6852c 722 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(opaque);
7c1c69bc
CLG
723
724 addr >>= 2;
725
97c2ed5d 726 if (addr == s->r_conf ||
f286f04c 727 (addr >= s->r_timings &&
30b6852c 728 addr < s->r_timings + asc->nregs_timings) ||
97c2ed5d 729 addr == s->r_ce_ctrl ||
af453a5e 730 addr == R_CE_CMD_CTRL ||
2e1f0502 731 addr == R_INTR_CTRL ||
9149af2a 732 addr == R_DUMMY_DATA ||
30b6852c
CLG
733 (aspeed_smc_has_wdt_control(asc) && addr == R_FMC_WDT2_CTRL) ||
734 (aspeed_smc_has_dma(asc) && addr == R_DMA_CTRL) ||
735 (aspeed_smc_has_dma(asc) && addr == R_DMA_FLASH_ADDR) ||
736 (aspeed_smc_has_dma(asc) && addr == R_DMA_DRAM_ADDR) ||
737 (aspeed_smc_has_dma(asc) && addr == R_DMA_LEN) ||
738 (aspeed_smc_has_dma(asc) && addr == R_DMA_CHECKSUM) ||
5ade579b 739 (addr >= R_SEG_ADDR0 &&
ae945a00
CLG
740 addr < R_SEG_ADDR0 + asc->cs_num_max) ||
741 (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + asc->cs_num_max)) {
bd6ce9a6 742
e2804a1e 743 trace_aspeed_smc_read(addr << 2, size, s->regs[addr]);
bd6ce9a6 744
97c2ed5d
CLG
745 return s->regs[addr];
746 } else {
7c1c69bc 747 qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
97c2ed5d 748 __func__, addr);
b617ca92 749 return -1;
7c1c69bc 750 }
7c1c69bc
CLG
751}
752
0d72c717
CLG
753static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask)
754{
755 /* HCLK/1 .. HCLK/16 */
756 const uint8_t hclk_divisors[] = {
757 15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0
758 };
759 int i;
760
761 for (i = 0; i < ARRAY_SIZE(hclk_divisors); i++) {
762 if (hclk_mask == hclk_divisors[i]) {
763 return i + 1;
764 }
765 }
766
32c54bd0 767 aspeed_smc_error("invalid HCLK mask %x", hclk_mask);
0d72c717
CLG
768 return 0;
769}
770
771/*
772 * When doing calibration, the SPI clock rate in the CE0 Control
773 * Register and the read delay cycles in the Read Timing Compensation
774 * Register are set using bit[11:4] of the DMA Control Register.
775 */
776static void aspeed_smc_dma_calibration(AspeedSMCState *s)
777{
778 uint8_t delay =
779 (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
780 uint8_t hclk_mask =
781 (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
782 uint8_t hclk_div = aspeed_smc_hclk_divisor(hclk_mask);
783 uint32_t hclk_shift = (hclk_div - 1) << 2;
784 uint8_t cs;
785
786 /*
787 * The Read Timing Compensation Register values apply to all CS on
788 * the SPI bus and only HCLK/1 - HCLK/5 can have tunable delays
789 */
790 if (hclk_div && hclk_div < 6) {
791 s->regs[s->r_timings] &= ~(0xf << hclk_shift);
792 s->regs[s->r_timings] |= delay << hclk_shift;
793 }
794
795 /*
796 * TODO: compute the CS from the DMA address and the segment
797 * registers. This is not really a problem for now because the
798 * Timing Register values apply to all CS and software uses CS0 to
799 * do calibration.
800 */
801 cs = 0;
802 s->regs[s->r_ctrl0 + cs] &=
803 ~(CE_CTRL_CLOCK_FREQ_MASK << CE_CTRL_CLOCK_FREQ_SHIFT);
804 s->regs[s->r_ctrl0 + cs] |= CE_CTRL_CLOCK_FREQ(hclk_div);
805}
806
5258c2a6
CLG
807/*
808 * Emulate read errors in the DMA Checksum Register for high
809 * frequencies and optimistic settings of the Read Timing Compensation
810 * Register. This will help in tuning the SPI timing calibration
811 * algorithm.
812 */
813static bool aspeed_smc_inject_read_failure(AspeedSMCState *s)
814{
815 uint8_t delay =
816 (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
817 uint8_t hclk_mask =
818 (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
819
820 /*
821 * Typical values of a palmetto-bmc machine.
822 */
823 switch (aspeed_smc_hclk_divisor(hclk_mask)) {
824 case 4 ... 16:
825 return false;
826 case 3: /* at least one HCLK cycle delay */
827 return (delay & 0x7) < 1;
828 case 2: /* at least two HCLK cycle delay */
829 return (delay & 0x7) < 2;
830 case 1: /* (> 100MHz) is above the max freq of the controller */
831 return true;
832 default:
833 g_assert_not_reached();
834 }
835}
836
c4e1f0b4
CLG
837/*
838 * Accumulate the result of the reads to provide a checksum that will
839 * be used to validate the read timing settings.
840 */
841static void aspeed_smc_dma_checksum(AspeedSMCState *s)
842{
843 MemTxResult result;
844 uint32_t data;
845
846 if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
32c54bd0 847 aspeed_smc_error("invalid direction for DMA checksum");
c4e1f0b4
CLG
848 return;
849 }
850
0d72c717
CLG
851 if (s->regs[R_DMA_CTRL] & DMA_CTRL_CALIB) {
852 aspeed_smc_dma_calibration(s);
853 }
854
c4e1f0b4
CLG
855 while (s->regs[R_DMA_LEN]) {
856 data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
857 MEMTXATTRS_UNSPECIFIED, &result);
858 if (result != MEMTX_OK) {
32c54bd0
CLG
859 aspeed_smc_error("Flash read failed @%08x",
860 s->regs[R_DMA_FLASH_ADDR]);
c4e1f0b4
CLG
861 return;
862 }
bd6ce9a6 863 trace_aspeed_smc_dma_checksum(s->regs[R_DMA_FLASH_ADDR], data);
c4e1f0b4
CLG
864
865 /*
866 * When the DMA is on-going, the DMA registers are updated
867 * with the current working addresses and length.
868 */
869 s->regs[R_DMA_CHECKSUM] += data;
870 s->regs[R_DMA_FLASH_ADDR] += 4;
871 s->regs[R_DMA_LEN] -= 4;
872 }
5258c2a6
CLG
873
874 if (s->inject_failure && aspeed_smc_inject_read_failure(s)) {
875 s->regs[R_DMA_CHECKSUM] = 0xbadc0de;
876 }
877
c4e1f0b4
CLG
878}
879
880static void aspeed_smc_dma_rw(AspeedSMCState *s)
881{
882 MemTxResult result;
883 uint32_t data;
884
4dabf395
CLG
885 trace_aspeed_smc_dma_rw(s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE ?
