]> git.proxmox.com Git - mirror_qemu.git/blame - hw/ssi/imx_spi.c
s390x/kvm: fix build against qemu_uuid
[mirror_qemu.git] / hw / ssi / imx_spi.c
CommitLineData
c906a3a0
JCD
1/*
2 * IMX SPI Controller
3 *
4 * Copyright (c) 2016 Jean-Christophe Dubois <jcd@tribudubois.net>
5 *
6 * This work is licensed under the terms of the GNU GPL, version 2 or later.
7 * See the COPYING file in the top-level directory.
8 *
9 */
10
11#include "qemu/osdep.h"
12#include "hw/ssi/imx_spi.h"
13#include "sysemu/sysemu.h"
03dd024f 14#include "qemu/log.h"
c906a3a0
JCD
15
16#ifndef DEBUG_IMX_SPI
17#define DEBUG_IMX_SPI 0
18#endif
19
20#define DPRINTF(fmt, args...) \
21 do { \
22 if (DEBUG_IMX_SPI) { \
23 fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_SPI, \
24 __func__, ##args); \
25 } \
26 } while (0)
27
d675765a 28static const char *imx_spi_reg_name(uint32_t reg)
c906a3a0
JCD
29{
30 static char unknown[20];
31
32 switch (reg) {
33 case ECSPI_RXDATA:
34 return "ECSPI_RXDATA";
35 case ECSPI_TXDATA:
36 return "ECSPI_TXDATA";
37 case ECSPI_CONREG:
38 return "ECSPI_CONREG";
39 case ECSPI_CONFIGREG:
40 return "ECSPI_CONFIGREG";
41 case ECSPI_INTREG:
42 return "ECSPI_INTREG";
43 case ECSPI_DMAREG:
44 return "ECSPI_DMAREG";
45 case ECSPI_STATREG:
46 return "ECSPI_STATREG";
47 case ECSPI_PERIODREG:
48 return "ECSPI_PERIODREG";
49 case ECSPI_TESTREG:
50 return "ECSPI_TESTREG";
51 case ECSPI_MSGDATA:
52 return "ECSPI_MSGDATA";
53 default:
54 sprintf(unknown, "%d ?", reg);
55 return unknown;
56 }
57}
58
59static const VMStateDescription vmstate_imx_spi = {
60 .name = TYPE_IMX_SPI,
61 .version_id = 1,
62 .minimum_version_id = 1,
63 .fields = (VMStateField[]) {
64 VMSTATE_FIFO32(tx_fifo, IMXSPIState),
65 VMSTATE_FIFO32(rx_fifo, IMXSPIState),
66 VMSTATE_INT16(burst_length, IMXSPIState),
67 VMSTATE_UINT32_ARRAY(regs, IMXSPIState, ECSPI_MAX),
68 VMSTATE_END_OF_LIST()
69 },
70};
71
72static void imx_spi_txfifo_reset(IMXSPIState *s)
73{
74 fifo32_reset(&s->tx_fifo);
75 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TE;
76 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TF;
77}
78
79static void imx_spi_rxfifo_reset(IMXSPIState *s)
80{
81 fifo32_reset(&s->rx_fifo);
82 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RR;
83 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RF;
84 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RO;
85}
86
87static void imx_spi_update_irq(IMXSPIState *s)
88{
89 int level;
90
91 if (fifo32_is_empty(&s->rx_fifo)) {
92 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RR;
93 } else {
94 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RR;
95 }
96
97 if (fifo32_is_full(&s->rx_fifo)) {
98 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RF;
99 } else {
100 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_RF;
101 }
102
103 if (fifo32_is_empty(&s->tx_fifo)) {
104 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TE;
105 } else {
106 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TE;
107 }
108
109 if (fifo32_is_full(&s->tx_fifo)) {
110 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TF;
111 } else {
112 s->regs[ECSPI_STATREG] &= ~ECSPI_STATREG_TF;
113 }
114
115 level = s->regs[ECSPI_STATREG] & s->regs[ECSPI_INTREG] ? 1 : 0;
116
117 qemu_set_irq(s->irq, level);
118
119 DPRINTF("IRQ level is %d\n", level);
120}
121
122static uint8_t imx_spi_selected_channel(IMXSPIState *s)
123{
124 return EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_CHANNEL_SELECT);
125}
126
127static uint32_t imx_spi_burst_length(IMXSPIState *s)
128{
129 return EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_BURST_LENGTH) + 1;
130}
131
132static bool imx_spi_is_enabled(IMXSPIState *s)
133{
134 return s->regs[ECSPI_CONREG] & ECSPI_CONREG_EN;
135}
136
137static bool imx_spi_channel_is_master(IMXSPIState *s)
138{
139 uint8_t mode = EXTRACT(s->regs[ECSPI_CONREG], ECSPI_CONREG_CHANNEL_MODE);
140
141 return (mode & (1 << imx_spi_selected_channel(s))) ? true : false;
142}
143
144static bool imx_spi_is_multiple_master_burst(IMXSPIState *s)
145{
146 uint8_t wave = EXTRACT(s->regs[ECSPI_CONFIGREG], ECSPI_CONFIGREG_SS_CTL);
147
148 return imx_spi_channel_is_master(s) &&
149 !(s->regs[ECSPI_CONREG] & ECSPI_CONREG_SMC) &&
150 ((wave & (1 << imx_spi_selected_channel(s))) ? true : false);
151}
152
153static void imx_spi_flush_txfifo(IMXSPIState *s)
154{
155 uint32_t tx;
156 uint32_t rx;
157
158 DPRINTF("Begin: TX Fifo Size = %d, RX Fifo Size = %d\n",
159 fifo32_num_used(&s->tx_fifo), fifo32_num_used(&s->rx_fifo));
