]> git.proxmox.com Git - mirror_qemu.git/blame - hw/sun4m.c
use HF_HALTED bit
[mirror_qemu.git] / hw / sun4m.c
CommitLineData
420557e8
FB
1/*
2 * QEMU Sun4m System Emulator
3 *
b81b3b10 4 * Copyright (c) 2003-2005 Fabrice Bellard
420557e8
FB
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
23 */
24#include "vl.h"
420557e8
FB
25
26#define KERNEL_LOAD_ADDR 0x00004000
b6f479d3 27#define CMDLINE_ADDR 0x007ff000
713c45fa 28#define INITRD_LOAD_ADDR 0x00800000
e80cfcfc 29#define PROM_ADDR 0xffd00000
8d5f07fa
FB
30#define PROM_FILENAMEB "proll.bin"
31#define PROM_FILENAMEE "proll.elf"
e80cfcfc 32#define PHYS_JJ_EEPROM 0x71200000 /* m48t08 */
420557e8
FB
33#define PHYS_JJ_IDPROM_OFF 0x1FD8
34#define PHYS_JJ_EEPROM_SIZE 0x2000
e80cfcfc
FB
35// IRQs are not PIL ones, but master interrupt controller register
36// bits
37#define PHYS_JJ_IOMMU 0x10000000 /* I/O MMU */
6f7e9aec 38#define PHYS_JJ_TCX_FB 0x50000000 /* TCX frame buffer */
3475187d 39#define PHYS_JJ_SLAVIO 0x70000000 /* Slavio base */
6f7e9aec
FB
40#define PHYS_JJ_ESPDMA 0x78400000 /* ESP DMA controller */
41#define PHYS_JJ_ESP 0x78800000 /* ESP SCSI */
42#define PHYS_JJ_ESP_IRQ 18
e80cfcfc
FB
43#define PHYS_JJ_LEDMA 0x78400010 /* Lance DMA controller */
44#define PHYS_JJ_LE 0x78C00000 /* Lance ethernet */
45#define PHYS_JJ_LE_IRQ 16
46#define PHYS_JJ_CLOCK 0x71D00000 /* Per-CPU timer/counter, L14 */
47#define PHYS_JJ_CLOCK_IRQ 7
48#define PHYS_JJ_CLOCK1 0x71D10000 /* System timer/counter, L10 */
49#define PHYS_JJ_CLOCK1_IRQ 19
50#define PHYS_JJ_INTR0 0x71E00000 /* Per-CPU interrupt control registers */
8d5f07fa 51#define PHYS_JJ_INTR_G 0x71E10000 /* Master interrupt control registers */
e80cfcfc
FB
52#define PHYS_JJ_MS_KBD 0x71000000 /* Mouse and keyboard */
53#define PHYS_JJ_MS_KBD_IRQ 14
54#define PHYS_JJ_SER 0x71100000 /* Serial */
55#define PHYS_JJ_SER_IRQ 15
e80cfcfc
FB
56#define PHYS_JJ_FDC 0x71400000 /* Floppy */
57#define PHYS_JJ_FLOPPY_IRQ 22
3475187d 58#define PHYS_JJ_ME_IRQ 30 /* Module error, power fail */
420557e8
FB
59
60/* TSC handling */
61
62uint64_t cpu_get_tsc()
63{
64 return qemu_get_clock(vm_clock);
65}
66
6f7e9aec
FB
67int DMA_get_channel_mode (int nchan)
68{
69 return 0;
70}
71int DMA_read_memory (int nchan, void *buf, int pos, int size)
72{
73 return 0;
74}
75int DMA_write_memory (int nchan, void *buf, int pos, int size)
76{
77 return 0;
78}
79void DMA_hold_DREQ (int nchan) {}
80void DMA_release_DREQ (int nchan) {}
81void DMA_schedule(int nchan) {}
82void DMA_run (void) {}
83void DMA_init (int high_page_enable) {}
84void DMA_register_channel (int nchan,
85 DMA_transfer_handler transfer_handler,
86 void *opaque)
87{
88}
89
819385c5 90static void nvram_set_word (m48t59_t *nvram, uint32_t addr, uint16_t value)
6f7e9aec 91{
819385c5
FB
92 m48t59_write(nvram, addr++, (value >> 8) & 0xff);
93 m48t59_write(nvram, addr++, value & 0xff);
6f7e9aec
FB
94}
95
819385c5 96static void nvram_set_lword (m48t59_t *nvram, uint32_t addr, uint32_t value)
6f7e9aec 97{
819385c5
FB
98 m48t59_write(nvram, addr++, value >> 24);
99 m48t59_write(nvram, addr++, (value >> 16) & 0xff);
100 m48t59_write(nvram, addr++, (value >> 8) & 0xff);
101 m48t59_write(nvram, addr++, value & 0xff);
6f7e9aec
FB
102}
103
819385c5 104static void nvram_set_string (m48t59_t *nvram, uint32_t addr,
6f7e9aec
FB
105 const unsigned char *str, uint32_t max)
106{
107 unsigned int i;
108
109 for (i = 0; i < max && str[i] != '\0'; i++) {