886 "write" : "read",
887 s->regs[R_DMA_FLASH_ADDR],
888 s->regs[R_DMA_DRAM_ADDR],
889 s->regs[R_DMA_LEN]);
c4e1f0b4
CLG
890 while (s->regs[R_DMA_LEN]) {
891 if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
892 data = address_space_ldl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
893 MEMTXATTRS_UNSPECIFIED, &result);
894 if (result != MEMTX_OK) {
32c54bd0
CLG
895 aspeed_smc_error("DRAM read failed @%08x",
896 s->regs[R_DMA_DRAM_ADDR]);
c4e1f0b4
CLG
897 return;
898 }
899
900 address_space_stl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
901 data, MEMTXATTRS_UNSPECIFIED, &result);
902 if (result != MEMTX_OK) {
32c54bd0
CLG
903 aspeed_smc_error("Flash write failed @%08x",
904 s->regs[R_DMA_FLASH_ADDR]);
c4e1f0b4
CLG
905 return;
906 }
907 } else {
908 data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
909 MEMTXATTRS_UNSPECIFIED, &result);
910 if (result != MEMTX_OK) {
32c54bd0
CLG
911 aspeed_smc_error("Flash read failed @%08x",
912 s->regs[R_DMA_FLASH_ADDR]);
c4e1f0b4
CLG
913 return;
914 }
915
916 address_space_stl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
917 data, MEMTXATTRS_UNSPECIFIED, &result);
918 if (result != MEMTX_OK) {
32c54bd0
CLG
919 aspeed_smc_error("DRAM write failed @%08x",
920 s->regs[R_DMA_DRAM_ADDR]);
c4e1f0b4
CLG
921 return;
922 }
923 }
924
925 /*
926 * When the DMA is on-going, the DMA registers are updated
927 * with the current working addresses and length.
928 */
929 s->regs[R_DMA_FLASH_ADDR] += 4;
930 s->regs[R_DMA_DRAM_ADDR] += 4;
931 s->regs[R_DMA_LEN] -= 4;
ae275f71 932 s->regs[R_DMA_CHECKSUM] += data;
c4e1f0b4
CLG
933 }
934}
935
936static void aspeed_smc_dma_stop(AspeedSMCState *s)
937{
938 /*
939 * When the DMA is disabled, INTR_CTRL_DMA_STATUS=0 means the
940 * engine is idle
941 */
942 s->regs[R_INTR_CTRL] &= ~INTR_CTRL_DMA_STATUS;
943 s->regs[R_DMA_CHECKSUM] = 0;
944
945 /*
946 * Lower the DMA irq in any case. The IRQ control register could
947 * have been cleared before disabling the DMA.
948 */
949 qemu_irq_lower(s->irq);
950}
951
952/*
953 * When INTR_CTRL_DMA_STATUS=1, the DMA has completed and a new DMA
954 * can start even if the result of the previous was not collected.
955 */
956static bool aspeed_smc_dma_in_progress(AspeedSMCState *s)
957{
958 return s->regs[R_DMA_CTRL] & DMA_CTRL_ENABLE &&
959 !(s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_STATUS);
960}
961
962static void aspeed_smc_dma_done(AspeedSMCState *s)
963{
964 s->regs[R_INTR_CTRL] |= INTR_CTRL_DMA_STATUS;
965 if (s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_EN) {
966 qemu_irq_raise(s->irq);
967 }
968}
969
1769a70e 970static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint32_t dma_ctrl)
c4e1f0b4
CLG
971{
972 if (!(dma_ctrl & DMA_CTRL_ENABLE)) {
973 s->regs[R_DMA_CTRL] = dma_ctrl;
974
975 aspeed_smc_dma_stop(s);
976 return;
977 }
978
979 if (aspeed_smc_dma_in_progress(s)) {
32c54bd0 980 aspeed_smc_error("DMA in progress !");
c4e1f0b4
CLG
981 return;
982 }
983
984 s->regs[R_DMA_CTRL] = dma_ctrl;
985
986 if (s->regs[R_DMA_CTRL] & DMA_CTRL_CKSUM) {
987 aspeed_smc_dma_checksum(s);
988 } else {
989 aspeed_smc_dma_rw(s);
990 }
991
992 aspeed_smc_dma_done(s);
993}
994
1769a70e
CLG
995static inline bool aspeed_smc_dma_granted(AspeedSMCState *s)
996{
30b6852c
CLG
997 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
998
999 if (!(asc->features & ASPEED_SMC_FEATURE_DMA_GRANT)) {
1769a70e
CLG
1000 return true;
1001 }
1002
1003 if (!(s->regs[R_DMA_CTRL] & DMA_CTRL_GRANT)) {
32c54bd0 1004 aspeed_smc_error("DMA not granted");
1769a70e
CLG
1005 return false;
1006 }
1007
1008 return true;
1009}
1010
1011static void aspeed_2600_smc_dma_ctrl(AspeedSMCState *s, uint32_t dma_ctrl)
1012{
1013 /* Preserve DMA bits */
1014 dma_ctrl |= s->regs[R_DMA_CTRL] & (DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1015
1016 if (dma_ctrl == 0xAEED0000) {
1017 /* automatically grant request */
1018 s->regs[R_DMA_CTRL] |= (DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1019 return;
1020 }
1021
1022 /* clear request */
1023 if (dma_ctrl == 0xDEEA0000) {
1024 s->regs[R_DMA_CTRL] &= ~(DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1025 return;
1026 }
1027
1028 if (!aspeed_smc_dma_granted(s)) {
32c54bd0 1029 aspeed_smc_error("DMA not granted");
1769a70e
CLG
1030 return;
1031 }
1032
1033 aspeed_smc_dma_ctrl(s, dma_ctrl);
1034 s->regs[R_DMA_CTRL] &= ~(DMA_CTRL_REQUEST | DMA_CTRL_GRANT);
1035}
1036
7c1c69bc
CLG
1037static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data,
1038 unsigned int size)
1039{
1040 AspeedSMCState *s = ASPEED_SMC(opaque);
30b6852c 1041 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
7c1c69bc
CLG
1042 uint32_t value = data;
1043
bd6ce9a6
CLG
1044 trace_aspeed_smc_write(addr, size, data);
1045
e2804a1e
CLG
1046 addr >>= 2;
1047
97c2ed5d 1048 if (addr == s->r_conf ||
f286f04c 1049 (addr >= s->r_timings &&
30b6852c 1050 addr < s->r_timings + asc->nregs_timings) ||
97c2ed5d
CLG
1051 addr == s->r_ce_ctrl) {
1052 s->regs[addr] = value;