160
161 while (!fifo32_is_empty(&s->tx_fifo)) {
162 int tx_burst = 0;
163 int index = 0;
164
165 if (s->burst_length <= 0) {
166 s->burst_length = imx_spi_burst_length(s);
167
168 DPRINTF("Burst length = %d\n", s->burst_length);
169
170 if (imx_spi_is_multiple_master_burst(s)) {
171 s->regs[ECSPI_CONREG] |= ECSPI_CONREG_XCH;
172 }
173 }
174
175 tx = fifo32_pop(&s->tx_fifo);
176
177 DPRINTF("data tx:0x%08x\n", tx);
178
179 tx_burst = MIN(s->burst_length, 32);
180
181 rx = 0;
182
183 while (tx_burst) {
184 uint8_t byte = tx & 0xff;
185
186 DPRINTF("writing 0x%02x\n", (uint32_t)byte);
187
188 /* We need to write one byte at a time */
189 byte = ssi_transfer(s->bus, byte);
190
191 DPRINTF("0x%02x read\n", (uint32_t)byte);
192
193 tx = tx >> 8;
194 rx |= (byte << (index * 8));
195
196 /* Remove 8 bits from the actual burst */
197 tx_burst -= 8;
198 s->burst_length -= 8;
199 index++;
200 }
201
202 DPRINTF("data rx:0x%08x\n", rx);
203
204 if (fifo32_is_full(&s->rx_fifo)) {
205 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_RO;
206 } else {
207 fifo32_push(&s->rx_fifo, (uint8_t)rx);
208 }
209
210 if (s->burst_length <= 0) {
211 s->regs[ECSPI_CONREG] &= ~ECSPI_CONREG_XCH;
212
213 if (!imx_spi_is_multiple_master_burst(s)) {
214 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TC;
215 break;
216 }
217 }
218 }
219
220 if (fifo32_is_empty(&s->tx_fifo)) {
221 s->regs[ECSPI_STATREG] |= ECSPI_STATREG_TC;
222 }
223
224 /* TODO: We should also use TDR and RDR bits */
225
226 DPRINTF("End: TX Fifo Size = %d, RX Fifo Size = %d\n",
227 fifo32_num_used(&s->tx_fifo), fifo32_num_used(&s->rx_fifo));
228}
229
230static void imx_spi_reset(DeviceState *dev)
231{
232 IMXSPIState *s = IMX_SPI(dev);
233
234 DPRINTF("\n");
235
236 memset(s->regs, 0, sizeof(s->regs));
237
238 s->regs[ECSPI_STATREG] = 0x00000003;
239
240 imx_spi_rxfifo_reset(s);
241 imx_spi_txfifo_reset(s);
242
243 imx_spi_update_irq(s);
244
245 s->burst_length = 0;
246}
247
248static uint64_t imx_spi_read(void *opaque, hwaddr offset, unsigned size)
249{
250 uint32_t value = 0;
251 IMXSPIState *s = opaque;
252 uint32_t index = offset >> 2;
253
254 if (index >= ECSPI_MAX) {
255 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
256 HWADDR_PRIx "\n", TYPE_IMX_SPI, __func__, offset);
257 return 0;
258 }
259
260 switch (index) {
261 case ECSPI_RXDATA:
262 if (!imx_spi_is_enabled(s)) {
263 value = 0;
264 } else if (fifo32_is_empty(&s->rx_fifo)) {
265 /* value is undefined */
266 value = 0xdeadbeef;
267 } else {
268 /* read from the RX FIFO */
269 value = fifo32_pop(&s->rx_fifo);
270 }
271
272 break;
273 case ECSPI_TXDATA:
274 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to read from TX FIFO\n",
275 TYPE_IMX_SPI, __func__);
276
277 /* Reading from TXDATA gives 0 */
278
279 break;
280 case ECSPI_MSGDATA:
281 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to read from MSG FIFO\n",
282 TYPE_IMX_SPI, __func__);
283
284 /* Reading from MSGDATA gives 0 */
285
286 break;
287 default:
288 value = s->regs[index];
289 break;
290 }
291
292 DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx_spi_reg_name(index), value);
293
294 imx_spi_update_irq(s);
295
296 return (uint64_t)value;
297}
298
299static void imx_spi_write(void *opaque, hwaddr offset, uint64_t value,
300 unsigned size)
301{
302 IMXSPIState *s = opaque;
303 uint32_t index = offset >> 2;
304 uint32_t change_mask;
305
306 if (index >= ECSPI_MAX) {
307 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
308 HWADDR_PRIx "\n", TYPE_IMX_SPI, __func__, offset);
309 return;
310 }
311
312 DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx_spi_reg_name(index),
313 (uint32_t)value);
314
315 change_mask = s->regs[index] ^ value;
316
317 switch (index) {
318 case ECSPI_RXDATA:
319 qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to write to RX FIFO\n",
320 TYPE_IMX_SPI, __func__);
321 break;
322 case ECSPI_TXDATA:
323 case ECSPI_MSGDATA:
324 /* Is there any difference between TXDATA and MSGDATA ? */
325 /* I'll have to look in the linux driver */
326 if (!imx_spi_is_enabled(s)) {
327 /* Ignore writes if device is disabled */
328 break;
329 } else if (fifo32_is_full(&s->tx_fifo)) {
330 /* Ignore writes if queue is full */
331 break;
332 }
333
334 fifo32_push(&s->tx_fifo, (uint32_t)value);
335
336 if (imx_spi_channel_is_master(s) &&
337 (s->regs[ECSPI_CONREG] & ECSPI_CONREG_SMC)) {
338 /*
339 * Start emitting if current channel is master and SMC bit is
340 * set.