819385c5 110 m48t59_write(nvram, addr + i, str[i]);
6f7e9aec 111 }
819385c5 112 m48t59_write(nvram, addr + max - 1, '\0');
6f7e9aec 113}
420557e8 114
819385c5 115static m48t59_t *nvram;
420557e8 116
6f7e9aec
FB
117extern int nographic;
118
819385c5 119static void nvram_init(m48t59_t *nvram, uint8_t *macaddr, const char *cmdline,
6f7e9aec
FB
120 int boot_device, uint32_t RAM_size,
121 uint32_t kernel_size,
122 int width, int height, int depth)
e80cfcfc
FB
123{
124 unsigned char tmp = 0;
125 int i, j;
126
6f7e9aec
FB
127 // Try to match PPC NVRAM
128 nvram_set_string(nvram, 0x00, "QEMU_BIOS", 16);
129 nvram_set_lword(nvram, 0x10, 0x00000001); /* structure v1 */
130 // NVRAM_size, arch not applicable
819385c5 131 m48t59_write(nvram, 0x2F, nographic & 0xff);
6f7e9aec 132 nvram_set_lword(nvram, 0x30, RAM_size);
819385c5 133 m48t59_write(nvram, 0x34, boot_device & 0xff);
6f7e9aec
FB
134 nvram_set_lword(nvram, 0x38, KERNEL_LOAD_ADDR);
135 nvram_set_lword(nvram, 0x3C, kernel_size);
b6f479d3 136 if (cmdline) {
b6f479d3 137 strcpy(phys_ram_base + CMDLINE_ADDR, cmdline);
6f7e9aec
FB
138 nvram_set_lword(nvram, 0x40, CMDLINE_ADDR);
139 nvram_set_lword(nvram, 0x44, strlen(cmdline));
b6f479d3 140 }
6f7e9aec
FB
141 // initrd_image, initrd_size passed differently
142 nvram_set_word(nvram, 0x54, width);
143 nvram_set_word(nvram, 0x56, height);
144 nvram_set_word(nvram, 0x58, depth);
b6f479d3 145
6f7e9aec 146 // Sun4m specific use
e80cfcfc 147 i = 0x1fd8;
819385c5
FB
148 m48t59_write(nvram, i++, 0x01);
149 m48t59_write(nvram, i++, 0x80); /* Sun4m OBP */
e80cfcfc 150 j = 0;
819385c5
FB
151 m48t59_write(nvram, i++, macaddr[j++]);
152 m48t59_write(nvram, i++, macaddr[j++]);
153 m48t59_write(nvram, i++, macaddr[j++]);
154 m48t59_write(nvram, i++, macaddr[j++]);
155 m48t59_write(nvram, i++, macaddr[j++]);
156 m48t59_write(nvram, i, macaddr[j]);
e80cfcfc
FB
157
158 /* Calculate checksum */
159 for (i = 0x1fd8; i < 0x1fe7; i++) {
819385c5 160 tmp ^= m48t59_read(nvram, i);
e80cfcfc 161 }
819385c5 162 m48t59_write(nvram, 0x1fe7, tmp);
e80cfcfc
FB
163}
164
165static void *slavio_intctl;
166
167void pic_info()
168{
169 slavio_pic_info(slavio_intctl);
170}
171
172void irq_info()
173{
174 slavio_irq_info(slavio_intctl);
175}
176
177void pic_set_irq(int irq, int level)
178{
179 slavio_pic_set_irq(slavio_intctl, irq, level);
180}
181
182static void *tcx;
183
184void vga_update_display()
185{
186 tcx_update_display(tcx);
187}
188
189void vga_invalidate_display()
190{
191 tcx_invalidate_display(tcx);
192}
193
194void vga_screen_dump(const char *filename)
195{
196 tcx_screen_dump(tcx, filename);
197}
198
199static void *iommu;
200
201uint32_t iommu_translate(uint32_t addr)
202{
203 return iommu_translate_local(iommu, addr);
204}
205
3475187d
FB
206static void *slavio_misc;
207
208void qemu_system_powerdown(void)
209{
210 slavio_set_power_fail(slavio_misc, 1);
211}
212
c68ea704
FB
213static void main_cpu_reset(void *opaque)
214{
215 CPUState *env = opaque;
216 cpu_reset(env);
217}
218
420557e8 219/* Sun4m hardware initialisation */
c0e564d5
FB
220static void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
221 DisplayState *ds, const char **fd_filename, int snapshot,
222 const char *kernel_filename, const char *kernel_cmdline,
223 const char *initrd_filename)
420557e8 224{
c68ea704 225 CPUState *env;
420557e8 226 char buf[1024];
8d5f07fa 227 int ret, linux_boot;
713c45fa 228 unsigned int i;