ae945a00 1053 } else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + asc->cs_num_max) {
f248a9db 1054 int cs = addr - s->r_ctrl0;
e7e741ca 1055 aspeed_smc_flash_update_ctrl(&s->flashes[cs], value);
a03cb1da 1056 } else if (addr >= R_SEG_ADDR0 &&
ae945a00 1057 addr < R_SEG_ADDR0 + asc->cs_num_max) {
a03cb1da
CLG
1058 int cs = addr - R_SEG_ADDR0;
1059
1060 if (value != s->regs[R_SEG_ADDR0 + cs]) {
1061 aspeed_smc_flash_set_segment(s, cs, value);
1062 }
af453a5e
CLG
1063 } else if (addr == R_CE_CMD_CTRL) {
1064 s->regs[addr] = value & 0xff;
9149af2a
CLG
1065 } else if (addr == R_DUMMY_DATA) {
1066 s->regs[addr] = value & 0xff;
30b6852c 1067 } else if (aspeed_smc_has_wdt_control(asc) && addr == R_FMC_WDT2_CTRL) {
45a904af 1068 s->regs[addr] = value & FMC_WDT2_CTRL_EN;
c4e1f0b4
CLG
1069 } else if (addr == R_INTR_CTRL) {
1070 s->regs[addr] = value;
30b6852c
CLG
1071 } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_CTRL) {
1072 asc->dma_ctrl(s, value);
1073 } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_DRAM_ADDR &&
1769a70e 1074 aspeed_smc_dma_granted(s)) {
30b6852c
CLG
1075 s->regs[addr] = DMA_DRAM_ADDR(asc, value);
1076 } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_FLASH_ADDR &&
1769a70e 1077 aspeed_smc_dma_granted(s)) {
30b6852c
CLG
1078 s->regs[addr] = DMA_FLASH_ADDR(asc, value);
1079 } else if (aspeed_smc_has_dma(asc) && addr == R_DMA_LEN &&
1769a70e 1080 aspeed_smc_dma_granted(s)) {
c4e1f0b4 1081 s->regs[addr] = DMA_LENGTH(value);
97c2ed5d 1082 } else {
7c1c69bc
CLG
1083 qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1084 __func__, addr);
1085 return;
1086 }
7c1c69bc
CLG
1087}
1088
1089static const MemoryRegionOps aspeed_smc_ops = {
1090 .read = aspeed_smc_read,
1091 .write = aspeed_smc_write,
1092 .endianness = DEVICE_LITTLE_ENDIAN,
7c1c69bc
CLG
1093};
1094
f75b5331
CLG
1095static void aspeed_smc_instance_init(Object *obj)
1096{
1097 AspeedSMCState *s = ASPEED_SMC(obj);
1098 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1099 int i;
1100
ae945a00 1101 for (i = 0; i < asc->cs_num_max; i++) {
f75b5331
CLG
1102 object_initialize_child(obj, "flash[*]", &s->flashes[i],
1103 TYPE_ASPEED_SMC_FLASH);
1104 }
1105}
1106
c4e1f0b4
CLG
1107/*
1108 * Initialize the custom address spaces for DMAs
1109 */
1110static void aspeed_smc_dma_setup(AspeedSMCState *s, Error **errp)
1111{
c4e1f0b4
CLG
1112 if (!s->dram_mr) {
1113 error_setg(errp, TYPE_ASPEED_SMC ": 'dram' link not set");
1114 return;
1115 }
1116
d0180a3a
CLG
1117 address_space_init(&s->flash_as, &s->mmio_flash,
1118 TYPE_ASPEED_SMC ".dma-flash");
1119 address_space_init(&s->dram_as, s->dram_mr,
1120 TYPE_ASPEED_SMC ".dma-dram");
c4e1f0b4
CLG
1121}
1122
7c1c69bc
CLG
1123static void aspeed_smc_realize(DeviceState *dev, Error **errp)
1124{
1125 SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1126 AspeedSMCState *s = ASPEED_SMC(dev);
30b6852c 1127 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
7c1c69bc 1128 int i;
924ed163 1129 hwaddr offset = 0;
7c1c69bc 1130
7c1c69bc 1131 /* keep a copy under AspeedSMCState to speed up accesses */
30b6852c
CLG
1132 s->r_conf = asc->r_conf;
1133 s->r_ce_ctrl = asc->r_ce_ctrl;
1134 s->r_ctrl0 = asc->r_ctrl0;
1135 s->r_timings = asc->r_timings;
1136 s->conf_enable_w0 = asc->conf_enable_w0;
7c1c69bc 1137
c4e1f0b4
CLG
1138 /* DMA irq. Keep it first for the initialization in the SoC */
1139 sysbus_init_irq(sbd, &s->irq);
1140
9bbdfe05 1141 s->spi = ssi_create_bus(dev, NULL);
7c1c69bc 1142
5ade579b 1143 /* Setup cs_lines for peripherals */
ae945a00 1144 s->cs_lines = g_new0(qemu_irq, asc->cs_num_max);
b22a2d40 1145 qdev_init_gpio_out_named(DEVICE(s), s->cs_lines, "cs", asc->cs_num_max);
7c1c69bc 1146
2da95fd8 1147 /* The memory region for the controller registers */
7c1c69bc 1148 memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s,
30b6852c 1149 TYPE_ASPEED_SMC, asc->nregs * 4);
7c1c69bc 1150 sysbus_init_mmio(sbd, &s->mmio);
924ed163
CLG
1151
1152 /*
2da95fd8
CLG
1153 * The container memory region representing the address space
1154 * window in which the flash modules are mapped. The size and
1155 * address depends on the SoC model and controller type.
924ed163 1156 */
fc664254
CLG
1157 memory_region_init(&s->mmio_flash_container, OBJECT(s),
1158 TYPE_ASPEED_SMC ".container",
1159 asc->flash_window_size);
1160 sysbus_init_mmio(sbd, &s->mmio_flash_container);
1161
924ed163 1162 memory_region_init_io(&s->mmio_flash, OBJECT(s),
d0180a3a
CLG
1163 &aspeed_smc_flash_default_ops, s,
1164 TYPE_ASPEED_SMC ".flash",
30b6852c 1165 asc->flash_window_size);
fc664254
CLG
1166 memory_region_add_subregion(&s->mmio_flash_container, 0x0,
1167 &s->mmio_flash);
924ed163 1168
2da95fd8 1169 /*
5ade579b 1170 * Let's create a sub memory region for each possible peripheral. All
2da95fd8
CLG
1171 * have a configurable memory segment in the overall flash mapping
1172 * window of the controller but, there is not necessarily a flash
1173 * module behind to handle the memory accesses. This depends on
1174 * the board configuration.