341 */
342 imx_spi_flush_txfifo(s);
343 }
344
345 break;
346 case ECSPI_STATREG:
347 /* the RO and TC bits are write-one-to-clear */
348 value &= ECSPI_STATREG_RO | ECSPI_STATREG_TC;
349 s->regs[ECSPI_STATREG] &= ~value;
350
351 break;
352 case ECSPI_CONREG:
353 s->regs[ECSPI_CONREG] = value;
354
355 if (!imx_spi_is_enabled(s)) {
356 /* device is disabled, so this is a reset */
357 imx_spi_reset(DEVICE(s));
358 return;
359 }
360
361 if (imx_spi_channel_is_master(s)) {
362 int i;
363
364 /* We are in master mode */
365
366 for (i = 0; i < 4; i++) {
367 qemu_set_irq(s->cs_lines[i],
368 i == imx_spi_selected_channel(s) ? 0 : 1);
369 }
370
371 if ((value & change_mask & ECSPI_CONREG_SMC) &&
372 !fifo32_is_empty(&s->tx_fifo)) {
373 /* SMC bit is set and TX FIFO has some slots filled in */
374 imx_spi_flush_txfifo(s);
375 } else if ((value & change_mask & ECSPI_CONREG_XCH) &&
376 !(value & ECSPI_CONREG_SMC)) {
377 /* This is a request to start emitting */
378 imx_spi_flush_txfifo(s);
379 }
380 }
381
382 break;
383 default:
384 s->regs[index] = value;
385
386 break;
387 }
388
389 imx_spi_update_irq(s);
390}
391
392static const struct MemoryRegionOps imx_spi_ops = {
393 .read = imx_spi_read,
394 .write = imx_spi_write,
395 .endianness = DEVICE_NATIVE_ENDIAN,
396 .valid = {
397 /*
398 * Our device would not work correctly if the guest was doing
399 * unaligned access. This might not be a limitation on the real
400 * device but in practice there is no reason for a guest to access
401 * this device unaligned.
402 */
403 .min_access_size = 4,
404 .max_access_size = 4,
405 .unaligned = false,
406 },
407};
408
409static void imx_spi_realize(DeviceState *dev, Error **errp)
410{
411 IMXSPIState *s = IMX_SPI(dev);
412 int i;
413
414 s->bus = ssi_create_bus(dev, "spi");
415
416 memory_region_init_io(&s->iomem, OBJECT(dev), &imx_spi_ops, s,
417 TYPE_IMX_SPI, 0x1000);
418 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem);
419 sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq);
420
421 ssi_auto_connect_slaves(dev, s->cs_lines, s->bus);
422
423 for (i = 0; i < 4; ++i) {
424 sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->cs_lines[i]);
425 }
426
427 s->burst_length = 0;
428
429 fifo32_create(&s->tx_fifo, ECSPI_FIFO_SIZE);
430 fifo32_create(&s->rx_fifo, ECSPI_FIFO_SIZE);
431}
432
433static void imx_spi_class_init(ObjectClass *klass, void *data)
434{
435 DeviceClass *dc = DEVICE_CLASS(klass);
436
437 dc->realize = imx_spi_realize;
438 dc->vmsd = &vmstate_imx_spi;
439 dc->reset = imx_spi_reset;
440 dc->desc = "i.MX SPI Controller";
441}
442
443static const TypeInfo imx_spi_info = {
444 .name = TYPE_IMX_SPI,
445 .parent = TYPE_SYS_BUS_DEVICE,
446 .instance_size = sizeof(IMXSPIState),
447 .class_init = imx_spi_class_init,
448};
449
450static void imx_spi_register_types(void)
451{
452 type_register_static(&imx_spi_info);
453}
454
455type_init(imx_spi_register_types)