6f7e9aec 229 long vram_size = 0x100000, prom_offset, initrd_size, kernel_size;
420557e8
FB
230
231 linux_boot = (kernel_filename != NULL);
232
c68ea704
FB
233 env = cpu_init();
234 register_savevm("cpu", 0, 3, cpu_save, cpu_load, env);
235 qemu_register_reset(main_cpu_reset, env);
236
420557e8
FB
237 /* allocate RAM */
238 cpu_register_physical_memory(0, ram_size, 0);
420557e8 239
e80cfcfc
FB
240 iommu = iommu_init(PHYS_JJ_IOMMU);
241 slavio_intctl = slavio_intctl_init(PHYS_JJ_INTR0, PHYS_JJ_INTR_G);
6f7e9aec 242 tcx = tcx_init(ds, PHYS_JJ_TCX_FB, phys_ram_base + ram_size, ram_size, vram_size, graphic_width, graphic_height);
8d5f07fa 243 lance_init(&nd_table[0], PHYS_JJ_LE_IRQ, PHYS_JJ_LE, PHYS_JJ_LEDMA);
819385c5 244 nvram = m48t59_init(0, PHYS_JJ_EEPROM, 0, PHYS_JJ_EEPROM_SIZE, 8);
e80cfcfc
FB
245 slavio_timer_init(PHYS_JJ_CLOCK, PHYS_JJ_CLOCK_IRQ, PHYS_JJ_CLOCK1, PHYS_JJ_CLOCK1_IRQ);
246 slavio_serial_ms_kbd_init(PHYS_JJ_MS_KBD, PHYS_JJ_MS_KBD_IRQ);
b81b3b10
FB
247 // Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
248 // Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
249 slavio_serial_init(PHYS_JJ_SER, PHYS_JJ_SER_IRQ, serial_hds[1], serial_hds[0]);
e80cfcfc 250 fdctrl_init(PHYS_JJ_FLOPPY_IRQ, 0, 1, PHYS_JJ_FDC, fd_table);
6f7e9aec 251 esp_init(bs_table, PHYS_JJ_ESP_IRQ, PHYS_JJ_ESP, PHYS_JJ_ESPDMA);
3475187d 252 slavio_misc = slavio_misc_init(PHYS_JJ_SLAVIO, PHYS_JJ_ME_IRQ);
420557e8 253
e80cfcfc
FB
254 prom_offset = ram_size + vram_size;
255
256 snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEE);
257 ret = load_elf(buf, phys_ram_base + prom_offset);
258 if (ret < 0) {
8d5f07fa 259 snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEB);
e80cfcfc
FB
260 ret = load_image(buf, phys_ram_base + prom_offset);
261 }
262 if (ret < 0) {
263 fprintf(stderr, "qemu: could not load prom '%s'\n",
264 buf);
265 exit(1);
266 }
267 cpu_register_physical_memory(PROM_ADDR, (ret + TARGET_PAGE_SIZE) & TARGET_PAGE_MASK,
268 prom_offset | IO_MEM_ROM);
269
6f7e9aec 270 kernel_size = 0;
e80cfcfc 271 if (linux_boot) {
6f7e9aec
FB
272 kernel_size = load_elf(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
273 if (kernel_size < 0)
274 kernel_size = load_aout(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
275 if (kernel_size < 0)
276 kernel_size = load_image(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
277 if (kernel_size < 0) {
420557e8 278 fprintf(stderr, "qemu: could not load kernel '%s'\n",
e80cfcfc
FB
279 kernel_filename);
280 exit(1);
420557e8 281 }
713c45fa
FB
282
283 /* load initrd */
284 initrd_size = 0;
285 if (initrd_filename) {
286 initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
287 if (initrd_size < 0) {
288 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
289 initrd_filename);
290 exit(1);
291 }
292 }
293 if (initrd_size > 0) {
294 for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
295 if (ldl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i)
296 == 0x48647253) { // HdrS
297 stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 16, INITRD_LOAD_ADDR);
298 stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 20, initrd_size);
299 break;
300 }
301 }
302 }
420557e8 303 }
6f7e9aec 304 nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline, boot_device, ram_size, kernel_size, graphic_width, graphic_height, graphic_depth);
420557e8 305}
c0e564d5
FB
306
307QEMUMachine sun4m_machine = {
308 "sun4m",
309 "Sun4m platform",
310 sun4m_init,
311};