1175 */
ae945a00 1176 for (i = 0; i < asc->cs_num_max; ++i) {
924ed163
CLG
1177 AspeedSMCFlash *fl = &s->flashes[i];
1178
f75b5331
CLG
1179 if (!object_property_set_link(OBJECT(fl), "controller", OBJECT(s),
1180 errp)) {
1181 return;
1182 }
1183 if (!object_property_set_uint(OBJECT(fl), "cs", i, errp)) {
1184 return;
1185 }
1186 if (!sysbus_realize(SYS_BUS_DEVICE(fl), errp)) {
1187 return;
1188 }
924ed163 1189
924ed163 1190 memory_region_add_subregion(&s->mmio_flash, offset, &fl->mmio);
6bb55e79 1191 offset += asc->segments[i].size;
924ed163 1192 }
c4e1f0b4
CLG
1193
1194 /* DMA support */
30b6852c 1195 if (aspeed_smc_has_dma(asc)) {
c4e1f0b4
CLG
1196 aspeed_smc_dma_setup(s, errp);
1197 }
7c1c69bc
CLG
1198}
1199
1200static const VMStateDescription vmstate_aspeed_smc = {
1201 .name = "aspeed.smc",
f95c4bff
CLG
1202 .version_id = 2,
1203 .minimum_version_id = 2,
0aa6c7df 1204 .fields = (const VMStateField[]) {
7c1c69bc 1205 VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX),
f95c4bff
CLG
1206 VMSTATE_UINT8(snoop_index, AspeedSMCState),
1207 VMSTATE_UINT8(snoop_dummies, AspeedSMCState),
7c1c69bc
CLG
1208 VMSTATE_END_OF_LIST()
1209 }
1210};
1211
1212static Property aspeed_smc_properties[] = {
5258c2a6 1213 DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false),
c4e1f0b4
CLG
1214 DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr,
1215 TYPE_MEMORY_REGION, MemoryRegion *),
7c1c69bc
CLG
1216 DEFINE_PROP_END_OF_LIST(),
1217};
1218
1219static void aspeed_smc_class_init(ObjectClass *klass, void *data)
1220{
1221 DeviceClass *dc = DEVICE_CLASS(klass);
7c1c69bc
CLG
1222
1223 dc->realize = aspeed_smc_realize;
1224 dc->reset = aspeed_smc_reset;
4f67d30b 1225 device_class_set_props(dc, aspeed_smc_properties);
7c1c69bc 1226 dc->vmsd = &vmstate_aspeed_smc;
7c1c69bc
CLG
1227}
1228
1229static const TypeInfo aspeed_smc_info = {
1230 .name = TYPE_ASPEED_SMC,
1231 .parent = TYPE_SYS_BUS_DEVICE,
f75b5331 1232 .instance_init = aspeed_smc_instance_init,
7c1c69bc
CLG
1233 .instance_size = sizeof(AspeedSMCState),
1234 .class_size = sizeof(AspeedSMCClass),
30b6852c 1235 .class_init = aspeed_smc_class_init,
7c1c69bc
CLG
1236 .abstract = true,
1237};
1238
f75b5331
CLG
1239static void aspeed_smc_flash_realize(DeviceState *dev, Error **errp)
1240{
1241 AspeedSMCFlash *s = ASPEED_SMC_FLASH(dev);
f75b5331
CLG
1242 g_autofree char *name = g_strdup_printf(TYPE_ASPEED_SMC_FLASH ".%d", s->cs);
1243
1244 if (!s->controller) {
1245 error_setg(errp, TYPE_ASPEED_SMC_FLASH ": 'controller' link not set");
1246 return;
1247 }
1248
b84a9482 1249 s->asc = ASPEED_SMC_GET_CLASS(s->controller);
f75b5331
CLG
1250
1251 /*
1252 * Use the default segment value to size the memory region. This
1253 * can be changed by FW at runtime.
1254 */
1255 memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_flash_ops,
b84a9482 1256 s, name, s->asc->segments[s->cs].size);
f75b5331
CLG
1257 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio);
1258}
1259
1260static Property aspeed_smc_flash_properties[] = {
1261 DEFINE_PROP_UINT8("cs", AspeedSMCFlash, cs, 0),
1262 DEFINE_PROP_LINK("controller", AspeedSMCFlash, controller, TYPE_ASPEED_SMC,
1263 AspeedSMCState *),
1264 DEFINE_PROP_END_OF_LIST(),
1265};
1266
1267static void aspeed_smc_flash_class_init(ObjectClass *klass, void *data)
1268{
1269 DeviceClass *dc = DEVICE_CLASS(klass);
1270
1271 dc->desc = "Aspeed SMC Flash device region";
1272 dc->realize = aspeed_smc_flash_realize;
1273 device_class_set_props(dc, aspeed_smc_flash_properties);
1274}
1275
1276static const TypeInfo aspeed_smc_flash_info = {
1277 .name = TYPE_ASPEED_SMC_FLASH,
1278 .parent = TYPE_SYS_BUS_DEVICE,
1279 .instance_size = sizeof(AspeedSMCFlash),
1280 .class_init = aspeed_smc_flash_class_init,
1281};
30b6852c
CLG
1282
1283/*
1284 * The Segment Registers of the AST2400 and AST2500 have a 8MB
1285 * unit. The address range of a flash SPI peripheral is encoded with
1286 * absolute addresses which should be part of the overall controller
1287 * window.
1288 */
1289static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
1290 const AspeedSegments *seg)
7c1c69bc 1291{
30b6852c
CLG
1292 uint32_t reg = 0;
1293 reg |= ((seg->addr >> 23) & SEG_START_MASK) << SEG_START_SHIFT;
1294 reg |= (((seg->addr + seg->size) >> 23) & SEG_END_MASK) << SEG_END_SHIFT;
1295 return reg;
1296}
7c1c69bc 1297
30b6852c
CLG
1298static void aspeed_smc_reg_to_segment(const AspeedSMCState *s,
1299 uint32_t reg, AspeedSegments *seg)
1300{
1301 seg->addr = ((reg >> SEG_START_SHIFT) & SEG_START_MASK) << 23;
1302 seg->size = (((reg >> SEG_END_SHIFT) & SEG_END_MASK) << 23) - seg->addr;
1303}
1304
1305static const AspeedSegments aspeed_2400_smc_segments[] = {
1306 { 0x10000000, 32 * MiB },
1307};
1308
1309static void aspeed_2400_smc_class_init(ObjectClass *klass, void *data)
1310{
1311 DeviceClass *dc = DEVICE_CLASS(klass);
1312 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1313
1314 dc->desc = "Aspeed 2400 SMC Controller";
1315 asc->r_conf = R_CONF;
1316 asc->r_ce_ctrl = R_CE_CTRL;
1317 asc->r_ctrl0 = R_CTRL0;
1318 asc->r_timings = R_TIMINGS;
1319 asc->nregs_timings = 1;
1320 asc->conf_enable_w0 = CONF_ENABLE_W0;
ae945a00 1321 asc->cs_num_max = 1;
30b6852c
CLG
1322 asc->segments = aspeed_2400_smc_segments;
1323 asc->flash_window_base = 0x10000000;
1324 asc->flash_window_size = 0x6000000;
1325 asc->features = 0x0;
1326 asc->nregs = ASPEED_SMC_R_SMC_MAX;
1327 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1328 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1329 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1330}
1331
1332static const TypeInfo aspeed_2400_smc_info = {
1333 .name = "aspeed.smc-ast2400",
1334 .parent = TYPE_ASPEED_SMC,
1335 .class_init = aspeed_2400_smc_class_init,
1336};
1337
71255c48
CLG
1338static const uint32_t aspeed_2400_fmc_resets[ASPEED_SMC_R_MAX] = {
1339 /*
1340 * CE0 and CE1 types are HW strapped in SCU70. Do it here to
1341 * simplify the model.
1342 */
1343 [R_CONF] = CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0,
1344};
1345
30b6852c
CLG
1346static const AspeedSegments aspeed_2400_fmc_segments[] = {
1347 { 0x20000000, 64 * MiB }, /* start address is readonly */
1348 { 0x24000000, 32 * MiB },
1349 { 0x26000000, 32 * MiB },
1350 { 0x28000000, 32 * MiB },
1351 { 0x2A000000, 32 * MiB }
1352};
1353
1354static void aspeed_2400_fmc_class_init(ObjectClass *klass, void *data)
1355{
1356 DeviceClass *dc = DEVICE_CLASS(klass);
1357 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1358
1359 dc->desc = "Aspeed 2400 FMC Controller";
1360 asc->r_conf = R_CONF;
1361 asc->r_ce_ctrl = R_CE_CTRL;
1362 asc->r_ctrl0 = R_CTRL0;
1363 asc->r_timings = R_TIMINGS;
1364 asc->nregs_timings = 1;
1365 asc->conf_enable_w0 = CONF_ENABLE_W0;
ae945a00 1366 asc->cs_num_max = 5;
30b6852c 1367 asc->segments = aspeed_2400_fmc_segments;
7c8d2fc4 1368 asc->segment_addr_mask = 0xffff0000;
71255c48 1369 asc->resets = aspeed_2400_fmc_resets;
30b6852c
CLG
1370 asc->flash_window_base = 0x20000000;
1371 asc->flash_window_size = 0x10000000;
1372 asc->features = ASPEED_SMC_FEATURE_DMA;
1373 asc->dma_flash_mask = 0x0FFFFFFC;
1374 asc->dma_dram_mask = 0x1FFFFFFC;
1375 asc->nregs = ASPEED_SMC_R_MAX;
1376 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1377 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1378 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1379}
1380
1381static const TypeInfo aspeed_2400_fmc_info = {
1382 .name = "aspeed.fmc-ast2400",
1383 .parent = TYPE_ASPEED_SMC,
1384 .class_init = aspeed_2400_fmc_class_init,
1385};
1386
1387static const AspeedSegments aspeed_2400_spi1_segments[] = {
1388 { 0x30000000, 64 * MiB },
1389};
1390
a779e37c
CLG
1391static int aspeed_2400_spi1_addr_width(const AspeedSMCState *s)
1392{
1393 return s->regs[R_SPI_CTRL0] & CTRL_AST2400_SPI_4BYTE ? 4 : 3;
1394}
1395
30b6852c
CLG
1396static void aspeed_2400_spi1_class_init(ObjectClass *klass, void *data)
1397{
1398 DeviceClass *dc = DEVICE_CLASS(klass);
1399 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1400
1401 dc->desc = "Aspeed 2400 SPI1 Controller";
1402 asc->r_conf = R_SPI_CONF;
1403 asc->r_ce_ctrl = 0xff;
1404 asc->r_ctrl0 = R_SPI_CTRL0;
1405 asc->r_timings = R_SPI_TIMINGS;
1406 asc->nregs_timings = 1;
1407 asc->conf_enable_w0 = SPI_CONF_ENABLE_W0;
ae945a00 1408 asc->cs_num_max = 1;
30b6852c
CLG
1409 asc->segments = aspeed_2400_spi1_segments;
1410 asc->flash_window_base = 0x30000000;
1411 asc->flash_window_size = 0x10000000;
1412 asc->features = 0x0;
1413 asc->nregs = ASPEED_SMC_R_SPI_MAX;
1414 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1415 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1416 asc->dma_ctrl = aspeed_smc_dma_ctrl;
a779e37c 1417 asc->addr_width = aspeed_2400_spi1_addr_width;
30b6852c
CLG
1418}
1419
1420static const TypeInfo aspeed_2400_spi1_info = {
1421 .name = "aspeed.spi1-ast2400",
1422 .parent = TYPE_ASPEED_SMC,
1423 .class_init = aspeed_2400_spi1_class_init,
1424};
1425
71255c48
CLG
1426static const uint32_t aspeed_2500_fmc_resets[ASPEED_SMC_R_MAX] = {
1427 [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 |
1428 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1),
1429};
1430
30b6852c
CLG
1431static const AspeedSegments aspeed_2500_fmc_segments[] = {
1432 { 0x20000000, 128 * MiB }, /* start address is readonly */
1433 { 0x28000000, 32 * MiB },
1434 { 0x2A000000, 32 * MiB },
1435};
1436
1437static void aspeed_2500_fmc_class_init(ObjectClass *klass, void *data)
1438{
1439 DeviceClass *dc = DEVICE_CLASS(klass);
1440 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1441
1442 dc->desc = "Aspeed 2600 FMC Controller";
1443 asc->r_conf = R_CONF;
1444 asc->r_ce_ctrl = R_CE_CTRL;
1445 asc->r_ctrl0 = R_CTRL0;
1446 asc->r_timings = R_TIMINGS;
1447 asc->nregs_timings = 1;
1448 asc->conf_enable_w0 = CONF_ENABLE_W0;
ae945a00 1449 asc->cs_num_max = 3;
30b6852c 1450 asc->segments = aspeed_2500_fmc_segments;
7c8d2fc4 1451 asc->segment_addr_mask = 0xffff0000;
71255c48 1452 asc->resets = aspeed_2500_fmc_resets;
30b6852c
CLG
1453 asc->flash_window_base = 0x20000000;
1454 asc->flash_window_size = 0x10000000;
1455 asc->features = ASPEED_SMC_FEATURE_DMA;
1456 asc->dma_flash_mask = 0x0FFFFFFC;
1457 asc->dma_dram_mask = 0x3FFFFFFC;
1458 asc->nregs = ASPEED_SMC_R_MAX;
1459 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1460 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1461 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1462}
1463
1464static const TypeInfo aspeed_2500_fmc_info = {
1465 .name = "aspeed.fmc-ast2500",
1466 .parent = TYPE_ASPEED_SMC,
1467 .class_init = aspeed_2500_fmc_class_init,
1468};
1469
1470static const AspeedSegments aspeed_2500_spi1_segments[] = {
1471 { 0x30000000, 32 * MiB }, /* start address is readonly */
1472 { 0x32000000, 96 * MiB }, /* end address is readonly */
1473};
1474
1475static void aspeed_2500_spi1_class_init(ObjectClass *klass, void *data)
1476{
1477 DeviceClass *dc = DEVICE_CLASS(klass);
1478 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1479
1480 dc->desc = "Aspeed 2600 SPI1 Controller";
1481 asc->r_conf = R_CONF;
1482 asc->r_ce_ctrl = R_CE_CTRL;
1483 asc->r_ctrl0 = R_CTRL0;
1484 asc->r_timings = R_TIMINGS;
1485 asc->nregs_timings = 1;
1486 asc->conf_enable_w0 = CONF_ENABLE_W0;
ae945a00 1487 asc->cs_num_max = 2;
30b6852c 1488 asc->segments = aspeed_2500_spi1_segments;
7c8d2fc4 1489 asc->segment_addr_mask = 0xffff0000;
30b6852c
CLG
1490 asc->flash_window_base = 0x30000000;
1491 asc->flash_window_size = 0x8000000;
1492 asc->features = 0x0;
1493 asc->nregs = ASPEED_SMC_R_MAX;
1494 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1495 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1496 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1497}
1498
1499static const TypeInfo aspeed_2500_spi1_info = {
1500 .name = "aspeed.spi1-ast2500",
1501 .parent = TYPE_ASPEED_SMC,
1502 .class_init = aspeed_2500_spi1_class_init,
1503};
1504
1505static const AspeedSegments aspeed_2500_spi2_segments[] = {
1506 { 0x38000000, 32 * MiB }, /* start address is readonly */
1507 { 0x3A000000, 96 * MiB }, /* end address is readonly */
1508};
1509
1510static void aspeed_2500_spi2_class_init(ObjectClass *klass, void *data)
1511{
1512 DeviceClass *dc = DEVICE_CLASS(klass);
1513 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1514
1515 dc->desc = "Aspeed 2600 SPI2 Controller";
1516 asc->r_conf = R_CONF;
1517 asc->r_ce_ctrl = R_CE_CTRL;
1518 asc->r_ctrl0 = R_CTRL0;
1519 asc->r_timings = R_TIMINGS;
1520 asc->nregs_timings = 1;
1521 asc->conf_enable_w0 = CONF_ENABLE_W0;
ae945a00 1522 asc->cs_num_max = 2;
30b6852c 1523 asc->segments = aspeed_2500_spi2_segments;
7c8d2fc4 1524 asc->segment_addr_mask = 0xffff0000;
30b6852c
CLG
1525 asc->flash_window_base = 0x38000000;
1526 asc->flash_window_size = 0x8000000;
1527 asc->features = 0x0;
1528 asc->nregs = ASPEED_SMC_R_MAX;
1529 asc->segment_to_reg = aspeed_smc_segment_to_reg;
1530 asc->reg_to_segment = aspeed_smc_reg_to_segment;
1531 asc->dma_ctrl = aspeed_smc_dma_ctrl;
1532}
1533
1534static const TypeInfo aspeed_2500_spi2_info = {
1535 .name = "aspeed.spi2-ast2500",
1536 .parent = TYPE_ASPEED_SMC,
1537 .class_init = aspeed_2500_spi2_class_init,
1538};
1539
1540/*
1541 * The Segment Registers of the AST2600 have a 1MB unit. The address
1542 * range of a flash SPI peripheral is encoded with offsets in the overall
1543 * controller window. The previous SoC AST2400 and AST2500 used
1544 * absolute addresses. Only bits [27:20] are relevant and the end
1545 * address is an upper bound limit.
1546 */
1547#define AST2600_SEG_ADDR_MASK 0x0ff00000
1548
1549static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
1550 const AspeedSegments *seg)
1551{
1552 uint32_t reg = 0;
1553
1554 /* Disabled segments have a nil register */
1555 if (!seg->size) {
1556 return 0;
1557 }
1558
1559 reg |= (seg->addr & AST2600_SEG_ADDR_MASK) >> 16; /* start offset */
1560 reg |= (seg->addr + seg->size - 1) & AST2600_SEG_ADDR_MASK; /* end offset */
1561 return reg;
1562}
1563
1564static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
1565 uint32_t reg, AspeedSegments *seg)
1566{
1567 uint32_t start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
1568 uint32_t end_offset = reg & AST2600_SEG_ADDR_MASK;
1569 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1570
1571 if (reg) {
1572 seg->addr = asc->flash_window_base + start_offset;
1573 seg->size = end_offset + MiB - start_offset;
1574 } else {
1575 seg->addr = asc->flash_window_base;
1576 seg->size = 0;
7c1c69bc
CLG
1577 }
1578}
1579
71255c48
CLG
1580static const uint32_t aspeed_2600_fmc_resets[ASPEED_SMC_R_MAX] = {
1581 [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 |
1582 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1 |
1583 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE2),
1584};
1585
30b6852c
CLG
1586static const AspeedSegments aspeed_2600_fmc_segments[] = {
1587 { 0x0, 128 * MiB }, /* start address is readonly */
1588 { 128 * MiB, 128 * MiB }, /* default is disabled but needed for -kernel */
1589 { 0x0, 0 }, /* disabled */
1590};
1591
1592static void aspeed_2600_fmc_class_init(ObjectClass *klass, void *data)
1593{
1594 DeviceClass *dc = DEVICE_CLASS(klass);
1595 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1596
1597 dc->desc = "Aspeed 2600 FMC Controller";
1598 asc->r_conf = R_CONF;
1599 asc->r_ce_ctrl = R_CE_CTRL;
1600 asc->r_ctrl0 = R_CTRL0;
1601 asc->r_timings = R_TIMINGS;
1602 asc->nregs_timings = 1;
1603 asc->conf_enable_w0 = CONF_ENABLE_W0;
ae945a00 1604 asc->cs_num_max = 3;
30b6852c 1605 asc->segments = aspeed_2600_fmc_segments;
7c8d2fc4 1606 asc->segment_addr_mask = 0x0ff00ff0;
71255c48 1607 asc->resets = aspeed_2600_fmc_resets;
30b6852c
CLG
1608 asc->flash_window_base = 0x20000000;
1609 asc->flash_window_size = 0x10000000;
1610 asc->features = ASPEED_SMC_FEATURE_DMA |
1611 ASPEED_SMC_FEATURE_WDT_CONTROL;
1612 asc->dma_flash_mask = 0x0FFFFFFC;
1613 asc->dma_dram_mask = 0x3FFFFFFC;
1614 asc->nregs = ASPEED_SMC_R_MAX;
1615 asc->segment_to_reg = aspeed_2600_smc_segment_to_reg;
1616 asc->reg_to_segment = aspeed_2600_smc_reg_to_segment;
1617 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1618}
1619
1620static const TypeInfo aspeed_2600_fmc_info = {
1621 .name = "aspeed.fmc-ast2600",
1622 .parent = TYPE_ASPEED_SMC,
1623 .class_init = aspeed_2600_fmc_class_init,
1624};
1625
1626static const AspeedSegments aspeed_2600_spi1_segments[] = {
1627 { 0x0, 128 * MiB }, /* start address is readonly */
1628 { 0x0, 0 }, /* disabled */
1629};
1630
1631static void aspeed_2600_spi1_class_init(ObjectClass *klass, void *data)
1632{
1633 DeviceClass *dc = DEVICE_CLASS(klass);
1634 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1635
1636 dc->desc = "Aspeed 2600 SPI1 Controller";
1637 asc->r_conf = R_CONF;
1638 asc->r_ce_ctrl = R_CE_CTRL;
1639 asc->r_ctrl0 = R_CTRL0;
1640 asc->r_timings = R_TIMINGS;
1641 asc->nregs_timings = 2;
1642 asc->conf_enable_w0 = CONF_ENABLE_W0;
ae945a00 1643 asc->cs_num_max = 2;
30b6852c 1644 asc->segments = aspeed_2600_spi1_segments;
7c8d2fc4 1645 asc->segment_addr_mask = 0x0ff00ff0;
30b6852c
CLG
1646 asc->flash_window_base = 0x30000000;
1647 asc->flash_window_size = 0x10000000;
1648 asc->features = ASPEED_SMC_FEATURE_DMA |
1649 ASPEED_SMC_FEATURE_DMA_GRANT;
1650 asc->dma_flash_mask = 0x0FFFFFFC;
1651 asc->dma_dram_mask = 0x3FFFFFFC;
1652 asc->nregs = ASPEED_SMC_R_MAX;
1653 asc->segment_to_reg = aspeed_2600_smc_segment_to_reg;
1654 asc->reg_to_segment = aspeed_2600_smc_reg_to_segment;
1655 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1656}
1657
1658static const TypeInfo aspeed_2600_spi1_info = {
1659 .name = "aspeed.spi1-ast2600",
1660 .parent = TYPE_ASPEED_SMC,
1661 .class_init = aspeed_2600_spi1_class_init,
1662};
1663
1664static const AspeedSegments aspeed_2600_spi2_segments[] = {
1665 { 0x0, 128 * MiB }, /* start address is readonly */
1666 { 0x0, 0 }, /* disabled */
1667 { 0x0, 0 }, /* disabled */
1668};
1669
1670static void aspeed_2600_spi2_class_init(ObjectClass *klass, void *data)
1671{
1672 DeviceClass *dc = DEVICE_CLASS(klass);
1673 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1674
1675 dc->desc = "Aspeed 2600 SPI2 Controller";
1676 asc->r_conf = R_CONF;
1677 asc->r_ce_ctrl = R_CE_CTRL;
1678 asc->r_ctrl0 = R_CTRL0;
1679 asc->r_timings = R_TIMINGS;
1680 asc->nregs_timings = 3;
1681 asc->conf_enable_w0 = CONF_ENABLE_W0;
ae945a00 1682 asc->cs_num_max = 3;
30b6852c 1683 asc->segments = aspeed_2600_spi2_segments;
7c8d2fc4 1684 asc->segment_addr_mask = 0x0ff00ff0;
30b6852c
CLG
1685 asc->flash_window_base = 0x50000000;
1686 asc->flash_window_size = 0x10000000;
1687 asc->features = ASPEED_SMC_FEATURE_DMA |
1688 ASPEED_SMC_FEATURE_DMA_GRANT;
1689 asc->dma_flash_mask = 0x0FFFFFFC;
1690 asc->dma_dram_mask = 0x3FFFFFFC;
1691 asc->nregs = ASPEED_SMC_R_MAX;
1692 asc->segment_to_reg = aspeed_2600_smc_segment_to_reg;
1693 asc->reg_to_segment = aspeed_2600_smc_reg_to_segment;
1694 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1695}
1696
1697static const TypeInfo aspeed_2600_spi2_info = {
1698 .name = "aspeed.spi2-ast2600",
1699 .parent = TYPE_ASPEED_SMC,
1700 .class_init = aspeed_2600_spi2_class_init,
1701};
1702
2850df6a
SL
1703/*
1704 * The FMC Segment Registers of the AST1030 have a 512KB unit.
1705 * Only bits [27:19] are used for decoding.
1706 */
1707#define AST1030_SEG_ADDR_MASK 0x0ff80000
1708
1709static uint32_t aspeed_1030_smc_segment_to_reg(const AspeedSMCState *s,
1710 const AspeedSegments *seg)
1711{
1712 uint32_t reg = 0;
1713
1714 /* Disabled segments have a nil register */
1715 if (!seg->size) {
1716 return 0;
1717 }
1718
1719 reg |= (seg->addr & AST1030_SEG_ADDR_MASK) >> 16; /* start offset */
1720 reg |= (seg->addr + seg->size - 1) & AST1030_SEG_ADDR_MASK; /* end offset */
1721 return reg;
1722}
1723
1724static void aspeed_1030_smc_reg_to_segment(const AspeedSMCState *s,
1725 uint32_t reg, AspeedSegments *seg)
1726{
1727 uint32_t start_offset = (reg << 16) & AST1030_SEG_ADDR_MASK;
1728 uint32_t end_offset = reg & AST1030_SEG_ADDR_MASK;
1729 AspeedSMCClass *asc = ASPEED_SMC_GET_CLASS(s);
1730
1731 if (reg) {
1732 seg->addr = asc->flash_window_base + start_offset;
1733 seg->size = end_offset + (512 * KiB) - start_offset;
1734 } else {
1735 seg->addr = asc->flash_window_base;
1736 seg->size = 0;
1737 }
1738}
1739
1740static const uint32_t aspeed_1030_fmc_resets[ASPEED_SMC_R_MAX] = {
1741 [R_CONF] = (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0 |
1742 CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1),
1743};
1744
1745static const AspeedSegments aspeed_1030_fmc_segments[] = {
1746 { 0x0, 128 * MiB }, /* start address is readonly */
1747 { 128 * MiB, 128 * MiB }, /* default is disabled but needed for -kernel */
1748 { 0x0, 0 }, /* disabled */
1749};
1750
1751static void aspeed_1030_fmc_class_init(ObjectClass *klass, void *data)
1752{
1753 DeviceClass *dc = DEVICE_CLASS(klass);
1754 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1755
1756 dc->desc = "Aspeed 1030 FMC Controller";
1757 asc->r_conf = R_CONF;
1758 asc->r_ce_ctrl = R_CE_CTRL;
1759 asc->r_ctrl0 = R_CTRL0;
1760 asc->r_timings = R_TIMINGS;
1761 asc->nregs_timings = 2;
1762 asc->conf_enable_w0 = CONF_ENABLE_W0;
1763 asc->cs_num_max = 2;
1764 asc->segments = aspeed_1030_fmc_segments;
1765 asc->segment_addr_mask = 0x0ff80ff8;
1766 asc->resets = aspeed_1030_fmc_resets;
1767 asc->flash_window_base = 0x80000000;
1768 asc->flash_window_size = 0x10000000;
1769 asc->features = ASPEED_SMC_FEATURE_DMA;
1770 asc->dma_flash_mask = 0x0FFFFFFC;
1771 asc->dma_dram_mask = 0x000BFFFC;
1772 asc->nregs = ASPEED_SMC_R_MAX;
1773 asc->segment_to_reg = aspeed_1030_smc_segment_to_reg;
1774 asc->reg_to_segment = aspeed_1030_smc_reg_to_segment;
1775 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1776}
1777
1778static const TypeInfo aspeed_1030_fmc_info = {
1779 .name = "aspeed.fmc-ast1030",
1780 .parent = TYPE_ASPEED_SMC,
1781 .class_init = aspeed_1030_fmc_class_init,
1782};
1783
1784static const AspeedSegments aspeed_1030_spi1_segments[] = {
1785 { 0x0, 128 * MiB }, /* start address is readonly */
1786 { 0x0, 0 }, /* disabled */
1787};
1788
1789static void aspeed_1030_spi1_class_init(ObjectClass *klass, void *data)
1790{
1791 DeviceClass *dc = DEVICE_CLASS(klass);
1792 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1793
1794 dc->desc = "Aspeed 1030 SPI1 Controller";
1795 asc->r_conf = R_CONF;
1796 asc->r_ce_ctrl = R_CE_CTRL;
1797 asc->r_ctrl0 = R_CTRL0;
1798 asc->r_timings = R_TIMINGS;
1799 asc->nregs_timings = 2;
1800 asc->conf_enable_w0 = CONF_ENABLE_W0;
1801 asc->cs_num_max = 2;
1802 asc->segments = aspeed_1030_spi1_segments;
1803 asc->segment_addr_mask = 0x0ff00ff0;
1804 asc->flash_window_base = 0x90000000;
1805 asc->flash_window_size = 0x10000000;
1806 asc->features = ASPEED_SMC_FEATURE_DMA;
1807 asc->dma_flash_mask = 0x0FFFFFFC;
1808 asc->dma_dram_mask = 0x000BFFFC;
1809 asc->nregs = ASPEED_SMC_R_MAX;
1810 asc->segment_to_reg = aspeed_2600_smc_segment_to_reg;
1811 asc->reg_to_segment = aspeed_2600_smc_reg_to_segment;
1812 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1813}
1814
1815static const TypeInfo aspeed_1030_spi1_info = {
1816 .name = "aspeed.spi1-ast1030",
1817 .parent = TYPE_ASPEED_SMC,
1818 .class_init = aspeed_1030_spi1_class_init,
1819};
1820static const AspeedSegments aspeed_1030_spi2_segments[] = {
1821 { 0x0, 128 * MiB }, /* start address is readonly */
1822 { 0x0, 0 }, /* disabled */
1823};
1824
1825static void aspeed_1030_spi2_class_init(ObjectClass *klass, void *data)
1826{
1827 DeviceClass *dc = DEVICE_CLASS(klass);
1828 AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass);
1829
1830 dc->desc = "Aspeed 1030 SPI2 Controller";
1831 asc->r_conf = R_CONF;
1832 asc->r_ce_ctrl = R_CE_CTRL;
1833 asc->r_ctrl0 = R_CTRL0;
1834 asc->r_timings = R_TIMINGS;
1835 asc->nregs_timings = 2;
1836 asc->conf_enable_w0 = CONF_ENABLE_W0;
1837 asc->cs_num_max = 2;
1838 asc->segments = aspeed_1030_spi2_segments;
1839 asc->segment_addr_mask = 0x0ff00ff0;
1840 asc->flash_window_base = 0xb0000000;
1841 asc->flash_window_size = 0x10000000;
1842 asc->features = ASPEED_SMC_FEATURE_DMA;
1843 asc->dma_flash_mask = 0x0FFFFFFC;
1844 asc->dma_dram_mask = 0x000BFFFC;
1845 asc->nregs = ASPEED_SMC_R_MAX;
1846 asc->segment_to_reg = aspeed_2600_smc_segment_to_reg;
1847 asc->reg_to_segment = aspeed_2600_smc_reg_to_segment;
1848 asc->dma_ctrl = aspeed_2600_smc_dma_ctrl;
1849}
1850
1851static const TypeInfo aspeed_1030_spi2_info = {
1852 .name = "aspeed.spi2-ast1030",
1853 .parent = TYPE_ASPEED_SMC,
1854 .class_init = aspeed_1030_spi2_class_init,
1855};
1856
30b6852c
CLG
1857static void aspeed_smc_register_types(void)
1858{
f75b5331 1859 type_register_static(&aspeed_smc_flash_info);
30b6852c
CLG
1860 type_register_static(&aspeed_smc_info);
1861 type_register_static(&aspeed_2400_smc_info);
1862 type_register_static(&aspeed_2400_fmc_info);
1863 type_register_static(&aspeed_2400_spi1_info);
1864 type_register_static(&aspeed_2500_fmc_info);
1865 type_register_static(&aspeed_2500_spi1_info);
1866 type_register_static(&aspeed_2500_spi2_info);
1867 type_register_static(&aspeed_2600_fmc_info);
1868 type_register_static(&aspeed_2600_spi1_info);
1869 type_register_static(&aspeed_2600_spi2_info);
2850df6a
SL
1870 type_register_static(&aspeed_1030_fmc_info);
1871 type_register_static(&aspeed_1030_spi1_info);
1872 type_register_static(&aspeed_1030_spi2_info);
30b6852c
CLG
1873}
1874
7c1c69bc 1875type_init(aspeed_smc_register_types)